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Preface 

The SCSI bus and IDE interface are without question the two most important inter­
faces for computer peripherals in use today. The IDE hard disk interface is found 
almost exclusively in the world of IBM PC compatibles. The SCSI bus, on the other 
hand, is designed not only for hard drives but also for tape drives, CD-ROM, scan­
ners, and printers . Almost all modern computers, from PCs to workstations to 
mainframes, are equipped with a SCSI interface. 

Both SCSI and IDE are ANSI standards.  However, aside from the actual ANSI 
documentation, there exists almost no additional reference material to either specifi­
cation. The purpose of this book is to fill that void with a clear, concise description 
of both interfaces. The essential terminology is introduced, while the commands and 
protocols are broken down in full. In the interest of economy the less important 
details and options have been omitted in certain cases. Often a specific section in the 
ANSI documentation will be cited for easy cross-referencing. After reading this 
book you should be in the position to easily understand relevant technical docu­
mentation, including the ANSI specifications themselves. 

First and foremost, a thorough introduction to the terminology is in order. 
Especially with respect to SCSI, there is a deluge of terms and definitions that are 
used nowhere else or are used differently than in other computer domains.  These 
keywords, which include signal names and interface commands, are typeset in small 
capital letters, for example FORM AT UNIT. 

This book is intended for readers with a broad range of technical backgrounds and 
interests. Those working on the design of mass storage devices, for example, will find 
the protocol descriptions extremely useful. Readers writing software or device drivers 
may have other interests. They will find the hardware descriptions, such as that of the 
physical organization of a disk drive, very helpful. 

This book is not meant to replace the ANSI documentation . On the other hand, 
those specifications are not meant to explain the technology, rather to define it. It is 
very difficult to find your way around in the original documentation without an 
understanding of the subject matter. The book's thorough, in-depth descriptions , 
along with index and glossary, make it the perfect tutor for IDE and SCSI, as well 
as a helpful guide to the ANSI literature. 

Friedheim Schmidt 

February 1993 
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Preface to the second edition 

More than four years have passed since the first edition of this book, but neverthe­
less the book is still of immediate interest. In the fast-paced computer industry, this 
is  not a matter of course. But even the SCSI bus and the IDE interface go on devel­
oping. The current version in the IDE domain is ATA-2, and work on ATA-3 is in 
progress. 

The SCSI-3 standard too is  slowly becoming more stable; some parts of it are 
already implemented in series products . Two examples are the new wide SCSI bus 
with 1 6-bit transfers on only one cable and the possibility of having 16 devices on 
one bus, and the Ultra SCSI bus (Fast-20) with its transmission speed doubled up to 
20 mega transfers per second. 

The really important change in SCSI-3 is the division of the standard into inter­
face, protocol, device model and command set. This allows the use of SCSI device 
models and their command sets with different physical interfaces. In particular the 
Fibre Channel is currently seen as the physical interface of the future. But even with 
Fast-20, the current parallel SCSI interface too has not yet reached its throughput 
limit. Developers are already thinking of Fast-40 or even Fast-80. 

The contents of this second edition of the book have been slightly rearranged; the 
structure of the SCSI part is now oriented at the SCSI-3 standard draft. The SCSI-3 
architecture model and an introduction to the new physical interfaces have been 
added. Once again, the time has come to part with well-known techniques and learn 
something new. Enjoy reading. 

Friedheim Schmidt 

May 1997 
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1 Compll.llters and peruphera!s 
2 Tradlntimua! peripheral illllterfaces 
3 Computer !buses 





1 Computers and peripherals 

A computer can be broken down into a number of interdependent functional blocks. 

The most important of these are the central processing unit (CPU), main memory, 

input/output (I/0) and mass storage. The CPU executes the instructions of a program, 

which, along with the necessary data, must reside in main memory at execution time. 

Therefore, before a program can be run it must be loaded into main memory from 

mass storage. The data to be processed by the program comes either from mass 

storage or from an input device such as the keyboard. The CPU accesses memory at 

least once for each program step in order to read the corresponding machine 

instructions. In fact, several accesses are usually necessary to read and write data. For 

this reason the CPU and memory are very tightly coupled: access is uncomplicated 

and, above all, fast. 

CPU 

I 

Terminal Printer 

............................ J .. ,-----, 

Main 
memory 

Serial 
interface 

I I I 
System bus 

I 
Hard drive 
controller 

Parallel 
interface 

I I 
I I 

Tape drive 
controller 

......................... .. , ...... ........ . ..... , ...... . 
Drive � Drive 

Figure 1.1 Computer system with peripheral devices. 
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4 Computers and peripherals 

In contrast to memory, 110 devices and mass storage are located further from the 
CPU, hence the name 'peripherals '  (Figure 1 . 1 ) .  Access to such devices is slower 
and more complicated. Communication with the peripherals is accomplished using 
an interface such as SCSI or IDE. On the other end of the interface is a controller, 
which in tum communicates with the CPU and memory. 

1 . 1 Mass storage 

A mass storage device is capable of storing data many times the size of main 
memory. In addition, information stored here is nonvolatile: when the device is 
turned off the data remains intact. 

Hard disks 

Disk drives or hard disks store information by writing it onto rotating disks . The 
information is divided up into blocks of fixed length, each of which can be accessed 
relatively quickly, typically around 30 milliseconds (ms) .  For this reason hard disks 
are also referred to as random access mass storage devices. Among the different 
types of mass storage devices are hard disks, exchangeable medium drives, 
diskettes,  optical disks and CD-ROM. 

Tape devices 

In contrast to hard disks, tape devices (or tape drives) write data sequentially onto 
magnetic tape. The length of time needed to access a specific block of information 
depends on which position is presently underneath the read/write head. If it is nec­
essary to rewind or fast forward the tape a very long distance, a tape access can take 
as long as several minutes.  Tape drives are also known as sequential mass storage 
devices. Among these are the traditional reel-to-reel drives, cassette drives, drives 
that use video cassettes for recording and 4 mm digital audio tape (DAT) drives. 

1/0 devices 

Under the heading 110 devices are the monitor and keyboard used for communica­
tion between the user and the computer. Further examples of output devices are 
printers, plotters and even speakers used for outputting speech. Among the many 
input devices are mice, analog to digital converters, scanners and microphones used 
in speech recognition. 

Miscel laneous devices 

Network connections also fall into this category. This is especially so today where 
mass storage is often replaced by a file server across a network. Computers with no 
mass storage of their own are called diskless workstations. 



Peripheral interfaces 5 

There are many more devices that exchange data with computers, although one 

hardly refers to a computer controlled lathe or a music synthesizer as a computer 
peripheral. Nevertheless, they function as peripherals and communicate with the 
computer using 1/0. 

1 .2 Periph eral i111terfaces 

Peripheral devices are connected to computer systems via interfaces. The abstract 
model of a peripheral interface is made up of many layers, the boundaries of which 
are not always clear, especially for older interfaces . It is also true that some layers 
are omitted in certain interface definitions. In this book I adhere to a model with four 
layers for the SCSI interface, as was agreed upon by the American National 
Standards Institute (ANSI) committee for the first time for SCSI-3 . The strata of 
layers are designed bottom up. All low level layers are mandatory for the 
implementation of an interface. An uppermost layer, however, can be omitted in 
some cases . A high level interface refers to the case where all possible levels have 
been implemented. 

Among those things defined in the lowest level are cable and connector types. 
Also defined are the signal voltages and the current requirements of the drivers . 
Finally, the timing and coordination of all of the signals of the bus are described 
here. This lowest level is referred to as the physical interface.  

Directly above the physical layer resides the protocol layer. The protocol of an 
interface contains,  for example, information about the difference between data bytes 
and command bytes and about the exchange of messages between devices. If 
corrupted data is to be corrected through the use of error correction, this is  described 
in the interface protocol. 

On top of the protocol layer lies the peripheral device model. Here the behavior 
of devices to be connected to the interface is described. These descriptions can be 
very detailed and precise. The SCSI bus is an example of such a detailed model, 
where in addition to the characteristics of general purpose SCSI devices, those of 
hard disks, tape drives, printers and so on are defined. 

Finally, some interfaces go so far as to define which commands must be 
understood by the interface devices. The command set builds upon the device model 
and represents the fourth layer of the interface. 

The term ' interface'  always refers to all implemented layers in their entirety. 
There are distinct peripheral interfaces defined using the same physical level but a 
unique protocol level. It is also possible for a single interface to allow for different 
options in the physical level. 

The interface used for printers is a good example of a four-layer interface. Figure 
1 .2 makes the relationships among the layers clear. The two lower levels are covered 
by the Centronics interface. This parallel interface contains the definition of the 
physical and protocol layers . The particular printer model in Figure 1 .2 is a page 
printer. This means that the printer constructs an entire page in internal memory 
before printing it. In contrast to line printers, the lines of a page can be sent in any 
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Command set PostScript 

Device model Printer 

Protocol 
........ Centronics 

Physical 
interface 

Figure 1.2 Layers of a printer interface. 

order as long as a page boundary is not crossed. However, once a page is printed it 
is impossible to retrieve it in order to make changes . 

The page description language PostScript is an excellent example of a large and 
complex command set. It is built upon the page printer model and makes it possible 
to output text as well as various graphic elements .  These elements can be positioned 
freely on the current page. Naturally, there are other such page formatting languages 
written for the page printer model. This makes the division between device model 
and command set very intuitive. 

As you can see, this interface is complete in that it contains all four interface 
layers . If you purchase a printer with such an interface, it makes no difference which 
brand name you choose. As long as it is true to the interface specification it will 
work with any computer also equipped with the printer interface.  However, if you 
were to omit even only the uppermost layer of the specification, then the interface 
description would be incomplete. It would still be possible to connect up the printer, 
but whether it would function properly would be a matter of luck. 

The IDE interface and the SCSI bus are likewise complete interface definitions. 
Before getting to these, however, I would like to introduce in Chapter 2 a few classic 
examples of peripheral interfaces. For the most part their definitions contain only the 
lower layers of the interface model. This chapter will help to underscore the 
difference between traditional interfaces on the one hand and the complete IDE and 
SCSI interfaces on the other. 



2 Trad itional peripheral interfaces 

This chapter will help to familiarize you with several classic peripheral interfaces of 

the computer industry. As with the printer interface outlined in Chapter 1, these will 

be described within the framework of the layered interface model. These descrip­

tions are by no means comprehensive ; complete specifications would tum this book 

into several volumes. 

I have two goals in mind in presenting these interfaces. First of all, the interfaces 

are very simple ; they will allow you to become acquainted with interface character­

istics that are valid for all interfaces, including computer buses. Secondly, to a 

certain degree these specifications are the forerunners of competition to the IDE and 

SCSI bus interfaces. A background in the more traditional interfaces will make it 

much easier to evaluate and understand their modern descendants, the main topic of 

this book. 

2.1 The R.S-232 sel!'na� untell'face 

RS-232C is the most widely used serial interface. 'Serial ' means that the data is  

transferred one bit  at  a time across a single connection. RS-232C is used mainly for 

the connection of computer terminals and printers. Nonetheless,  it is also appropri­

ate for the exchange of data between computers. Machine tools and measurement 

instruments are frequently connected to computers using RS-232C. Understandably, 

it is not a device specific interface. RS-232C is the responsibility of the Electronic 

Industries Association (EIA). 

The specification for RS-232C contains the physical layer and hardware protocol. 

In addition, there are software protocols, of which only a few build on top of the 

RS-232 hardware protocol. This leads to an uncommon situation with RS-232C and 

other serial interfaces- not all applications use all of the signals.  Frequently cables 

are used that conduct only a few of the defined signals, a situation that would be 

unthinkable for IDE or SCSI. I concentrate here on a variation of the interface using 
only three signals, which I call mini-RS-232. 

7 



8 Traditional peripheral interfaces 

The physical interface 

Mini-RS-232 establishes a bidirectional point-to-point connection between equip­
ment. Each direction has its own data signal and a single ground signal is shared. 
The data signals are called TD (transmit data) and RD (receive data).  When two 
devices are coupled to each other, these signals are crossed such that the TD of one 
device connects to the RD of the other (Figure 2. 1 ) .  

0 0 1 0 1 0 0 _2__ +15 v - . ·r--·· ··· ·r--·· 

. ······'--·· .. . ... ... '-- .... ···'--····· 
Start bit 8 Data bits 

(always 0) 

13� 14 . . .. :. .. .. .. . . .. 
1 C 2s 

Transmit data 

Recelve data 

Signal ground 

Figure 2.1 Physical interface: mini-RS-232. 

Stop bit 
(always 1) 

14 r-; 13 .. :: :: :. :: 
Transmit data : • 

Receive data 25 .:..._: 1 

0 v 

-15 v 

The connector chosen by the EIA standard is the 25-pin DB25 . Other connectors, 
however, are frequently employed, such as the DB9 for the IBM AT or the RJ 1 1  tele­
phone connector used in various minicomputers . 

On the signal lines, a logical 1 is represented by a voltage between +5 V and + 1 5  
V, and the receiver recognizes anything above + 3  V as such. Likewise, logical 0 is 
represented by a signal voltage between -5 V and -15 V. Again, the receiver recog­
nizes any signal below -3 V as such. 

Data transfer takes place serially, character by character. The characters are 
further broken down into bits, which are sent across the line one by one. On the other 
end, the receiver then assembles the bits back into characters. The number of bits per 
character lies between five and eight; eight is precisely what is needed to transfer one 
byte. The data bits are preceded by a start bit and followed by a stop bit. In addition, 
a parity bit may be sent for error detection. The transfer rate can range between 75 
and 1 1 5  000 bits per second (baud), and a cable alone cannot compensate for differ­
ent transfer rates ;  the devices must be set at the same speed otherwise no exchange 
of data can take place. 

Now comes a rather confusing point: this method of transfer over the serial inter­
face is called asynchronous even though the data is sent and received relative to a 
clock. Among other serial interfaces the term 'synchronous'  is used whenever a 
clock is involved. For RS-232C, however, the transfer is referred to as asynchronous 
because the clocks are not tied to each other. The RS-232C specification includes 
signals that allow the sender and the receiver to use the same clock for data transfer. 
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When these signals are employed the data transfer is referred to as synchronous. 
True asynchronous transfer uses control signals to exchange data. This point, among 
others ,  will be made clear in Section 2 .2 .  

As a rule of thumb, when thinking about data throughput you can consider a byte 
or character to be 10 bits (one stop, one start and eight data bits) .  When the fastest 
transfer rate possible is employed, namely 1 15 000 bits per second, the maximum 
throughput is approximately 1 1 .5 Kbytes per second. 

The protocol 

Mini-RS-232 has no protocol of its own. However, there is a protocol that is often 
used with the interface, called the XON/XOFF protocol (Figure 2 .2) .  It works in the 
following way. When the receiving device is no longer able to take on data from the 

sender, it sends a special character, an XOFF byte, to indicate this .  Later, when it is 

ready to continue receiving data, it sends an XON byte to tell the sender to proceed. 

This protocol is in no way error proof - characters are sometimes lost. In addition, 

the protocol cannot be used for bidirectional transfer of binary data. The reason for 
this restriction is simple: for text data only a subset of the possible bytes is sent over 
the interface, those corresponding to letters ,  numbers ,  and symbols .  This leaves 

room for a number of special characters,  of which XON and XOFF are examples . 
When, on the other hand, binary data is transferred, the data is not restricted to 

certain characters ;  any binary pattern may occur. In this situation there is no room 
for the special characters and the XON/XOFF protocol is unusable. For connecting 
terminals and printers ,  however, the protocol is actually very practical. 

Pri nter 8f------l8f-------
XOFF XON 

Figure 2.2 XON/XOFF protocol . 

An example of a higher level protocol for the transfer of binary data (file trans­
fer) is  Kermit. This public domain program can be used at no cost for 
noncommercial purposes. A number of computer manufacturers have also devel­
oped their own internal protocols built on top of RS-232.  

Commands 

There are no  commands special to  the RS-232 interface. As  RS-232 was developed, 
commands were designed for specific devices apart from the interface .  SCSI is 
among the first interfaces to define universal command sets for whole device classes. 

Nevertheless, some command sets have been designed for use with RS-232.  
Examples are page formatting languages for printers ,  such as PostScript. 



1 0 Traditional peripheral interfaces 

Summary 

As you can see, an interface that builds on top of RS-232 has many possible 
variations. The complete description of my printer-PC interface would be: RS-232 
at 9600 baud, 1 stop bit, no parity, XON/XOFF protocol, PostScript. If I were to 
change a parameter for only the printer or only the PC, for example by not sending 
PostScript or starting to use a parity bit, nothing would print. Although mini-RS-232 
appears to be simple (only three wires), there are almost an uncountable number of 
ways in which the connection can fail .  What is missing is a protocol that allows the 
devices to agree upon the available options. Although RS-232 has given a good 
portion of frustration to just about everyone who has worked with it, it nonetheless 
has the decided advantage that it exists on every computer and is also device 
independent. 

2.2 The Centronks printer interface 

The Centronics interface is a parallel interface developed for printers. It is an indus­
try standard that, to my knowledge, has never been officially approved. As a result 
there are many variations.  This is especially so with respect to the status signals that 
reflect the printer 's  current state. Centronics defines the physical interface and the 
protocol. As a command set, either PostScript or another printer language is used. 

Originally developed as a unidirectional interface, the parallel printer link for PCs 
can also be used bidirectionally. This faster, bidirectional variation, the Bi-Tronics 
interface, has been standardized as IEEE- 1 248. 1t is, however, not our concern here. 
We are interested in Centronics mostly as another example of the various computer 
interfaces. However, it is also a good idea to know this interface in order to under­
stand the difference from SCSI printers (see Figure 2 .3) .  

The phys ical interface 

Centronics uses a shielded twisted-pair cable with 36 signals, of maximum length 5 
meters (about 1 6  feet) . A 36-pin amphenol connector is used on the printer end, 
which most people have come to refer to as a Centronics connector. The computer 
end of the cable has either a corresponding female Centronics or a female DB25 . 

DATA1 -8 

STROBE 

BUSY 

ACKNLG 

Figure 2.3 Centronics interface timing. 

u 



The Centronics printer interface 1 1  

Table 2.1 The signals of the Centronics interface. 

Pin Pin Signal Source Des<·riptiml 
(Cen) (0825) 

STROBE Host Indicates valid <.lata on DATA 1-X 

2 :?. DATA\ Host Data hit 0 
3 3 DATA� Host Data hit I 

4 4 DATAJ Host Data hit 2 
5 s DATA4 Host Data bit 3 
6 6 DATA5 Host Data hit 4 

7 7 DATA6 Host Data bitS 

7 8 DATA7 Host Data hit 6 

9 9 DATAS Host Data hit 7 

10 10 ACKNLG Printer Indicates printer has accepted D.-\TA I-X 

ll 11 BL!SY Printer Indicates printer is not ready for new data 

12 12 PE Printer Paper error 

13 13 SELECT Printer Printer is online 

14 14 .\l"TOFEED Host The p1intcr shoulu aud a cmnage return to each line lixu 
16 S I G N A L  0 V reference point for the signals 

GROUND 

17 CHASSIS Protective grounu 

GROUND 

18 +5V Printer +5 V power (50 m A maximum) 

19-30 18-25 S I G N A L  Grounds of the twisted signal wires 

GROUND 

31 16 \NIT Host Initialize printer 

3:?. 15 ERROR Printer General error 

36 17 SLCT I N  Host Select printer 

Electrical specifications 

The signal voltages c orrespond to those for transistor-transistor l ogic (TTL) .  A 0 is 
rec ognized from 0 V to  +0.8  V, a I from +2.4 V to +5 . 0  V. Table 2. 1 lists the signals 
of the Centronics interface. Note that I have described the data signals starting with 0; 
that is, using the logical names. The actual signal names, however, are data l to 
data8. 

Data transfer takes place in parallel across signals D ATAl to D ATA�. The signals 
STROBE, BUSY and A CKNLG control the sequencing, which is shown in Figure 2 .3 .  The 
term 'protocol ' does not apply completely here . Relative to our layer model, this 

timing belongs to the definiti on of the physical interface. 

Request/acknowledge handshake 

The transfer of a byte begins when the computer sets the 8 bits on signals data l to 
data8. After waiting for at  least a microsec ond. i t  then activates a pulse across strobe, 
which indicates that there is valid data on the data lines. In response, the printer sets 
busy and reads the data byte . As soon as the byte has been successfully read and the 
printer is ready to receive the next byte, it clears the busy signal and sends a pulse 
across the acknlg line. Now the computer may change the data signals and send the 
next strobe for the next byte. This method of data transfer, where a signal is used to  
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indicate a request (here strobe) and another to acknowledge that request (here 
acknlg) , is called asynchronous. The mechanism itself is termed request/acknowl­
edge handshake. 

Throughput 

Throughput, or the amount of data transferred per sec ond, is dependent upon how 

long the printer leaves its busy signal active for each byte. The other signals 
involved in the handshake need at least 4 microseconds (Jls) in total. If a printer were 
exceptionally fast, it could accept a byte in around 1 0  JlS. This w ould c orrespond to 
a data rate of 1 00 Kbytes per second. The handbook for my old laser printer reports 
a value of approximately 1 00 JlS for the length of busy, which allows for a rate no 
faster than 10  Kbytes per second. More recent printers with Bi-Tronics interface 
reach up to 400 Kbytes per second. 

The protocol 

The Centronics interface protocol is very simple. The flow of data is solely the 
responsibility of the physical layer. When the printer is not able to  receive data it 
simply holds BUSY active. There are, however, a couple of status signals that reflect 
the printer 's  status .  These fall under the category of message exchange, which places 
them in the protoc ol layer. These signals are PE, SELECT, and ERROR. In addition to  
these are the c ontrol signals AUTOFEED, !NIT, and SLCT IN .  All of these signals are 
described in Table 2 . 1 .  

Summary 

The Centronics printer interface is our first example of a device specific interface. 
The method of data transfer is very similar to many parallel interfaces.  Nevertheless, 
the status signals for end of paper and carriage return pertain strictly to printers . 
Although this is the case, devices have been developed that use Centronics as a 
general purpose parallel interface simply by ignoring the printer specific signals .  
Examples of these include SCSI adapters, network adapters and disk drives. 

The data transfer is parallel and asynchronous, controlled by the handshaking 

signals STROBEIACKNLG. The transfer rate is dependent on the speed of the printer: 
the faster the printer is able to activate its ACKNLG signal, the higher the transfer rate. 
This characteristic of asynchronous transfer will appear again when we look at the 
SCSI bus. 

As in the case of RS-232, the Centronics interface itself c ontains neither a device 
model nor a c ommand set. As shown in Figure 1 .2 ,  all c omponents are necessary in 
order to define a c omplete printer interface. On the other hand, the interface as it 
stands is flexible, and there are actually PC solutions for c onnecting peripheral 
devices via the Centronics interface. 

Centronics, like RS-232, establishes a point-to-point connection between devices. 
This means that only a single printer can be used for each interface because the 
ability to address different devices is lacking. This new feature belongs to the next 
interface we will discuss.  
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This section and the following secti on on ST5 06 delve more deeply into details than 

previous sect ions, because it is here that the foundation for understanding IDE and 

SCSI is laid. If you are not well acquainted with the internals and w orkings of hard 

disks, you w ill find this section especially interesting. Here, y ou will learn the ter­

minology of the d isk drive domain. 

A l ittle h i story 

Disk drive interfaces were standardized early on. Beginning in 1 975,  drives with a 

diameter of 1 4  inches and then 8 inches were shipped with the SMD interface. The 

name c omes from the Storage Module Drives of the c ompany, CDC. CDC has since 

s old its drive production to Seagate. During the late 1 98 0s,  as a result of steady 

improvements, SMD became the favorite interface for 8 inch high performance 

drives . SMD-E, the final vers ion, had a transfer rate of 24 MHz or about 3 Mbytes 

per sec ond. The interface, however, could not survive the transiti on to 5 .25 inch 

drives,  primarily because of the very wide cable. As a result SMD died along w ith 

8 inch drives in about 1 990. 

Five years after the arrival of SMD, Seagate introduced a 5 .25 inch drive with a 

storage capac ity of 5 Mbytes.  This economical disk drive, at the l ower end of the 

performance scale, used a new interface called ST5 06. You will often hear 

ST5 06/ST4 1 2  being used to refer to the same interface. ST5 06 was not developed 

from scratch, but evolved from the floppy interface. The transfer rate was increased 

to 5 MHz (about 625 Kbytes per second) but the method of moving the heads by 

sending step pulses remained the same. In the past few years , advances have allowed 

the transfer rate to be doubled once again. However, the demands of modem PCs 

have finally exceeded the interface's capabil it ies: ST5 06 has been steadily los ing 

ground to IDE and SCSI since around 199 1 .  

It was apparent early on that 5 .25 inch drives w ould be capable of performance 

that ST5 06 c ould not support. SMD could have fitted the bill but it was too big and 

too expensive. In 1 983 the disk drive manufacturer Maxtor came out with the 

Enhanced Small Device Interface (ESDI) to remedy this situation.  The ESDI used 

the same cables as ST5 06 but allowed transfer rates of up to  20 MHz (2.4 Mbytes 

per second) . In addition, ESDI had commands, for example, seek to  track. Today, 

1 997, the ESDI interface is practically dead and has c ompletely been crowded out 
by the SCSI interface. 

lhe d isk dr ive model 

On our way to understanding IDE we will make a stop to examine its predecessor, the 
ST5 06 interface. Before we do this, however, we need to become acquainted with the 
basic model of a disk drive. A hard disk diive stores information on a set of rotating 
disks. The information can be written and read any number of times and the data 

remains intact even after the drive is turned off. 
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The term 'hard disk' most often refers to a drive with nonremovable media 
although s ome removable media drives do use hard disks . A hard disk contrasts with 
the flexible media used in fl oppy drives. 

This model of a disk drive will say nothing about the exact method of writing to 
the medium. This means that it will be valid for magnetic disk drives as well as 
magneto- optical, diskettes, and removable media drives .  CD-ROM and WORM 
drives, however, do not fall into this category; these formats lack the ability to 
rewrite information. 

Organ ization of the medium 

The disk assembly of a drive usually consists of a number of writable surfaces, each 
of which stores data on c oncentric rings called tracks. The tracks are further divided 
into sectors , which are the smallest readable/writable unit. A sector is accessed by 
first positioning the read/write head above the proper track. The drive then waits 
until the desired sector rotates underneath the head and reads the data. Writing and 
reading the sector is done serially bit by bit. 

A drive usually contains s omewhere between two and eight disks, and both sides 
of a disk can be utilized for storage. Each surface has its own read/write head 
although only one track can be written to or read at a given time. The heads are posi­
tioned collectively over the tracks. A set of tracks that can be accessed by the heads 
from a single position is called a cylinder. A consequence of this organization is that 
every sector of the drive can be uniquely addressed by its cylinder, head and sector 
numbers. This is referred to as the drive geometry (Figure 2.4). 

Sector format 

In order to identify the beginning of a track there is an interface signal called INDEX, 

which issues a pulse at the precise moment when the heads reach this p osition.  This 
is where the first sector of the track begins. At the start of the other sectors another 

Seven tracks, 
each divided 
i nto eight sectors 

Figure 2.4 Structure of disk medium. 

Cylinders consisting of six 
vertical ly al igned tracks 

Three disks with a 
total of six surfaces 
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512 Bytes data 

Soft-sector format 

512 Bytes data 

I Sync I Cylinder I �ead I Seeler I CRC I 
Hard-sector format 

Figure 2.5 Typical sector format. 

interface signal, SECTOR, issues a pulse. If the sector pulse is generated by special 
circuitry that senses the relative angular position of the disks , the drive is said to be 
hard sectored. The drive is soft sectored if the beginning of the sector is actually read 
off the medium by the heads. 

A c omputer uses data in parallel ; that is, bytes not bits. The disk formatter is a 
chip, which in addition to identifying sectors by their sector number als o  takes the 
serial data from the heads and groups it properly into bytes. The data separator sits 
between the heads and the formatter chip. When data is read from the drive it gen­
erates an accompanying clock. Finally, the read/write amplifier circuitry amplifies 
the analog signals to  and from the heads. The electronics that pertain to actual 
reading and writing of information are collectively referred to as the data channel. 

A sector is  made up of a number of different fields which are together referred to 
as the sector format. Sector formats differ from interface to  interface but  a typical 
format can be described as follows: first comes a field for synchronizing the data 
separator followed by the address field. The address field c ontains the cylinder, head, 
and sector numbers . With this information the controller verifies that it is reading or 
writing the correct sector. After the address field comes the cyclic redundancy code 
(CRC) checksum, which is used to check whether the address was read properly. All 
fields up to this point are collectively referred to as the header. Now c omes the data. 
Here too a synchronization field is used, followed by the actual data of the sector. In 
the place where the address field has a CRC checksum, the data has a number of 
error correction code (ECC) bytes . The ECC all ows the controller to test whether the 
data has been correctly written or read. In addition a certain number of incorrectly 
read bits can actually be corrected using this code. The sector ends with a gap used 
to even out small differences in motor speed. The number of data bytes in a sector 
c orresponds to its formatted capacity. Typical formatted sector sizes are 5 1 2, 1 024 
and 4096 bytes. The header, ECC and gaps use up space for between 40 and 1 00 
bytes, depending on the sector format (Figure 2 .5) .  



1 6  Traditional peripheral interfaces 

Formatting, reading, and! writing 

Only after the drive 's medium has been formatted is it usable for data storage. This 

procedure involves writing not only the headers but also the data field. An arbitrary 

data pattern is usually written along with the correct ECC. Normally the entire drive 

is formatted at one time although soft sectoring allows a single track and hard sec­

toring a single sector to be formatted. 

The reading of a sector is relatively simple. As soon as the head is positioned at 

the correct cylinder, the desired head is chosen and the formatter chip reads headers 
until the proper address comes by. The data directly following this header is the data 

required. 

Writing a sector is a bit more complicated. A write looks just like a read until the 

proper header is found, then the amplifier circuitry switches from reading to writing, 

and the new data, along with ECC, is written. A write-splice is located between the 

header and the data field to allow time to tum on the write current. 

Format characteristics 

It is not necessarily the case that two sectors with adjacent addresses are . adjacent to 

one another on the medium. The limited throughput of early drive controllers made 

it necessary to employ certain techniques in the format design. The techniques dis­

cussed here are pertinent to IDE as well as SCSI. 

I nterleave 

Early drive controllers had a very small local buffer which held at most a sector 's  

w orth of data. This situation forces the controller to pass the data on to  the c omputer 

before reading the next sector. If this cannot be acc omplished in the time it takes the 

head to pass over the short gap between sectors, the controller must wait for a com­

plete revolution of the disk for the sector to come around again. For drives of this 

era, this meant waiting 17 ms for the next sector. In order to avoid this delay, the 

format of the track can employ an interleave to insure that there is enough time t o  

get ready for the next sector. With a n  interleave of two, for example, the sector with 

the next adjacent address is tw o physical sectors away. This makes it possible to read 

all sectors of a track with only two rotations of the disk while insuring that there is 
ample time to pass the data to the computer. Older devices employed even larger 
interleaves. An interleave of three means that two physical sectors lie between adja­

cent sector addresses. Modem controllers no longer use interleaving; they have data 

buffers, which accommodate at least an entire track. 

Track and cyl inder skew 

To obtain the highest throughput for transferring large blocks of data the controller 
or operating system will place the data on a single track. If the data occupies more 
than a single track then the track of the next head in this same cylinder is used, and 
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Figure 2.6 Interleave and track skew. 
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Index 

Track skew 1 

so on, until the cylinder is full .  The reason for this organization is that the time 

needed to change heads is much shorter than the time needed to change tracks. Only 

after the entire cylinder has been used must the heads be repositioned to the next 

cylinder, where the procedure can begin again. 

Even switching the heads, which is done electronically, can cause enough of a 

delay to miss a sector. When the last sector of a track is read and the heads are 

switched to begin a new track, the resulting lag may prevent the first sector of the 

track being read. Waiting for an additional revolution (called 'missing a rev ' )  can be 

avoided by offsetting the first sector address by one or several physical sectors. This 

feature is called track skew (spiral offset). Modern controllers, however, are usually 

capable of a track skew of zero with the help of very fast data channel electronics. 

The delay resulting from a seek from one cylinder to the next adjacent cylinder 

is of the order of 2 ms. In this case as well, an offset can be employed to avoid 

missing a rev. However, transfers of this size, across cylinder boundaries, rarely 

occur. Therefore, the implementation of a cylinder skew is often forgone (see Figure 

2.6). 

Technical specifications 

The physical drive model described above is the basis for the technical specifications 

cited for disk drives. The most important of these are the capacity, transfer rate, and 

average seek time. 

Capacity 

Two capacities are usually given for a drive. The unformatted net capacity is the 

product of the number of bits per track, the number of cylinders, and the number of 

heads. Its value is usually given in bytes and is independent of the sector format. The 

forn1atted capacity, on the other hand, is directly dependent on the sector format 

employed. Its value is the product of the sector size, the number of sectors per track, 

and the number of heads. 
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Transfer rate andl thnn.nghlflliUit 

Transfer rate refers to the speed at which bits are serially read and written to the 
drive by the heads. It is simply the product of the number of bits on a track and the 
number of rotations of the disk per second. The units are actually megabits per 

second, but MHz is often used, which corresponds to one bit per Hz. 

Throughput, the amount of data the drive can deliver or accept at the interface on 

a sustained basis ,  can be estimated fairly accurately in the following way. Divide the 

transfer rate by eight (giving the number of bytes per second) . Take this result and 
divide it by the interleave (in this context think of interleave as the number of revo­
lutions needed to read a track) . Take off 1 0% of this value (for headers and s o  on) ,  

and you are left with the approximate throughput of the drive in  bytes per second. 
Throughput, then, is a functi on of how quickly the medium can be written to and 

read, plus formatting factors. A drive 's peak transfer rate, which is an instantaneous 

rate, will be higher. 

Average access t ime 

The average access time has two c omponents. The average seek time is the mean 

time it takes to position the heads to a specific cylinder. In addition to this is the time 

it takes for the desired sector to rotate under the heads. On average this is the time 
for half a revolution. This second component, called the rotational latency, is by no 

means insignificant. For a disk that rotates a t  5400 rotations per minute it takes 1 1  

ms for a c omplete revolution. This translates to an average rotational latency of 5 .5  

ms .  The same drive may have an  average seek time of 1 1  ms  which means that rota­

tional latency accounts for about 3 0% of the average access time. 

Where to put the interface 

A hard disk is actually a subsystem of many components. First of all is the drive 

mechanism, c onsisting of the medium, the heads, the analog data electronics,  and the 

head positi oning electronics. This group is called the head disk assembly (HDA) . 

Next c omes the data separator to digitize the analog signal data, followed by the for­

matter for parallelization of the data. The controller is in charge of orchestrating 

reading and writing, along with positioning the heads. Finally, a h ost adapter is the 
link between the c ontroller and the host system (Figure 2.7). 

Physically, the interface is the cable that connects the unit built by the drive man­
ufacturer to the c omputer. There are a number different possible locations along the 
data channel where this cable can be placed in the design of a drive. The trend, as 

SCSI's success indicates, is to incorporate more and more functionality in the drive 
itself. This moves the cable further from the heads, so to speak. 

The ST5 06 interface lies between the analog data electronics and the data sepa­
rator. One result of this is that the controller determines the analog method of writing 
data to the drive. In practice, two techniques are employed - modified frequency 
modulation (MFM) and run length limited (RLL) - across the ST5 06 interface.  The 
ESDI interface moves one step from ST5 06 and incorporates the data separator into 



Data 
separator 

ST506 

Figure 2.7 Various drive interfaces. 

ESD I  

Formatter, 
data buffer, 
local 
intelligence 
(controller) 

SCSI 

ST506 1 9  

en ::l 
.c 

Host 
adapter E 

Q) 
Ui >. en 
Ui 
0 :r: 

the drive. Next in line, SCSI packs the formatter and controller into the drive as well. 
Finally, IDE integrates almost the entire host adapter onto its circuit board. This final 
step has its disadvantages :  by integrating the host adapter, the drive is compatible 
with only one type of host system, in this case IBM PC compatibles .  This approach 
makes sense in the PC market due to sheer volume. 

Summary 

When we finally reach the SCSI standard later in the book, you will be introduced 
to a model of a type of peripherals known as logical devices. In principle, any inter­
face, for instance any of those discussed so far, could be used with such a device. 
For example, a RAM disk could be equipped with an ST506 interface .  Of course, in 
order for the RAM disk to simulate an ST506 device it would have to simulate 
sectors with track, head, and sector number. In addition, a strategy would be needed 
to prevent the data being lost when the device is turned off. 

2.4 ST506 

The ST506 interface lies between the read/write amplifier and the data separator. 
The data separator is the component that generates a clock and a data signal from the 
pulses stored on the medium. 

Physical interface 

ST506 can address up to four drives (Figure 2 .8) .  Two cables, named A and B, are 
used to make the connections. The A cable, which is a single cable, contains control 
signals, and runs from drive to drive in what is called a daisy chain. The last drive 
in the chain must contain terminating resistance. The B cable carries the analog 
read/write data. Each drive has its own B cable. You can recognize a controller that 
supports four drives by the connectors for a single A cable and four B cables .  The 
maximum cable length for ST506 is 3 meters. 
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Figure 2.8 ST506 configuration. 
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Cables, connectors, and electrical specifications 

The A cable is a ribbon cable with 34 connections. On the controller end of the 

cable is a ribbon connector. The drives are attached using edge connectors. The 

signals are single ended; 7438/74 14 open collector drivers and receivers are used 

(Figure 2.9) .  

For the first time, we meet the need for terminating resistors in an interface. The 

signals of the A cable must be connected to +5 V across a 150  ohm resistor. The 

resistors for all signals are usually incorporated in a single dual in-line package. 

Since only the last drive may have termination, terminators are mounted in a socket 

for easy removal. 

7438 Terminator 

ST506 A cable 

26LS31 

ST506 B cable 

Figure 2.9 ST506 drivers and receivers. 
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'fable 2.2 ST506 A cable signals.  

Pin Name Signal Description 

source 

I ,  3 .  5. 7 ,  9, GROUND 

I I . 13. 15, 

17, 19. 2 1 ,  

23, 25, 27 , 

29. 3 1 , 33 

2 REDUCED WRITE Controller Once used to reduce write current, now bit 

CURRENT/HEAD 3 of head number 

SELECT 3 

-1 HEAD SELECT 2 Controller Bit  2 of head number 

6 WRITE GATE Controller Activates write current 

8 SEEK COMPLETE Drive Indicates cylinder has been reached 

10 TRACK lXI Drive Indicates heads are on cyl inder zero 

12 WRITE FAULT Controller Write error 

14 HEAD SELECT 0 Controller Bit 0 of the head number 

16 ERROR RECOVERY Controller 

18 HEAD SELECT I Controller Bit I of the head number 

20 I NDEX Drive Indicates beginning of  track 

22 READY Drive The drive is  up to speed and ready for 

read/write 

24 STEP Controller The heads are to be moved by one cyl inder 

26 DRIVE SELECT I Controller Drive I selected 

26 DRIVE SELECT 2 Controller Drive 2 selected 

26 DRIVE SELECT 3 Controller Drive 3 selected 

26 DRIVE SELECT 4 Controller Drive 4 selected 

34 DIRECTION IN Controller Selects direction for head movement 

The B cable is a ribbon cable with 25 connections .  Like the A cable, there is a 
ribbon cable connector on the controller end and an edge connector on the drive end. 
The signals here are differential . A 26LS3 1 and 26LS32 pair is recommended as 
driver and receiver. S ince each drive has its own B cable there is  no need to make 
termination for these signals removable. 

Signals 

Tables 2 .2  and 2 .3  show the signal assignments for the ST506 cables .  Every other 
signal is ground, which acts as shielding. 

Address ing 

I n  order t o  choose a specific sector for reading o r  writing, the head, cylinder, and 
sector number of the proper drive must be selected. There are four signals for 
addressing drives on the ST506 interface labeled DRIVE SELECT I -4 .  This means that 
each drive has a dedicated select line. 

In contrast to this ,  the four signals HEAD SELECT 0-3 select the track under one of 
1 6  possible heads. HEAD SELECT 3 did not exist in the original specification; origi­
nally, this connection was used to control the amount of write current. The inner 
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'fable 2.3 ST506 B cable signals. 

Pi11 Name Signal Description 

source 

DRIVE SELECTED Drive Drive is  selected 

2 GROUND Ground 

3 RESERVED Reserved 

4 GROUND Ground 

5 RESERVED Reserved 

6 GROUND Ground 

7 RESERVED Reserved 

K GROUND Ground 

9 NOT USED Not used 

10 NOT USED Not used 

I I  GROUND Ground 

12 GROUND Ground 

13 + �IF�!/RLL WR ITE DATA Control ler Di fferential write data 

14 - �IF�t/RLL WRITE DATA Control ler Differential write data 

15 GROUND Ground 

16 GROUND Ground 

17 + MFM/RLL READ DATA Drive Differential read data 

18 - MFM/RLL READ DATA Drive Differential read data 

19 GROUND Ground 

20 GROUND Ground 

tracks of a disk need less write current than the outer tracks. This signal became 
unnecessary as disk drives themselves controlled the amount of write current. 

The method for choosing a cylinder using the ST506 interface is identical to that 
for floppy drives . A pulse on the STEP signal causes the heads to move one cylinder 
in the direction indicated by the signal DIRECTION IN. The status signal SEEK COM­

PLETE indicates that this positioning of the heads has been completed. Another status 
signal, TRACK oo, reflects whether or not the heads are on track 0, the outermost cylin­
der. Using this signal the controller can find track 0 by sending STEP pulses until 
TRACK 00 is true. 

The ST506 interface supports only soft sectoring. For this reason there is no 
sector pulse among the signals; the desired sector is found by the address informa­
tion in the header. The INDEX signal is generated by the drive and indicates the 
beginning of the first sector. It is used during formatting to align the sectors of the 
different heads. 

Clearly, an ST506 controller has a lot of responsibility in controlling the drive. The 
method of positioning the heads is primitive and slow. The only advantage of the step 
pulse approach is that the number of cylinders is unlimited. 

!Data encodi011g 

In principle, many methods of data encoding can be used with the ST506 interface. 
The encoding of the data results in pulses that can be written to the actual drive 
medium. Originally, MFM encoding was used and more recently RLL encoding. Not 
all ST506 drives can accommodate RLL, however, because typically a drive's data 
channel electronics are optimized for MFM. 
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The data rate for MFM encoding is 5 MHz, which corresponds to 625 kilobytes 
per second. MFM drives have 17 sectors per track, each of 5 1 2  bytes. RLL allows a 
data rate of 7 .5  MHz. Here a track can hold 22 5 1 2-byte sectors . Therefore, the use 
of RLL encoding increases the capacity of the drive by 50%. 

Summary 

A well-defined protocol layer or command set is not defined for the ST506 interface. 
The bus timing definitions belong solely to the physical layer. ST506 is undeniably 
device specific; it makes no sense to use it for anything other than a disk drive. 

ST506 has its weak points . The low data transfer rate makes it nearly unusable 
for higher performance drives. Other low performance characteristics include its 
lack of commands and step impulse positioning. 

Despite its shortcomings the ST506 used to be incorporated into systems far 
beyond the PC domain. Even the IDE and SCSI interfaces show signs of their ST506 
origins - you still see, for instance, a parameter to reduce the write current. 
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3 Computer buses 

In contrast to the peripheral interfaces discussed so far, a computer bus is designed to 
connect the various components within the computer. All computers utilize a number 
of internal buses . These buses transport information between the system components 
like the nervous system of an organism. The more complex a computer system, the 
more exotic its buses can become (Figure 3 . 1 ) .  

The boundary between a bus and an  interface is blurred at best. I consider it an 
important characteristic of a bus to connect various devices of equal authority. By 
this measure the IDE interface is excluded, as are all computer memory buses, for 
that matter. The SCSI bus, on the other hand, clearly matches this definition of a bus. 
Of course, the discussion of such border cases is purely academic. 

The layer model for interfaces can also be applied to computer buses. It is defined 
by the physical interface, bus protocol and optional device model along with a 
command set. 

A computer bus is  built from three basic functional blocks : addressing, data trans­
fer and control. In the literature you will frequently see block diagrams depicting the 

CPU Main Serial Paral le l  
memory interface interface 

I I I I I I I 
U niversal bus 

I I I 

Disk drive Tape drive 
control ler control ler 

Figure 3.1 Universal bus. 
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address, data, and control bus as separate paths. However, since all three of these 

components depend on the others we will always refer to a computer bus in its 
entirety. 

3 . 1  Characteristics of buses 

There are a number of characteristics that make a bus well suited for a particular 
application. The most important of these are the throughput, the address space, the 
real-time performance, the electrical and mechanical characteristics,  and the pro­
duction costs . The following sections examine these in closer detail .  

Data throughput 

Data throughput, also known as bandwidth, is the amount of information the bus can 
transport per unit of time. It is measured in Mbytes per second. Two parameters 
come into play in order to calculate the net throughput: the clock speed and the data 
width. The clock speed tells how many data words are transferred per second. The 

data width is the number of bits in one data word and usually corresponds to the 

width of the bus. The net throughput is the product of the clock speed and the data 
width. It is reduced by an appreciable amount by the bus protocol, otherwise known 
as the protocol overhead. 

For example, SCSI- 1 supports a synchronous clock speed of 5 MHz; the bus 
width is 1 byte. The resulting throughput is 5 Mbytes per second. Under SCSI-2, 
fast-SCSI allows 10 MHz clock speed; the Wide-SCSI option allows a 
4 byte bus width. Together they contribute to a 40 Mbyte per second throughput. 

Address space 

In order to transfer data in a meaningful manner, a method is needed to uniquely 
identify the source and destination of the transfer. The identification is made using 
an address, and the scheme is called addressing. The address space of a bus is 
dependent upon the width of the address ; that is, the number of bits in the address. 
A bus with an address width of 16 bits uniquely identifies 2 1 6  or exactly 65 536 
locations .  

For example, the Q-22 bus of  a PDP- 1 1  has an  address width of  22 bits. I t  can 
therefore address 4 Mbytes of memory. The ISA bus of IBM PC compatibles has 24 
address bits and is able to address 16 Mbytes .  Modem systems with 32 bit data buses 
also have 32 bit address buses, corresponding to an address space of 4 Gbytes .  

Real-time capabi l ities 

Real-time systems are distinguished from other systems by their ability to react to an 
external event within a given amount of time. This external event may occur at any 
time. In addition the system may not be able to anticipate the exact moment. A real-
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time system does not necessarily have to be very fast; however, its reaction time 
must be predictable and, of course, adequate for the application. This predictability 
usually means that a mechanism has been implemented to interrupt running 
processes. A real-time capable 110 bus must allow, for example, interruption of a 
lengthy data transfer from disk to tape for an event with higher priority. A bus 
without this capability could also be used for real-time applications, but only when 
used for a single device. 

Electrical characteristics 

Two important attributes result directly from the electrical characteristics of a bus : 
the maximum length of the bus and the integrity of the data. While the bus inside a 
PC is only a few inches long, 110 buses more than 30 feet in length are often used to 
connect computers and peripherals .  When many such cables are in close proximity 
to each other, as is often the case, data integrity is a major issue. A bus in a cable 
duct needs to be less sensitive to electromagnetic interference than a bus that resides 
inside a metal enclosure. 

Mechanical characteristics 

There are two basic ways to implement a bus physically. Internally, the individual 
signals are usually part of a printed circuit board. Insertable boards use edge con­
nectors to link to the main bus of a system. The mother board of a computer 
sometimes has a number of slots that are nothing other than bus connections for such 
boards.  Another type of board, referred to as a backplane, has no other circuitry than 
that to connect together bus slots . Backplanes are common for the VME and ECB 
buses. Recently entire PC systems have come on the market that reside on an 
insertable board. These are inserted along with other boards into a backplane to form 
a system. 

The other type of physical bus is the cable. A bus cable is defined with regard to 
its maximum length, resistance, whether it is shielded or unshielded and other less 
important details.  The bus cable connector is also very precisely standardized. 

Production costs 

An important factor in the mass production of PCs, workstations, and mass storage 
devices is the associated production costs of the bus. As a rule of thumb, the more 
signals a bus has, the more costly it becomes; the more sophisticated the control 
logic, the more costly; the fewer items produced, the more costly. The success of 
SCSI and IDE can be attributed above all to the availability of economical bus inter­
face components and the fact that a simple ribbon cable can be used to interconnect 
devices . Moreover, peripheral manufacturers need to equip devices with at most two 
connector types. Cost is also the reason why SCSI and IDE can coexist in the mar­
ketplace: IDE costs slightly less to manufacture than SCSI. In fact, this is often 
reflected in the price of the IDE and SCSI versions of a particular drive model. 
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3 .2 Speda� nzedl II))I!.II Ses 

The ideal bus,  then, would have a large address space, a maximal throughput, and 

excellent real-time capabilities. There would be no constraints on its length and it 

would be simple and inexpensive to produce. Unfortunately, such a bus is not even 

theoretically possible, as the following example shows. A real-time system is char­

acterized by its reaction time to a particular event. This time is independent of, 

among other things, the length of system buses. Since electrical signals travel with 

finite speed, as the length of a bus increases so does the reaction time to any signal 

on the bus . Therefore, it is impossible to design a bus of unconstrained length, which 

at the same time guarantees an arbitrary reaction time. 

For this reason a wide range of buses with differing characteristics have come 

into existence, each for a particular application. 

Memory bus  

A memory bus connects the CPU or memory controller t o  memory. The main 

requirement of this bus is high bandwidth since every CPU instruction and all data 

must travel over this path. To meet this constraint, most memory buses are very 

short. The address space of a memory bus is the physical address space of the com­

puter system. 

The CPU of a Micro VAX, for example, has an address width of 32 bits. While 

this corresponds to an address space of 4 Gbytes, the system physically accommo­

dates only 16 Mbytes.  Consequently, the memory bus could be implemented using 

only 24 address lines .  

A memory bus need not implement any real-time or interrupt capabilities. The 

division of labor is well defined among system components :  the CPU makes a 

request, the memory reads or writes the information. By my definition of a bus at the 

beginning of this chapter, the memory bus is not a bus at all since in this case the 

devices do not have equal authority over one another. 

H/0 biUIS 

An 110 bus connects the CPU with the 110 devices. Here the requirements are some­

what different. The 110 bus must be able to support a variety of devices .  It must be 

able to handle slow as well as fast devices. In addition, there must be a method for 
determining which device may use the bus when more than one requests use of it. 

This mechanism is called arbitration. Depending on the application, an 110 bus must 

also be capable of near real-time performance. This can be extremely important in 

the area of computer controlled systems . One need only look at the example of a 

nuclear reactor: it is imperative that the CPU be informed the moment some partic­

ular event occurs . All other 110 processes must be suspendable. An 110 bus that 

allows this must employ interrupt and event priority mechanisms. 
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1/0 adapter 

1/0 adapter 

Figure 3.2 Computer system with multiple buses. 

Universal bus 

1/0 bus 

Many less sophisticated computer systems use a universal bus to link together the 

CPU, memory and 110 devices. The goal here is to find the best compromise 

between bandwidth, real-time capability, and production cost. Examples of univer­

sal buses include the ECB bus, VME bus and the ISA bus of IBM AT compatibles. 

The older PDP 1 1173 with its Q-22 bus is another example. In this light, Figure 1 . 1  

can be viewed as a simplified block diagram of an IBM AT. Figure 3 .2  shows the 

structure of a more complex system, the VAX 8800, with several specialized buses. 
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4 Backgrou nd 

Several common expressions for the IDE interface are currently in use. IDE stands 
for Integrated Disk Electronics. Another popular name is the AT bus interface, which 
refers to the fact that the integrated electronics within the drive emulate the hard disk 
controller of an IBM AT computer. However, when used out of context, this name 
can be confusing, since the term 'AT bus ' is also used for the system bus of the IBM 
AT. The official name for the IDE interface is AT-Attachment (ATA). 

In this book, the name IDE will be used when discussing interfaces in general . 
When the ANSI standard is meant, the term ATA will be used. The system bus of IBM 
AT compatible computers will always be referred to as the ISA bus. 

ATA is administered by the X3T9.2 ANSI working group, the same group that is 
responsible for the SCSI standard. 

4.1  The origi n  of  IDlE 

The development of the IDE interface began in 1 984, stimulated b y  the Texan com­
puter manufacturer, Compaq. The idea was to embed the hard disk controller of an 
IBM AT compatible on the disk drive. Compaq contacted the controller manufac­
turer, Western Digital, in California. They were to produce an ST506 controller that 
could be mounted directly on the disk drive and connected to the system bus via a 
40 pin cable. In 1 985, the disk manufacturer, Imprimis (CDC), integrated this con­
troller into its hard disk drives. Thus, the first IDE disk drive was built and installed 
in a Compaq computer system. 

Other hard disk and computer manufacturers recognized the advantage of IDE. 
Not only was the increase in the cost of the disk drive negligible, but there was a 
great saving on the hard disk controller. Gradually, more and more IDE implemen­
tations were developed, and with them, the various deviations of the industry 
standard. 

ATA 

As a consequence, a committee of the X3T9.2 working group of ANSI began to deal 
with the problem in October 1 988.  As its first project, the common access method 
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(CAM) committee put forward a suggestion for the normalization of the IDE inter­
face. The new name for the IDE interface was ATA. This standard has now been 
approved under the name of X3.22 1 - 1 994. 

ATA-2 
However, development did not stand still. The ATA-2 standard was approved in 
autumn 1 995.  It offers higher transfer rates and some new commands. This book is 
based on the ATA-2 standard. Differences against the original ATA (which will be 
called ATA- 1 when differentiation is needed) are shown in the appropriate places. 

AT AlP� 
Parallel to the development of ATA-2, a completely different development took 
place: AT API. This was developed with the aim of operating devices other than hard 
disks at the IDE interface. ATAPI uses IDE as a physical interface, but the com­
mands used are SCSI commands. Today, the ATAPI interface is mainly used with 
CD-ROM drives. 

ATAPI development is led by Western Digital. Meanwhile, two standardizing 
institutions have made proposals for a standard: the Small Form Factor committee 
has proposed SFF8020, and the ATA working group of ANSI is preparing a proposal 
too. 

AlA-3 
The latest development in the domain of the IDE interface is the ATA-3 proposal of 
ANSI. ATA-3 does not offer a further increase in speed, but offers new commands 
and more precisely defined procedures. Integration of ATAPI into ATA-3 is under 
discussion. 

ED DIE 

At the time of writing (summer 1 995), there is much confusion about EIDE (Enhanced 
IDE). One cannot really talk about a standard; actually, it is a combination of various 
features in different variations . Some manufacturers use EIDE to denote the faster 
transfer modes which have, however, partly been already specified in ATA- 1 ,  and then 
completely in ATA-2. Others call EIDE the capability of addressing more than 504 
Mbytes with its own PC BIOS. This too is contained in ATA- 1 .  Others again call their 
ATAPI CD-ROMs EIDE drives. Finally, there are controllers with two IDE channels. 
They can be used to attach a total of four drives and are also marketed under the EIDE 
label. As you can see, when you are faced with EIDE, you had better look carefully at 
what you are offered. 

4.2 Overvnew 

The essential functions of the IDE interface have already been described in Part I .  
Nevertheless,  much new ground will be covered in this part. Figure 2.  7 shows the 
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fundamental shjft in the function of IDE, from serving the host to serving the periph­

erals. Also shown is how the IDE controller has been embedded physically into the 

peripheral urut. The only components left from the IDE bus adaptor in the IBM AT 

are a few diiver and decoder components. It is tills aspect where the IDE resembles a 

system bus more than a peripheral interface. The similarity between the IDE and a 

system bus will be described in more detail when the physical interface is discussed 

(Figure 4. 1 ) .  

Despite its similarity to a system bus, IDE i s  not refened t o  as an I/0 bus, because 

the uruversal addressing required to access various different uruts is lacking. IDE 

can only serve one or two hard disks, and allows only one host access to the disks. 

IDE  adapter 

In this section two possible configurations for the IDE bus are introduced. The first 

(Figure 4.2) is the standard configuration of IDE, consisting of an interface board, 

also called an IDE adapter, installed in a host with an ISA or EISA bus. Two IDE 

Host system 

l iSA bus I 
I IDE adapter I 

IDE interface 

Master 
drive 
(Drive 0) 

Slave 
drive 
(Drive 1 )  

Figure 4.2 IDE configuration for AT compatibles with ISA bus. 
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disk drives connect directly to the IDE adapter. It should be noted that with such an 

adapter, the IDE interface cannot be operated at a higher speed than that allowed by 

the ISA bus, that is, 8.3 Mbytes per second. 

IDE control ler 

The second configuration has been recently gaining success (Figure 4.3). A host 

adapter is installed in a host with basically any system bus that serves the hard disk 

through the IDE interface. Products for the PCI bus fall under this configuration. 

However, in this configuration, the major advantage of the IDE bus, not needing an 

expensive host adapter, is lost. For the same cost, an equally effective SCSI host 

adapter can be used, supporting not only hard disks but also many other types of 

devices. The hard disk IDE version remains an option only because of the price, 

which at present is slightly less than the SCSI version. 

Host system 

I Host bus I 
Host adapter 

I tl intertace 

� 
Master Slave 
drive drive 
(Drive 0) (Drive 1 )  

Figure 4.3 IDE configuration for AT compatibles without ISA bus. 

The drive with address 0 is the master drive; the drive with address 1 is the slave 

drive. In normal operation the two drives operate independently of each other. The 

master/slave relation only comes into play, for example, at system start-up, or after 

a reset. Since both connected drives contain a complete controller, commands arrive 

simultaneously at both controllers which, on the basis of the drive addressing bit of 

the drive register, decide which of them is actually addressed. 

4.3 Documentation 

The draft for the ANSI standm·d ATA is called X3.22 1 - 1 994. It is available, like the 

SCSI standard, either in printed form or electronically through the SCSI mailbox. 
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The addresses and telephone numbers, including a short description of the mailbox, 
can be found in Appendix D. A short summary of the contents and an example from 
the proposed ANSI standard are given in Figures 4.4 and 4 .5 .  

1 .  � 
2 .  
3 .  
3 . :  
4 .  

t 0 - • .!. 
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Figure 4.4 Contents of the ANSI proposal for AT A. 
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1 0 . 1  P I O  Da t a  In Commands 

Th i s  c l a s s  i n c l ud e s : 

- I d en t i f y  D r i ve 

- Read B u f f e r  

- R e a d  Long 

- Read S e c t o c ( s )  

E x e c u t i on i nc l ud e s  t h e  t r a n s f e r  o f  one o r  more 5 1 2  by t e  ( 5 1 2  by t e s  on R e a d  

Long ) s e c t o r s  o f  d a t a  f rom t h e  d r i v e  t o  the hos t .  

a )  The h o s t wr i t e s  any requ i red pa rame t e r s  t o  t h e  F e a t u r e s , S e c t o r  Coun t , 

S e c t o r  Numbe r ,  C y l i nd e r  and D r i ve / Head reg i s t e r s . 

b )  The h o s t wr i t e s  t h e  c omma nd code to the Command Reg i s t e r . 

c )  The d r i v e  s e t s  BSY and prepa r e s  f o r  d a t a  t r a n s f e r . 

d )  When a s e c t o r  o f  da t a  i s  ava i l a b l e ,  the d r i ve s e t s  D R Q  and c l e a r s  B S Y  

p r i o r  t o  a s s e r t i ng I NTRQ . 

e )  A f t e r  d e t e c t i ng I NTRQ , t h e  ho s t  reads the S t a t u s  Reg i s t e r ,  t h e n  r e a d s  o n e  

s e c t o r  o f  d a t a  v i a  t h e  Da t a  Reg i s t e r . I n  r e s pon s e  t o  t h e  S ta t u s  Reg i s t e r  

b e i n g  read , t h e  d c i ve nega t e s  I NTRQ . 

f )  The d r i v e  c l ea r s  DRQ . l f  t r a n s f e r  o f  ano t h e r  s e c t o r  i s  r e qu i r e d , t h e  d r i ve 

a l s o s e t s  B S Y  and t h e  above sequence i s  repea ted f rom d )  . 

1 0 . 1 . 1  P I O  Read Command 

• - a )  - + - b )  - - +  

I S e t up I I s s u e  I 
I I Comm a n d  I 

, _ e )  - + - - - - - - - - +  

I Read I Trans f e r l 

+ - e )  - + - - - - - - - - �  

I Read I Tr a n s f e r l 

I BS Y = l 

I DRDY = l  

I S t a t u s  I Da t a  I : : : : : : :  I S t a t u s  I Da t a  

l llS Y = O  

I 

I DRQd 

1 1\s s e r t i N e g a t e  

I I NTRQ I I NTRQ 

I BSY = 1  I BSY = O  

I 

I DRQ = O  I DRQ = l  

I As s e r t i Nega t e  

I I NTRQ I I NTRQ 

I BS Y = 1  

I 

I DRQ = O  

I f  E r r o r  S t a t u s  i s  p r e s e n t ed , t h e  d r i ve i s  prepa red t o  t r a n s f e r  da t a , and i t  

i s  a t  t h e  h o s t ' s  d i s c r e t i o n  t h a t t h e  da t a  i s  t r an s f e r red . 

1 0 . 1 . 2  P I O  Read Abo r ted Command 

+- a )  - + - b)  - - +  

I S e tup I I s s u e  I 
I I Command I 

I B S Y  = 0 I BS Y = l  

I DRDY = l  

� - e )  - +  

I Read I 
I S t a t u s  I 

�- - - - - - - +  

I BS Y = O  

I I 

I DRQ = l  I D RQ = O  

I A s s e r t  I Nega t e  

I I NTRQ I I NTRQ 

A l though D RQ = 1 , t h e r e  i s  no d a t a  t o  be t r a n s f e r r e d  under t h i s  c o nd i t i on .  

1 0 . 2  P I O  D a t a  Ou t Comman d s  

Th i s  c l a s s  i n c l ude s : 

- Forma t 

- Wr i t e  Bu f f e r  

- Wr i t e Long 

- Wr i t e S e c t o r ( s )  

Execu t i o n  i n c l ud e s  t h e  t r a n s f e r  o f  one o r  more 5 1 2  by t e  ( 5 1 2  by t e s  on Wr i t e  

Long ) s e c t o r s  o f  d a t a  f rom t h e  d r i ve t o  t h e  ho s t . 

a )  The h o s t wr i t e s  a n y  requ i red p a r ame t e r s  to t h e  F e a t u r e s , S e c t o r  Coun t ,  

S e c t o r  Numbe r ,  C y l i nd e r  and D r i ve / Head reg i s t e r s . 

b l The ho s t  wr i t e s  t h e  c ommand code to the Command Reg i s t e r . 

c )  The d r i ve s e t s  DRQ when i t  i s  r eady to a c c e p t  t h e  fi r s t  s e c t o r  o f  d a t a . 

Figure 4.5 Sample page from the ANSI proposal for ATA. 
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5 . 1  The electrical interface 

The ATA standard for the IDE interface encompasses both the signal cable and the 
power supply leads . 

Signal cable and connectors 

The IDE interface uses a 40-pin ribbon cable. The length of the cable may not nor­
mally exceed 46 em ( 1 8  inches) .  Cable connectors, which are crimped on, are used 
both at the host end and at the disk drive end of the cable. Table 5 . 1  gives the most 
important specifications for ATA-2. Almost all signal lines use TTL drivers and 
receivers, except for the signals DASP, PDIAG, Iocs 1 6  and SPSYNC:PSEL. 

For 2 .5-inch hard disks , a 44-pin cable is used which carries both the signals and 
the power supply voltages .  The disk drive end uses a 50-pin Dupont connector. Two 
of the six additional pins are removed for coding; the remaining two can be used by 
the manufacturer as jumpers for setting the drive number. In Table 5 . 3 ,  the additional 
pins are marked by an underlying dark gray shade. Please note that pins A-F are 
present only on the connector, not on the cable. 

Finally, since ATA-2, a 68-pin plug-in connection is defined which uses the same 
connections as the PCMCIA interface. The signals are arranged in such a way that 
they mostly correspond to the PCMCIA assignments. Although these two interfaces 
are not identical, a PCMCIA device in an ATA slot must not be damaged and vice 
versa. Up to now, I am not aware of any product that uses this pin assignment. But 
since it is also contained in the ATA-3 proposal, the industry must believe that it will 
make its way. 

Table 5.1 Cable parameters for 0.5 m cable length. 

Parameter 

Drive sink current at +5 V 

Driver leakage current for logical I 
Capacitive load 

Minimum 

1 2 mA 

Maximum 

-400 !J A  

2 5  pF 
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Table 5.2 Supply voltages for IDE drives (AMP connector) . 

Pin Signal 

2 

3 

4 

+12 v 
Ground 

Ground 

+5 v 

Supply voltages 

The power supply to the disk drives is also covered by the ATA standard. Provision 

is made for the 4-pin AMP connector familiar to users of 5 .25-inch disk drives . The 

ATA- 1 standard also mentions a 3-pin Molex connector which is,  however, no longer 

present in ATA-2. Table 5 .2  shows the specifications for the power supply. 

Signals 

The ATA standard specifies signals by their names as well as by their abbreviations. 

Both the signal name and its abbreviation are written in capital letters. As elsewhere 

in this book, I use small capital letters when referring to names and signals specified 

by the standard. The signals are listed in Table 5 . 3 .  Signals that are low active are 

indicated by a bar over the name of the signal . The direction of data flow is given 

with respect to the disk drive: IN means to the drive, and OUT means from the drive. 

Bidirectional data lines are designated 110. 
• cso: This signal selects the command register block. It is generated from the ISA 

bus addresses by the IDE bus adapter and is active when an 110 port address 

between 1 FOh and 1 FFh is being accessed. In ATA- 1 ,  this signal is called CS I FX. 
e cs 1: This signal selects the control register block. It is generated from the ISA bus 

addresses by the IDE bus adapter and is active when an 110 port address between 

3FOh und 3FFh is being accessed. In ATA- 1 ,  this signal is called CS3FX. 

These two signals are the reason why an IDE disk drive still requires an adapter to 

interface with the ISA bus. Of course, it would also have been possible to reproduce 

the address lines of the ISA bus on the IDE cable, but this would have caused it to 

exceed the capacity of a 40-pin cable. The solution to this problem is thus a com­

promise between the desire to achieve full integration of the disk drive with the 

controller and the desire to use the smallest and least expensive cable possible. 

• DAO through DA2: These signals are taken directly from the ISA bus addresses. 

They select one of the registers from the command or control register block. 

s DASP : This signal fulfills two distinct functions. Immediately after the system is 

powered up, or after a reset, disk drive 1 should assert this signal to indicate that 

it is present. This process is described in more detail in Chapter 6. In normal 

operation, this signal indicates that the selected disk drive is active, and is used 
for the disk drive activity display. 
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Table 5.3 IDE interface pin assignments. 

Name Source Signal Pin Pi11 Signal Source Name 

Vendor-speci fie A B Vendor-speci fie 
Vendor-speci fie c D Vendor-specific 
N.C. (Coding Pin)  E F N.C. (Coding Pin) 
RESET 1 RES ET 2 Ground Ground 
DATA BUS BIT 7 l/0 DD7 3 4 DDS l/0 DATA BUS BIT 8 
DATA BUS BIT 6 1/0 DD6 5 6 DD9 l/0 DATA BUS BIT 9 

DATA BUS BIT 5 1/0 DDS 7 8 DD IO 1/0 DATA BUS BIT 1 0  

DATA B U S  B I T  4 1/0 Dl).l 9 1 0  DD I I  l/0 DATA BUS BIT I I  

DATA BUS BIT 3 1/0 DD3 1 1  1 2  DDI2 1/0 DATA BUS BIT 1 2  

DATA BUS BIT 2 1/0 DD2 1 3  1 4  DDI3 l/0 DATA BUS BIT 1 3  

DATA B U S  B I T  I 1/0 DDI 1 5  1 6  DDI4 l/0 DATA BUS BIT 14  

DATA BUS BIT 0 1/0 DDO 1 7  1 8  DDI5 1/0 DATA BUS BIT 1 5  

Ground Ground 1 9  20 N.C. (Coding Pin) 
DMA REQUEST 0 DMARQ 2 1  2 2  Ground Ground 
1/0 WRITE DIOW 23 24 Ground Ground 
1/0 READ 1 DIOR 25 26 Ground Ground 
1/0 CHA NEL READY 0 IORDY 27 28 SPSYNC: SPINDLE SYNC or 

CSEL CABLE SELECT 

D�IA ACKNOWLEDGE 1 D�IACK 29 30 Ground Ground 
INTERRUPT REQUEST 0 INTRQ 3 1  32 IOCS I 6  0 16 BIT 1/0 

ADDRESS BIT I DA I 33 34 PDIAG PASSED DIAGNOSTIC 

ADDRESS BIT 0 DAO 35 36 DA2 ADDRESS BIT 2 

CHIP SELECT 0 cso 37 38 CS I CHIP SELECT I 
(CS I FX ) (CS3FX)  

DRIVE ACTIVE/ 0 DASP 39 40 Ground Ground 
DRIVE I PRESENT 

+5V (Logic)  4 1  42 +SV (Motor) 
Circuit Voltage Ground 43 44 TYPE TYPE 

• DDO through oo r s :  These signals are taken directly from the ISA bus data lines. 

They are used in the transfer of data to the register block and to the disk drive. 

• DIOR and mo w: Handshake request for read or write access to the disk drive reg­

ister. 

• DMARQ and DMACK: Handshake signals for the transfer of data between host and 

disk drive. Since DMA is an optional feature, so are these signals . In ATA-2, the 

electrical implementation of DMACK has changed with respect to ATA- 1 (ATA-2: 

5 .2.9). 

• rNTRQ: This signal triggers an interrupt in the host. 

• IOC S I 6 :  This signal tells the host that a 16-bit data transfer is occurring; otherwise 

the transfer is 8-bit using the data lines ooo to DD7. However, it only applies to 

register accesses to the data register, not to other registers and also not to DMA. 

If 8-bit DMA is implemented, this is specified in the feature register. 

• IORDY: This signal is optional. When it is not implemented, it should be set to high 

impedance. If it is implemented, a low level indicates that the controller is 
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momentarily denying access to the registers , and that the host must delay its 

access cycle. 

• PDIAG: This signal is part of the power-up protocol. It indicates to the master drive 

that the slave drive has completed its self-test. 

• RESET: This signal from the host resets both disk drives. It forces an initialization 
to occur identical to that after power-up. 

The signal SPSYNC shares a line with the signal CSEL. The implementation of both 
signals is optional, but only one of the two can be used. Both drives must be using 
the signal for the same purpose, otherwise drive behavior is unpredictable. This is a 
potential source of errors. 

• SPSYNC: This signal is vendor specific since drive synchronization only makes 
sense if the two disk drives that are communicating are identical . The only spec­
ification for this signal is that the master drive is the signal source and the slave 
is the receiver. 

• CSEL: This optional signal allows a disk drive to change its number. If it is 
attached to the disk drive interface, the disk drive is the master drive and has the 
number 0; otherwise it is the slave drive and has the number 1 .  In this way it is 
possible for both drives to modify their numbers without anything needing to be 
changed on the drives themselves. 

5 .2 Ti ming specifications 

Data can be  transferred over the IDE interface in  one of  two ways :  via programmed 
1/0 (PIO) or via direct memory access (DMA). In this chapter on the physical inter­
face only the timing of these transfer methods is discussed. The higher level 
description of the interface, for instance how the host sets up the transfer, is consid­
ered as part of the protocol level and is discussed in Chapter 6. 

A preliminary remark about the timings listed: the ATA standard defines three 
operating modes for PIO and DMA. Mode 0 is the normal mode, and is also the 
slowest. The parameter list of the command IDENTIFY DRIVE tells which operating 
mode the controller has implemented. The exact timings of all operating modes have 
not been listed in this book. These are necessary only if you wish to build an IDE 
controller, in which case the newest version of the ATA standard should be obtained. 
Table 5 .4 lists cycle times and achievable data rates of the different modes. 

Two important facts can be seen from this table: firstly, DMA is not necessarily 
faster than PIO. All depends on the currently selected mode. In multi-tasking 
systems, however, the processor could perform other tasks during a multi-word 
DMA. If the device driver is written in such a way, DMA is advantageous at least in 
heavily loaded systems. Secondly - as shown by Detlef Grell in his article 
'Geschwindigkeitsrausch' [Speed ecstasy] in c 't (August 1 995 issue) - the 
8 .3  MB/sec that can be reached with PIO mode 2 is still sufficient to serve the fastest 
disks currently available. These supply a sustained transfer rate of about 6 MB/sec . 
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Table 5.4 Cycle times and data rates of different DMA modes. 

Mode 0 2 3 4 
PIO cycle t ime 600 ns 383 ns 240 ns 1 80 ns 1 20 ns 
Data rate 3 .3  MB/sec 5 .2  MB/scc 8.3 MB/sec I I  I MB/sec 1 6.6 MB/sec 

S ingle-DMA cycle 960 ns 480 ns 240 ns 
Data rate 2 MB/sec 4. 1 M B/sec 8.3 MB/sec 

Multi-DMA cycle 480 ns I SO ns 1 20 ns 
Data rate 4. 1 "I\.1B/sec 1 3 .3 MB/sec 1 6.6 MB/sec 

The data rates arc taken rrom the article ·Qucllcn und Scnkcn· [ Sources and sinks] by Andreas Stil ler, c"r (August 1 995). 

The gray-shaded boxes arc already defined in ATA- 1 .  

You may be wondering about PIO modes 4 and 5 .  They transmit faster than the 

ISA bus from which IDE is derived. Thus, these modes cannot be used with simple 

ISA bus adapters. They are reserved for ISA controllers for faster host bus systems, 

such as PCI. 

PIO data transfer 

All accesses to the controller register are executed via PIO. This includes the read­

ing of status and error information, the setting of parameters and the writing of com­

mands. However, even read and write operations can be carried out via the data reg­

ister using PIO or DMA. It is called PIO because, in contrast to DMA, every access 

must be individually programmed. A simplified timing diagram for a PIO access is 

given in Figure 5 . 1 .  

For a PIO data transfer, the host first puts the addresses on the address lines. 

These are the signals cs 1 FX, CS3FX and DAD-DA2. After 70 nanoseconds (ns), it asserts 

the signal DIOR for read access or the signal DIOW for write access. Simultaneously, 

it indicates with the signal iOC S I 6  whether it wants an 8-bit or a 1 6-bit transfer. For 

a write access, the host places the data on the data lines; for a read access, the con­

troller supplies the data. This data must be valid by the time D!OR (in the case of a 

read) or DIOW (in the case of a write) is negated. The data is then read in by the host 

Address 
valid 

Data 
valid 

-- Cycle time 600 ns (mode 0) --

Figure 5.1 Timing diagram for PIO data transfer. 
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DMARQ 

DIOR 
DIOW 

Data 
valid 

Cycle time 960 ns (mode 0) --

Figure 5.2 Timing diagram for single-word DMA. 

or the controller, depending on the direction of the transfer. Shortly thereafter, the 
address, data and IOC S I 6  lines must be released, and the cycle is complete. This 
entire cycle normally lasts 600 ns, but the specification also includes faster modes 
with cycle tin�e� as fast as 240 ns. 

Single-word DMA 

Apart from the initial request, DMA transfers take place without intervention by the 
CPU. This is advantageous above all in multi-tasking systems; while one process 
waits for its 1/0 access to be completed, the CPU is free to do computations for other 
processes. Figure 5 .2  shows the simplified timing diagram for a single-word DMA. 

In what follows, the sequence of events involved in a read access is described; a 
write access works in an analogous way. The host asserts the DMARQ signal to initi­
ate a DMA transfer. The IDE controller replies by asserting DMACK. Within 200 ns, 
the host releases the DMARQ signal and asserts DIOR for 480 ns.  The controller must 
then immediately set the data signals because data is gated on the falling edge of 
DIOR . At the same time, the controller may remove its DMACK signal .  After 50 ns, the 
data bus is released and the host can begin the next cycle. A cycle takes between 240 
and 960 ns, depending on the operating mode used. 

Multiple DMA transfers 

DMA really begins to pay off only with multiple DMA. This  is  the case because the 
CPU need issue only one transfer request to initiate a sequence of many data 
accesses. Figt,re 5 .3  shows the simplified timing diagram for multiple DMA. Once 
again, a read access is used as an example. The cycle begins in exactly the same way 
as with a single-word DMA, up to the point where the transfer of the first word is 
complete and the data lines are once again free. Unlike in the single-word case, 
however, the host does not stop asserting the DMARQ signal, and in response the 
DMACK s ignal also remains high. About 200 ns after the host negates DIOR, it asserts 
it again, and the next transfer begins.  During the transfer of the last data word, while 
DIOR is asserted, the host removes the DMARQ signal. The transfer request is  over 
when this last transfer is completed. 



DMARQ 

Data 
valid 
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- Cycle time 480 ns (mode 0) -- : 

Figure 5.3 Timing diagram for multiple DMA transfers. 
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6 I D E  protocol 

6.1  The register mode� of the IDE contro� �er 

The register model of  the IDE controller describes how the controller appears to  the 
host system. The IDE interface mediates between the host and the controller. The 
controller belongs to the description of the interface and the ATA standard. I have 
included the register model in this chapter on protocol because the status bits play a 
very important role in the protocol. 

To the host system, the IDE controller essentially looks like the ST506 controller 
of the original IBM AT. There are, however, a few additional features .  The host sees 
an IDE controller as two blocks of 1/0 registers . They lie in the 1/0 space of the ISA 
bus rather than in the memory address space. Here they could occupy addresses 
between 0 and FFFFh but PC compatible computers restrict the 1/0 space to 0 to 
3FFh. The command register block is used to send commands to the disk drive and 
to exchange data. The control register block is used for disk control. The command 
register block is often called the AT task file, although I avoid this terminology. 

The two register blocks are differentiated by the lines cso and CS I (ATA- 1 :  CS I FX 

and CS3 FX).  cso is derived from the ISA bus and, as its former name suggests, is 
active when an address in the range 1F0-1 FF is accessed. Analogously, CS I is active 
when an address in the range 3F0-3FF is accessed. Whether the signals are actually 
decoded in this way, however, is up to the IDE adapter card. It is often possible to 
choose an alternative address range for the two register blocks using a jumper. In this 
way, it is possible to have more than one IDE interface in a single computer. 

In some cases the same address is used to access multiple registers in order to 
save 1/0 address space; during a read the address refers to one register, during a 
write to a different register. Table 6. 1 gives an overview of both register blocks . 

The data register ( 1  FOh, read/write) 

The data register is used to exchange 8- or 1 6-bit data words between the host and the 
disk drive buffer. The signal IOCS I 6  indicates a 1 6-bit access. Transfer of data using 
this register is called PIO because the computer must retrieve each word of data indi­
vidually. Data transfers may also be accomplished using DMA. 



The register model of the IDE controller 45 

Table 6.1 IDE command and control register. 

Addresses 

CS I FX CS3FX 

Command regis1er block 

0 

0 

0 

0 

0 

0 

0 

Conn·o/ regisler block 

0 0 

0 0 

0 0 

0 0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

DAO 

0 

I 

0 

0 

0 

0 

I 

0 

I 

0 

I 

0 

Name and June/ion 

Read access 

Data register 
Error register 
Sector count register 
Sector number register 
Sector number or block 
address 0-7 
Cylinder register 0 

Cylinder 0-7 or 
Block address 8-1 5  
Cylinder register I 
Cylinder 8-1 5  or 
Block address 1 6-23 
Drive/head register 
Drive/head number or 
block address 24-27 
Status register 

Not used 
Not used 
Not used 
Not used 
Not used 
Not used 
Alternate status register 
Reserved 
(ATA- 1 :  Address register) 

The error register (1 F1 h, read) 

Write access 

Data register 
Feature register 
Sector count register 
Sector number register 
Sector number or block 
address 0-7 
Cylinder register 0 

Cylinder 0-7 or 
Block address 8- 1 5  
Cylinder register I 

Cylinder 8-1 5  or 
Block address 1 6-23 
Drive/head register 
Drive/head number or 
block address 1 4-3 1 
Command register 

Not used 
Not used 
Not used 
Not used 
Not used 
Not used 
Control register 
Not used 

After power-up, reset or the execution of the command EXECUTE DRIVE DIAG 'OSTICS, 

thjs register contains a diagnostic code. The djagnostic codes are listed in Chapter 8 

together with the command EXECUTE DRIVE DIAGNOSTICS. 

If the ERR bit in the status register is set, then thjs register contains the enor code 

of the last executed command. In this case, the contents of the register are as follows 

(Table 6.2): 

• ATA 1: BBK (bad block detected): Set if an enor mark is detected in the header of 

the requested sector. In ATA-2, tills bit is reserved. 

Table 6.2 IDE enor register. 

7 6 5 4 3 

BBK UNC MC IDNF MCR 

2 I 0 

ABRT TKONF AMNF 
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• UNC (uncorrectable data error) : Set if an error was detected in the data field of the 
requested sector and this error could not be corrected by the ECC. The data is 
unusable. 

• MC (media change) : A replaceable medium was changed since the last access. 
This is not an error but a signal to the host to take appropriate measures (for 
example, to reset the software cache) so that the new medium can be used. 

• IDNF (ID not found) :  The controller could not find the address field of the requested 
sector. Either it is damaged or a sector was requested that does not exist. 

• MCR (media change requested) : S ignals to the host that the user has pressed the 
button that initiates a change of medium. It is now up to the host to take the nec­
essary steps (such as completing any pending 110 requests) and then to issue a 

MEDIA EJECT or DOOR UNLOCK command. 

• ABRT (aborted command) :  The command was interrupted because it was illegal or 

because of a disk drive error. 

• TKONF (track 0 not found) : Track 0 could not be found during the execution of a 
RECALIBRATE command. This is usually a fatal error. 

• AMNF (address mark not found) : The data region of the requested sector could not 
be found. 

The feature register (1 F1 h, write) 

This register is not used with all disk drives. In accordance with the ATA standard, 
it is used to set certain features of the interface using the command SET FEATURES . 

In the case of a normal ST506 controller for the IBM AT, this register contains 
the cylinder number divided by four, indicating where the write precompensation 
begins. A few older IDE controllers, which do not conform to the ATA standard, 
expect to find this number here as well. 

The sector count register (1 F2h, read/write) 

This register contains the number of sectors to be read or written. The value 0 is 
interpreted as 256. If an error occurs , this register contains the number of sectors yet 
to be transferred. 

A few commands use this register for other purposes. Refer to the description of 
commands INITIALIZE DRIVE PARAMETERS, FORMAT TRACK and WRITE SAME in 
Chapter 8 .  

The media address registers 

The following registers , sector number register, cylinder number register and drive 
register, contain the media address of the block to be processed. In this book, I refer 
to this group of registers collectively as the media address registers . Their impor­
tance varies depending on whether the system uses physical or logical addressing 
(see Chapter 7). 
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In ATA- 1 ,  the address registers contain the constantly updated media address. In 
ATA-2, this is no longer the case. Only when an error has occurred do the media 
address registers contain the address of the block where the error occurred. 

The sector number register (1 1F3h, read/write) 

This register contains the number of the first sector to be transferred. In logical block 
address (LBA) mode it contains byte 0 of the logical block number. 

The cyl inder number register (cyl inder low register, 1 f4h, 
cyl inder h igh register, 1 F5h, read/write) 

This pair of registers contains the cylinder number. The ATA standard allows 
65 536 cylinders to be addressed. Earlier IDE controllers use only bits 0 and 1 from 
the high byte of the cylinder address ( 1F5h), which limits the number of addressable 
cylinders to 1 024. In LBA mode, the register holds bytes 1 and 2 of the logical block 
number. 

The drive/head register (1 f6h, read/wrnte) 

This register contains the drive number, head number and addressing mode. It is 
broken down as follows (Table 6 .3) :  

Table 6.3 IDE drive/head register. 

7 6 5 4 3 2 

I L I DEY IIS3 HS2 
( DRY) 

I 0 

H S I  HSO 

• HS(t-HS3 (head select 0-3) :  Head number. In LBA mode these bits represent the low 
four bits of byte 3 of the logical block address. The high four bits are always 0. 

• DEY (device) : Device number. Device 0 is always the master device. ATA- 1 :  DRY 

(drive) :  same meaning. 

• L (LBA mode) :  When this bit is set LBA addressing is being used ; otherwise the 
usual cylinder/head/sector (CHS) method is being used (see Chapter 7) .  

The status register ( 1  f7h, read) 

The status register contains the status of the disk drive as of the last command. A 
read access to this register clears pending interrupt requests (see protocol) .  To avoid 
this ,  one can read the alternate status register (3F6h, read) .  Both status registers 
consist of the following fields (Table 6.4) : 

• BSY (busy) :  If BSY is set, no other bits in the status register are valid. BSY is always 
set when the controller itself is accessing the command register block. During this 
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Table 6.4 IDE status register. 

7 6 5 4 3 2 

BSY DRDY OF DSC DRQ CORR 

I 0 

IDX ERR 

time the host may not access any of the other registers in the command register 
block. 

• DRDY (drive ready) :  Indicates that the drive is ready to accept a command. When 
the drive is first switched on, DRDY remains clear until the drive is ready for oper­
ation. 

• DF (drive fault) : Indicates an error on the drive. (ATA- 1 :  DWF (drive write fault) : 
write error.) 

• osc (drive seek complete) : Indicates that the heads are positioned over the desired 
cylinder. 

After a command resulting in an error, BSY, DF and osc remain unchanged until the 
status register is read. Afterwards they will reflect the drive's current status .  

• DRQ (data request) : This bit  is set  when the drive wants to exchange a byte with 
the host via the data register. 

• CORR (corrected data) : This bit is set if a correctable read error has occurred. The 
data transfer continues uninterrupted. 

• IDX (index) :  This bit is set once per rotation of the medium, when the index mark 
passes under the read/write head. 

• ERR (error) : Indicates an error has occurred in the process of executing the previ­
ous command. The error register contains further information. 

The command register (1 f7h, write) 

This register receives the commands that are sent to the controller. Execution of the 
command is  started immediately after writing the command register. The commands 
and their parameters are part of the command level of the interface model and are 
described in Chapter 8 .  

The alternate status register (3 F6h, read) 

This register contains the same information as the status register. However, a read 
from this register has no effect on pending interrupt requests (see the IDE protocol) .  
Thus you can read this register at any time without having to worry about side effects. 

The device control register (3 F6h, write) 

Two bits are defined in this register (Table 6 .5) :  

• SRST (software reset) : As long as this bit is set, the attached disk drives are in the 
RESET state. When this bit changes to 0, the drives are executing a start-up procedure. 
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I , I , I , I , I 3 I ,:" I ,;, I :: I 
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® IEN (interrupt enable): This bit is negative true. A 0 signifies that interrupts are 

allowed; a 1 blocks them. 

The drive addlress register (3 f7h, read) 

This register is no longer defined in ATA-2; it should not answer when accessed. In 
ATA- 1 ,  it contains constantly updated information about the execution of the current 
command. The head-number information is not always correct for drives using 
caching and mapping. All bits in this register are negative true (Table 6 .6) :  

Table 6.6 IDE address register. 

7 6 5 4 2 () 
WTG H S 3  HS2 HS I HSO DS I DSO 

• WTG (write gate) : If this bit is clear then a write access is currently taking place 

on the selected drive. 

i> HS3-HSo (head select 3-0) : Inverted current head number of the selected disk 

drive. 

® DS I (drive 1 selected) : When this bit is 0 the slave drive is selected. 

• oso (drive 0 selected) : When this bit is 0 the master drive is selected. 

6.2 Com mand executuo81l 

There are five protocols for the execution of IDE commands .  In ATA- 1 ,  these were 

called command classes l -5 .  

P� protocol (dass 1 ) :  read comma1111dls with 1? �0 

Read commands are commands that involve the reading o f  the sector buffer one or 
more times. A PI (PIO In) protocol command is executed in the following way. The 
host first writes any required parameters to the address and feature registers . It then 

writes the opcode to the command register to begin execution (Figure 6 . 1 ) .  

The drive sets the B S Y  bit i n  the status register and puts data for the transfer into 

the sector buffer (see Chapter 7). When the sector buffer is ready, the drive sets the 
DRQ bit and clears the BSY bit. It simultaneously asserts the signal INTRQ. 

The host then reads the status register, whereupon the drive negates INTRQ. The 
DRQ bit tells the host that it may now read 5 1 2  bytes (or more in the case of the READ 
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Host 

Drive 

BSY 

DADY 

ORO 

I NTRQ 

Figure 6.1 Timing of a PI protocol command. 

LONG command) from the sector buffer. This read is then performed according to the 
timing specifications described in Chapter 5 .  

As  soon as  all the data in the buffer has been read, the drive resets the DRQ bit. 
After all of the requested sectors have been read the command is complete. 
Otherwise, the drive again sets the BSY bit and prepares the next sector for transfer. 

In the event of an error, the drive still attempts to prepare the sector buffer for a 
read but also sets the corresponding error bit in the status register. It is then up to the 
host to decide whether or not to read the sector buffer despite the error. 

Things are different when a command is aborted. In this case, the drive resets the 
DRQ bit immediately after the host has read the status register, and no data is transferred. 

PO protocol (class 2) : write commands with PIO 

PO (PIO Out) commands are write commands. Thus the first thing that must happen 
is that the sector buffer must be filled with 5 1 2  bytes of data (or more in the case of 
WRITE LONG). Figure 6 .2  shows the sequence of steps involved in executing this 
command. In this example, two sectors are being written. 

First, the host places the necessary parameters in the appropriate registers of the 
command register block. It then waits until the DRDY bit is set and writes the opcode 
to the command register. 

At this point, the drive sets the DRQ bit in the status register and thereby signals 
that it is waiting to receive data. The host writes the data via the data register to the 
sector buffer. When the sector buffer is full the disk drive sets the BSY bit and clears 
DRQ. 

As soon as the data in the buffer has been processed (for example, been written 
to the medium), the drive clears the BSY bit and sets INTRQ. This signals to the host 
that it should read the status register. Once this has happened, the drive resets INTRQ. 

If only one sector is to be written the command is now complete. Otherwise, if 
the write involves multiple sectors , the drive again sets DRQ and the next sector is 
processed. 
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Figure 6.2 Timing of a PO protocol command. 
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In the event of  an  illegal command the drive does not set DRQ after the command 
has been written, but instead indicates that status is to be read by setting INTRQ. The 
host can then examine the error bits of the status register. 

N D  protocol (dass 3 ) :  commaouis without data transfer 

Commands not involving data transfer (ND: No Data) do  not use the sector buffer. 
Nevertheless, such commands may involve an exchange of information between 
drive and host. This exchange of information is accomplished by reading and writing 
registers . 

Here the sequence of steps is more simple. The host writes the necessary para­
meters to the controller registers and writes the opcode to the command register. The 
drive sets BSY and executes the command. When it finishes it writes status to the 
status register, resets BSY and sets INTRQ. The host then reads the status,  the drive 
clears INTRQ and the command is complete. 

DM protocol (dass 4) : commands with DMA data transfer 

This class is comprised of  only two optional commands, one  for reading and the 
other for writing. Although DMA transfers involve more work for the processor 
before and after each transfer, the processor is completely free during the transfer. 
Also, during the transfer of multiple sectors, an interrupt occurs only at the end of 
the entire transfer, not after each sector. This is especially advantageous in multi­
tasking systems where the processor can utilize the time it gains through DMA. The 
execution of DMA commands can be broken down into three phases (Figure 6 .3) .  

In the command phase the host first initializes a DMA channel . I t  then writes the 
parameters and opcode to the controller registers, just as in the PIO case. The drive 
sets BSY and executes the command. 

In the data phase the DMA channel transfers the data using the DMARQ handshake 
sequence. The contents of the controller's registers are not valid during the data phase. 
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Drive 
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Undefined r----

��--------�------�1 

DRDY Undefined 

l E N  

Figure 6.3 Timing of a DM protocol command. 

The drive then begins the status phase by triggering an interrupt. In response the 
host resets the DMA channel and reads the status and (if necessary) the error register. 

In case of error the status phase may occur before the data phase or interrupt it, 
since the drive requests an interrupt the moment the error occurs . 

VS protocol (class 5 ) :  vendor-specific protocol 

There are a few commands that do not fit neatly into the above classifications 
because their execution protocols differ slightly from those described above. These 
differences are explained together with the commands in Chapter 8 .  

6.3 Power-u p or hardware reset 

The same sequence of steps is executed after both power-up and a hardware reset. 
The procedure varies slightly depending on whether one or two disk drives are 
present. 

The timing diagrams require a few words of explanation. All signals are repre­
sented as active high even when they are marked as inverted by a bar above their 
names. This makes the diagrams simpler to understand. In reality, that is, on an oscil­
loscope or a logic analyzer, these signals would appear inverted. 

The timing diagrams are not drawn to scale. Thus, it is possible that an event 
lasting 400 ns might appear to be as long as one lasting 450 ms. Important times are 
also included in the diagram. For complete specifications consult the most recent 
ATA standard. 

Reset in a s ingle-drive system 

The host activates the signal RESET for at least 25 11s .  It should be noted that the host 
is responsible for a RESET after the system first powers on and all system voltages 
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Figure 6.4 Timing at power-up or RESET. 
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have stabilized. At most 400 ns after RESET goes low again the master drive sets the 
BSY bit in the status register. At most 1 ms after that, the drive negates DASP and 
carries out its self-test. Simultaneously, it observes DASP for 450 ms to see if a slave 
drive is present. Since a slave will not be found the master is able to use DASP to indi­
cate drive activity. As soon as the master drive has completed its self-test and is 
ready to accept commands it resets the BSY bit. All of this must occur within 3 1  
seconds . 

Reset in  a two-drive system 

Before the ATA standard there was no standard way of determining whether a slave 
drive was present or not. Often the master drive was equipped with a special jumper 
for this purpose. Such drives may be incompatible with drives using the ATA 
protocol described here. 

Both ATA compliant drives negate DASP at most 1 ms after RESET is negated. The 
master drive detects the existence of a slave within 400 ms after RESET by examin­
ing DASP . Prior to this the slave negates PDIAG thereby indicating that it has begun its 
self-test. 

When the self-test is finished and the slave drive is ready to accept commands it 
asserts PDIA G .  This must occur no more than 30 seconds after the reset. If the master 
drive does not recognize the slave within 3 1  seconds it concludes that an error has 
occurred and sets bit 7 in the error register. 

The slave drive should negate DASP within 30 seconds of receiving the first valid 
command (Figure 6.4 ) .  

The Conner protocol 

Many drive manufacturers use special protocols for detecting a slave drive, which 
differ from the ATA protocol sketched above. One such protocol, that used by 
Conner Peripherals ,  is discussed here. 
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When the slave powers up it activates the signal PDIAG within 1 ms. (If the master 
does not see PDIAG within 4 ms, it assumes that no slave drive is present . )  PDIAG 

remains active until the slave clears its BSY bit or until 14 seconds have elapsed. If 
the slave is still not ready it stops asserting PDIAG but continues asserting BSY. Before 
clearing its BSY bit, the master waits until the slave clears PDIAG, but does not wait 
longer than 14.5 seconds. 

The same procedure is followed for a software reset ; however, here the slave must 
clear the PDIAG signal within 400 ms. 



7 The model of an I D E disk drive 

When examined briefly, the model of an IDE disk drive corresponds to that of an 
ST506 drive. This is not at all surprising given that IDE is a direct descendant of 
ST506. However, the IDE model of the ATA standard contains a number of signifi­
cant improvements over its predecessor. 

7. 1 Organ ization of the med i u m  

The medium of a n  IDE drive i s  organized by head (surface), cylinder and sector. An 
IDE drive can have 16 heads, 1 024 cylinders and 256 sectors . The ATA standard 
even permits up to 65 636 cylinders. A sector normally contains 5 1 2  bytes of usable 
data. These sectors are addressed in one of two ways. 

What is  a megabyte? 

Before we go on, a brief remark on the definition of megabyte and gigabyte . In 
principle, two different indications are used. A kilobyte is 1 024 bytes ; thus, a 
megabyte should be 1 024 kilobytes, that is ,  1 048 576 bytes. S imilarly, a gigabyte 
should be 1 024 megabytes .  For the specification of disk capacities, however, it has 
become common practice to use the 'decimal ' mega and giga. A 'decimal' megabyte 
is 1 000 kilobytes, and a 'decimal ' gigabyte 1000 megabytes .  To comply with 
majority rule, in this chapter we will use the 'decimal ' notation and indicate the 
correct values in parentheses. 

Physical address ing (CHS mode) 

In CHS mode the cylinder, head and sector number uniquely identify a given sector. 
IDE comes from ST506, which always has 1 7  sectors of 5 1 2  bytes each per track. 
For this reason many IDE drives with more than 17 sectors utilize either a native or 
translated mode of addressing. In the native mode the drive geometry is presented as 
it physically exists to the host. In the translated mode the physical geometry is 
mapped to a logical one. The logical geometry has 17 sectors but with a greater 
number of logical heads so that the total capacity is the same. 

55 
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IDE drives use a linear mapping for physical addressing. This means that con­
secutive sectors begin at cylinder 0, head 0, sector 0. This track is used first, then 
head 1 of the same cylinder and so on until the entire cylinder is used. This is then 
repeated for the next cylinder number with head 0. This mapping must be known to 
the host since the IDE interface has commands that transfer as many as 256 sectors 
at one time. 

Another aspect of IDE that perhaps belongs to the drive model is that average 
access time within a given track is shorter than when a head switch must occur. A 
head switch, on the other hand, takes less time than a change of cylinders. This is 
not necessarily true in translation mode. Here a head switch may take place within 
a logical track access. 

In CHS mode, a disk can have a maximum of 65 535 cylinders, 16 heads and 256 
sectors . With a sector size of 5 1 2  bytes, this corresponds to a capacity of 1 3 6  ( 1 27) 
gigabytes.  

Logical addressing (LBA mode) 

In this mode the drive presents itself as a continuous sequence of blocks which are 
addressed by their logical block number. In this case the drive's physical geometry 

need not be known to the host. 
In LBA mode, 28 bits can be used for the logical block address. Thus,  228 blocks 

can be addressed. As with CHS addressing, this results in a theoretical upper limit 
of 1 3 6  ( 1 27) gigabytes per IDE medium. 

The ATA standard specifies that the mapping from physical geometry to logical 
block numbers should be accomplished in the following manner: 

LBA : = ( C y l i n d e r N u mb e r  * H e a d C o u n t  + H e a d N um b e r )  * 

S e c t o r C o u n t  + S e c t o rNumb e r  - 1 

This mapping assures that the time needed to access from LBA n to LBA n + 1 
is shorter than from LBA n to LBA n + 2. In other words, the logical blocks are also 
in sequential order in terms of access time. This is important for the host because it 
means that large blocks of data will be written and read in the shortest possible time 
if the logical blocks are continuous. 

Zone-bit recording 

Using such a mapping, be  it translated physical or  logical addressing, i t  i s  now pos­
sible to employ drives that do not have the same number of sectors per cylinder for 
the entire surface of the medium. 

This leads to a recording technique that makes possible an increase of up to 50% 
in capacity without special heads or medium. In order to describe this technique, 
known as zone-bit recording, we need to talk a bit about disk recording in general. 
The composition of the magnetic surface of the disk and the type of the heads used 
determine the maximum recording density in flux changes per millimeter. For the 
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purpose of our discussion here, we can think of a flux change as corresponding to a 

bit written to the disk. Using traditional recording methods, it is the innermost track 

that determines the maximum number of flux changes per track, but since the cir­

cumferences of the tracks increase as one moves away from the center, the number 

of flux changes that can be accommodated also increases . Zone-bit recording makes 

it possible to take advantage of this by increasing the number of flux changes in 

outer tracks . This is done by dividing the medium into several regions, in each of 

which the number of sectors per track is constant. The innermost region has the least 

number of sectors per track while the outermost region has the greatest. The regions 

in between bridge the two extremes. In this way the ideal of maximal flux density is 

approached and the capacity is significantly increased. A side effect of this is  that the 

data rate of the medium increases from the inner tracks to the outer tracks. This ,  

however, is an aspect that only the drive electronics has to deal with, not  the IDE 

interface. The ST506 cannot accommodate zone-bit recording since the data comes 

directly from the heads and would therefore come at varying rates. 

Capacity l im its 

It has already been mentioned twice that the IDE interface can physically handle 

disk drives of up to 1 36 ( 1 27) gigabytes. However, in the PC and MS-DOS world, 

there are several restrictions to this .  

The 528-Mbyte l imit 

The first restriction comes from the PC BIOS and applies to disks that are to be used 

without a special software driver. The BIOS allows 1024 cylinders , 16 heads and 63 

sectors . With 5 1 2  bytes per sector, this results in a capacity of 528 (504) Mbytes.  In 

order to use a disk drive with more than 1024 cylinders, an adapter can map the 

addresses and make the host see exactly 1024 cylinders , but more sectors . 

Surmounting the 528-Mbyte limit with special drivers or an adapter-specific BIOS 

is often perceived as a part of EIDE. In practice, however, this possibility has always 

been there. 

The 8-Gbyte l imit 

A second capacity limit is introduced by the disk interrupt INT 1 3h and the partition 

tables of FAT-based operating systems. This also applies to disks which are not 
addressed by the BIOS but by special drivers . INT 1 3h and the partition tables can 
manage 1 024 cylinders , 256 heads and 63 sectors . This results in a capacity of 8.4 

(7.7) GBytes. The small number of only 1024 cylinders , together with the high 

number of 265 heads will often need mapping. The 8-Gbyte limit applies not only 

to IDE disks, but also to SCSI disks . It is, however, limited to operating systems such 
as DOS, Windows 3 .x  and Windows 95. UNIX, OS/2 and Windows NT use different 
media structures and therefore have other (higher) capacity limits. 
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7.2 Defect management 

The definition of the IDE interface and also the ATA standard specify no precise 
rules for dealing with errors . There are, however, two basic approaches that may be 
employed. 

Defective sectors may be marked as such during formatting. Exactly how this is 
to be done is left up to the manufacturer. When the sectors are read they are recog­
nized as defective and dealt with appropriately. 

The second approach reallocates defective sectors . This is possible with trans­
lated physical addressing or logical addressing only. Here a specific area of the drive 
is reserved for replacement sectors . When a sector is identified as defective, it is for­
matted in a particular way. Multiple copies of the replacement sector 's  address are 
written in that defective sector, so that it can be read in any case. In this way it is 
possible to present the host with an apparently defect free medium at all times . 

Care must be taken in order to keep the access time of a reallocated sector to a 
minimum. Bear in mind the relevant time relationships:  a revolution takes 1 1  ms, a 
track-to-track seek about 2 ms, the average seek time is 1 1  ms, and a head switch 
takes approximately 1 ms. Since a seek is most costly, it makes sense for each cylin­
der to contain several replacement sectors for that cylinder. This approach avoids 
seeks altogether. 

Better still is the approach where each track has a sector for defect management. 
However, if the defective sector is simply reallocated to the reserve sector this is still 
not optimal. Figure 7 . 1 describes the situation. In order to read sectors 0 through 2 ,  
one must first read sector 0 and then wait almost an entire revolution until the re­
placed sector 1 is reached. Afterwards one must wait until sector 2 finally revolves 
underneath the heads to be read. The entire procedure takes 1 y; revolutions although 
only y; of a revolution is needed for reading; in other words, an entire revolution is lost. 

Before 

Poor Better 

Figure 7.1 Strategies for sector reallocation. 



The sector buffer 59 

The following is an approach that minimizes the access time to reallocated 

sectors. A replacement sector is reserved for defect management for each track. 
When a defective sector is  found it is marked as such, and all subsequent sectors of 
the track are shifted by one. In this way even after the reallocation access to a con­
tinuous sequence of sectors can take place without losing a revolution . In addition, 
a number of replacement cylinders are also reserved for reallocation purposes. In the 
event that a track is found to have more than a single defective sector then the entire 
track can be reallocated. 

7.3 The sector lnnffell' 

The sector buffer is used as a temporary storage for all read and write operations. 
This decouples the rate at which data is exchanged with the host and the rate at 
which data is  written and read from the medium. This is necessary since a sector 
must always be written or read as a whole. 

In the simplest case the sector buffer is an area of RAM on the IDE controller. If 
the buffer can only be used to exchange data with the medium or the host, one speaks 
of a single ported buffer. A buffer that is able to receive data from the host and write 
data to the disk simultaneously is referred to as a double ported buffer (Figure 7 .2) .  

A double ported buffer must be able to hold more than a single sector. Only after 
an entire sector has been received will the controller begin to write the data to the 
medium. If during that time the buffer is able to receive additional data from the host 
the throughput of the system is significantly improved. 

As a further example, assume that we are reading a number of sequential sectors . A 
drive with a single ported buffer is forced to use an interleave, otherwise a subsequent 

l P rocessed 

Host 

Register 
block 

Figure 7.2 Single and double ported sectors . 
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sector will be lost by the time the host reads the first sector. This approximately 
halves the throughput of a double ported buffer, where the host can read the first 
sector during the time the second sector is read from the medium. 

A double ported buffer looks like a sector buffer to the host in that it contains the 
data of the current sector. In a sense the sector buffer is a window through which the 
host and medium exchange data. The window is constantly shifted so that the data 
always corresponds to the current contents of the address register. Figure 7 .2  makes 
these relationships clear. 

The communication between the sector buffer and the host takes place either 
byte- or word-wise via the data register of the controller (PIO) .  Optionally, direct 
memory transfers are possible using DMA. 

7.4 Power col!'lldl nt uons 

The ATA model of  an  IDE disk drive includes various power conditions. An IDE 
drive can be put into energy saving states of differing levels .  This is an important 
capability in view of the increasing number of notebook and portable computers. 
Table 7 . 1  shows the possible states and the corresponding status bits. The status bits 
have already been explained in Chapter 6. In ATA- 1 ,  there used to be an additional 
REST state which no longer exists in ATA-2. 

In the SLEEP state the drive is turned on, but uses as little power as possible. Only 
through a RESET can the drive be brought into the active state again. Since in this 
state the motor may be turned off, a medium access may take as long as 30 seconds. 

In the STANDBY state the IDE interface is capable of accepting commands . Here 
too the motor may be turned off, so a medium access may take up to 30 seconds. 

In the IDLE state the motor is on and the drive is able to react to commands imme­
diately. However, certain portions of the drive electronics may be turned off for 
power savings if this will cause only minimal delay for a medium access. 

Finally, the ACTIVE mode is the normal state of the drive. Commands are executed 
in the shortest possible time in this state . 

Table 7.1 Power conditions for IDE drives. 

Power condition /JSY IJRIJY lntafitce Medium 

SLEEP X X no no 

STA N D B Y  0 yes no 

IDLE 0 yes yes 
ACTI V E  X X yes yes 

The sta1111dby timer 

With the standby timer, the drive can decide at i ts  own discretion to switch from the 
IDLE state or the ACTIVE state to the STANDBY state . Using CHECK POWER MODE the host 
can determine in which of the two states the drive currently resides. 
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In this chapter, all the key IDE commands defined in the ATA standard are intro­
duced briefly. The commands are listed in Table 8 . 1 .  Among these, ten are 
mandatory. The others may be optionally implemented, but then only in accordance 
with the ATA standard. There are a couple of differences between ATA- 1 and ATA-2.  
Some mandatory commands of ATA- 1 are now optional, and some valid commands 
of ATA- 1 are now reserved as obsolete. These differences are shown in the ATA- 1 
and ATA-2 columns which use the codes R for reserved, 0 for optional, V for 
vendor-specific and M for mandatory. 

The table gives the command name, followed by the opcode. The mandatory 
commands of ATA-2 are shown on a gray-shaded background, and the column 
labeled Prot. designates the command protocol used. The last five columns show 
which control register is used for parameters. Included are FR (feature register) , SC 
(sector count register) , SN (sector number register) , CN (cylinder number register) , 
and DH (drive/head register) . D in the DH column means that only the disk drive 
number is used; D* means that disk drive 0 is addressed, but both disk drives execute 
the command. 

Some commands have a second opcode in parentheses. These opcodes were 
established by the industry prior to the ATA standard and are still in use. Conner 
drives use these earlier opcodes. 

In addition, some manufacturers implement optional commands that are often 
very useful . A good example of this would be a command to read the defect list. In 
any case, it is always a good idea to consult the drive handbook when planning a 
large project. 

8. 1  Mandatory com mands 

EXECUTE DRIVE DIAGNOSTICS (90h) 

This command is  always issued to disk drive 0, but initiates the internal diagnostics 
of both disk drives. After the diagnostics have run, the BSY bit is cleared and an inter­
rupt given. The results can then be retrieved from the error register. However, the 
contents must be interpreted with the aid of the special error codes listed in Table 
8 .2 .  Please note that under ATA- 1 ,  this command was executed in a different way. 

6 1 
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Table 8.1 IDE conunands of the ATA standard. 

COIII/1/0nd 

Command name Opcode ATA - 1  ATA-2 Prot. 

ACKNOWLEDGE MEDIA CHANGE OBh 0 0 VS 
BOOT POSl�BOOT OCh 0 0 VS 
BOOT PRE-BOOT DOh 0 0 VS 
CHECK POWER MODE 98h (E5h) 0 0 NO 
DOOR LOCK OEh 0 0 vs 
DOOR UNLOCK OFh 0 0 vs 

92h R 0 PO 
90h M M NO 

FORMAT TRACK SOh M v vs 
ECh 0 M P I  

IDLE 97h (E3h) 0 0 NO 
IDLE IMMEDIATE 95h (E l h) 0 0 NO 

9 l h  M M ND 
MEDIA EJECT EOh R 0 NO 
NOP OOh R 0 NO 
READ BUFFER E4h 0 0 PI 
READ DMA (with and without retries) C8h, C9h 0 0 OM 
(READ DRIVE STATE) E9h 0 R NO 
READ LONG (wi th  and without retries) 22h, 23h M 0 PI 
READ MULTIPLE C4h 0 0 P I  

EAD SECTORS (with and 
20h, 2 l h  M M PI 

40h. 4 1 h  M M N O  
RECALIBRATE l xh 0 NO 
(REST) E7h 0 R vs 
(RESTORE DRIVE STATE) EAh 0 R vs 

EEK 7xh M N O  
SET FEATURES EFh 0 NO 
SET MULTIPLE MODE C6h 0 0 NO 
SLEEP 99h (E6h) 0 0 ND 
STANDBY 96h (E2h) 0 0 NO 
STANDBY IMMEDIATE 94h (EOh) 0 0 NO 
WRITE BUFFER E8h 0 0 PO 
WRITE DMA (with and without retries) CAh, CBh 0 0 OM 
WRITE LO G (with and without retries) 32h, 33h 0 PO 
WRITE MULTIPLE C5h 0 0 PO 
WRITE SAME E9h 0 0 PO 
�,'RITE SECTORS (with and 

'ithout retries) 30h, 3 1 h  M M PO 
WRITE VERIFY 3Ch 0 0 PO 

Table 8.2 EITor codes for EXECUTE DRIVE DIAGNOSTICS. 

Code 

O l h  
00h, 02h-7Fh 

8 1 h  
SOh, 82h-FFh 

Device 0 

O K  

defective 
O K  

defective 

Device I 

O K  or not connected 
OK or not connected 
defective 
defective 

Registers 

FR sc SN CN DH 

0 
0 
0 

* 0 
0 
0 

* * 0 
0* 

D 
* 0 

0 
* * 

0 
:j: 

0 
* * 

* * * 
* ... * * 

* * * * 

* * * * 
0 

... 

* 
* 0 

0 
0 
0 
0 

* * * * 
... ... * ... 

* * * * * 
* * * 

* * * * * 
* * * * 
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IDENTIFY DEVICE (ECh) 

The conunand IDENTIFY DEVICE is of special interest. After receiving this conunand, 

the drive writes a parameter block with information about the drive in the sector 

buffer. This parameter block is sometimes called configuration sector. It is read in 

the normal way from the sector buffer by the host. 

This conunand has changed in many regards from ATA- 1 to ATA-2. First of all, 

in ATA- 1  it is still called IDENTIFY DRIVE. Then there are a number of parameters in 

the parameter list which have a meaning in ATA- 1 ,  but are marked as obsolete in 

ATA-2. However, since there are still large numbers of devices around that conform 

to ATA- 1 ,  I have put both standards next to each other. 

Table 8.3 shows the structure of the parameter block. It consists of 255 16-bit words. 

The parameter words used in ATA-2 are shown on a gray background. Column 3 shows 

the ATA- 1 meaning and, in parentheses, the changes made in ATA-2. Reserved 

parameter words must be fi lled with OOh. The parameter words that are marked as 

obsolete in ATA-2 are considered vendor-specific. Thus, they may contain a value. 

Table 8.3 Parameter hst of the IDENTIFY command. 

Word 

0 

2 

3 
4 
5 

6 

7-9 

1 0- 1 9  

20 

2 1  

n 
23-26 
27-46 

47 
48 
49 

50 

5 1  

52 
53 

54 

55 
56 

57-58 

59 

60-6 1 

62 

ATA-2 

Yes, changed 

Yes 

Reserved 

Yes 

Obsolete 

Obsolete 

Yes 

Vendor-specific 

Yes 

Obsolete 

Obsolete 

Yes 

Yes 

Yes 

Yes 

Reserved 

Yes. changed 

Reserved 

Yes 

Yes 

New 

Yes 

Yes 

Yes 

Yes 

Ye , changed 

Yes 

Yes 

A TA- l  COli/ellis (cha11ges i11 ATA-2) 

Configuration word (see Table 8.4) 
Number of Qooil-al) cylinders 

Reserved 

Number of (logical) heads 

Bytes per track unformatted 

Bytes per sector unformatted 

(Logica l) sectors per track 

Vendor-specific 

Serial number i n  ASCTT 

Buffer type 

Buffer 'ize in 5 1 2-byte segments 

Number of vendor-specific ECC bytes for READ and WRITE LOI'G 
Firmware revision in ASCTI 

Model name in ASCII 

Bits 7-0: sectors per interrupt for READ and WRITE M ULTIPLE 
B it 0: double word 1/0 possible 

Capabilities (sec Table 8.5) 

Reserved 

Bit 1 5-8: timing mode for PlO data transfer� 

Bits 1 5-8: timing mode for DMA data transfer 
Reserved (bit 0: word' 54-58; bit I :  words 64-70 apply) 

Apparent (current) number of cyl inders 

Apparent (cunem) number of heads 

Apparent (current) number of sectors per truck 

Apparent tcutTent) capacity in sectors 

Bits 7-0: (current) number of sectors per imctTupl 

t bit 8: values in bit 0-7 apply) 

Total number of addressable sectors in LBA mode 

Bits 1 5-8: active mnde for single DMA 

Bits 7-0: suppmted modes for single DMA 
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Table 8.3 Parameter list of the I DENTIFY command (cont. ). 

Word 

63 

64 

65 
66 
67 
68 

69- 1 27 
1 28-1 59 
1 60-255 

ATA-2 

Yes 

New 

New 
New 
New 
New 

Reserved 
Vendor-specific 

Reserved 

ATA-1  contems (chages in ATA-2) 

Bits 15-8: active mode for multiple DMA 
Bits 7-0: supported modes for multiple DMA 
Bits 1 5-8: reserved 
Bits 7-0: reserved (supported modes for advanced PIO) 

Reserved (minimum cycle time for multi-word DMA in ns) 

Reserved (recommended cycle time for multi-word DMA in ns) 
Reserved ( minimum PIO cycle time without flow control) 

Reserved (minimum PlO cycle time with lORD.):'_fto\'L COO.ti()l) 

Reserved 
Vendor-specific 
Reserved 

Some of the fields require further explanation. First, word 0 is a bitwise-coded 

word with configuration parameters. Table 8.4 illustrates the meaning of the 

individual bits. In ATA-2, of all these specifications, only the distinction between 

hard disk and changeable media in bits 6 and 7 has remained. All other specifications 

are obsolete. They are a hangover from ST506: drive internals that an IDE driver 

does not have to be concerned with. 

The geometry values given in words 1 to 6 refer to the default mapping, which is 

usually physical addressing without translation. The current geometry of the disk 

drive is found in words 54 to 58.  

A new item in ATA-2 is a configuration word which contains coded information 

on different capabilities of the drive. This field is explained in Table 8 .5 .  

The following values are defined for the buffer type only in ATA - 1 :  000 lh  stands 

for a one-way buffer implemented for a single sector, 0002h stands for a two-way 

buffer of several sectors, and 0003h indicates a read cache. In ATA-2, this word is 

obsolete. 

Table 8.4 Configuration bits for tDENTIFY data. 

ATA-2 

Yes 
Yes 

Bit 

0 

2 
3 
4 
5 
6 
7 
8 
9 

1 0  
I I  
1 2  
1 3  
1 4  
1 5  

Meaning 

Reserved 
Hard-sectored drive 
Soft-sectored drive 
Encoding other than MFM 
Head sw itching time 15 p s  
Spindle motor control implemented 
HaJd drive 
Changeable medi um 
Data rate to 5 MHz 
Data rate between 5 and LO  MHz 
Data rate above 10 MHz 
Motor speed tolerance above 0.5% 
Data clock offset avai !able 
Track offset available 
Speed tolerance gap necessary 
Reserved 



Table 8.5 Capability word for I DENTIFY data. 

Bil Meaning 

0-7 Vendor-specific 
8 DMA commands supponed 

9 LBA mode >Uppol1ed 

1 0  lORDY may be dea.:tivated 

l l  IORDY i s  supported 
1 2  Reserved 
l 3  Standby timer available 

14  Reserved 
1 5  Reserved 

IN ITIALIZE DEVICE PARAMETERS (91 h) 
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Using this command, the disk drive geometry can be configured. This is accom­
plished by loading the number of sectors in the sector count register and the disk 
drive number and number of heads in the drive/head register. 

This command also allows a drive to be switched from native to translated phys­
ical addressing. According to the ATA- 1 standard, the parameters do not have to be 
checked. If they are incorrect, the next disk access will result in an error. However, 
many drives use the default values when incorrect parameters are given for this 

command. In ATA-2 an ABORTED COMMAND error must be reported. 

READ SECTORS (20h with and 21 h without retries) 

This command reads the number of sectors given in the sector count register. A 

value of 0 means 256 sectors. The address of the first sector is given in the address 
register. An interrupt follows each sector that is read. If the heads are not over the 
desired track, they are positioned automatically. After the command is executed, the 
address register holds the address of the last sector read. 

In case of erTor the action taken depends on whether the command was issued 
with or without retries. Without retries the command will be aborted and the 10 'F bit 
set in the error register if the correct sector is not found in two revolutions. 
Otherwise repeated attempts will be made to read the proper sector. The number of 
repeated attempts is vendor-specific. 

When the sector is found, the start of the data field is expected within a given 
number of bits. If it is not found, the conunand is aborted with an AMNF bit in the 
erTor register. 

If a correctable ECC error occurs, the corresponding bit is set in the error regis­
ter, but the command is not aborted. Only uncorrectable ECC errors lead to a 
command being aborted. 

After a command is aborted, the address register contains the address of the sector 
in which the error occuned. The sector buffer could contain damaged data. 

READ VERIFY SECTORS ( 40h with and 41 h without retries) 

This command reads the requested sectors, but no data is transferred. It only verifies 
(hence the name) whether or not the sectors are readable. The response to an error is 
identical to that of the READ SECTORS command. 
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SEEK ( 7xh) 

Under ATA- 1 this command instructs the drive to position the heads over the cylin­
der given in the address register, and to switch to that head. Under ATA-2, it is 
vendor-dependent whether any actions are triggered by this command and, if this is 
the case, which ones.  Since the READ and WRITE commands explicitly position the 
head, the SEEK command is rarely needed. 

WRITE SECTORS (30h with ctB1dl 31 h witholl.llt retrnes) 

This command behaves exactly like READ SECTORS, except that the data are written 
instead of read. 

8.2 Optional com marnds 

ACKNOWLEDGE MEDIA CHANGE (IDBh) 

This command applies only to  changeable media. In  ATA- 1 i t  clears the M C  bit in  the 
error register. The operating system uses this to acknowledge that the media change 
has been recognized. In ATA-2 the action triggered by the command is vendor-spe­
cific . 

BOOT - POST-BOOT (DCJn) 
This command applies only to changeable media. In ATA-2 the action triggered by 
the command is vendor-specific. 

BOOT - PRE-BOOT (0Dh) 
This command applies only to  changeable media. In  ATA-2 the action triggered by 
the command is vendor-specific. 

CHECK POWER MODE (98Jn, IE5h) 

With this command, the host can determine whether the drive is in an IDLE or 
STANDBY state. This is necessary since the drive can go to STANDBY on its own, 
which, under certain circumstances, can cause a delay of up to 30 seconds for the 
first command. 

If the drive is in STANDBY or transitioning to this state, it replies with the value 
OOh in the sector count register. In the IDLE state, the drive replies with FFh in the 
sector count register. 

DOOR LOCK (OIEh) and DOOR UNLOCK (Dfh) 
These commands, which are for removable media drives,  close and lock, and unlock 
and open the door. New in ATA-2: when the door is closed, the DOOR LOCK command 
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returns a GOOD state if the button for manual door opening has not been operated.  
Otherwise, an error with the MCR bit set must be reported. 

DOWNLOAD MICROCODE (92h) 

This command is new in ATA-2. It allows you to modify the firmware of the device.  
The number of transferred bytes is a multiple of the sector length. The sector count 
register contains the upper bits , the sector number register the lower bits of the 1 6-
bit data length counter. Thus, between 0 and 33 Mbytes (approximately) of firmware 
can be transferred. The feature register specifies how the new firmware is to be used: 
a value of 0 1 h  means that the firmware is to be used immediately and up to the next 
reset. A value of 07h specifies that the new firmware is used immediately and 
forever. 

FORMAT TRACK (50h) 

In ATA-2 this command is vendor-specific ; no further assertions are made with 
regard to its implementation. Therefore I describe how it is implemented in ATA- 1 .  

Although in ATA- 1 the command is mandatory it is left to the manufacturer 
exactly what will be performed. Some drives format the track from scratch, others 
initialize only the data area of the sectors , others do nothing at all .  The ATA standard 
recommends that drives should at least write the sector with a data pattern. In this 
way formatting will always erase all data, which is desirable for security reasons. 

The command formats an entire track. The sector count register, the cylinder 
number register, and the drive/head register must be loaded with the address of the 
track, then 256 1 6-bit words must be transferred to the sector buffer. Afterwards, the 
drive sets BSY and executes the command. 

The codes written to the sector buffer have the meaning shown in Table 8 .3 .  
Whether or  not the drive uses these or  instead uses its default parameters i s  up  to  the 
manufacturer. 

A data word should be written to the sector buffer for each sector, with the 
remainder filled with Os. Each data word contains the sector number in the upper 
byte. If an interleave is called for, it is suppressed. The lower byte holds the code 
that indicates how the sector should be formatted. Table 8 .6  lists the possible codes. 

Table 8.6 Codes for FORMAT TRACK. 

Code Format 

OOh Format good sector 

20h Suspend rea l l ocation 

40h Real locate sector 

80h Mark sector dcfccti\ 'c 

IDLE (97h, E3h) 

This command i s  used to set the drive's standby timer. A timeout value can be  pro­
vided in the sector count register. Its meaning is shown in Table 8 .7 .  In ATA- 1 the 
meaning was always value x 5 seconds. 
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Table 8.7 Values for the standby timer. 

Sector count register Timeout value 

OOh Standby timer deactivated; pass directly into IDLE state 

0 I h-FOh Value x 5 seconds 

F l h-FBh (Value - FOh) x 30 minutes 

FCh 2 1  minutes 

FDh Vendor-specific value between 8 and 12 hours 

FEh Reserved 

FFh 21 minutes and 15 seconds 

IDLE IMMEDIATE (95h, E1 h) 

This command puts the drive immediately into the IDLE state. 

MEDIA EJ ECT (EDh) 

This command i s  new in ATA-2. The drive terminates the current operation, spins 

down the medium and opens the door to allow access to the medium. 

NOP (OOh) 

This command is new in ATA-2. 1t is needed to allow hosts that perform only 1 6-bit 

transfers to write the head register, since a 1 6-bit access automatically also writes the 

command register. The device must react to the NOP command as to any other 

unknown command, by aborting the command with an ABORTED COMMAND bit in the 

error register. 

READ BUFFER ( E4h) 

This command functions differently to  the READ command. I t  reads 5 1 2  bytes from 

the sector buffer without a disk access. The address register is therefore not used. 

Whatever is in the sector buffer will be read. 

READ DMA (C8h with and C9h without retries) 

This command functions like the other READ commands, except that the contents of 
the sector buffer will be read using DMA. It  is therefore necessary for the host to set 

up the proper DMA channel. 

READ DRIVE STATE (E9h) 

This command exists only under ATA- 1 ;  it has been eliminated in ATA-2. Using this 
command the host can read the current status of the drive after a REST command. 
This status can then be sent back to the drive using the RESTORE DRIVE STATE 

command when the REST state is over. 
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READ lONG (22h with alllldl 23h without retries) 

Unlike the READ SECTORS command, READ LONG always reads only one sector. Not 
only is the data transferred, but also the ECC bytes of the sector. The ECC is not 
checked. In all other respects , including errors, the command executes identically to 
the READ SECTORS command. The format of the ECC bytes is vendor-specific. Some 
drives have difficulties with the transfer of ECC bytes. Therefore the slow PIO mode 
0 must be used for this command. 

READ MULTIPLE (011-h) 

This command fuctions similarly to  the READ SECTORS command. The difference i s  
that instead of  a single sector, blocks of  several sectors are transferred without an 
interrupt occurring in between. The number of the sector must be given in the sector 
count register. Just how many sectors are to be included in a block is determined by 
the SET MULTIPLE MODE command. If the required sectors do not fit into the block 
size, an additional block (not fully used) will be transferred containing the remain­
ing sectors . 

RECALIBRATE ( 1  xh) 

All opcodes between I Oh and lFh are interpreted as a RECALIBRATE command, 
whereupon the disk drive seeks track 0. If it is not found, TKONF will be set in the 
error register. In ATA- 1 RECALIBRATE was still a mandatory command. With modem 
drives, however, it has lost importance. 

RECALIBRATE is often used when trying to recover from an error situation. For 
example, when a sector cannot be found, a RECALIBRATE should be tried. If this works, 
a sector access can be tried again. Otherwise, it is fatal disk error. 

REST ( E7h)  

This command only exists i n  ATA- 1 ;  i n  ATA-2 i t  has been eliminated. The disk drive 
is put into the REST state which also no longer exists in ATA-2. It then waits for a 
READ DRIVE STATE command to be informed of its state before the execution of the 
last command. After this command is executed only the READ DRIVE STATE command 
will be accepted; all others will be rejected. If two drives are installed, first the slave 
drive then the master drive will be put into the REST state. 

RESTORE DRIVE STATE (lEAh) 
This command only exists in ATA- 1 ;  in ATA-2 it has been eliminated. If a drive's 
status is  collected and the drive is put into the REST state before being turned off this 
prior state can be restored at power-up using this command, assuming that it is the 
first command received after turning on. Bear in mind that the head position and the 
status of the controller are restored but that the contents of the sector buffer and 
cache are lost. 
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Table 8.8 

Ope ode 

O J h  
02h 

Opcodes for SET FEATURES. 

Meaning 

Enable 8-bit data transfers 
Enable write cache 

03h Set transfer mode according to sector count register value (onl AT. -2 3) 
(22h 
33h 

Only AT A- I :  WRITE SAME to write the specified area) 
Disable retries 

44h 
54h 
55h 

Vendor-speci fic ECC length for READ LONG and WRITE LONG 

Place number of cache segments in sector number register 
Disable read ahead 

66h 
77h 
8 1 h  
82h 
88h 
99h 
AAh 

Maintain parameters after software reset 
Disable ECC 
Disable 8-bit data transfers 
Disable write cache 
Enable ECC 
Enable retries 
Enable read ahead 

ABh 
(ACh 

Use the value in the sector count register as the number of sectors to be read ahead 
Only ATA- l :  allow REST mode) 

BBh 
CCh 
(DOh 

4 bytes of ECC for READ LONG and WRITE LONG 

Software reset loads default features 
Only ATA- l :  WRITE SAME to write entire medium) 

SET FEATURES (EFh) 

This command enables the setting of various characteristics of the drive by writing 

a specific opcode in the feature register. Opcodes higher than 80h represent the 

default values after booting or a reset. Table 8.8 lists the opcodes. All unlisted 

opcodes are considered reserved. In ATA-2 all opcodes except the ones shown on a 

gray background are vendor-specific. 

Opcode 03h which is new in ATA-2 is of particular interest. It is used to set the 

transfer mode by providing the sector count register with a parameter. The upper five 

bits specify the mode to be set and the lower three bits the value it assumes. The 

transfer mode parameters are listed in Table 8.9. 

SET MULTIPlE MODE (C6h) 

The block sizes for the commands READ MULTIPLE and WRITE MULTIPLE are given to 
the disk drive via the sector count register using this command. If the block size is 

not suppmted, or if it is 0, the multiple commands will be turned off. 

Table 8.9 Transfer mode parameters for the SET FEATURES command. 

Mode Value 

PIO default transfer mode 00000 
PIO default transfer mode, without IORDY 00000 
PIO transfer mode with flow control, mode nnn 0000 1 
S ingle-word DMA, mode nnn 000 1 0  
Multiple DMA, mode nnn 00 1 00 

000 
00 1 
nnn 
nnn 
nnn 
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In ATA- 1 ,  disk drives that have at  least 8 KByte buffer must support at  least block 
sizes 2, 4, 8 ,  and 16 .  In ATA-2, disk drives must support the block size parameter 
word 47 of the IDENTIFY DEVICE command. 

SLEEP (99h, E6h) 

This command puts the drive in the SLEEP state. The motor will also be switched off. 
Only a hardware or software reset will end the SLEEP state. 

STANDBY (96h, E2h) and STANDBY IMMEDIATE (94h, EOh) 

This command puts the drive into STANDBY state. The STANDBY IMMEDIATE command 
is executed immediately. If the sector count register has a value other than 0 when 
the STANDBY command is issued, the standby timer is enabled. 

WRITE BUFFER ( E8h) 

This command writes the sector buffer of  the drive with a data pattern. No writing 
to the medium will occur. 

WRITE DMA (CAh with and CBh without retries) 

This command functions like the other WRITE commands except that the contents of 
the sector buffer are written using DMA. The host must initialize the proper DMA 
channel beforehand. 

WRITE LONG (32h with and 33h without retries) 

This command behaves exactly like the READ LONG command, except that the data 
are written instead of read. Here, the ECC must also be written to the sector buffer. 

This is not trivial, since the ATA standard does not specify the sector format or 
how the ECC polynomial is to be computed. This command may be used when 
running system tests in order to produce an ECC error. A sector can be read using 
READ LONG, the data and ECC modified so as to reflect an ECC error, and the falsi­
fied sector rewritten using WRITE LONG. In this way, the error handling can be tested. 

WRITE MULTIPLE (C5h) 

This command functions analogously to the READ MULTIPLE command. 

WRITE SAME (E9h) 

Depending upon the mode set in the feature register, this command will write all or 
part of the medium with the same data. The feature register must previously be 
loaded with either 22h (for part of the medium) or DDh (for the entire medium) 
using the SET FEATURES command. Otherwise, the command will be rejected. The 
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ATA-2 standard discourages use of this conunand. (And it is no longer contained in 
the current ATA-3 proposal . )  

WRITE VERI FY (3Ch) 

This command functions like the WRITE SECTORS conunand, with the exception that 
the sectors are subsequently verified. During verification only the ECC is checked 
without a transfer of data. Any read errors are reported. 



9 The AT API i nterface 

You will probably be familiar with the ATAPI interface in connection with CD-ROM 
drives. However, although this interface is mainly used with CD-ROM drives, it is 
not limited to this application. Practically, ATAPI is a mixture of SCSI and IDE 
(ATA). The IDE interface and its protocol are used for transmission of both ATA and 
SCSI commands. Thus, in principle this extension allows you to control all devices 
for which a SCSI command set exists. For this purpose, the SCSI commands are 
wrapped into an ATA command; hence the name of the interface: ATA Packet 
Interface (ATAPI) .  

SH 

The ATAPI document is not elaborated and maintained directly by ANSI, but by the 
SFF (Small Form Factor) industry committee. The ATAPI document bears the 
number SFF-8020 and consists of parts SFF-802 1 to SFF-8029. 

The SFF committee calls itself an ad hoc group. Its declared goal is to define and 
document industry standards faster than the established organizations . However, 
SFF will hand over its finished documents to established organizations such as ANSI 
or EIA in order to have them published as separate standards or as parts of a superior 
standard. Currently incorporation of ATAPI into the SCSI-3 standard is under 
discussion. 

About th is  chapter 

The fact that ATAPI mainly employs the SCSI CD-ROM command set leads to a 
slight problem in the structure of this book. On the one hand, the SCSI chapter on 
device model, command set and parameters of SCSI CD-ROM drives appears later 
on in the book; on the other hand, I would like to spare you a double description of 
more or less the same issues. Therefore, in this chapter, I will put the emphasis on 
how the ATA mechanisms are used to transmit SCSI data. At the same time, I would 
like to ask you to refer to Chapters 1 2  on SCSI commands and 1 8  on multi-media 
devices during your reading of this chapter. Even if you do not wish to go into SCSI 
to the very last detail, you should read these chapters to gain an overview of those 
aspects that are relevant for understanding ATAPI. 
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9.1  ATAPI architecture 

The AT API document quotes a number of goals underlying the AT API standard. The 

two most important ones are that a CD-ROM with AT API connection must not affect 

existing IDE disks and that it must be ensured that neither a PC BIOS nor any 

operating system recognize an ATAPI CD-ROM as a hard disk. CD-ROM and IDE 

disk must be able to coexist on one cable, and the IDE master/slave protocol must 

be suppmted. 

Architecture 

Figure 9 . 1 shows a good overview of how AT API fits into the ATA standards. AT API 

itself consists of the transport mechanism (TM), the transport protocol (TP) and the 

CD-ROM commands (CP). 

ATAPI and ATA 

ATAPI uses the same signals and the same timing as ATA-2. However, the ATAPI 

devices support a different command set; some commands are added and many ATA 

commands are omitted. 

The most important new command is the ATAPI PACKET command which is used to 

transmit the SCSI-like command packets. These commands consist of the command 

packet, the command parameters, the command response and the status information. 

The command packet contains the command itself together with embedded flags 

and parameters. The command parameters are additional parameters, such as data to 

CD·ROM commands ATA commands Other commands 

ATA task file 

ATA hardware 

AT API transport 
protocol (TP) 

AT API transport 
mechanism (TM) 

Figure 9.1 Block diagram of ATA and ATAPI standards. 

Commands 

Protocols 

PCMCIA 

Connection 
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be written. The command response consists of read user data or parameter informa­
tion. The status information indicates whether the command has been executed 
successfully. 

ATAPI and SCSI 

Those of you who have already been concerned with SCSI wil l  certainly find a 

summary of similarities and differences between AT API and SCSI quite interesting. 

First of all, ATAPI uses many SCSI commands,  the device model of the SCSI 

CD-ROM and its parameter pages. However, this is where the similarities end. The 

ATAPI version of the SCSI command has no LUN field and no control byte. 
Furthermore, the commands are always filled up to 1 2  bytes length, even if the 
corresponding SCSI command is a 6-byte or 1 0-byte command. 

There are no bus phases and no messages. The status is not transmitted as a SCSI 

status byte, but is  ATAPI specific. There is no arbitration, and the ATAPI device is 

always the slave device. There are no disconnect/reselect mechanisms, no command 

chains and no contingent allegiance status.  
For some functions, both the ATA-2 and the SCSI command are allowed, because 

they offer slightly different possibilities. This applies to the ATA-2 commands DOOR 

LOCK and DOOR UNLOCK and their SCSI counterparts PREVENT/ALLOW MEDIA 

REMOVAL. The ATA-2 command IDENTIFY DRIVE supplies low level information, 
whereas the SCSI command INQUIRY supplies information on a higher level . The 
ATA-2 command SET FEATURES allows access to the ATA-specific properties.  The 

SCSI commands MODE SENSE and MODE SELECT allow access to the parameters at 

device level . 

9.2 ATAPI trans port mecharn usm 

The physical interface, that is signals, drivers and cable, are the same i n  ATAPI and 
ATA-2. The essential difference lies in the way in which the command register block 

(task file) is  used in ATAPI commands.  

Configuratio011 

For the interplay of ATA-2 Enhanced IDE and ATAPI devices, the ATAPI standard 
proposes some preferred configurations which are listed in Table 9 . 1 .  

Table 9.1 Preferred ATAPI configurations. 

Primarr cable Secondwy cable 
(with E-IDE) 

Dril·e 0 Dril"e I Drive 0 Drive I Remark 

ATA Standan.l 

ATA AT API Disk and C D-ROM in E-IDE 

ATA AT API Disk and CD-ROM in  IDE 

ATA AT API AT API Disk and 2 AT API devic�s in E-IDE 
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Table 9.2 ATAPI task file. 

Addresses 

CSD CSJ DA2 DAJ DAD 

0 0 0 0 
0 0 0 I 
0 0 l 0 
0 0 I I 
0 0 0 
0 0 I 
0 0 
0 

Addresses 

CSD CSJ DA2 DA.I DAD 

0 0 0 0 
0 0 0 I 
0 0 0 
0 0 I I 
0 0 0 
0 0 I 
0 0 

0 

ATAPI task fi le 

Command register block 

Name and Junction 

Read access Write access 
Data register 

AT API error register AT API feature register 
AT API cause of interrupt Not used 

Reserved 
ATAPI byte count register (bits 0-7) 

ATAPI byte count register (bits 8-15) 
Drive select regist;.;;.er ..... __ 

AT API status register Command register 

Control register block 

Name andfi.tnction 

Read access Write access 
Not used Not used 
Not used Not used 
Not used Not used 
Not used Not used 
Not used Not used 
Not used Not used 
Alternative AT API Control register 
Status register 
Reserved Not used 

Register usage in the conunand register block (ATAPI task file) differs quite 

considerably between ATAPI and ATA. Table 9.2 shows the modified task file. The 

modified registers are described below. Please note that for normal ATA-2 

commands, ATAPI devices too use the command register block as ATA task file. 

The ATAPI status register 

Essentially, the ATAPI status register corresponds to the ATA-2 status register. Only 

during overlapping ATAPI functions does the meaning of bit 5 and bit 6 change. Bit 5 

becomes DMA READY and indicates that the device is ready to begin a DMA transfer. Bit 
6 becomes SERVICE and indicates that the device is waiting for a SERVICE command. 

The ATAPI error register 

The ATAPI error register is shown in Table 9 .3 .  The sense key field contains the 

SCSI sense key. The MCR and ABRT bits are used in the same way as in the ATA 

standard. EOM means that the end of the medium was detected. Finally, fLI indicates 

an illegal length. 

The ATAPI feature register 

The ATAPI feature register serves two purposes .  In the ATA set features command 

it contains the feature code, whereas in the other commands it is used to set the 
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Table 9.3 ATAPI error register. 

Bit I 7 I 6 I s I 4 3 2 I 0 

Sense key MCR ABRT EOM ILl 

ATAPI command features. Currently two bits are defined. Bit 0 is the DMA bit and 

means that the data for this command (not the command packet) is transmitted via 

DMA. B it 1 is the OVERLAP bit which says that the device can release the interface 

before the command is terminated. Both ATAPI features are optional. 

The cause of interrupt register 

This register contains the cause of an interrupt, together with the DRQ bit of the status 

register. If the DRQ bit is not set, the status register contains a status. Otherwise, bits 

0 and 1 have the following meaning: bit 0 is the COD bit (command or data). If it is 

set, a command is transmitted, otherwise data is transmitted. Bit 1 is the 10 bit. If it 

is set, the information transfer goes to the host, otherwise it goes to the device. B it 

2 is the RELEASE bit which indicates that the device has released the IDE interface 

before the command was terminated. 

The drive select register 

The drive select register is structured in ATAPI in the same way as in ATA-2, except 

that bits 0-3 (ATA head select) are reserved. They might eventually be used in ATAPI 

to indicate the SCSI LUN number. 

The ATAPI byte count register 

This 1 6-bit register is used to specify the data length of command packets. 

9.3 ATAPI transport protocol 

The ATAPI transport protocol is all about the ATAPI PACKET command. As a matter 

of fact, this command functions in the same way as any other ATA-2 command 

insofar as it initializes the cominand register block, sets the drive bit and writes the 

command register. However, while in a normal ATA command data would be written 

with the first DRQ, here the command packet is written instead. 

This command packet contains a SCSI-like command. After this, the procedure 

continues as with any other normal ATA command. The command packet is always 

written in PIO mode. The way the command packet is structured will be described 

further below in Section 9.4. 

The ATAPI PACKET command (AOh) 

The exact timing is shown in Figure 9.2 for a san1ple conunand with PIO-IN transfer. 

The other transfer modes function analogously. 

• The host waits until BSY and DRQ are 0 and subsequently initializes the ATAPI 

task file. Then it writes the ATAPI PACKET opcode (AOh) into the conunand register. 
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Host 

Drive 

CoD 

BSY 

DRQ 

I NTRQ 

Figure 9.2 Timing of an AT API PACKET command. 

• The device sets BSY and prepares to accept the command packet proper. When it 
is ready it sets COD and cancels 10. Then it sets DRQ and cancels BSY.  

• As soon as it sees DRQ, the host writes the 1 2  command bytes into the data regis­
ter. After having received the 1 2th byte, the device cancels DRQ, sets BSY and 
reads the features and the byte count from the task file. 

• Let us now assume that we are dealing with a command packet which entails a 
data transfer to the host. The device executes the command and prepares for the 
data transfer. 

• The device loads the byte count register, sets 10 and cancels COD, sets DRQ and 
cancels BSY, and finally sets INTRQ. 

• As soon as the host sees DRQ, i t  reads the status register. As a reaction, the device 
cancels INTRQ. The host reads the data register as many times as specified in the 
by,c count register. When all data are read, the device negates DRQ. 

• The device writes the final status into the status register, sets COD, 10 and DRDY 

and cancels BSY and DRQ. Then it sets INTRQ. 

• This is  the signal for the host to read the final status and, if necessary, the error 
register. 

Immediate commands 

Immediate commands return a status immediately after command transllllsswn, 
while the command is still being executed (hence their name). This kind of command, 
for example, is used to play CD audio tracks. 

If during execution of an immediate command a new ATA command arrives, the 
immediate command is terminated and the new command is aborted with an ABRT 

error message in the error register. If a new AT API packet arrives while the previous 
one is  still processed, both commands are aborted with a CHECK CONDITION status .  
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Figure 9.3 Example of overlapping ATAPI commands. 
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T i m e  

ATAPI can optionally support overlapping commands. A device that supports 
overlapping commands can release the IDE interface and the command register 
block after receiving an ATAPI command packet. While this device processes the 
command, the second device on the IDE interface can execute a command. The 
overlap mode is set via the feature register for each individual command packet. An 
ATAPI device may or may not release the interface at its discretion. The exact 
process is as follows (see Figure 9 .3) :  

• The ATAPI device releases the interface after receiving an ATAPI command 
packet. It sets the RELEASE bit in the status and optionally triggers an interrupt. 

• While the AT API device processes its command, the controller issues commands 
to the other connected drive . 

• Since only the selected drive can generate interrupts ,  the controller must always 
select the ATAPI drive, provided the other device is not currently executing an 
overlapping command. 

• The ATAPI device uses the SERVICE status and triggers an interrupt when it needs 
the interface again.  

• Via a SERVICE command the driver returns control over interface and task file to 
the ATAPI device. 

9.4 ATAPI com mands 

ATAPI CD-ROM drives support only part of  the ATA-2 commands. These 
commands are listed in Table 9 .4. Commands which do not exist in ATA-2 are 
shaded gray. 
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Table 9.4 ATA commands for ATAPI. 

Command name Ope ode ATAPI ATA-2 

ATAPI rDENTIFY DEVICE A l h  M 
ATAPI PACKET AOh M 
ATAPI SOFT RESET 08h M 
CHECK POWER MODE E5h M 
EXECUTE DRIVE DIAGNOSTIC 90h M 
IDLE E3h 0 
IDLE IMMEDIATE E l h  M 
NOP OOh M 
SERVICE A2h 0 
SET FEATURES EFh M 
SLEEP E6h M 
STANDBY E2h 0 
STANDBY IMMEDIATE EOh M 

Table 9.5 ATAPI i DENTIFY parameters. 

Word 

0 
l -9 

1 0- 1 9  
20-22 
23-26 
27-46 
47-48 

49 
50 
5 1  
52  
53 

54-6 1 
62 

63 

64 

65 
66 
67 
68 

69-70 
7 1  

72 

73 
74 

75-255 

ATAPI 

M 
No 
0 

No 
M 
M 
No 
M 
No 
M 
M 
M 
No 
M 

M 

M 

M 
0 
0 
0 

No 
0 

0 

0 
0 
No 

ATAPI coruents 

Configuration word (see Table 9.6) 
Reserved 
Serial number (ASC!l) 
Reserved 
Firmware revision (ASC!l) 
Model name (ASCII) 
Reserved 
Capabilities (see Table 9.7) 
Reserved 
Bits 1 5-8: timing mode for PIO data transfers 
Bits 1 5-8: timing mode for DMA data transfers 
Bit 0: words 54-58 ;  bit l :  words 64-70 apply 
Reserved 
Bi ts 1 5-8: active mode for single DMA 
Bits 7-0: supported modes for single DMA 
Bits 1 5-8: active mode for multiple DMA 
Bits 7-0: supported modes for multiple DMA 
Bits I 5-8:  reserved 
Bits 7-0: reserved (supported modes for advanced PIO) 
Minimum cycle time for multi-word DMA in ns 
Recommended cycle time for multi-word DMA in ns 
Minimum PIO cycle time without flow control 
Minimum P!O cycle time with IORDY flow control 
Reserved 
Typical time in flS for interface release with an 
overlapping command 
Typical time in flS for interface release with a 
SERVICE command 
Revision number 
Version number 
Reserved 

0 
M 
0 
0 
0 

0 
0 
0 
0 
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AT API IDENTIFY DEVICE (A 1 h) 

This command functions in the same way as identify device in ATA-2, with the 

exception that only few parameter bytes are used from the parameter block and that 

their meaning sometimes differs from that in ATA-2. These bytes are shaded gray in 

Table 9 .5 .  

The ATAPI configuration word is substantially different from the one of ATA-2. 

Bit 1 5  therefore indicates the format. If it is set, the configuration word is in AT API 

format, otherwise it is in ATA format. 

Bits 0 and 1 specify the length of the command packet. A value of OOb means that 

the command packets are 1 2  bytes long. This is the case with all ATAPI CD-ROMs. 

A value of O l b  stands for 16 byte long command packets. These packets are reserved 

for other device types. 

Bits 5 and 6 indicate the DRQ mode. A value of OOb means that the device should 

set DRQ and fetch the command packet within 3 ms from receiving an ATAPI PACKET 

conunand. If the value is l Ob, the same must happen within 50 f.!S .  A value of O l b  

allows for 1 0  ms, but in this case the device must trigger an interrupt. 

B its 8 to 1 2  contain the device type as defined for the SCSI command inquiry. For 

a CD-ROM, this value must be Sh. 

Table 9.6 ATAPI configuration word. 

7 6 I 5 4 
0 Rem DRQ type 

I Protocol I Res. 

The capabi l ity word 

I 3 l 2 I l 0 
Reserved Packet size 

Device type 

The capability word differs only in one bit from the ATA-2 standard. Table 9.7 

shows the capability word 49. 

Table 9.7 ATAPI parameter word for device capabilities. 

Bil Meaning 

0-7 Vendor-speci fie 
8 DMA commands supported 
9 LBA mode supported 
1 0  IORDY may be deactivated 
I I  IORDY is supported 
1 2  Reserved 
1 3  Overlapping operations are supp01ted 
1 4  Reserved for proxy interrupt 
1 5  Reserved for embedded DMA 
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ATAPI PACKET (AOh) 

The ATAPI PACKET command functions in the same way as any other ATA-2 
command. It initializes the command register block, sets the drive bit and writes the 
command register. However, whereas in a normal ATA command data would be 
written with the first DRQ, now a command packet is written. After this ,  processing 
continues as with any normal ATA command. The command packet is  always 
written in PIO mode. The structure of the command will be described in Section 9 .5 .  

ATAPI SOFT RESET (08h) 

For CD-ROM drives, a reset is occasionally used to force recalibration and find a 
lost track. However, the ATA reset cannot be used for this purpose, since it would 
equally affect a hard disk connected to the same adapter. For this reason, the ATAPI  

SOFf RESET was introduced. 

SERVICE (A2h) 

The SERVICE command is used to  restore the command register block of  a device that 
had released the ATA interface. 

SET FEATURES (EIFh) 

The SET FEATURES command works in the same way as  in ATA-2. Only the codes that 
are used have a different meaning. They are listed in Table 9 .8 .  

Table 9.8 Opcodes for ATAPI SET FEATURES. 

Opcode 

03h 

5Dh 

5Eh 

66h 

CCh 

DDh 

DEh 

Meaning 

Set transfer mode according to sector count reg ister value 

Al low interrupt after overlapping command 

Al low interrupt after SERVICE command 

Maintain parameters after software reset 

Software reset loads default features 

Prohibit  interrupt after overlapping command 

Prohibi t  interrupt after SERVICE command 

9.5 CD-ROM command packets 

This section should contain the description of the CD-ROM device model, all CD­
ROM command packets and the parameter pages. You will, however, find extensive 
descriptions of these issues in Chapter 18 on multi-media devices. 

At this point, we are only introducing a list of the commands (see Table 9.9) and 
present an example of how a SCSI command is converted into an ATAPI command 
packet. 
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Table 9.9 CD-ROM commands. 

Ope ode Name Type Page SCSI-2 ATAPI Description 

OOh TEST UNIT READY M 1 3 1  7 .2 . 1 6  1 0. 8 .26 Reflects whether or not the LUN is 
ready to accept a command 

03h REQUEST SENSE M 1 32 7.2 . 1 4  1 0.8 .20 Returns detailed error information 
1 2h INQUIRY M 1 28 7.2.5 1 0.8 . 1 Returns LUN specific information 
I Bh START/STOP UNIT M 8.2. 1 7  1 0.8 .25 Load/unload medium 
I Eh PREVENT/ ALLOW M 8.2 .4 10 .8 . 1 1  Lock/unlock door 

MEDIUM REMOVAL 

25h READ CD-ROM M 239 1 3 .2.8 1 0. 8 . 1 4  Read number o f  logical blocks 
CAPACITY 

28h READ( I O) M 1 59 8 .2 .6 1 0.8 . 1 2  Read 
2Bh SEEK( IO) M 8.2. 1 5  1 0.8.22 Seek LBN 
42h READ SUBCI-IANNEL M 1 3 .2. 1 0  10.8 . 1 8  Read subchannel data and status 
43h READ TOC M 1 3 .2. 1 1  1 0.8 . 1 9  Read contents table 
45h PLAY AUDIO( IO) 0* 24 1 1 3 .2 .2 1 0.8 .8 Audio playback 
47h PLAY AUDIO MSF 0* 24 1 1 3 .2.4 10 .8 .9 Audio playback 
4Bh PAUSE/RESUME 1 3 .2 . 1 1 0.8.7 'Pause' button 
4Eh STOP/PLAY SCAN 1 0.8 .24 StoiJ audio playback 
55h MODE SELECT( IO) 7.2.9 1 0.8 .4 Set device parameters 
5Ah MODE SENSE( IO) 7.2 . 1 0  1 0.8.5 Read device parameters 
A6h LOAD/UNLOAD 0 1 0.8.2 Load/unload CD changer 
ASh READ( I 2) M 1 5 .2.4 1 0.8 . 1 3  Read data 
B8h SET CD-ROM SPEED 0 1 0.8 .23 Set data rate 
B9h READ CD MSF M 10 .8 . 1 6  Read C D  information (al l  formats, 

MFS addresses) 
BAh SCAN 0 1 0.8.23 Fast audio playback 
BCh PLAY CD 0 1 0.8 . 1 0  Play C D  (universal) 
BDh MECHANISM STATUS M 1 0.8 .3 CD changer status 
BEh READ CD M 1 0.8. 1 5  Read C D  information (all formats, 

LB N addresses) 

Note: Commands included in this command set with SCSl-3 are shaded light gray; mandatory 
commands are marked dark gray. 0* marks a play command; either all or none of these commands 
must be implemented. 

The INQUIRY command 

The INQUIRY command returns a complex data structure which supplies detailed infor­

mation about a device. This data structure is extensively described in Section 12 .3 .  

Here we are only interested in the different command structures of  the ATAPI 

command packet and the SCSI INQUIRY command (see Tables 9 . 1 0  and 9 . 1 1 ) . This 

difference is characteristic of all commands. 

The SCSI INQUIRY command is a 6-byte command. Since ATAPI command 

packets are always 12 bytes long, bytes 6 to 1 1  are filled with the value 'reserved' 

which, in practice, is OOh. 

In SCSI, byte 5 is the control byte. In ATAPI it is omitted and equally reserved. 

The three higher order bits in byte 1 specify the LUN number in SCSI- 1 .  They too 

are reserved, because LUNs do not (yet) exist in ATAPI. 

The remainder of the command is the same for both AT API and SCSI. 
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Table 9.10 SCSI version of the INQUIRY command. 

7 I 6 I 5 I 4 I 3 I 2 I I I 0 

0 INQUIRY( l 2h) 

I (LUN) I Reserved I EVDP 

2 Page code 

3 Reserved 

4 Data length 

5 Control byte 

Table 9.11 ATAPI version of the INQUIRY command. 

7 I 6 I 5 I 4 I 3 I 2 I I I 0 

0 INQUIRY( l 2h) 

I Reserved I EVDP 

2 Page code 

3 Reserved 

4 Data length 

5 

6 

7 

8 Reserved 

9 

1 0  

I I  

General rule 

By following this rule - removing control byte and LUN number and filling the 
command up to 1 2  bytes - you can roughly convert any supported SCSI command 
into an ATAPI command. However, minor differences are possible. Some ATAPI 
commands do not support all options offered by SCSI. Thus, if you need to be really 
sure, you should consult the original document. 
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1 0  I ntroduction 

1 0.1  The evolution of  SCS! 

SCSI, which the entire industry affectionately pronounces as ' scuzzy ' ,  stands for 
Small Computer Systems Interface. SCSI can trace its beginnings back to 1 979, 
when the disk drive manufacturer Shugart began work on a new interface. The goal 
was to develop a drive interface that supported logical addressing of data blocks 
instead of physical addressing of cylinders , heads and sectors. Moreover, the inter­
face would present data byte-wise instead of serially. Such an interface could end the 
compatibility problems associated with bringing new drive technologies to market. 
In the past it took a long time for computer companies to support the new drives. The 
new interface would allow computer manufacturers to develop hard disk drivers that 
were able to recognize the properties of the connected disk drives themselves.  This 
interface was originally called SASI (Shugart Associates Systems Interface), and the 
specification totaled 20 pages. 

SASI 

SASI is the forerunner of the modem SCSI. The interface specification, which 
included some 6-byte commands and defined single-ended drivers and receivers , 
was made public to encourage companies to build SASI controllers . Companies such 
as OMTI and DTC became involved in these early days. In 1 980, Shugart 's  first 
attempt to make SASI an ANSI standard failed. At that time ANSI preferred the 
more sophisticated IPI interface. 

Progress began in 198 1 ,  but not before a failed agreement between NCR and 
Shugart to work together on further development of SASI. NCR wanted 1 0-byte com­
mands and a differential interface, features Shugart considered unnecessary. Most 
likely Shugart believed that these options would make the interface too complicated. 
At this point the company Optimem came on the scene. A subsidiary of Shugart, 
Optimem manufactured optical disks . They needed to be able to address more than 22 1  
logical blocks for their optical drives. Moreover, the 6 meter cables then i n  use were 
too short. These were precisely the reasons why Shugart had declined to work with 
NCR in the first place. In December 198 1 ,  Shugart, together with NCR, requested that 
an ANSI committee be formed for SASI. 

87 
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SCSI-1  

I n  April 1 982 ANSI committee X3T9.2 met for the first time and began the work 
that has evolved into SCSI. In the following years a draft proposal was prepared, 
which was presented to ANSI for approval in 1 984. However, even before final 
approval had been given, manufacturers began producing SCSI host adapters and 
device controllers . The first protocol chip, the NCR 5385 ,  came on the market in 
1983 .  The interface had become an industry standard long before it received 

approval from ANSI.  In June 1 986, SCSI- 1 became official as ANSI X3. 1 3 1 - 1 986. 
The growing number of SCSI products exposed weak points in the definition. In 

defining commands, too much room for variation was given for vendor unique 
options. For example, format parameters for disk drives were not standardized. In 
addition, although a SCSI drive should present a virtual defect free medium to the 
host - by having medium defects managed transparently by the device - defect man­
agement was left undefined. Consequently, each manufacturer implemented these 
things as they saw fit, which basically meant that a new device driver had to be 
written for each new SCSI device. The goal of a device independent interface was 

definitely lacking on the software side. At that time it was fair to say that SCSI was 
not necessarily SCSI compatible. 

ccs 
Looking for a solution to this problem, the drive specialists in the committee began 
defining a Common Command Set (CCS) for disk drives in 1 985 . The main purpose 

of the command set was to nail down some of the many options for disk drives. 
Among the features introduced in the CCS was the defect list format, and the intro­
duction of the mode parameter listing. The CCS was a big step forward and once 
again the manufacturers began implementing it before it became official. However, 
CCS was only a solution for disk drives; tape drive manufacturers had to make do 

with SCSI- 1 the way it was. 

SCSI-2 

In  1 986, even before SCSI- 1 had become an official standard, work on SCSI-2 began. 

In addition to further development of the CCS and the other device classes, the com­
mittee worked on numerous modifications in protocol and hardware. Many features 
were developed, only to be discarded in the end. The option to support more than 
eight devices is an example of this.  On the other hand, 10 MHz synchronous trans­
fers were incorporated along with a 32-bit wide data bus . Of course, the real challenge 

in the implementation of these options lay in maintaining compatibility among the 
different devices. As a protocol option, a device could inform a host 'unsolicited' of 
change in device status. This is important, for example, when a cassette is removed 
from a tape drive. 

The formal approval procedure for SCSI-2 began in February 1 989. As usual, 
there were dozens of devices already equipped with SCSI-2 before it became a stan­
dard. These early releases, incidentally, were never a problem. During the final 
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phases of development the standard had become so stable that only minor changes 

were being discussed. Above all, tape drive manufacturers were anxious to imple­

ment SCSI-2 for their devices. However, organizational changes in ANSI caused the 

early 1 992 delivery date to be postponed several times. In January 1 994, SCSI-2 

became official as ANSI X3. 1 3 1 - 1 994. 

Presently ( 1 997) SCSI-2 has reached its climax, with general support from both 

peripherals and computer manufacturers. The only serious competitor is the IDE 

interface for disk drives in PCs. Both for its functionality and its throughput, SCSI-

2 is suited to cover the demands of the next few years. 

SCSI-3 

However, for several years now, the ANSI SCSI committee has been working on 

SCSI-3 . Following the tradition, SCSI-3 wil l  be compatible with SCSI-2. Amongst 

others, SCSI-3 provides a more clearly structured documentation and a modular 

structure. Figure 1 0. 1  shows this new structure which is also reflected in the struc­

ture of this book. The shaded modules are already present in SCSI-2. 

In the physical and protocol area, SCSI-3 defines in particular the new Fibre 

Channel, SSA and .IEEE P1 394 interfaces .  The idea to use the SCSI protocol to com­

municate across any regular serial interface has been removed from the standard 

proposal. It is now documented in a technical report. 

The present parallel interface has been further developed so that SCSI-3 now 

allows transfer rates of up to 20 megatransfers per second and up to 32 SCSI devices 

with 32-bit wide SCSI. The new P cable allows you to employ 1 6-bit wide SCSI 

with only one cable. These changes have been impatiently expected by industry and 

users alike. Thus, once again before a standard has become official, there are already 

many devices on the market that support one or more of these new features .  

The principal change with regard to the commands is the structuring of the doc­

umentation. In particular, the command sets for 'exotic' SCSI devices are becoming 

more complete. Furthermore, at least one new device type is added: the controller 

devices for RAID controllers. 

Figure 10.1 The SCSI-3 architecture. 
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To summarize, SCSI-3 introduces a new view of SCSI. Emphasis is no longer put 

on the physical connection via the parallel interface and its protocol, but on the 

device type and its command set. Maybe the new serial interfaces will eventually 

supersede today's SCSI interface. This will, however, only have minimal effects on 

operating system software and applications. The market penetration and functional­

ity presently reached by SCSI device types and command sets will ensure SCSI's 

survival for many years to come. 

In 1 99 1 ,  Dal Allan, a SCSI industry specialist, wrote in an article for the magazine 

Computer Technology Review: 

No technical rationale can be offered as to why SCSI- I ended and SCSI-2 began, or as 

to why SCSI-2 ended and SCSI-3 began. The justification is  much more simple - you 

have to stop sometime and get a standard printed. Popular interfaces never stop evolv­

ing, adapting, and expanding to meet more uses than originally envisaged. 

1 0.2 Overview 

I begin with a broad overview of SCSI. Everything discussed here will be gone over 

in greater detail later in the book. If you are only interested in particular aspects of 

SCSI, read this section first, then use the index to find specific topics. 

SCSI is  a device- independent B/0 subsystem 

SCSI is a device-independent I/0 subsystem, allowing a variety of devices to be 

linked to a computer system. The electrical characteristics and protocol of the SCSI 

bus were designed with the requirements of peripheral devices in mind. Device­

independent means that in order to connect such devices, no specific knowledge of 

the properties of the devices is  needed. SCSI makes available a number of com­

mands for querying a device about necessary parameters. This makes it possible to 

write device drivers for a device without knowing device-specific details .  

SCSI offers high-level functionality. The entire device-specific intelligence 

resides in the SCSI peripheral device, especially in the case of disk drives.  Firstly, 

data is addressed via logical block numbers. The host need not concern itself with 

the exact physical organization of the drive. Complex operations, such as formatting 

the entire disk, are triggered by a single SCSI command. Moreover, a SCSI drive can 

manage defects autonomously, making it possible to present a virtually defect-free 

medium to the host. 

SCSI devices 

Up to eight devices can be addressed using the parallel SCSI-2 bus. With SCSI-3 this 

number can be greater depending on the physical interface. The SCSI bus address of 
a device is referred to as the SCSI ID. These devices play the role of either an initiator 

or a target. 
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� n ntiator and! target 

An initiator is a device that triggers a task on the SCSI bus. A target is a device that 
carries out the task. The SCSI host adapter of a computer is a typical initiator; a disk 
drive is a typical target. The specification does not specify the number of initiators 
and targets that can be installed in a SCSI configuration. Only the total number is 
limited depending on the SCSI version. Obviously, a minimal sensible configuration 
must contain at least one initiator and one target. It is worth noting that some devices 
can play the role of both a target and an initiator. However, for each individual 110 
process, it is clearly defined which is the initiator and which is the target. 

Host adapter andl §C§� nmtml �er 

Figure 1 0.2 introduces two more terms that have a particular meaning in the SCSI 
world. A computer system is connected to the SCSI bus through a host adapter. For 
a peripheral device the corresponding role is played by a controller. This SCSI spe­
cific terminology can be confusing because in other computer domains - for example, 
the IDE interface - a controller often connects a peripheral directly to a computer. 
Both controllers and host adapters can be either implemented as a separate board or 
integrated into the device or system. Host adapters often reside directly on the mother 
board of workstations and modern personal computers, in which case they are 
referred to as embedded host adapters. PC compatibles use the insertable card varia­
tion. SCSI controllers are usually embedded in the drive electronics of disk drives.  

Bridge control ler 

When the controller is implemented on a separate board and the physical devices are 
connected to it via a device-specific interface, it is referred to as a bridge controller. 
Bridge controllers were often used with new peripheral devices which were not yet 
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Figure 10.3 Bridge controller with logical units. 

available with SCSI. Today intelligent bridge controllers are used in applications 
such as RAID arrays ,  which make several drives act as one powerful SCSI drive. In 
this case, SCSI is often also used as the interface between the bridge controller and 
the drives of the array. 

tUNs 

Figure 1 0.3  shows a bridge controller connecting a Centronics printer t o  the SCSI 
bus. Yet another application of bridge controllers takes advantage of the eight logical 
units (LUNs) that SCSI allows for each device. In this case each LUN can represent 
a separate peripheral device. Such a controller must possess a number of device spe­
cific interfaces, one for each LUN. 

The paral lel scs� biUIS 

Up to  now we have focused on SCSI devices, not on the bus itself. The parallel SCSI 
bus is  from 8 to 32 bits wide, depending on configuration. A simple 50-pin ribbon 
cable can be used for the 8-bit bus, including all other necessary control signals .  The 
1 6- and 32-bit variations introduced with SCSI-2 are called Wide SCSI and call for 
an additional cable.  Naturally, any device that supports Wide SCSI must also have a 
second connector. With SCSI-3 the 68-pin P cable was introduced which also allows 
1 6-bit Wide SCSI on a single cable.  Wide SCSI is optional and is ever more pre­
vailing with hard disk drives. The advantages are evident; using the same clock 
frequency, the bandwidth of 1 6-bit SCSI is twice that of 8-bit SCSI. 

Pmtocol 

Commands, messages and data are sent across the parallel SCSI bus exclusively 
using asynchronous transfers. This means that the sender and receiver exchange data 
using a request/acknowledge handshake. This allows devices that process the SCSI 
protocol at different speeds to use the same bus. Asynchronous transfers can reach a 
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maximum of approximately 3 MHz. Additionally, there exists the option to transfer 

data synchronously, which under SCSI-2 allows devices to exchange data at speeds 

of up to 10 MHz. With SCSI-3 the Fast-20 mode with a 20 MHz clock frequency 

was introduced. It is, however, subject to restrictions in cable length. Whether or not 

and at which speed synchronous transfers will be used is negotiated by the two 

devices beforehand. This allows SCSI- 1 ,  SCSI-2 and SCSI-3 devices to operate on 

the same bus without compatibility problems. 

Cabl ing 

Currently, there are a large number of  different cables for connecting SCSI devices. 

The most widely used cable is still the 50-pin ribbon cable. It is also called internal 

SCSI cable because it is only designed for connections inside a computer cabinet. It 

runs from device to device and must not have any derivations. This is important to 

mention since in the schematic drawings, including those in this book, it always 

looks as though the connections of the individual devices were branching off a main 

SCSI cable. Since most SCSI devices have only a single SCSI connector, a cable is 

used that has the appropriate number of connectors crimped along its length (see 

Figure 1 0.4). 

Termination 

The devices on the extreme ends of the bus - and no other devices - must have ter­

minating resistors. On internal SCSI buses, these terminators are usually socketed 

inside the devices in question. 

Single-ended or d ifferential 

There are two fundamentally different variations on the type of electrical signals 

used for the bus: single-ended and differential. These variations are not compatible 

with each other. Devices with single-ended and differential interfaces cannot be used 
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on the same bus, although they can use the same type of cable. Before configuring a 
system, the decision must be made as to what type of interface will be used. This 
choice is made somewhat easier by the fact that most devices are only available with 
single-ended SCSI. 

Single-ended SCSI uses open-collector drivers to power the bus. One advantage 
of this is that the drivers can usually withstand an improperly inserted connector. 
There is no reason to panic if you accidentally insert a connector the wrong way:  I've 
done this a number of times and haven't damaged a device yet ! The pin assignments 
are such that a ground is opposite every signal. In addition to flat cable, twisted-pair 
cables can also be used. 

Differential drivers allow cable lengths beyond the 6 meters of the single-ended 
drivers , up to 25 meters . Since so few devices come with a differential interface, 
single-ended to differential converters have appeared on the market. 

Summary of hardware ortions 

Many terms have been introduced in the preceding section. Here they are brought 
together in one place. These are the terms that you will find in SCSI product manuals 
(Figure 1 0.5) :  

• Asynchronous SCS][: This method of data transfer is basic to  all SCSI devices. 
The transfer rate is normally around 1 .5 MHz although modem chips are capable 
of 3-4 MHz. 

e Synchronous SCS][: This optional method of data transfer makes possible rates 
of 5 MHz. Since commands and other protocol related information are sent asyn­
chronously, devices are able to negotiate which method will be used. Devices that 
use this option and those that do not can function side by side on the same bus. 
The synchronous option is found on most high performance devices. 
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• Fast SCSI: An improvement to synchronous transfers for SCSI-2 devices allow­
ing a data rate up to 10 MHz. Today, fast SCSI has become the standard for disk 
drives. 

• Wide SCSI: 1 6- or 32-bit transfers are made possible with an additional cable (B 
cable) or with the new SCSI-3 P cable. The resulting data rate is double or 
quadruple the previous rate. This SCSI-2 option also allows a mix of device types 
on a single bus. 8-bit devices are simply not connected to the additional signal 
lines. With the new P cable, 16-bit wide SCSI is becoming ever more popular par­
ticularly for disk drives. 

• Single-ended/differential: These two variations on the implementation of the elec­

trical signals were already part of the original SCSI definition. The vast majority of 
devices employ a single-ended interface. Here the maximum cable length is 6 
meters. The differential option allows cable lengths up to 25 meters. Single-ended 
and differential devices cannot be used together on the same bus. 

Device types and commandls 

A well-defined command set is an important element of a device independent 110 
subsystem. With respect to SCSI, device independence takes on two dimensions. On 
the one hand, there are the ten SCSI device types, of which hard disks and tape drives 
are two examples. Each type defines a specific model and command set for the 
devices of that type. On the other hand, a number of different physical devices can be 

supported by a single device type. One component of a device model is a set of 
parameters that allows you to define or specify the exact features of the individual 
device. For example, the maximum storage capacity of a disk drive is fixed, whereas 

the length of a data block can be individually specified. 
In principle, transactions take place on the SCSI bus in the following manner: an 

initiator sends a command to a target, and the target carries out the command and 
afterwards informs the initiator of the outcome. The nature of SCSI commands gives 
a great deal of autonomy to the device carrying out the command. In this way an ini­
tiator can send a SCSI floppy drive a FORM AT UNIT command and relinquish complete 
control to the drive. When the formatting is finished, the initiator is merely informed 
of success or failure. 

Another example of device autonomy is the RE A D  command for disk drives. The 

initiator instructs the target to fetch a certain number of blocks starting at a particu­
lar block number. The target calculates a physical address of cylinder, head, and 
sector number from the logical block number and sends the data to the initiator. An 
important difference with the SCSI interface is that this data is strictly usable infor­
mation - no headers , no ECC, no gaps. All of these ancillary fields are managed by 
the target alone. This is important because different devices use completely different 
formats to store information on the medium. This also explains how it is possible to 
produce a very inexpensive host adapter capable of controlling up to seven different 
devices. The intelligence is located in the devices, not in the host adapter. 

SCSI makes available a number of commands for general interrogation of devices 
on the SCSI bus. A possible scenario could begin with a host looking to see which 
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SCSI IDs are occupied. Afterwards, the host can determine what types of devices are 
located at those IDs. Finally, device specific commands can be used to gather 
detailed information about each device. A device driver can be written in just this 

way without knowing the specific details of the device. 

!Evolution of the command sets 

• SCSI-1 The SCSI- 1 standard originally contained many commands that have 

remained unchanged in SCSI-2. SCSI- 1 also left many parameters vendor unique 
or unspecified, which sidestepped the original intent of the standard. The result 
was that practically every device needed its own slightly different device driver. 
This complicated the goal of device independent software. It was at this point that 

many people felt that SCSI simply was not SCSI compatible, a feeling that today 
has rightly disappeared. 

• CCS The CCS supplement to SCSI- 1 ,  which became an official part of SCSI-2, 

had the aim of further standardizing the hard disk command set. The CCS intro­
duced the concept of mode parameter pages for the MODE SELECT command and 
defined a set of defect list formats . Tape drives and other device types, however, 
were not included in the CCS . These had to make do with SCSI- 1 as it was orig­
inally formulated. 

• SCSI-2 Finally, a very significant step forward was made in the definition of 

SCSI-2. In SCSI-2, a model is defined for every device type. Moreover, the same 

level of detail used in the CCS for disk drives was used in defining the other 
device types. It is worth noting that the first SCSI implementations were for 
streamer tape devices. It is fair to say that the goal of a device independent 110 
subsystem was reached with SCSI-2. 

• SCS:U:-3 At command level, SCSI-3 will not provide too many novelties . 
However, the documentation has been completely restructured. One important 
new feature will probably be a command set for RAID controllers . 

To conclude, SCSI- 1 no longer plays a role with new devices ; thus, you should watch 

out for a SCSI-2 implementation in all devices. SCSI-3 is still under development and 
is not supposed to bring dramatic changes in the command sets of most devices. 

1 0.3 Documentation 

One goal of  this book, in  addition to  providing a thorough overview of  SCSI, is to 

give enough detailed information to make possible the undertaking of simple SCSI 
projects without the need of additional documentation. Naturally, if you wish to take 
advantage of the vendor specific features of a certain device, you will need that 
device's SCSI manual. For example, the optional commands and parameter pages 
can be found there. 
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If you are interested in working with SCSI at a professional level, you cannot 
avoid getting a copy of the original ANSI documentation in addition to this book. A 
project involving writing firmware for a SCSI target or host adapter would be of this 
magnitude, as would writing a software driver that used more than simply READ and 
WRITE commands. Copies of the standard may be ordered from: 

Global Engineering Documents , 
2805 McGaw, 
Irvine, CA 927 14,  USA 
Telephone: 1 -800-854-7 1 79 

The SCSI-2 document is called X3 . 1 3 1 - 1 994. If you still need a copy of the SCSI- I 
standard, the name is X3. 1 3 1 - 1 986. 

You can also download the SCSI documentation from the SCSI Bulletin Board. 
The telephone number and the procedure are described in detail in Appendix D.  

lhe organ ization of the SCS� -2 standard 

The SCSI-2 standard is a document of about 600 pages, which is organized in the 
following way :  

Scope 
2 Reference standards and organizations 
3 Glossary and conventions 
4 Physical characteristics 

4. 1 Physical description 
4 .2 Cable requirements 
4.3 Connector requirements 
4.4 Electrical description 
4.5 SCSI bus 
4.6 SCSI bus signals 
4.7 SCSI bus timing 
4 .8  Fast synchronous transfer option 

5 Logical characteristics 
5 . 1  SCSI bus phases 
5 .2  SCSI  bus conditions 
5 . 3  SCSI  phase sequences 
5 .4 SCSI pointers 
5 .5  Message system description 
5 .6  SCSI messages 

6 SCSI commands and status 
6. 1 Command implementation requirements 
6 .2 Command descriptor block 
6 .3 Status 
6.4 Command examples 
6.5 Command processing considerations and exception conditions 
6.6 Contingent allegiance condition 
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6. 7 Extended contingent allegiance condition 
6 .8  Queued 1/0 processes 
6 .9 Unit attention condition 

Sections 7 to 17 of the standard deal with the individual device types . They are all 
organized in the same way:  first comes a description of the device model of the type, 
followed by a summary of commands, and finally the MODE parameters for the type. 

7 All device types 
8 Direct-access devices 

9 Sequential-access devices 

1 0  Printers 
1 1  Processor devices 
1 2  WORM 
1 3  CD-ROM 
1 4  Scanners 
1 5  Optical memory devices 

1 6  Medium-changer devices 
1 7  Communication devices 
A-J Appendices 

Figure 1 0.6 shows a page from the actual SCSI documentation. Many drive manu­
facturers organize their own manuals in a similar manner, including, naturally, only 
those chapters which are relevant for a given device. The result is that once you are 
familiar with the ANSI specification, it is very easy to find your way around in SCSI 
manuals in general. If you know one - you know them all . This makes it easy to con­
centrate on important things, namely, implementation details .  

The organ ization of the SCS�-3 standard! 

As shown in Figure 1 0. 1 ,  the SCSI-3 standard is divided into many individual 
documents, in particular: 

• SCSI-3 Architecture Model SAM [X3 T 1  0/994-D] 

• SCSI-3 Block Commands SBC [X3 T 1  0/996-D] 

s SCSI-3 Stream Commands sse [X3T10/997-D] 

• SCSI-3 Graphics Commands SGC [X3T 10/998-D] 

• SCSI-3 Medium Changer Commands SMC [X3 T 1  0/999-D] 

• SCSI-3 Controller Commands sec [X3T 1 0/ 1 047-D] 

• SCSI-3 Multimedia Commands MMC [X3T 10/ 1048-D] 

• SCSI-3 Primary Commands SPC [X3T l 0/995-D] 

• SCSI-3 Parallel Interface SPI [X3T l 0/855-D] 

• SCSI-3 Interlocked Protocol SIP [X3T1 0/856-D] 

• SCSI-3 Serial Bus Protocol SBP [X3T10/992-D] 

• SCSI-3 Fibre Channel Protocol FCP [X3T 1 0/993-D] 
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7 . 2 . 5  INQUIRY Command 

Tab l e  7 - 1 4 : INQUIRY Command 

I B i t I 7 

I B y t e  I 

1 0  

1 1  I L og i c a l  

1 2  

1 3  

1 4  

1 5  

6 

U n i t  N u mbe r 

2 

Op e r a t i on Code ( 1 2 h )  

R e s e o:-v e d  

P a g e  Code 

P. e s e !:" v e d  

.; l l o c a  t i o n  Leng t h  

C on t r o l  
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3 / 9 / 9 0  

0 

I EV P D I 

T h e  I NQ U I RY c ommand ( Ta b l e  7 - 1 4 ) r e q u e s t s  t h a t i n f o r ma t i on r e ­

g a rd i ng p a rame t e r s  o f  t h e  t a r g e t  a n d  i t s  a t t a c h e d  p e r i ph e r a l  d e ­

v i c e ( s )  b e  s e n t  t o  t h e  i n i t i a L o r  . . :..n op t i o n  a l l ow s  t h e  i n i t i a t o r  

t o  r e qu e s t  a dd i t i on a l i n f o cma t i o n abou t t h e  t a r g e t  o c  l og i c a l  u n i t  

I s e e  7 . 2 . 5 . 2 )  . 

. o.n e n a b l e  v i t a l  p ro d u c t  da t a  ! EV P D ) b i t  o f  o n e  s pe c i fi e s  t h a t  

t h e  t a o:- g e t  s ha l l  r e t u c n  t h e  op t i ona l v i  t a l  produ c t  d a t a  s p e c i fi e d  by 

the page code fi e l d . I f  t h e  t a l: ge t  d o e s  n o t  s u p po r t  v i t a l  p r o d u c t  

d a t a  a n d  t h i s  b i t i s  s e t  t o  o n e , t h e  t a r g e t  sha l l  r e t u rn 

C H E C K  COND I T I O;-! s t a t u s  \·l i t h  t h e  s e n s e  k e y  s e t  to I L L EGAL R E Q U E S T  

a n d  a n  addi t i o n a l s e n s e  c o d e  o f  T : r:.:..L I D  F I E L D  I N  C D B . 

,;n E\' P D  b i t  o f  z e c o  s p e c i fi e s  t h a t t h e  t a c g e t s ha l l  r e t u r n  t h e  

s t a n d a r d  I NQ U I R Y da t a . I f  t h e  p a g e  c o d e  fie l d  i s  n o t  z e r o , t h e  t a r ­

g e t  s h a l l  r e t u rn C H E C K  C ON D I T I ON s t a t u s  w i t h  t h e  s e n s e  k e y  s e t  t o  

I L L EG.".L R E Q U E S T  a n d  a n  add i t i o n a c s e n s e  c o d e  o f  I NV.'<L I D  F I E L D  

I N  C iJ B . 

The p a g e  c od e  fie l d  s p e c i f1 e s  v1h i c h  page o f  v i t a l  p r o d u c t da t a  

i n f o r ma t i o n  t h e  t a r g e t s h a l l  r e t u rn ( s e e  7 . 3 . 4 ) . 

T h e  I NQU I RY c omma nd s h a l l  r e t u rn C H E C K  CON D I T I ON s t a t u s  o n l y  

when t h e  t a r g e t c a n n o t  c e t u r n t h e  r e qu e s t e d  I NQU I RY d a t a . 

Figure 10.6 Sample page from the SCSI-2 standard. 

These documents are associated with three layers . The link layer describes the 
physical interface, and the protocol layer describes the corresponding protocol. 
There is a 1 :  1 correspondence between the interfaces defined up to now and their 
protocols. The command layer describes the device models and the commands for 
the different device types. 

SAM 

The SCSI-3 Architecture Model is the basis for all other SCSI documents. People 
who already know the SCSI-2 standard may have some problems in getting used to 
the SAM document because it is entirely written in an object-oriented notation. It 
describes well-known SCSI terms such as initiator and target, but also new ones such 
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as the SCSI domain. Many old terms have been generalized and extended. Also the 
properties of certain elements have been dimensioned for the future: counters such 
as SCSI ID and LUN are now 64 bits wide. Only the individual protocols then limit 
these values in various ways. 

SPC 

The SCSI-3 primary commands (SPC) set defines the behavior and the commands 
that are common to all SCSI-3 devices. 

sse, sse, . . .  
Currently, the SCSI-3 standard has six different command sets. The most important 
ones are the block-oriented commands (SBC) for hard disks and similar devices, and 
the stream-oriented commands (SSC) for magnetic tapes and printers . 

S IP  and SPI  

The parallel SCSI-3 interface is described by  the interlock protocol (SIP) and the 
parallel interface (SPI) . It is both an improvement and an extension of the well­
known SCSI-2 interface. The Fast-20 standard which allows transfer rates of up to 
20 Megatransfers per second is currently described in a separate document 
(X3Tl 0/1 07 1 -D). 

FCP and FCP-PH 

This pair of  documents describes SCSI via Fibre Channel. The Fibre Channel 
protocol (FCP) is a document of the X3TI O  committee. The FCP-PH document 
describes the physical level of Fibre Channel and is issued by the ANSI X3T l l  
committee. 

SBP and 1 394 

IEEE 1 394 is the official name of 'Fire Wire ' ,  a serial bus favored amongst others 
by Apple. This standard is managed and maintained by the IEEE. Only the serial bus 
protocol (SBP) belongs to the SCSI committee. 

SSP and SSA 

These two documents describe a further approach of a serial interface which is 
favored mainly by IBM. 

Until now, the parallel interface is the only tangible alternative. SCSI over Fibre 
Channel, Fire Wire and SSA are all at project stage. Whether or not they will be 
finalized and which of the three is going to succeed is a completely open question. 
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1 1 .1 The SCSI aurch ntechn re mode� 

The present chapter on SCSI architecture is new in the second edition of this book. 

This may seem surprising since SCSI has always had something like an architecture. 

True, but only since SCSI-3 is this architecture explicitly described. 

On the other hand, you can currently buy practically no SCSI-3 products. This 

may change very quickly, but this edition of the book is quite rightly still based on 

the SCSI-2 standard. However, the changes SCSI-3 will bring are extensively 

described in many places. 

Thus, in this chapter I will try to be a contortionist, because I will be describing 

the architecture of SCSI-2 in terms that are used in the SCSI-3 architecture. This will 

facilitate the understanding of the following chapters, because the SCSI-3 architec­

ture is very clear. Furthermore, it will make the transition to SCSI-3 much easier. 

SCSI-3 mostly presents issues already known from SCSI-2, but from a different 

point of view; however, where new extensions are introduced, they too will be 

extensively discussed in this chapter. 

The SCSI-3 documentation contains a separate document which describes the 

architecture of SCSI-3 . The SCS/-3 Architecture Model (SAM) X3T9.2/994D is the 

basis of all other SCSI-3 documents . 

Why dlo we B1leedl cU'll arch itecture model? 

The SCSI architecture is an abstract model of  a SCSI I/0 system. A real-life imple­

mentation will not necessarily look like this model. On the other hand, however, 

each SCSI implementation must be realized in such a way that the rules of this 

model are not violated. 

The SAM document itself defines its task as follows: SAM defines the functional 

groups and specifies a model of the behavior of SCSI-3 I/0 systems and devices 

which applies to all SCSI interfaces, protocols, access methods and devices. 

1 0 1 
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Client Server request Server 

Server response 

� I 
Service delivery subsystem J _j  

Figure 11.1 Client-server model. 

Client-server model 

The client-server model is  a good way to represent a SCSI system. The client sends 

a request to the server. The server answers with a response. Both use the Service 

Delivery Subsystem (SDS) as a transport medium. 

Thus, in the personal computer world, a PC is the client and its SCSI hard disk 

the server. The PC sends a read request to the disk; the disk carries it out and returns 

the data. As SDS, both use the parallel SCSI-2 bus. 

For example, a PC might issue the request 'Send me 10 blocks of data starting 

with block number 3 12 ' .  

The disk first converts the block number into a physical address of  cylinder, head 

and sector numbers. Then it checks whether this address is legal. Furthermore, it 

checks whether the other requested blocks lie inside the capacity limits. Then it 

starts moving the read/write head. When this is positioned over the correct cylinder, 

it waits until the required sector passes. Then it starts the reading process, separat­

ing header information, CRC and ECC from the data proper. If needed, several 

reading attempts are made. Only after the first block has been completely read, the 

disk starts to transmit it to the client. 

The client must only know how to communicate via the SCSI bus and which 

commands are understood by a block-oriented device. These details are specified in 

the SCSI standard. 

All device-dependent infonnation - where a logical block can be physically 

found on the disk, how the data is coded on the medium, what has to be done in case 

of error and so on - is known by the server, that is, the SCSI disk drive. This infor­

mation is manufacturer-dependent, frequently even model-dependent. Thus, SCSI 

separates device-specific from general issues, offering the user the freedom to 

employ his/her favorite peripheral devices. Device manufacturers, on the other hand, 

can implement the functionality in the way they deem to be the best. This allows 
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easy introduction of technological progress, for example a new recording method for 
magnetic disks, without causing changes for the end-user. 

Structural model 

The SCSI-3 structural model consists of a hierarchy of objects. At the top stands the 

domain which represents the 110 system. A SCSI domain structural model consists 
of SCSI devices linked by an abstract service deli very subsystem. Figure 1 1 .2 shows 
the complete SCSI-3 object hierarchy. All components already exist in SCSI-2. The 
following section will discuss the individual function groups in more detail .  

You may find this structural model rather complicated, particularly if you already 
know something about SCSI-2. But if you find yourself in the situation where you 
are writing firmware for a SCSI target, this structural model relieves you from a lot 
of planning work. You simply implement all objects of this structural model as 
modules into your firmware. Task and task set are data structures ;  the task manager 
manages these structures;  and the device server executes the SCSI commands .  

Obviously, you can also represent all elements of SCSI-2 in this model . Thus, if  
you use this model now to implement a SCSI-2 target, the transition to SCSI-3 will 
be relatively easy. 

The SCSI domain 

A SCSI domain is a self-contained SCSI 110 system, for example a SCSI-2 bus  con­
nected to a host adapter and two hard disks . The correct definition of the SCSI 
domain is :  a SCSI domain is an 110 system consisting of several SCSI devices which 
communicate with each other via a service delivery subsystem. 

You will certainly have an intuitive idea of a SCSI device. It is a host or an 110 
device that uses SCSI commands. 
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E��m:J 
1/0 system 

SCSI domain 

Service delivery subsystem 

Figure 11.3 SCSI domain. 

The service del ivery subsystem 

In the narrower sense of SCSI-2, the service delivery subsystem (SDS) is the SCSI 

bus. The SAM generalizes this to a system that consists of a connection subsystem 

and at least two service delivery interfaces (SDI). Its task is the error-free transmis­

sion of requests and responses between client and server. The connection subsystem 

is the physical bus with its cables, connectors and electrical propetties. The service 

delivery interfaces represent the corresponding protocol. 

The SCSI-2 bus 

The SCSI-2 bus allows you to connect up to eight different SCSI devices. At any 

point in time, only two of these devices can communicate with each other. Each 

SCSI device is uniquely identified by its SCSI ID which thus represents its address. 

At the same time, the SCSI ID also defines the priority of the associated device. 

SCSI ID 0 has the lowest priority, SCSI ID 7 the highest priority. 

These are the sober facts as set out in Chapter 4.5 of the SCSI-2 standard. Some 

explanation may be useful. If at any time only two devices can communicate with 

each other, this also means that messages cannot be sent to all connected devices. The 

only method for influencing all connected devices at a time is a SCSI reset which has 

its own dedicated signal line. Furthermore, no third device can interrupt a running 

communication. No matter how high the priority, each device must wait until the two 

communicating devices terminate their communication themselves. 

Most SCSI devices will do this as often as possible. As soon as the command has 

been transmitted, the device which is to execute the command releases the bus for 

use by other devices. After the command has been executed, the device reconnects 

to the device that issued the command. This disconnect/reconnect mechanism is 

extensively described in Chapter 20 on the SCSI bus protocol. 

On each SCSI device the SCSI ID must be set in such a way that it is unique for 

the bus to which the device is connected. The priority plays a minor role. It is only 



The SCSI architecture model 1 05 

of importance when more than one SCSI device at a time requires the free bus. As 

soon as the connection between two devices is established or when only a short 

delay (2.4 l-IS) lies between the bus requests of two devices, priority plays no role. 

The parallel SCSI-3 bus 

Under certain hardware conditions, the parallel SCSI-3 bus can address up to 32 

devices. Otherwise, with regard to the aspects relevant for this description, it corre­

sponds to the SCSI-2 bus. 

SCSI devices 

The definition of host adapter and SCSI controller is not part of the SAM. It is, 

however, important and fits well into this position. 

Host adapters 

A host adapter is the connection of a computer to the SCSI bus. This host adapter 

can be realized as a separate plug-in board, as is the case with most PC systems. It 

can, however, also be integrated into the mother board, as is the case particularly 

with home computers and workstations. 

A computer can also have several SCSI host adapters. These are used to connect 

more than one SCSI bus to a computer. Then, these different SCSI buses are sepa­

rate SCSI domains. Therefore, the same SCSI IDs can be used on both buses. 

SCSI control lers 

The connection of peripheral devices to the SCSI bus is called the SCSI controller. In 

most cases, the SCSI controller is integrated into the peripheral device (embedded 

Host adapter A II 
SCSI ID 7 ��� ----Host adapter 8 I 
SCSI ID  7 

Host computer 

Figure 11.4 Computer with several SCSI domains. 

SCSI domain 1 

SCSI domain 2 
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Figure 11.5 Embedded SCSI and bridge controllers . 

controller) . Controllers housed on a separate board are called bridge controllers . 

Figures 1 0.3  and 1 1 .5 show SCSI controllers . 

Although priority plays only a minor role in SCSI, the following convention has 

been generally adopted: the first host adapter gets SCSI ID 7 and IDs for additional 

host adapters are given in descending order. The first SCSI controller gets SCSI 

ID 0, and additional SCSI controllers are given ascending IDs. This convention is ,  

however, neither written nor even mentioned anywhere in the SCSI standard. All 

properly written software must be able to cope with any other assignments as well. 

In itiator and target 

SCSI devices can assume either the role of an initiator or that of a target. This is prin­

cipally independent of whether the device is a host adapter or a SCSI controller. 

Originally, most devices were set up to be either an initiator or a target. In such a 

constellation, the host adapters were initiators and the SCSI controllers were targets . 

Today, an ever increasing number of devices is capable of assuming either role. 

Nearly all hard disks and tape devices can become initiators in the context of the 

COPY command and copy data from other devices to themselves . Only many host 
adapters find it difficult to adapt to the target role or can still only be initiators . 

The initiator triggers an action on the SCSI bus by selecting a target and sending 

a command. But as soon as the command is transmitted, the target takes over control 

of the bus protocol. It decides whether to release the bus and, after having released 

the bus, when to reconnect to the initiator. My former colleague Michael Schultz, 

who translated the first edition of this book into English, coined the phrase :  'The ini­

tiator is the master in function and the slave in protocol . '  

The definition of  the SAM is :  An  initiator is a SCSI device that can send out SCSI 

commands and task management requests. A target is a SCSI device that can execute 

SCSI commands and task management requests. 
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An initiator is a fairly simple device. For most purposes it is sufficient to know that 

it has an ID and generates SCSI requests. 

According to the abstract SAM, it consists of an identifier and as many applica­

tion clients as it has outstanding tasks. The identifier is its address, which is 64 bits 

long. Its contents depends on the employed SDS. Thus, in SCSI-2, it can only lie 

between 0 and 7 ,  in the parallel SCSI-3 protocol between 0 and 3 1 .  Other protocols 

might allow larger addresses. 

An application client is an abstract object which generates exactly one SCSI 

command or one task management request. Thus, there is a separate application 

client for each individual command. 

Target 

A SCSI target is significantly more complicated than an initiator. The easy definition 

is: A target has an ID, accepts SCSI commands and forwards them to the corre­

sponding LUN for execution. A LUN represents the physical peripheral device and 

the logics needed for the execution of SCSI commands. 

According to the SAM, the SCSI target consists of an identifier, one or more 

LUNs and a task management. 

For the target identifier, the same applies as for the initiator identifier. It is also 64 

bits long, but its true value range is limited by the current SDS . 

Task 

The task management controls the execution of  one or more tasks and reacts to  task 

management requests. A task is defined as the set of actions needed to carry out a 

SCSI command or a sequence of linked SCSI commands. 
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lU N ( logical u.mlit) 
A LUN is a rather complex thing. It consists of a LUN number, a device server and 

a queue for tasks, the task set. 

As the identifiers in the SAM, the LUN number is 64 bits long, but is limited in 

its value range by the SDS. 

The device server is the physical device together with the associated logics .  

The task set, finally, is the queue containing the tasks for this LUN. The tasks are 

managed by the device server and processed one after the other. The order of pro­

cessing can be specified by the task management. A task is generated in the LUN 

with the arrival of the first command of a SCSI command chain and disappears after 

execution of the last command of this chain has been terminated. A task set can be 

ordered. This allows control of the order in which the tasks are processed. 

Each SCSI target has at least one LUN. This so-called base device also processes 

the SCSI commands that are addressed to the target as such. These are mainly com­

mands that supply information on the configuration of the target. 

SCSB configmations for the paral lel SCS� bus 

A parallel SCSI bus supports every combination of  initiators and targets , provided 

that they contain at least one initiator and one target each. Practically all publications 

on the subject of SCSI-2 present three basic configurations with different require­

ments for the implemented SCSI options . These configurations are not part of the 

SAM. They are presented here because this is a point in the description into which 

they fit. 

Single in itiator, s i1111gle target 

This is the simplest and maybe most frequent configuration. One initiator, the host 

adapter, communicates with one target, the peripheral device. You will often read 

that in this configuration bus release via disconnect/reconnect is superfluous. This is 

not entirely correct. At least in multitasking operating systems, such as UNIX, Novell 

Netware or OS/2, the host can issue fUither write or read requests to the hard disk 

when it is still busy processing the first one. This fills the task set and allows the 

device server to sort the requests in such a way that the minimum number of head 
movements is required. This can significantly improve the overall throughput. 

Single in itiator, mu ltiple target 

This configuration is more interesting. It fulfills one of SCSI's promises, namely to 

operate different types of peripheral devices on one UO bus. Here, it is of enormous 

importance that all SCSI devices release the bus when they do not need it. 
Otherwise, slow devices block all other 1/0 activities. Bus release via connect/recon­

nect is optional in SCSI- I and SCSI-2. In practice, however, all current devices 

support this option. Should you have to employ an older device that does not yet 
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support this option, you ought to plan a separate SCSI bus for that particular device, 
if at all possible. 

Multip le in itiator, multiple target 

In this configuration it is generally necessary that the initiators reserve the SCSI 
devices they access .  This obviously depends on the device type. Almost no operat­
ing system can cope with the fact that more than one host computer requires write 
access to the same disk drive. Multiple access to CD-ROMs, which can only be read 
anyway, might, however, be possible without problems. Personally, I would recom­
mend that devices are reserved also in configurations with only a single initiator. The 
additional effort is not excessive, but when eventually a further initiator is added to 
the system, you will not have to change your software drivers . 
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1 1 .2 The SCSI com mand modei 

SCSI commands are sent by an initiator to a target. More precisely, they are 

addressed to the LUN of a target. This LUN's device server executes the command 

and returns a status .  This was true in SCSI- 1 and still applies today to SCSI-3 .  
The SAM, however, has quite a formal way to express this simple matter. The 

SAM sees a SCSI command as a call of a remote procedure. This procedure has the 

task identifier, a command block and the status byte as mandatory parameters . 

Optional parameters are input or output data buffer, command length, auto sense 

request and sense data. The result of this procedure is the service response. 

Servi ce Response = Exe cute Command ( T a s k  Ident i f i e r ,  Command 
Des c r i ptor B l oc k, [ T a s k  A t t r i bu t e ] ,  [ D a t a  O u t p u t  Bu f f e r ] ,  [ D a t a  

I n p u t  B u f f e r ] ,  [ C omma nd Len g t h ] ,  [ A u t o s e n s e  R e q u e s t ] ,  [ S e n s e  

D a t a ] ,  S t a t us ) 

Structure of a SCSI command 

The following components must be realized in a SCSI command: 

• Task identifier: The task identifier is constituted by a set of 64-bit numbers . It 

consists of the initiator, target and LUN identifiers. Ordered tasks have an addi­

tional tag. 

• Command descriptor block: The command descriptor block (COB) contains 

the SCSI command proper. It is described in more detail below. 

• Status byte: After the end of a command, the status byte supplies information on 

whether the command was executed successfully. Furthermore, it carries some 

additional information about the command termination. The status byte too is 

described in more detail in a dedicated section. 

Command descriptor block and status byte exist in all SCSI versions; only the task 

identifier is new in SCSI-3 . 

Optionally, a SCSI command can also contain a data area. This is either an input 

or an output data buffer. The data direction is viewed from the initiator - the input 

data buffer contains data directed from the LUN to the application client. 

A single SCSI command can only either send or fetch data to or from the target. 
For read-modify-write operations in which the initiator reads data, modifies it and 
then writes it back, linked commands are used to ensure that no-one else modifies 

the data in the meantime. 

• Data input buffer: The data input buffer contains command-specific data sup­
plied by the LUN before command termination. The data is only valid when the 
status byte contains the status GOOD, INTERMEDIATE or INTERMEDIATE CONDITION 

MET. 

• Data output buffer: The data output buffer contains command-specific data that 
is sent to the LUN. It can be user data or, for example, parameter lists. 
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Applicalion client A Application client B 

Waiting time 
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command 1 

Target (device server) 

Figure 11.8 SCSI command execution. 
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A further optional element in this formal model is the task attribute. In SCSI-2 and 

in the parallel SCSI-3 protocol, it is realized by means of SCSI messages. 

• Task attribute: The task attribute specifies how the task is to be handled by the 

task management. A simple task bearing the SIMPLE attribute cannot be inserted 

into a queue. This can only be done with an ordered task bearing the ORDERED or 

HEAD OF QUEUE attribute. This is explained in more detail in Section 1 1 .4. 

• Command length: The command length specifies the maximum number of bytes 

that can be transmitted by the command. 

• Autosense request: New in SCSI-3 is the autosense mechanism which allows, in 

case of error, detailed information on the error to be transmitted automatically to 

the initiator. In SCSI-2 a REQUEST SENSE command must be explicitly specified for 

this purpose. The sense data parameter contains the data supplied by the 

autosense mechanism. 

The command descriptor block 

Table 1 1 . 1  shows the structure of a typical SCSI command descriptor block. 

Table 11.1 SCSI command descriptor block. 

7 I 6 I 5 I 4 I 3 J 2 J 1 1 0 

0 Opcode 

I 

. . .  Command-specific 

. . . parameters 

n-1 

n Control byte 
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Opcode 

Byte 0 of each command is the opcode which defines type and length of the 
command. Its three higher order bits contain the command group, the five lower 
order bits the command itself. Each command group is associated with a command 
length. Thus, directly after decoding the first command byte, a target knows how 
many bytes it still has to expect. Table 1 1 .2 shows the opcode structure. Depending 
on the device type, the same opcode can denote different commands which, 
however, usually show at least some similarity. Thus, the opcode OAh means WRITE 

for disk and tape devices, whereas it means SEND for processor devices. Also the 
structure is different; therefore you cannot deduce the command from the opcode 
alone - you must also know to which kind of device the command is addressed. 

'fable 11.2 Opcode structure. 

I "'' I 7 1 6 1 5 4 3 2 0 

Group Command 

Command gmiUqp 

The three bits of the command group allow for eight different groups. Reserved 

groups must not be used. These commands are kept free by the SCSI committee for 
future versions of the standard. In SCSI-2, group 4 was still reserved. In SCSI-3 this 
is where the 1 6-byte commands are added. When manufacturers want to implement 
proprietary standards, they must use group 6 or 7 .  In practice, however, this seldom 
occurs . 

Table 11.3 SCSI command groups. 

Group 

0 

2 

3 

4 

5 

6 

7 

Opcodes 

OOh - ! Fh 

20h - 3Fh 

40h - 5Fh 

60h - 7Fh 

SOh - 9Fh 

AOh - BFh 

COh - DFh 

EOh - FFh 

Control byte 

Description 

Six-byte commands 

Ten-byte commands 

Ten-byte commands 

Reserved 

Sixteen-byte commands 

Twelve-byte commands 

Vendor-specific 

Vendor-specific 

In SCSI-2, the control byte contains only two bits defined in the standard. Both are 
optional . 

The link bit allows you to chain a linked 110 process across several commands .  
This is used to prevent a command of a further 110 process being inserted between 
two commands of the linked 110 process, due to optimization in the target. This is, for 
example, useful when a block is to be read, modified and written back. Furthermore, 
linked commands allow the use of relative addressing of the logical blocks. 
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Bi1 7 I 6 5 I 4 
Manufacturer-specific Reserved 

I 3 

The SCSI command model 1 1 3  

2 I 0 
ACA Flag Link 

The flag bit must only be used with linked commands. This causes the service 

response LINKED COMMAND COMPLETE (WITH FLAG) (QBh) to be sent after termination 

of the linked command instead of the service response LINKED COMMAN D  COMPLETE 

(OAh). Thus you can mark a determ.ined command inside a command chain. 

New in SCSI-3 is the ACA bit. ACA stands for auto contingent allegiance, a 

status assumed by a LUN in case an error has occmTed during command execution. 

If the ACA bit is  not set, the error status is canceled as soon as the next command 

arrives from the same in.itiator. A set ACA bit prevents this and maintains the error 

cond.ition. 

Linked commands 

Figure 1 1 .9 shows an example of the execution of two l.inked corrunands. An appl.i­

cation client is generated in the initiator, and a task is generated in the task set of the 

target LUN. This task is executed by the device server of the LUN. 

First, the initiator generates an application client, sends the first corrunand to the 

target LUN and goes into a waiting state. This command has the link bit set. The 

target LUN generates a task and inserts it into the task set. When th.is task's tum 

arrives, the device server of the target LUN executes this first command. When it is 

ready, the target sends a service response LINKED COMMAND COMPLETE with an INTER­

MEDIATE status. The task remains in existence and goes into a waiting state. Now, the 

application client in the initiator continues its work, preparing the second command 

and sending it to the target. In our example, the second corrunand has not set the l.ink 

bit; thus it is  the last of the corru11and chain. The application cl.ient goes again into a 

Application client 

Waiting time 

command 1 
(link bit set) 

Task 

Process 
command 1 

I n itiator 

Waiting time 
Process 
command 2 

Target (device server) 

Figure 11.9 Linked commands. 

Time 
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Table 11.5 Service response. 

COMMAND 

COMPLETE 

LINKED COMMAND 

COMPLETE 

LINKED COMMAND 

COMPLETE (WITH FLAG) 

SERVICE DELIVERY 

OR TARGET FAILURE 

The task is terminated. The status parameter 
contains a valid value. 

A l inked command is terminated. 

A l inked command is terminated with a set flag bit 
in the control byte. 

The task was aborted through an error in  the target 
or in the SDS. Al l  parameter values, including the status, 
may be invalid. 

wa1t1ng state. Now the task in the target LUN wakes up again and executes the 

second command. This time, the target returns a service response COMMAND COM­

PLETE with a GOOD status. The task is terminated and ceases to exist. With the 

reception of the service response, the existence of the application client too comes 

to an end. 

Status 

All SCSI commands are normally terminated with a status. The only exception is 

when a command was aborted by unforeseen circumstances. Table 1 1 .6 shows all 

possible status codes. 

In practice, mainly three status codes occur, GOOD (00h), BUSY (08h) and CHECK 

CONDITION (02h). The first two are self-explanatory. You will meet the CHECK CON­

DITION status at the latest when you carry out your own tests with the SCSI monitor 

Table 11.6 Status codes. 

Status byte Status 

00h GOOD 

02h CHECK 

04h 

08h 

I Oh 

1 4h 

I Sh 

22h 

28h 

30h 

CONDITION 

CONDITION 

MET 

BUSY 

INTERMEDIATE 

INTERMEDIATE 

CONDITION MET 

RESERVATION 
CONFLICT 

COMMAND 
TERMINATED 

TASK SET FULL 
(QUEUE FULL) 

ACA ACTIVE 

Meaning 

The command was terminated successfully. 

The command was not terminated successfully. 
Now the LUN is  in  the ACA state. You should now use a 
REQUEST-SENSE command to find out the exact cause. 

This code is used instead of GOOD, for example with a 
SEARCH-DATA command, to indicate the success of the search. 

The LUN can currently not accept any further command. 
Try again later. 

Used instead of GOOD by commands inside a command chain .  

Used instead o f  CONDITION MET b y  commands i nside a 
command chain. 

The LUN is currently reserved for another initiator. 
Try again later. 

The target device has aborted the command because of 
a TERMINATE 1/0 PROCESS message. 

The command shouJd be associated with a task set, 
but tllis cannot accept any further tasks. 

The command was not i nserted into the task set because of 
an auto �ontingent allegiance state. 
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program. This is the status used by a target to indicate, amongst others , all erroneous 

commands, when either the command itself or the parameters are incorrect. When 

this status has occurred, the target is ready to supply additional information on the 

precise cause of the error. This information can be called up with a special 

command, namely REQUEST SENSE. In SCSI-3 there is the additional possibility of 

having the sense data automatically transmitted to the initiator. 

Two changes have been made between SCSI-2 and SCSI-3 .  They are shaded gray 

in the table. The first one is only editorial : code 28h is now called TASK SET FULL 

instead of the former QUEUE FULL. Furthermore, code 30h has been added. 

The service response 

The service response contains the result of the execution of a SCSI command. For 

those readers already familiar with SCSI-2 it should be mentioned that the service 

response corresponds to the message phase during command termination. This will 

be explained in more detail in Chapter 20. A list of all possible values a service 

response can assume is given in Table 1 1 .5 .  

After these highly theoretical arguments, w e  will get down t o  earth again with a 

detailed presentation of the most significant elements . 

Task and command 

For each SCSI command that an initiator addresses to a target, the device server in 

the addressed LUN generates a task. This task exists until the command or ( in case 

the first command had the link bit set) the entire command chain has been executed. 

From the points of view of the target (device server) and the initiator (application 

client) this life span looks different because they have different sources of 

information. 

The target sees the following: as soon as it receives a command, the device server 

generates a task. This task normally exists until the device server sends the service 

response COMMAND COMPLETE. Furthermore, a task dies with a power-on, when the 

target performs a hard reset, or when the task management executes one of the func­

tions TARGET RESET, ABORT TASK or ABORT TASK SET. 

From the target' s  point of view, a command is normally considered pending as 

long as the task exists . Only a linked command is terminated with an additional 

service response LINKED COMMAND COMPLETE or LINKED COMMAND COMPLETE (WITH 

FLAG) . 

The initiator cannot look inside the target. It must therefore rely on assumptions. 
An application client assumes that a task exists as soon as it has sent the 

command. It normally assumes the task's existence until it receives the service 
response COMMAND COMPLETE. Furthermore, a unit attention state with determined 
causes or the service response SERVICE DELIVERY OR TARGET FAILURE convinces the 
client that its task has died. If it has itself terminated the task by means of a task man­
agement request, it assumes that the task is terminated when it has received the 
service response FUNCTION COMPLETE. 
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1 1 .3 Exceptions and error handl ing 

U p  t o  now w e  have discussed the normal execution o f  SCSI commands and tasks . 
Things become slightly more complicated when for whatever reason a command 
cannot be processed normally. Here too the structured model of SCSI-3 is of great 
help because it divides errors and exceptions into groups which can usually be asso­
ciated with a determined function block of the SCSI subsystem. 

Sense data 

When a SCSI device, usually a LUN, finds itself in an exception state, it refuses exe­
cution of the next command and returns a CHECK CONDITION status .  It also holds at 
its disposal a data record at least 1 8  bytes long with coded information on the error, 
the so-called sense data. This sense data can be transmitted to the initiator by means 
of a REQUEST SENSE command, an asynchronous message or an autosense request. All 
these mechanisms will be explained in more detail later in this book. 

Meaning and format of the sense codes are not part of the SAM. They are 
described in the primary command set. In this book, you will find the description 
together with the REQUEST SENSE command and the sense code tables in Appendix C. 

Auto contingent allegiance 

Auto contingent allegiance (ACA) is a state assumed by a task set when the LUN 
detects an error. It then sends a CHECK CONDITION or COMMAND TERMINATED status to 
the initiator. In the ACA state, further execution of commands and insertion of new 
commands into the task set are very restricted. This is necessary to preserve the 
sense data, because there is only one sense data memory area per LUN which would 
be overwritten if a further command were executed. 

In SCSI-2 there is a contingent allegiance and an extended auto contingent alle­
giance state. In SCSI-3 , these have been united into the ACA state. The differences 
are not dramatic . A precise definition of the contingent allegiance states of SCSI-2 
can be found in the Glossary. 

As long as the ACA state exists, all tasks of the affected task set are in a waiting 
state. States that a task can assume are described in Section 1 1 .4.  Tasks that come 
from the initiator that caused the error are inserted into the task set. Tasks corning 
from other initiators are refused with an ACA ACTIVE status .  

When a task set passes into the ACA state, the initiator that caused it should fetch 
the sense data with a REQUEST SENSE command. Otherwise they will get lost, because 
the first command that is  accepted in the ACA state deletes the sense data and ter­
minates the ACA state. This applies to all SCSI versions . 

SCSI-3 offers the additional possibility of sending the sense data automatically to 
the initiator that caused the unsuccessful command. However, this auto sense mech­
anism is not mandatory. Here, the command that causes the ACA state must have the 
ACA bit set. Then the affected task set accepts only a command with ACA attribute 
even from the causing initiator. With this command, the sense data are returned and 
the ACA state for this task set is terminated. 
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Thus,  an ACA state ends either with the next command or with the transmission 
of the autosense data. Furthermore, it ends with a power-on or a hard reset. In addi­
tion, in SCSI-3 the ACA state can also be terminated by means of the task 
management functions TARGET RESET and CLEAR ACA. 

Un it attention state 

A UNIT ATTENTION state occurs when a change happens on a LUN that the initiator 
should know of, for example a media change on a removable disk or tape unit. In 
such a case there are two possibilities for notifying the initiator. The most elegant 
one is to send an asynchronous message (AEN, see below) to the initiator. This pos­
sibility is already present in SCSI-2, but it is supported only by few initiators and 
targets . 

Thus, as a standard solution for SCSI-2 only the second possibility remains .  A 
LUN in UNIT ATTENTION state passes into the ACA state and aborts the next 
command with a CHECK CONDITION status.  Then the initiator finds out what happened 
by means of a REQUEST SENSE command. 

After power-on or a reset, each target goes into the UNIT ATTENTION state as soon 
as it has finished initialization. Thus, a CHECK CONDITION status will be present when 
the first command is sent to the target. When you try this out with the SCSI monitor 
program, however, you must consider that your host adapter might probably have 
checked all targets after power-on and therefore reset the UNIT ATTENTION state. 

In SCSI-3 the list of events that trigger a UNIT ATTENTION state has been enriched 
with several interesting variations. Thus, for example, modification of device set­
tings (the mode parameters described in Chapter 1 2) by another initiator or 
reloading of firmware too trigger a UNIT ATTENTION state. Furthermore, LUNs can 
now store several UNIT ATTENTION states in a queue and assume them one after the 
other. 

The UNIT ATTENTION state ends with the sending of the asynchronous message or 
the termination of the ACA state. 

Overlapping commands 

Overlapping commands can occur in  SCSI-2 in  tagged queues and generally in  
SCSI-3 . They occur when a command is to  be  inserted into a task set  in which a 
command with the same identifier already exists . Whether the LUN must consider 
this state or not is specified in the corresponding SCSI-3 protocol. 

H ncorrect ll..IU N  selection 

A LUN may not be available for the most varied reasons . In particular, it may not be 
accessible. The wide majority of SCSI devices support only LUN 0. When a bridge 
controller is employed, it may happen that the LUN is supported, but not connected 
or switched on. In all cases, each command to this LUN is aborted with a CHECK 

CONDITION status,  that is, an ACA status.  The sense data will then give precise 
information on the exact cause. 
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1 1 .4 Task management 

In the SCSI architecture model, task management is a formal description of func­

tions for aborting task sets and individual tasks. The functions are implemented in 

each of the SCSI-3 protocols. In the parallel SCSI-3 protocol and in SCSI-2, they are 

realized by means of the message system. 

In the client-server model, the task management functions are represented as a 

function call of the following form: 

S e r v i c e  R e s p o n s e  = F u n c t i on ( O b j e c t  I d e n t i f i e r )  

The service response can assume the values FUNCTION COMPLETE, FUNCTION 

REJECTED or SERVICE DELIVERY OR TARGET FAILURE. 

Task management functions are generated by an application client in the initiator 

and executed by the task manager as a function of the target. A list of task manage­

ment functions follows below. 

lask mal!1lagemell1lt f1Ulll1lctions 

ABORT TASK SET 
Aborts all tasks in the task set that belong to the specified initiator. This function 

must be implemented in SCSI-3 when ordered tasks are implemented in the LUN. 

In SCSI-2, this corresponds to the ABORT TAG message. 

ABORT TASK 
Aborts the specified task. This function must be implemented in all SCSI-3 LUNs. 

In SCSI-2 there is no exact correspondence because there are no task identifiers . 

Here, the ABORT TAG message aborts the currently active task. 

CLEAR ACA 
Aborts all tasks in the task set. This function must be implemented in SCSI-3 when 

ordered tasks are implemented in the LUN. In SCSI-2, this corresponds to the CLEAR 

QUEUE message. 

TARGET RESET 
Resets the target and terminates all tasks in all task sets. This function must be 
implemented in all SCSI-3 devices.  In SCSI-2, this corresponds to the sus DEVICE 

RESET message. 

TERMINATE TASK 
Terminates the specified task as soon as possible. This 'soft ' abortion of a task 
allows, for example, the hard disk to finish writing the current sector. This function 

is a SCSI-3 option. In SCSI-2, there is no exact correspondence because there are no 
task identifiers . Here, the message TERMINATE Ilo PROCESS aborts the currently active 
task in a similar way. 



Task set management 1 1 9  

Resu lts 

As a result of task management functions, the service responses FUNCTION COMPLETE, 

FUNCTION REJECTED and SERVICE DELIVERY OR TARGET FAILURE can occur. FUNCTION 

COMPLETE means that the function was executed correctly. FUNCTION REJECTED is 
returned when the LUN does not support the task management function. SERVICE 

DELIVERY OR TARGET FAILURE means that an error has occurred in the target or in the 
transmission system. It is not clear whether the task management function has been 
executed or not. 

1 1 .5 Task  set management 

The task set  is the SCSI-3 equivalent of tagged queues in SCSI-2. Task set  manage­
ment is carried out by means of the task management functions listed in the previous 
section. You will meet these elements again in their actual implementation in 
Chapter 20 in the sections on the SCSI-2 message system and the parallel SCSI-3 
bus. 

The task set management deals with task states, task attributes and events that 
cause changes in task states .  Task set management only refers to tasks previously 
inserted into a task set. Task are not inserted into a task set only when they are imme­
diately aborted with a BUSY, RESERVATION CONFLICT, TASK SET FULL, ACA ACTIVE or 
CHECK CONDITION status .  

Task states 

The current task is the task that currently has access to the resources of the target, 
that is, the physical device or the bus interface. Whether a task of a task set can 
become the current task depends on its state. A task can assume one of four states,  
as shown in Table 1 1 .7 .  

Figure 1 1 . 1 0 shows the possible transitions between task states .  

SIMPLE o r  ORDERED task 

Figure 11.10 State transitions between tasks . 

HEAD OF QUEUE or ACA task 
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Table 11.7 Task states. 

DORMANT A task that cannot be terminated because other tasks in the task set occupy the 
necessary resources. 

ENABLED A task that satisfies all  requirements for becoming the current task. 

BLOCKED A task that cannot become the current task because of an ACA state. 

ENDED This task waits to be removed from the task set. 

Task attributes 

At the server request call the task is assigned an attribute. This attribute determines 
the task state with which it is inserted into the task set. 

Table 11.8 Task attributes .  

SIMPLE A task with the simple attribute is inserted into the task set as DORMANT. It is  only 
ENABLED when all older tasks with ORDERED or HEAD OF QUEUE attributes are 
terminated. 

ORDERED A task with the ORDERED attribute is inserted into the task set as DORMANT. It is 
only ENABLED when all older tasks are terminated. 

HEAD OF QUEUE This task is inserted into the task set as ENABLED. 

ACA An ACA task is inserted into the task set as ENABLED. There can only be one 
ACA task in a task set at any one time. 
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You have seen the basic flow of phases of SCSI command execution in Chapter 1 1 .  
The initiator sends the command to the target as part of a service request. The device 
server of the corresponding LUN processes the command. The command is  termi­
nated with a COMMAND COMPLETE service response and returns at least the status as 
a parameter. 

This chapter describes the basic SCSI commands, that is, the commands which 
can be found in the SCSI-3 primary command set. The description starts from the 
SCSI-2 standard, explaining the minor changes brought by SCSI-3 in the individual 
context. 

1 2. 1  The SCSI target model 

A basic model for a SCSI-3 target was introduced in Section 1 1 . 1 .  At this point, we 
slightly modify the model and take a look at  the SCSI-2 target in greater detail 
(Figure 1 2. 1 ) .  A SCSI target is addressed using its SCSI ID. Within a single SCSI-2 
target up to seven LUNs and seven target routines are accessible. A target must 
implement at least one LUN. Target routines are optional . Each SCSI command is 
executed by the particular LUN or target routine identified within the command. 

LUN 

MODE SELECT 
parameters 

Figure 12.1 Model of a target. 

SCSI I D  

! Target 

LU N 7 Target 
routine 7 

1 2 1 
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LUNs  

LUNs have already been introduced in the previous chapter on SCSI architecture. A 
LUN is a part of the target accessible from outside that implements a SCSI device type. 

Most commonly a target will consist of a single LUN; however, it is left to the target 

whether it wants to combine more than one physical device to a LUN. This is the case, 

for example, in RAID disk arrays. From a SCSI point of view, however, a LUN is seen 

as one device. Thus, a LUN is associated with a device type and has a set of parame­

ters and states. The various LUNs of a target may belong to different device types . 

Target routines 

Target routines are processes that run on the target itself. These were added with 

SCSI-2, but are no longer present in SCSI-3 . They were supposed to be used, 

amongst other things, for diagnostic and test purposes. Target routines are always 

vendor specific; there is no model or command set defined in SCSI-2. They are at 

most of secondary importance and I know of no SCSI target that implements them. 

Device types 

SCSI supports a variety of device types , from disk drives to printers to scanners. 

While disk drives are a source as well as a destination of information, printers only 

receive and scanners only send data. Data is exchanged with disk drives in a block 

format. Printers accept an unstructured stream of data. For these reasons SCSI 
defines a number of device types . Table 1 2. 1  shows an example of the codes returned 

by an INQUIRY command. 

For each device type SCSI defines a model, a command set and specific parame­

ter pages. The center column of the table indicates in which SCSI-3 document the 

corresponding device type is described. This chapter covers the commands and para­

meter pages that are common to all device types, together with processor devices. 

The following chapters cover each device type in detail, together with their specific 

commands and mode parameter pages. 

Parameter pages 

Every LUN contains a set of parameters that configure its operation. These parame­

ters can be written with MODE SELECT and read with MODE SENSE. Collectively, they 

are typically referred to as mode parameters. The parameters are sent across the bus 

in blocks called pages.  Here, as with commands, some pages pertain to all devices, 

while some are only for specific types . 

One thing that all device types have in common is the way in which the parame­

ters are organized and maintained by the LUN. A LUN has three copies or sets of its 

parameters : the current, the default, and the saved parameters. The current parame­

ters are those with which the device is currently functioning. These reside in RAM 
on the target and are lost when the device powers down. The saved values are kept 

in some type of non-volatile memory. On a disk drive this might be the medium 



Table 12.1 List of device classes. 

Code SCS/-3 documellf 
OOh SBC 

O l h  SBC 

02h sse 
03h SPC (here) 

04h SBC 

05h MMC 

06h SGC 

07h SBC 

08h SMC 

09h sse 

Dn•ice t.\pes 
Disk drives 

Tape drives 

Printers 

Processor devices 

WORM drives 

CD-ROM drives 

Scanners 

Optical disks 

Media changers 

Communication devices 
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OAh-OBh 
och sec 

(Reserved in SCSI-2;  SCSI-3 :  printer preprocessing devices) 

Reserved in SCSI-2; SCSI-3: array controllers (RAID) 
ODh- I Eh Reserved 

! Fh Unknown device 

itself, otherwise NOVRAM is frequently employed. At power-on time all devices 
copy the saved values to the current parameters . The default values are set by the 
manufacturer into PROM. The saved values reflect default settings when the device 
is purchased. A SCSI command allows the default to be copied to the saved values. 

There is actually a fourth set of parameters, though somewhat different from the 
others, that the target can access. These changeable parameters are also hard-coded 
into the firmware. This set tells an initiator which individual parameters may be 
manipulated and to what extent. In this way a diagnostic program or device driver can 
determine, for example, which sector sizes a disk drive will allow before blindly 
attempting to set the value and running into a CHECK CONDITION status. 

Parameter rounding 

A new feature in SCSI-3 is that a target may round a parameter value that it does not 
support precisely to a value that it does support. When a target rounds a parameter, 
it must return a CHECK CONDITION status. The sense key (see the REQUEST SENSE 

command) should be RECOVERED ERROR. The extended sense code finally reports 
ROUNDED PARAMETER. 

1 2 .2 Com mand! strudll.ll re 

All SCSI commands consist of at least a command descriptor block and a status 
byte. Many commands also include additional parameter lists . Parameter lists are 
transmitted by the SDS in· the same way as pay data. SCSI commands process 
logical blocks, that is ,  pay data, or they work with parameter lists. Parameter­
oriented commands can, for example, read and also modify the properties of devices. 
There are also commands that deliver no information at all except in the status byte 
that concludes all commands . SCSI-2 commands can be 6, 1 0, or 1 2  bytes long. 
SCSI-3 defines an additional 1 6-byte command. 
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Table 12.2 Template for 6-byte commands . 

7 I 6 I 5 I 4 I 3 l 2 l I l 0 

0 Opcode 

� (LUN) I (MSB) 

2 Logical block 

3 (LSB)  

4 Data length 

5 Control byte 

6-byte commaB1ldls 

The fundamental structure of  a SCSI command has already been introduced in  
Chapter 1 1 ,  where you will also find a list of  all command groups and an  explana­
tion of the structure of opcode and control byte. Table 1 2.2  shows the structure of a 
typical 6-byte command. Depending on whether the command uses logical blocks , 
parameter lists or status information, each field will have a different interpretation or 
perhaps no function at all . 

lUN 

In SCSI-2 this field exists for reasons of compatibility with SCSI- I .  In SCSI-3 it is  
reserved. Byte 1 contains the number of the logical unit to be addressed in the three 
most significant bits. All SCSI-2 devices I am familiar with use the IDENTIFY 

message as well as the LUN field. The target routines in SCSI-2 are addressable only 
using the IDENTIFY message. 

Logical b locks 

Six-byte commands that operate on logical blocks spread the logical block number 
(LBN) over three bytes, as shown in Table 1 2.2 .  In total , 2 1  bits are available to 
address the LBN, which corresponds to approximately 2 million logical blocks . 
Since a logical block is usually 5 1 2  bytes long this represents about a gigabyte of 
addressable storage . Therefore, 6-byte commands must not be used with devices 
with more than a gigabyte of storage. Since the original SASI standard only had 
6-byte commands, there exist both 6-byte and 1 0-byte versions of many commands . 
New initiators, however, should only use the 1 0-byte versions. 

Transfer length 

This byte reflects the amount that should be transferred. Depending on the command 
itself, this field is interpreted differently. Some commands transfer no data at all and 
here the byte is meaningless .  If the command uses a parameter list (which I will refer 
to as a parameter oriented command) then the data length byte contains the parameter 
list length in bytes. If there are fewer parameter bytes available than requested, a target 
will simply send what is there without complaining. For commands that operate on 
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logical blocks (what I call block oriented commands) transfer length represents the 
number of logical blocks starting at the LBN to be transferred. 

The 6-byte commands but also some 10- and 1 2-byte commands use a single byte 
for the transfer length. For such commands that are block oriented a transfer length 
of 0 means that 256 blocks should be sent. For parameter oriented commands 0 
means that no data should be transferred. 

1 0-, 1 2- and 1 6-byte commands 

The 1 0-,  1 2- and 1 6-byte commands are very much the same as the 6-byte com­
mands (Tables 1 2 .3 ,  1 2 .4 and 1 2 .5) .  The only difference is the number of bytes 
available for the LBN and the transfer length. 

Table 12.3 Template for 1 0-byte commands. 

7 l 6 I 5 I -1 I 3 l 2 l I I 0 

0 Opcode 

1 (LUN) I Reserved 

2 (MSB)  

3 Logical 

4 block 

5 (LSB)  

6 Reserved 

7 (MSB) Data length 

8 (LSB) 

9 Control byte 

Table 12.4 Template for 1 2-byte commands. 

7 l 6 I 5 I 4 I 3 I 2 l I I 0 

0 Opcode 

1 (LUN) I Reserved 

2 (MSB) 

3 Logical 

4 block 

5 (LSB) 

6 (MSB) 

7 Data length 

8 

9 ILSB) 

10 Reserved 

1 1  Control byte 
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Table 12.5 Template for 16-byte commands. 

7 J 6 l 5 l 4 I 3 I 2 I 1 I 0 

0 Opcode 

l Reserved 

2 (MSB) 

3 Logical 

4 block 

5 (LSB) 

6 (MSB) 

7 Additional 

8 command data 

9 (LSB) 

1 0  (MSB)  

l l  Data length 

1 2  

1 3  (LSB) 

14 Reserved 

1 5  Control byte 

A 1 0-byte command contains a 32-bit block address or an address space of 

approximately 2 terabytes. The transfer length field is 1 6  bits long. In SCSI-2 the 

1 2-byte command extends this field to 32 bits. 

The 16-byte command has been added in SCSI-3 . In bytes 6 to 9 i t  contains room 

for additional data. Both logical block address and data length field are 32 bits long. 

Command implementation 

There are four different types of command implementation (Table 1 2.6) .  These 

determine how and whether a command must be implemented. 

Table 12.6 Command types. 

Symbol Meaning 

M Mandatory: these commands must be implemented 

0 Optional: these commands may or may not be i mplemented. When implemented, 
they must adhere to the standard 

V Only in SCSI-2: vendor specific: these opcodes are reserved for manufacturers 
to implement their own commands 

Z New in SCSI-3: device type specific: mandatory with some device types, optional 
with others 

R Reserved: these opcodes may not be used. The SCSI committee may assign commands 
at a later date 
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1 2.3 Commands for all SCSI devices 

There are a number of commands that are conunon to all device types (Table 1 2.7) .  

The most important of these will be introduced here. We begin with those commands 

whose implementation is mandatory. 

Compared with SCSI-2, six more commands have been added in SCSI-3 to the 

list of commands for all devices. However, these commands are not new commands, 

but were previously associated with other device types. On the other hand, the MODE 

SELECT(6) and MODE SENSE(6) commands are no longer mandatory in SCSI-3 .  Thus, 

there are only four commands left in SCSI-3 which every SCSI target must be able 

to handle. 

Table 12.7 Commands for all SCSI devices. 

Opcode Name Tvpe Page SCS!-2 SCS!-3 Descriplion 

(SPC) 

OOh TEST UNIT READY M 1 3 1  7 .2 . 1 6  7.22 Reflects whether or not the LUN is 
ready to accept a command 

03h REQUEST SENSE M 1 28 7.2 . 1 4  7 . 1 8  Returns detailed error information 
1 2h INQUIRY M 1 3 2  7.2 .5 7.5 Returns LUN specific information 
I Sh MODE SELECT(6) z 1 40 7.2 .8(M) 7.8(Z) Set device parameters 
L 6h RESERVEf6) z 1 3 6  1 6.2 .8 7 . 19  Make LUN accessible only to 

certain initiators 
l 7h RELEASE(6) z 1 36 1 6.2.6 7 . 1 6  Make LUN accessible to other 

initiators 
1 8h COPY 0 7.2.3 7.3 Autonomous copy from/to another 

device 
I Ah MODE SENSE(6) z 1 40 7.2 . 1 0(M) 7 . 1 0(Z) Read device parameters 
l Ch RECEIVE DIAGNOSTIC 0 7.2. 1 3  7 . 1 5  Read self-test results 

RESULTS 

I Oh SEND DIAGNOSTIC M 1 38 7.2. 1 7 .2 1 Initiate self-test 
39h COMPARE 0 7.2 .2 7.2 Compare data 
3Ah COPY AND VERIFY 0 7.2.4 7.4 Autonomous copy from/to another 

device, verify success 
3Bh WRITE BUFFER 0 7.2 . 1 7  7.23 Write tl1e data buffer 
3Ch READ BUFFER 0 7.2 . 1 2  7. 1 3  Read the data buffer 
40h CHANGE DEFINITION 0 1 39 7.2 . 1 7. 1 Set SCSI version 
4Ch LOG SELECT 0 7.2.6 7.6 Read statistics 
4Dh LOG SENSE 0 7.2.7 7.7 Read statistics 
55h MODE SELECT( IO) 0 7.2.9 7.9 Set device parameters 
56h RESERVE( IOJ z 7.20 Make LUN accessible only to 

certain initiators 
57h RELEASE(IO) z 7. 1 7  Make LUN accessible to other 

ini tiators 
SAh MODE SENSE( IO) 0 7.2 . 1 1  7. 1 1  Read device parameters 
A7h MOVE MEDIUM z 1 6.2 .3 S MC Move medium 
B4b READ ELEMENT STATUS Z 1 6.2.5 SMC Read element status 

No1e: Commands that have been added to this command set in SCSI-3 are shaded light gray. Mandatory 
commands are shaded dark gray. (M) means that the command is classified differently in SCSI-2 and 
SCSl-3. The corresponding classi fication is indicated after the reference to Jhe standard. 
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Attached medium changer 

It should be noted that two commands have been added for handling recording 

media. SCSI-3 now supports devices with attached medium changer. This medium 

changer is no LUN on its own, but the main device, for example a CD-ROM drive, 

understands these two commands and controls the media changer. 

INQUIRY (1 2h) 

The INQUIRY command tells us about a LUN, giving us a list of specific details in a 

concise format. This command can be used to learn, among other things, which 

SCSI options have been implemented, the SCSI version number, the device type and 

the name of the device. This command will function even if the LUN is not able to 

accept other types of commands. In fact, INQUIRY will only return CHECK CONDITION 

if the target is unable to return the requested inquiry data. INQUIRY is the only 

command that does not reply with CHECK CONDITION when a non-existent LUN is 

addTessed. Instead, this fact is reflected in the data returned. 

It is most common to see this command with a transfer length of FFh, with all 

other bytes set to zero (Table 1 2.8). This represents a request for standard INQUIRY 

data, where 255 bytes or less are expected. 

Standard inquiry data can only be obtained when neither the EVDP nor the 

CmdDt bit is set. 

• EVDP (enable vital product data): When this bit is set the page code determines 

the type of information returned by the target. Implementation of this bit is  

optional. Additional information can be found in Chapter 7.3.4 of the SCSI-2 

standard document. 

• CmdDt (command support data): This feature is new in SCSI-3. When this bit is 

set, byte 2 must contain an opcode. Then the LUN returns a data structure which 

explains whether a command with this opcode is supported and how. Further 

details can be found in Chapter 7.4.4 of the SCSI-3 SPC document. 

• Page code/opcode: This byte is valid only when the EVDP or the CmdDt bit is  

set. It specifies that more detailed information concerning the target be returned 

as INQUIRY data. 

Table 12.8 The INQUIRY command. 

7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 

0 INQUIRY ( 1 2h)  

I (LUN) I Reserved I CmdDt I EVDP 

2 Page code 

3 Reserved 

4 Data length 

5 Control byte 
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Table 12.9 Standard INQUIRY data format. 

7 I 6 5 4 3 2 I 0 

0 Peripheral qualifier Device class 

I RMB I Reserved (SCSI- I )  

2 ISO ECMA ANSI 

3 AEN I TIO Reserved Reserved Data format 
(TrmTsk) (NACA) 

4 Additional length 

5 Reserved 

6 Reserved Reserved Reserved Reserved Reserved Reserved Reserved 
(Port) (Dua!P) (MChngr) (ARQ) (Adr32) (Adr l 6) 

7 Rei I W32 W l 6  Sync Link Res. Que SftR 
(TmDis) 

8- 1 5  Manufacturer (8  bytes) 

1 6--3 1  Product ( 1 6  bytes) 

32-35 Revision (4 bytes) 

36-55 Vendor unique (20 bytes) 

56-95 Reserved (40 bytes) 
96--n Vendor unique 

Note: The fields shaded in  light gray have changed in  SCSI-3. The fields shaded in  dark gray only 
apply to the SCSI-3 S IP, that is, the parallel interface. 

• Allocation length: The number of bytes the initiator has reserved for the INQUIRY 

data. Normally this byte will be set to FFh, thus allocating 256 bytes. In response 

to this the target will send as much data as it has, up to FFh in total. 

The standard INQUIRY data 

The standard INQUIRY data is structured in the following manner (Table 1 2.9) :  

• Peripheral qualifier (Table 12 . 1 0) :  These three bits reflect whether a physical 

device can be supported under this LUN and whether or not it is connected, but 

say nothing about whether the device is ready. 

• Peripheral device type: These five bits indicate the peripheral device type, or 

class, to which the logical unit belongs. A list of the device types can be found in 

Table 12 . 1 on page 1 23 .  

Table 12.10 Peripheral qualifier. 

Stat/IS 

OOOb 
OO i b  
O l l b 

Description 

The device described is connected to the LUN 
The target supports such a device. but none is connected 
The target does not support a physical device for this LUN 
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Table 12.11 ANSI version. 

Status Meaning 

Oh The device supports the SCS I - I  standard 
l h  The device supports the CCS 
2h The device supports SCSI-2 
3h  The  device supports SCSI-3 

• RMB (removable bit): A 1 indicates that the medium is removable. For example, 

this bit is always set for diskette d1ives and tape units . 

• ISO version, ECMA version: Indicates that the device supports the ISO IS-93 1 6  

or the ECMA - 1 1 1  versions of the SCSI standard. 

• ANSI version: see Table 1 2. 1 1 .  

• AEN (asynchronous event notification capability) : In SCSI-2 this bit i s  defined 

only for processor devices and indicates that the device supports asynchronous 

event notification. Thus, such a device will accept a SEND command from another 

target. In SCSI-3 this bit is called AERC (asynchronous event reporting capabil­

ity) and means that the device supports asynchronous messages as defined in the 

SAM architecture model. 

• TIO/TrmTsk: The device supports the message TERMINATE 1/0 PROCESS. In SCSI-3 

the bit is called TrmTsk (terminate task) and indicates that the device supports the 

task management function TERMINATE TASK of the SAM architecture model. 

• Data format: Indicates the response format of the following standard INQUIRY 

data. Interpreted in the same way as the ANSI version field. 

• Additional length: Indicates how many additional bytes of information follow. 

• Port: This bit is new in SCSI-3 . It only applies if the DualP bit is set as well. It 

is not set when the command was received on port A and set when the command 

arrived on port B .  

• Dualport (DualP): This bit i s  new in SCSI-3. It indicates that the device supports 

dual ports. 

• Media Changer (MChngr): This bit is new in SCSI-3. It indicates that the device 

has an attached media changer and supports the MOVE MEDIUM and READ ELEMENT 

STATUS conunands. 

• Rei: The device supports relative addressing. Relative addressing means that it is 

not the absolute LBN to be specified, but the offset to the current LBN. This is 

only supported when linked commands are supported as well. 

• W32: The device supports 32-bit wide SCSI. 

• W16: The device supports 16-bit wide SCSI. 

• Sync: The device supports synchronous transfers. 

• Link: The device supports linked commands. 

• Transfer Disable (TrnDis): This bit is new in SCSI-3 . It indicates that the device 

supports the SCSI messages CONTINUE I/O PROCESS and TARGET TRANSFER DISABLE. 

• Que: The device supports tagged commands. 
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S C S I  Mo n i t o r  V 1 . 0  r e v  0 2 4  1 1 . 3 . 93 ( f s )  

S C S I  command 00 : 1 2  0 0  0 0  0 0  F F  0 0  0 0  0 0  0 0  0 0  0 0  00 

S C S I  d a t a  b u f f e r  No . 00 : 

Id lu S t  l N  n X  

03 00 00 00 F F  

0000 : 0 1  8 0  0 2  0 2  2 6  0 0  0 0  1 8  4 8  5 0  2 0  2 0  2 0  2 0  2 0  2 0  C & H P  

0 0 1 0 :  4 8  5 0  33 3 5  3 4  38 30 4 1  2 0  20 2 0  2 0  2 0  2 0  2 0  2 0  H P 3 5 4 8 0 A  

002 0 :  4 1  2 0  2 0  2 0  30 30 30 2 F  00 00 02 00 00 00 00 00 A 0 0 0 /  

0030 : 00 00 00 00 00 00 00 00 00 00 DO 00 00 00 00 00 

0040 : 00 00 00 00 00 00 00 00 00 00 DO 00 00 00 00 00 

00 5 0 : 00 00 00 00 00 00 00 DO 00 00 DO 00 00 DO 00 00 

0060 : 00 00 DO 00 00 00 00 DO 00 00 00 00 00 DO 00 00 

0070 : 00 00 DO DO DO 00 00 00 00 00 00 00 00 DO 00 00 

0080 : 00 00 DO 00 DO DO 00 00 00 00 00 00 00 DO DO 00 

0090 : 00 D O  00 00 00 00 00 00 00 00 00 00 DO 00 00 00 

OOAO : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

0080 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

O O C O : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

D O D O : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

O D E D : 00 00 00 00 00 00 00 00 DO 00 00 00 00 00 00 00 

OO F O : 00 0 0  00 00 00 00 DO 00 00 00 00 DO 00 DO DO 00 

C omma n d : G 

Figure 12.2 Example of an INQUIRY command. 

• SftR: The device supports soft reset capability. Otherwise the device performs a 
hard reset to a RESET condition. 

• Manufacturer: Manufacturer 's  name in ASCII. 

• Product: Product 's  name in ASCII. 

• Revision: Product's version number in ASCII. 

As you can see, the INQUIRY command is capable of delivering a wide variety of 

useful information. An example of INQUIRY data as the SCSI monitor program pre­
sents it on the screen is shown in Figure 1 2 .2 .  This particular command is inquiring 

about LUN 0 of SCSI ID 3. A total of 256 bytes (OFFh) have been requested.  
In order to simplify interpretation of the INQUIRY data, in Table 1 2 . 1 2  I have 

placed it in a frame corresponding to Table 1 2 .9 .  
The peripheral qualifier is OOOb, meaning that a physical device is addressable 

under this LUN. The peripheral device type is 0000 1b,  which according to the list 
on page 1 23 specifies a tape device. The RMB bit is set in byte 1 indicating remov­

able medium. The ANSI field in byte 2 shows that the device is SCSI-2 compliant. 
This is also reflected in the response data format of byte 3. Byte 4 tells us that 38  
(26h) additional bytes of  data follow. The link and sync options are set in byte 5 , 
meaning that the device supports synchronous transfers and linked commands but 
not, however, tagged queues. 

TEST UNIT READY (OOh) 

The command TEST UNIT READY determines whether the LUN in question will allow 
access to the medium (Table 1 2 . 1 3) .  This means, for example, for a removable 
medium drive that the medium is present and READY for access .  Depending on the 
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Table 12.12 Evaluation of INQUIRY data. 

7 6 5 4 

0 0 0 0 I 0 

1 I 
2 0 0 0 0 

3 0 I () 0 0 I 
4 26h 

5-6 OOh 

7 0 l 0 0 l 0 l 
8-1 5  HP 

3 

0 

0 

0 

0 

OOh 

0 

1 6-3 1 HP35480A 

32-35 A 

36-55 

56-95 

96-n 

2 1 0 

() 0 I 

J 0 1 0 

0 1 0 

l 0 l 0 l 0 

device, it can take tens of seconds before the READY condition is reached. If you are 
only interested in finding out whether a certain LUN exists then the INQUIRY 

command should be used instead. 
TEST UNIT READY is an unusual command because no information transfer takes 

place. No parameters are sent and no data is returned.  When the physical device is 
ready this command simply returns a GOOD status, otherwise CHECK CONDITION is 
returned. The precise reason for the CHECK CONDITION status is stored in the LUN's 
sense data. In SPC section 7 .22 the SCSI-3 standard contains a list of recommended 
sense codes. You should adhere to this list when you implement a target. 

REQUEST SENSE (03h)  

The REQUEST SENSE command (Table 12 . 14) is always used in response to  a status 
CHECK CONDITION status in order to read the sense data. This data gives information 
concerning the reason why the preceding command ended abnormally. The sense 
data is  also updated when a command ends with COMMAND TERMINATED status .  

Table 12.13 The TEST UNIT READY command. 

7 I 6 I 5 I 4 I 3 l 
0 TEST UNIT READY (OOh) 

1 (LUN) I 
2 

3 

4 Reserved 

5 Control byte 

2 l I l 0 

Reserved 
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Table 12.14 The REQUEST SENSE command. 

7 I 6 I 5 I 4 I 3 

0 REQUEST SENSE (03h) 

I (LUN) I 
2 

3 Reserved 

4 Data length 

5 Control byte 

I 2 I I I 0 

Reserved 

It is important to remember that sense data always reflects the state of the previ­
ous command. It is the initiator 's responsibility to follow up on a CHECK CONDITION 

status immediately with REQUEST SENSE. An intervening command will cause sense 
data to be overwritten. 

The command itself looks similar to the INQUIRY command. Here too the alloca­
tion length is in general set to FFh in order to receive all of the data that the target 
has available. 

Sense data 

Since interpreting sense data can be complicated, to say the least, we divide the task 
into four steps :  

( 1 )  Determine validity of sense data 

(2) Evaluation of the sense key 

(3) Evaluation of sense key specific information 

( 4) Evaluation of the sense code 

It is often the case that the sense key alone is enough information, making subse­
quent steps unnecessary. 

I explain here only the most important fields, which are shaded gray in Table 
12 . 1 5 ;  the meaning of the less important fields can be found in the standard: 

� Error code: An error code of 70h is the normal case. This means that the sense 
data refers to the current command. An error code of 7 1 h, on the other hand, 
means that the sense data refers to an earlier command. 

Such a deferred error can occur, for example, with disk drives using write 
cache . Here the disk drive will send a GOOD status immediately after receiving the 
data of a WRITE command. To the host the write appears to be complete, but in 
reality the data merely resides in the drive 's write cache waiting to be written to 
the medium. We find ourselves in a critical situation if during the actual write to 
the medium an unrecoverable data error occurs . We will discuss caching and its 
ramifications in more detail in Chapter 1 3 .  Fortunately, such errors occur 
extremely infrequently. 

Error codes OOh to 6Fh are not assigned, codes 72h to 7Eh are reserved, and 
code 7Fh can be used for manufacturer-specific sense data formats. 
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Table 12.15 Structure of sense data. 

7 6 I 5 I 4 I 3 I 
0 Valid Error code (70h or 7 l h) 

I Segment number 

2 Fi!Mrk EOM I ILl I Reserved I 
3-6 Information 

7 Additional data length 

8-1 1 Command-specific information 

1 2  a Sense code 

1 3  Extended sense code 

1 4  FRU 

1 5- SKSV Sense key 
1 7  specific 

1 8-n Additional sense bytes 

2 I 1 I 0 

Sense key 

• Sense key: The sense key is the principal information concerning the reason for 

a CHECK CONDITION. Table 1 2. 1 6 lists the keys with their cotTesponding meanings. 

• Sense code: After deciphering the sense key, we may or may not need to look for 

more information concerning the error (Table 1 2. 1 7) .  For the sense key NOT 

READY, for example, we look to the sense code for further explanation. This byte 

tells of possible hardware and medium errors, among others. 

rLLEGAL REQUEST is a sense key that occurs often while testing a device with the 

SCSI monitor. The sense key specific field contains more detailed information. 

Table 12.16 The most important sense keys. 

Sense Description 

key 

Oh NO SENSE There is no sense information 
I h RECOVERED ERROR The last command completed successfully but used error correction in  

the process 
2h  NOT READY The addressed LUN is not ready to be accessed 
3h MEDIUM ERROR The target detected a data error on the medium 
4h HARDWARE ERROR The target detected a hardware error during a command or a self-test 
Sh  ILLEGAL REQUEST Either the command or the parameter list contains an error 
6h UNIT ATTENTION The LUN has been reset, for example through SCST reset or a medium 

change 
7h DATA PROTECT Access to the data is blocked 
8h BLANK CHECK Reached unexpected written or unwritten region of the medium 
9h Vendor speci fie 
Ah COPY ABORTED COPY, COMPARE Or COPY AND VERIFY was aborted 
Bh  ABORTED COMMAND The target aborted the command 
Ch EQUAL Comparison for SEARCH DATA successful 
Dh VOLUME OVERFLOW The medium is full 
Eh MISCOMPARE Source data and data on the medium do not agree 
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Table 12.17 Sample sense codes.  

Sense code Description 

13 14  

04  00 

04 0 1  

04 02 

04 03 

04 04 

24 00 

Table 12.18 

7 

LUN not ready, reason unknown 

LUN i s  in  transition to become ready 

LUN not ready, waiting for ini t ia l ization command 

LUN not ready, operator action necessary 

LUN not ready, medium being formatted 

Error in command block 

The sense key specific information. 

6 5 I 4 3 2 I 1 I 0 

1 5  SKSV CID Reserved BPV Bit posit ion 

1 6  (MSB)  Error posit ion 

1 7  (LSB )  

Table 1 2. 1 8  lists the possibilities for this field for the sense key ILLEGAL REQUEST. 

Look to the standard for the description of other sense keys .  If the SKSV bit is set, 
this shows that the sense key specific data is valid. Afterwards ,  the C/D bit should 
be examined. When set the error lies in the command, otherwise the error lies in the 
parameter list. The position of the first byte in error is contained in the error position 
field. The field for bit position only has meaning for other sense keys .  

It should be apparent that the REQUEST SENSE command provides a great deal of 
useful information. The following example, which can easily be duplicated using the 
SCSI monitor, will bring this point home (Figure 1 2.3) .  My first step was to send an 

S C S I  Mon i t o r  V 1 . 0  r e v  0 2 4  1 1 . 3 . 93 ( f s l  

S C S I  command 0 1 : 0 3  D O  D O  DO F F  D O  D O  D O  D O  D O  D O  DO 

S C S I  d a t a  b u f f e r  No . 00 : 

DODO : 70 DO 05 DO DO DO DO DB DO DO DO DO 24 DO DO C F  p$ 

0 0 1 0 :  DO 03 DO DO DO DO DO DO DO DO DO DO DO DO DO DO 

0 0 2 0 : DO DO DO DO DO DO DO DO DO DO DO DO DO DO DO DO 

0030 : DO DO DO DO DO DO DO DO DO DO DO DO DO DO DO DO 

0040 : D O  D O  DO DO DO DO DO DO DO DO DO DO DO DO DO DO 

005 0 :  D O  D O  DO DO DO DO DO DO DO DO DO DO DO DO DO DO 

0060 : D O  D O  D O  DO D O  DO DO DO DO DO DO DO DO DO DO DO 

0070 : D O  D O  DO DO DO DO DO DO DO DO DO DO DO DO DO DO 

0080 : D O  D O  DO D O  DO DO 00 00 00 00 00 DO DO DO DO DO 

0090 : D O  D O  DO D O  D O  DO DO DO DO DO DO DO DO DO DO DO 

DDAD : DO DO D O  D O  D O  DO DO DO DO DO DO DO DO DO DO DO 

0080 : D O  D O  DO D O  D O  DO DO DO DO DO DO DO DO DO DO DO 

OO C O :  00 0 0  00 00 00 00 00 00 00 DO 00 DO 00 DO DO DO 

D O D O : 00 00 00 DO 00 DO 00 00 00 00 00 00 DO 00 00 00 

O D E D : 00 00 00 00 00 00 00 00 00 00 DO DO DO DO DO DO 

O O F O : D O  00 DO DO DO DO 00 DO 00 00 DO 00 00 00 00 00 

C omma n d : G 

Figure 12.3 SCSI monitor with REQUEST SENSE command. 

I d  Lu S t  L N  n X  

03 DO D O  D O  F F  
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SKSV ----

C/D ---

Table 12.19 Interpretation of the sense data. 

7 6 5 4 3 2 

0 0 1 1 I 0 0 

I 0 0 0 0 0 0 

2 0 0 0 0 1 0 

3-6 

7 0 0 0 0 I 0 

8-1 1 

1 2  0 0 1 0 1 0 

1 3  0 0 0 0 0 0 

1 4  0 0 0 0 0 0 

[3-J �J-. .,.. I 0 0 0 1 

f-t6 0 0 0 0 0 0 

1 0 

0 0 � Error code 

0 0 

l 0 � Sense key 

I I 

0 0 � Sense code 

0 0 

0 0 

1 I 

0 0 � Byte 3 

INQUIRY command, 1 2  00 00 FF 00 00, to which the target responded with CHECK 

CONDITION. I then sent a REQUEST SENSE allocating 255 bytes for sense data. In the 

status field for this command is OOh, meaning that the REQUEST SENSE was successful. 

If you do not have much experience in interpreting hexadecimal numbers it helps to 

write out each byte in binary on a piece of paper, then, using Table 1 2. 1 9, draw in the 

boundaries of the individual fields. Byte 0 of the sense data is error code 70h; that is, 

this data refers to the previous command. In byte 2 is the sense key 05h: ILLEGAL 

REQUEST. The sense code is 24h, meaning that a field in the previous command was 

invalid. Looking at the sense key specific information, byte 1 5  is COh; the valid bit is 

set, indicating that there is useful infmmation here. The C/D bit is also set, meaning 

that the error is in the command itself. Bytes 1 6  and 1 7  contain OOh and 03h; in other 

words, the error is in the third byte of the INQUIRY command. A look at the definition 

shows that byte 3 of an INQUIRY command must be zero. The FFh belonged not in byte 

3 but in byte 4 as the allocation length. Thus, the correct command should have been 

1 2  00 00 00 FF 00. 

RESERVE (1 6h) and RELEASE (1 7h) 

This pair of commands makes it possible to reserve a LUN for a particular initiator 

and then to free it for use by others. These commands are common to all device 

types. There are special versions of the commands for disk drives. 

What happens when a LUN reserved for a certain initiator receives a command 

from another initiator? This LUN will end each such command with a RESERVATION 

CONFLICT status and ignore the command. This reservation mechanism provides a 

degree of protection, albeit somewhat unsophisticated, in multi-initiator environ­

ments. Many operating systems do not allow, for example, two hosts to access a 

single disk drive. In such situations, however, it is possible to use RESERVE and 

RELEASE to share drives between two hosts. As soon as one system brings a drive 
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Table 12.20 The RESERVE command. 

7 I 6 I 5 I 4 I 3 I 2 1 1 I 0 

0 RESERVE ( 1 6h )  

I ( LUN) I 3rdPty I 3rdPty lD  I Reserved 
(X tnt) 

2 Reserved (SCSI-3 :  Reservation ID) 

3 Reserved 

4 (SCSI-3: Extent list length) 

5 Control byte 

online it reserves that LUN. Should the system go down for any reason, a simple 

SCSI reset is all that is needed to make the drive accessible for the other host. 

The reserve command itself looks standard (Table 1 2.20). Only two fields call for 

any explanation; these make it possible for an initiator to reserve a device for a third 

party : 

• 3rdPty: Third party reservation. When clear, this bit calls for the reservation to 

be made for the initiator sending the command. When set, the reservation should 

hold for the initiator whose ID is contained in the third-party device ID field. 

• 3rdPty ID: When third party is set this field holds the ID of the device for which 

the reservation holds. 

The extent reservation mechanism is new in SCSI-3 . An extent is part of a storage 

device. The term is described in detail in the model of the SCSI hard disk. In short, 

extent reservation means that an initiator does not always have to reserve a complete 

LUN, but also individual extents. Fmthermore it allows explicit reservation for deter­

mined access modes (read, write, and so on). Both the implementation of extents and 

the extent reservation are optional. 

• Xtnt (extent): When this bit is set, only the extents in the extent list are to be 

reserved. 

• Reservation ID: This is used to identify the initiator responsible for an extent 

reservation. 

• Extent list length: This must be valid when the Xtnt bit is set. The extent list is 

passed as a command parameter during the data phase. The format of the extent 

list can be found in Section 7 . 1 9  of the SCSI-3 SPC standard document. 

It is possible for an initiator to modify its own reservation. It can, for example, 

first reserve a device for itself, followed later by a reservation for a third device. In 

this way a device always remains protected. One application for third-party reserva­

tion is the COPY command. 

A reservation can be dissolved in a number of different ways: by SCSI reset, a 

DEVICE RESET from any initiator, or by a RELEASE command from the initiator which 

made the reservation. The RELEASE command looks almost identical to the RESERVE 

command (Table 1 2.2 1 ) .  
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Table 12.21 The RELEASE command. 

7 I 6 I 5 I 4 I 3 

0 RELEASE ( 1 7h)  

I (LUN) I 3rdPty I 
I 2 

3rdPty I D  

2 Reserved (SCSI-3: Reservation ID) 

3 Reserved 

4 

5 Control byte 

SEND DIAGNOSTIC (1  Dh) 

I I I 0 

!Reserved 
(Xtnt) 

The SEND DLAGNOSTIC command causes the target to run certain diagnostic programs 

(Table 1 2.22). In the most simple case, when the ST bit is set, the device will run a 

self-test. If the self-test discovers no problems then the status returned is OOh (GOOD) . 

If, on the other hand, a problem is detected a CHECK CONDlTION status, 02h, is 

returned. A follow-up REQUEST SENSE will reveal a sense key of 04h (HARDWARE 

ERROR) . Only this implementation of the command is mandatory. The optional bits 

of byte 1 are: 

• PF (page format): When this bit is set the page format conforms to SCSI-2 and 

SCSI-3. In SCSI- 1 the page format was vendor specific. 

• DevO (device offline): When set, this bit allows the target to run diagnostics that 

may affect all LUNs and possibly change their state. If clear no such operations 

will take place. 

• UniO (unit offline): This bit plays the same role as DevO but for protecting indi­

vidual LUNs. 

Optionally, various diagnostics can be run using diagnostic pages sent as parameter 

lists. Diagnostic pages have been defined for each device type. Some pages may be 

vendor specific. For example, a frequently implemented page is the TRANSLATE 

ADDRESS page. This page makes it possible to find out the physical address of a 

logical block. The results are collected from the target using the RECEIVE DIAGNOS­

TIC RESULTS command. Table 1 2.23 shows the basic structure of a diagnostic page. 

Table 12.22 The SEND DIAGNOSTIC command. 

7 I 6 I 5 I 4 I 3 I 
0 SEND DIAGNOSTIC ( ! Dh)  

1 (LUN) I PF I Reserved I 
2 Reserved 

3 (MSB) Data length 

4 

5 Control byte 

2 I 1 I 0 

ST I DevO I UniO 

(LSB) 
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Table 12.23 Diagnostic page. 

7 I 6 I 5 l .f l 3 l 2 l I I () 
0 Page code 

I Reserved 

2 (MSB J Page length ( n-3 ) 

3 (LSB)  

4 Diagnostic 

n parameter 

Several such pages can be sent together in a single parameter list. The page code and 
basic structure of the pages are the same for SEND and RECEIVE DIAGNOSTIC. The 
actual parameters, however, usually differ somewhat. 

CHANGE DEFIN ITION ( 40h) 

This command allows an initiator to configure a SCSI-2 target to behave like an 
earlier SCSI version (Table 1 2 .24). The following values are allowed in the version 
field: 

• OOh: 

• O l h: 

• 02h: 

• 03h: 

• 04h: 

• 3Fh: 

No change 

SCSI- 1 (SCSI-3 :  Reserved) 

SCSI- 1 with CCS (SCSI-3 :  Reserved) 

SCSI-2 

(SCSI-3 : SCSI-3) 

(SCSI-3 : Manufacturer default value) 

The Save bit causes the target to save the change permanently. At the next power­
up cycle the change will be in force.  The Data length indicates the size of the 

Table 12.24 The CHANGE DEFINlTION command. 

7 I 6 I 5 I .f I 3 I 2 
0 CHANGE DEFINlTION (-IOh) 

I (LUN) I Reserved 

2 Reserved 

3 Reserved I SCSI  version 

4 

5 

6 

7 

8 Data length 

9 Control byte 

I I I () 

l Save 
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Table 12.25 The MODE SELECT command. 

7 1 6 1 5 1 4 1 3 1 2 1 1 1 0 7 1 6 1 5 1 4 1 3 1 2 1 1 1  0 
0 MODE SELECT(6) ( 1 5h )  0 MODE SELECT( I 0) (55h)  

l (LUN) 1 PF 1 Reserved 1 SP I (LUN) 1 Reserved 

2 Reserved 2 
r----- t--

3 3 
t--

4 Data length 4 Reserved 
f--

5 Control byte 5 
f--

6 

7 (MSB)  Data length 
f--

8 (LSB)  

9 Control byte 

parameter list that the initiator intends to send to the target. Such lists, however, are 
vendor unique and in general are seldom used. 

MODE SELECT(6) ( 1 5h)  and MODE SENSE(6) ( 1 Ah) 

MODE SELECT and MODE SENSE are a pair of  optional commands that use  the same 
parameter lists. These allow an initiator to configure a device and also to determine 
its configuration. They are the same for all devices;  however, the parameter lists used 
can be very device type dependent. Relative to a typical SCSI command, MODE 

SENSE and MODE SELECT are complex, with many parameters and fields. Both com­
mands are essential, implemented for virtually all devices. They are covered here in 
great detail .  

There are 6-byte and 10-byte versions of both MODE SELECT and MODE SENSE. 

Only the 6-byte version is discussed here. The 1 0-byte version is identical except for 
the parameter list length, which is two bytes instead of one. 

MODE SELECT(6J allows an initiator to set the internal configuration of a LUN 
(Table 1 2.25) .  The command itself is typical. Byte 4 contains the parameter list 
length, which can be up to 255 bytes long. If this byte is zero no list is sent. In byte 
1 there are two bits of interest: 

• PF (page format) :  When this bit is set the parameter pages conform to SCSI-2; 
that is ,  as they are described in this book. Otherwise the parameter pages are 
SCSI - 1  compliant. 

• SP (save pages) : When this bit is clear changes affect only the current parame­
ters . If the bit is set then changes will also be written to the saved parameters and 
will be valid at the next power-up cycle. 

The MODE SENSE command is used to read the mode parameter lists from a device 
(Table 1 2.26). Like the MODE SELECT command, there is a 1 0-byte version for 
working with lists longer than 255 bytes:  



Table 12.26 The MODE SENSE command. 

7 1 6 1 5 1 4 1 3 1 2 1 1 1 0 
0 MODE SENSE(6) ( l Ah) 

I (LUN) I Res. I DBDI Reserved 

2 PCF I Page 

3 Reserved 

4 Data length 

5 Control byte 

0 

I 

2 

3 
-

4 
-

5 
-

6 

7 
-

8 

9 
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7 ' 6 ' 5 ' 4 ' 3 ' 2 ' 1 ' 0 
MODE SENSE( I 0) (5Ah) 

(LUN) I Res. I DBD I Reserved 

PCF I Page 

Reserved 

(MSB) Data length 

(LS B )  

Control byte 

• DBD (disable block descriptors) :  When this bit is set no block descriptors are sent 
before the pages. 

• PCF (page control field) : 

- OOb: Current values 

O lb :  Changeable values 

l Ob :  Default values 

- 1 1  b: Saved values 

• Page code: The number of the desired parameter page. 

The parameter lists for MODE SELECT and MODE SENSE are basically the same. This 
is useful in that one can read the parameters from the device with MODE SENSE, edit 
them in memory, and write them back with MODE SENSE. A parameter list consists of 
three elements :  the mode parameter header (Table 1 2.27), the block descriptors, and 
the parameter pages.  Each element has a pointer to the beginning of the subsequent 
one. Figure 1 2.4 shows a typical mode parameter list. This one has a header, two 
block descriptors, and two parameter pages . The arrows on the right-hand side rep­
resent the pointers within the elements . You will need to refer to this figure as we 
discuss the individual elements. 

Table 12.27 Mode parameter header. 

(6) ( 1 0) 7 I 6 I 5 
0 0- 1 

I 2 

2 3 

- 4-5 

I 4 I 3 I 
Data length 

Media type 

Device specific 

Reserved 

3 6-7 B lock descriptor length 

2 I 1 I 0 
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0 � � oata length 
I I 

2 2 
3 3 B lock descr�tor length (here : OFh) 
4 0 
5 I 

6 2 
7 3 Block descriptor I 

8 4 
9 5 

1 0  6 
1 1  7 
1 2  0 
1 3  I 

1 4  2 
1 5  3 B lock descriptor 2 
1 6  4 
1 7  5 
1 8  6 
1 9  7 
20 0 PcriE_heral page (09h) 
2 1  I P� length (here: 06h) 
22 2 
23 3 
24 4 
25 5 
26 6 
27 7 
28  0 Disconnect/reconnect page (02h) 
29 I P�e length (here: OEh) 
30 2 
3 1  3 

. . .  . . .  

. . .  . . .  

4 2  1 4  
4 3  1 5  

Figure 12.4 Example of a mode parameter page. 

Mode parameter header 

The header of the 6-byte MODE commands is four bytes long: 

� 

� 

� .._  

• Mode data length: The length of the entire parameter list in bytes.  

• Block descriptor length: The total length of the block descriptors. S ince a block 
descriptor is always eight bytes long this field is either zero or a multiple of eight. 

Block descriptor 

Zero or more block descriptors (Table 1 2.28) may follow a mode parameter header. 
The block descriptor defines the logical block length of all or part of the medium. 



Table 12.28 Block descriptor. 

0 

I (MSB)  
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Write density 

2 Number of blocks 

3 (LSB)  

4 Reserved 

5 (MSB)  

6 B lock length 

7 (LSB)  

Theoretically, one could use this feature to divide a drive into several partitions of 
differing logical block sizes .  However, in the vast majority of cases a single block 
descriptor is employed with a block size defined for the entire medium. 

• Write density : This field is dependent on device type. For floppy drives there are 
codes for the popular densities. For disk drives this field has no meaning. 

• Number of blocks: The number of blocks that this descriptor defines.  

• Block length: The number of bytes per logical block for the blocks defined by 
this descriptor. For tape drives a block length of zero means that it is variable and 
is determined by the WRITE command. The block descriptor does not contain a 
pointer to the next element since the descriptor is of a fixed length (8 bytes) .  

Mode parameter pages 

The third, final, and most important element is the parameter page itself (Table 
1 2 .29) .  A parameter page begins with the page code in the lowest 6 bits of byte 0. It 
follows that the largest page code is 3Fh. The next byte contains the page length. 
Parameter pages vary in length but are at most 255 bytes long. 

The PS (parameter savable) bit of byte 0 is only defined for MODE SENSE. When 
set it  indicates that the target is able to save these parameters . 

The page length specifies the number of parameter bytes of the page, that is ,  two 
bytes less than the total length of the page. 

There are three parameter pages, which are defined for all device types .  These are 
the control mode page (OAh), the disconnect/reconnect page (02h), and the periph­
eral device page (09h). 

Most parameter pages are device type specific. These pages are defined in the 
SCSI literature included with the device. Table 1 2 .30 gives an overview of parameter 

Table 12.29 Mode parameter page. 

7 6 5 I 
0 PS Reserved 

4 I 3 I 2 

Page code 

I Page length (n- 1 )  

2 . . .  Mode 

. . .  n parameter 

I I I 0 
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Table 12.30 List of parameter pages. 

Code Name Device 

OOh Vendor specific DTPRSOMC 
O l h  Read/write error page DTRO 
02h Disconnect/reconnect page DTPRSOMC 
03h Format page D 
03h Parallel interface page p 
03h Measurement units page s 
04h Rigid disk geometry page D 
04h Serial interface page p 
OSh Flexible disk page D 
05h Printer options page p 
06h Optical memory page 0 
07h Verification error page DRO 
08h Cache page ORO 
09h Peripheral device page DTPRSOMC 
OAh Control mode page DTPRSOMC 
OBh Medium type page DRO 
OCh Notch partitions page D 
ODh CD-ROM page R 
OEh CD-ROM audio page R 
OFh Data compression page T 
l Oh Device configuration page T 
l l h  Medium partitions page I T 
l 2h Medium partitions page 2 T 
1 3h Medium partitions page 3 T 
J 4h Medium partitions page 4 T 
! Ch Infonnal exception g_age DTPRSOMC 
! Dh Element address assignment page M 
! Eh Transport geometry page M 
! Fh Device capabi lities page M 
3Fh All  available pages DTPRSOMC 

pages defined in the SCSI standard. Of special interest is page code 3Fh, which allows 

MODE SENSE to read all of the pages maintained by a device. The device column 

indicates the device types for which a parameter page is defined. The abbreviations 

are defined as follows: D, disk drives; T, tape drives; P, printers; R, CD-ROMs; S,  

scanners; 0, optical storage; M, medium changers; and C, communications devices. 

1 2.4 Moqe parameter pages for all device types 

The following parameter pages are defined for all device types. 

Table 12.31 Mode parameter pages for all device types. 

Page code Name Page SCS/-2 SCSI-3 (SPC) 

02h Disconnect/reconnect page 1 45 7.3.3.2 8.3.2 
09h Peripheral device page 1 46 7 .3 .3 .3 8.3.4 
OAh Control mode page 1 47 7 .3 .3 . 1 8.3. 1 
! Ch I n formal exception page 8 .3 .3  
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Disconnect/reconnect page (02h) 

The parameters of this page (Table 12.32) determine the behavior of the target with 

respect to freeing the bus. Whether or not the target is allowed to free the bus at all is 

a function of the DiscPriv bit in the I DENTIFY message of every 1/0 process. 

The parameter DTDC (data transfer disconnect) in byte 12 also determines the 

general behavior of the target. It has the following effect: 

• OOb: Disconnection from the bus is allowed. 

• O l b: No disconnection should take place once the data transfer has begun until 

all data has been sent. The time parameters of this page are ignored in this case. 

• lOb: Reserved. 

• llb: No disconnection should take place once the data transfer has begun until 

the command is complete. Time parameters are also ignored in this case. 

The maximum burst length cannot be specified when the DTDC is non-zero. The 

following parameters affect the target's disconnect/reconnect behavior when DTDC 

is zero. 

The EMDP and Dlmm bits are new in SCSI-3 . The EMDP (enable modify data 

pointers) bit is only meaningful in connection with the parallel protocol (SIP). When 

it is set, the target is allowed to send a MODIFY DATA POINTERS message. 

Table 12.32 The disconnect/reconnect page. 

7 6 5 l 4 l 3 l 2 l 1 

0 PS Reserved Disconnect/reconnect page (02h) 

I Page length (OEh) 

2 Buffer full condition 

3 Buffer empty condition 

-1- (MSB) Maximum bus 

5 inactivity time 

6 (MSB) Maximum 

7 bus free time 

8 (MSB) Maximum 

9 connection lime 

1 0  (MSB) Maximum 

I I  burst length 

1 2  SCSI-3: Reserved I SCSI-3 : I DTDC 
EMDP Dlmm 

1 3  

1 4  Reserved 

1 5  

l 0 

(LSB) 

(LSB) 

(LSB) 

(LSB) 
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The Dimm (disconnect immediate) bit tells the target to release the bus immedi­
ately after a command was received. 

• The buffer full ratio determines, for read operations, how full the data buffer 
should be before the target attempts a reconnect to the initiator. The value is in 
units of 1/256 times the number of buffers. The buffer empty ratio works the same 
way for write operations. It determines how empty the buffer should be before 
attempting to reconnect to the initiator. 

• The bus inactivity limit specifies the maximum amount of time in 1 00 fl S  incre­
ments that a target may occupy the bus without sending or receiving data. If the 
limit is exceeded the target must free the bus. 

• The disconnect time limit specifies the minimum amount of time in 1 00 flS incre­
ments that a target must wait after freeing the bus before it attempts a reselection. 

• The connect time limit specifies in 1 00 fl S  increments the maximum amount of 
time that a target may occupy the bus .  

• The maximum burst size specifies the maximum number of data bytes ( in 5 1 2  
byte increments) that the target may transfer before relinquishing the bus . 

Peripheral device page (09h) 

This parameter page does not allow many settings and is more or less vendor spe­
cific (Table 1 2.33) .  The interface identifier describes a physical interface. This is 
meaningful for bridge controllers ; otherwise a zero stands for SCSI. A few values 
are defined in the standard: 

• OOOOh: SCSI 

• 0001 h: SMD 

• 0002h: ESDI 

• 0003h: IPI-2 

• 0004h: IPI-3 

Table 12.33 The peripheral device page. 

7 6 5 I 4 I 3 I 2 I 1 

0 PS Reserved Peripheral device page (09h) 

1 Page length (n- 1 )  

2 (MSB ) Interface 

3 

4 Reserved 

5 Reserved 

6 Reserved 

7 Reserved 

8 . . .  n Manufacturer spec i fic 

I 0 

(LSB) 
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Table 12.34 The control mode page. 

7 6 5 I 4 3 2 I 
0 PS Reserved Control mode page (OAh) 

I Page length (06h) 

2 Reserved GLTSD 

3 Queue algorithm Reserved QErr 

4 EECA Reserved RAENP UAAENP 

SCSI-3 Reserved RAC ByprtM I BybthS Reserved RAERP UUAERP 

5 Reserved 

6 (MSB) AEN waiting lime 

7 after initialization 

8 (MSB) Busy timeout in 1 00 ms 

9 SCSI-3 only 

Control mode page (OAh) 

0 

RLEC 

DQue 

EAENP 

EAERP 

The control mode page contains parameters for controlling various SCSI-2 charac­

teristics (Table 1 2.34). I mention here only a few of the more important ones and 

refer the reader to the standard for more details. 

The queue algorithm modifier pertains to S IMPLE QUEUE TAG commands. It takes 

on two values: a value of 0 specifies that the target must order commands in such a 

way that data integrity is guaranteed across the entire medium for all initiators. A 

value of 1 allows the target to re-order commands without restrictions. A drive can 

often achieve a substantial increase in throughput by optimizing the order in which 

logical blocks are accessed. 

The DQue bit allows tagged queuing to be disabled. When set all queue messages 

are replied to with MESSAGE REJECT. The three bits RAENP, UAAENP and EAENP 

allow AEN in certain situations. If none of these bits is set AEN is disabled. 

RAENP (ready AEN permission) specifies that the target should use AEN to 

notify initiators of an initialization instead of responding with UNIT ATIENTION for the 

first command. UAAENP (unit attention AEN) allows AEN instead of UNIT ATIEN­
TION during normal operation. EAENP (error AEN permission) allows a target to use 

AEN for deferred errors again instead of relying on a UNIT ATIENTION response to the 

next command. In SCSI-3 the denomination AEN (asynchronous event notification) 

is replaced by AER (asynchronous event reporting). 

1 2.5 The model of a SCSI processor device 

Processor devices are a very general device type. Although such devices only send 

and receive data across the bus, they are capable of a wide variety of very useful 

general tasks. Processors that offload a main processor or a data acquisition system 

are two examples of such devices. 
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Figure 12.5 User defined protocol. 
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SCSI processor devices are also indispensable for the asynchronous notification 

mechanism. In order to be able to receive an asynchronous notification, the initiator 

must also be capable of handling the target role. For this reason, the processor device 

commands have been included in the kernel command set. 

Asynchronous notification was introduced in SCSI-2 as AEN (asynchronous 

event notification) , but seldom used. In SCSI-3 asynchronous notification plays an 

important role in different protocols as AER (asynchronous event reporting. 

From the SCSI perspective, a processor device simply exchanges data over the 

bus with the initiator (Figure 1 2.5) .  The kind of data sent is left completely unspec­

ified. Here SCSI simply acts as a physical interface between devices. The protocol 

above that is left up to the designers . 

A processor device, like all SCSI targets, can support up to eight logical units. If 

a LUN is momentarily incapable of receiving or sending data it can either return a 

CHECK CONDITION status or it can disconnect and reconnect at a later time. 

In a way, a SCSI processor device resembles the SCSI communication device 

(see Section 14 .7) ,  with the difference that the SCSI processor processes its data 

locally whereas a communication device forwards its data to other devices. 
Thus, the most important application in SCSI-3 is AER. Assume that an unex­

pected event occurs in a LUN, for example, a user removes a changeable medium. 

Without AER, the LUN would abort the next command with a CHECK CONDITION 

status, and the initiator would try to determine the cause of the problem with a 

REQUEST SENSE. With AER, the LUN itself can send a SEND command with the sense 

data to all known initiators . For this purpose, a special data format has been defined 

which is described together with the SEND command. 
What follows are descriptions of two applications for SCSI processor devices. 

The first consists of two coupled processors, which together act as a redundant file 

server. Both servers are identical and contain the same data. The servers use the 
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Figure 12.6 Example of a SCSI processor. 
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PC (Target) 

I ND converter I 

SCSI bus for communicating with each other and for insuring that they each contain 

the same data. If one system should fail the other system remains fully functional. 

The second application is a PC equipped with an AID converter, which together 

function as a data acquisition system. The PC collects all of the necessary data and 

is even capable of preprocessing. It plays the role of a SCSI target and delivers the 

preprocessed data to a workstation. 

There are countless other possible applications for processor devices (Figure 

1 2.6). It should also be noted that it suffices to implement the SEND command in 

order to allow communication between two processor devices. SCSI is powerful in 

this area because it allows customized hardware to be controlled using an industry 

standard interface. 

SCSI host adapters for PCs that also function as targets are, however, still hardly 

available. Above all ,  adequate support is often lacking. This is a point that you 

should carefully check before you decide which hardware you buy. 

1 2.6 Commands for processor devices 

Table 1 2.35 lists all of the commands defined for processor devices. 

Table 12.35 Commands for processor devices. 

Op- Name Type Page SCSI-2 SCS/-3 Descripiion 

code (SPC) 

OOh TEST UNIT READY M 1 3 1  7 .2 . 1 6  7 .22 Rcnects whether or not the LUN is ready to 
accept a command 

03h REQUEST SENSE M 1 32 7 .2 . 1 4  7. 1 8  Returns detailed error i n formation 
08h RECEIVE M 1 49 1 1 .2. 1 9. 1 Like read 
OAh SEND M 1 49 1 1 .2 .2  9 2  Like write 
1 2h INQUIRY M 1 28 7 .2 .5  7.5 Returns LUN specific information 
1 6h RESERVE!6) 0 1 36 1 6.2.8 7 . 1 9  Reserve LUN 
l 7h RELEASEt6) 0 1 36 1 6.2 .6 7 . 1 6  Release reservation 
1 8h COPY 0 7.2.3 Autonomous copy from/to another device 
I Ch RECEIVE DIAGNOSTIC 0 7.2 . 1 3 . Read self-test results 

RESULTS 
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Table 12.35 Commands for processor devices (continued). 

Op- Name Type Page SCSI-2 SCSI-3 Description 

code (SPC) 

I Dh SEND DIAGNOSTIC M 1 38 7 .2 . 1  
39h COMPARE 0 7.2.2 

Init iate self-test 
Compare data 

3Ah COPY AND VERIFY 0 7.2 .4 Autonomous copy from/to another device, 
verify success 

3Bh WRITE BUFFER 0 7.2 . 1 7  Write the data buffer 
3Ch READ BUFFER 0 7.2. 1 2  Read the data bu ffer 
40h CHANGE DEFINITION 0 1 39 7.2. 1 Set SCSI version 
4Ch LOG SELECT 0 7.2 .6 Read statistics 
4Dh LOG SENSE 0 7.2.7 Read statistics 
56h RESERVE( IO) 0 7.20 Reserve LUN 
57h RELEASE( I 0) 0 7 . 1 7  Release reservation 

Note: Commands added in SCSl-3 are shaded l ight gray, mandatory commands dark gray. 

RECEIVE (08h) 

The RECEIVE command (relative to the initiator) instructs the target to send data to 

the initiator (Table 1 2.36). The direction of the transfer can be confusing. Remember 

that the direction is the same as that for READ, with which RECEIVE shares an opcode. 

SEND (OAh) 

The SEND command instructs the target to receive data from the initiator (Table 

1 2.37).  The transfer length indicates the amount of data to be sent. The AEN bit indi­

cates that the data packet is  in AEN format. This is used to send sense data to a 

processor device. 

AEN data format (SCSI-2) 

The workings of AEN are explained in detail in Chapter 20. Byte 0 of an AEN data 

packet contains in the lowest three bits the value LUNTRN. When the LUNTAR bit 

is set then LUNTRN reflects the target routine to which the data pertain. Otherwise 

the data pertain to the LUN specified in this field (Table 1 2.38).  

Table 12.36 The RECEIVE command. 

7 I 6 I 5 I 4 I 3 

0 RECEIVE (08h) 

I ( LUN) I 
2 (MSB) 

3 Data length 

4 

5 Control byte 

I 2 I I I 0 

Reserved 

(LSB) 
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Table 12.37 The SEND command. 

7 I 6 I 5 I 
0 

I (LUN) I 
2 (MSB) 

3 

4 

5 

4 I 3 I 2 I I 

SEND (OAh) 

Reserved 

Data length 

Control byte 

Table 12.38 Data format for asynchronous events (AEN/SCSI-2) . 

7 I 6 5 4 I 3 2 I I 

0 Reserved LUNTAR Reserved LUNTRN 

I 

2 Reserved 

3 

4 to Sense data, byte 0 

n + 4 Sense data, byte n 

AER data format (SCSI-3) 

I 0 

I AEN 

(LSB) 

I 0 

The AER data format (Table 1 2.39) is slightly different from the AEN format of 
SCSI-2. In particular, room has been made for the 64-bit LUN number as defined in 
the SAM architecture model. On the other hand, there is no more support for target 
routines . When set, the SCSI-3 bit indicates that the data is in AER format. 

Table 12.39 Data format for asynchronous events (AER/SCSI-3) .  

7 6 I 5 I 4 I 3 I 2 I I 

0 SCSI-3 

I 

2 Reserved 

3 

4 

. . .  LUN 

I I  

1 2  to Sense data, byte 0 

n + 1 2  Sense data, byte n 

I 0 



1 3  B lock-oriented devices 

The SCSI-3 standard unites the three device types, disk drives, WORM disks and 

optical storage devices in the SBC (SCSI Block Devices) document. For each of 

these device types, the device model is described first, followed by the command set 

and finally by the parameters. 

This classification is also reflected in the current edition of this book. However, 

this  book is based on the SCSI-2 standard. Changes introduced with SCSI-3 are 

added where necessary. You will find that in SCSI-3 there is not much change in the 

domain of block-oriented devices. 

1 3 . 1  The model of a SCSI d isk drive 

1 52 

I have chosen the term 'disk drive' for this device type because it is very widely 

used. To be precise, this class does not only include magnetic disk drives, but it also 

includes all devices that allow direct access to any logical block, such as disk drives, 

magneto-optical drives, diskettes and RAM disks . The ANSI standard knows this 

device type as ' direct access devices ' .  

The basic physical design of disk drives and the organization of data o n  the 

medium were described in Part I. Refer to Chapter 2 before continuing if any of the 

following terms are unclear: read/write head, sector, cylinder, logical block, ECC, 

CRC, mapping, interleave, track skew, and zone-bit recording 

logical blocks 

A SCSI disk drive presents the user with a sequence of logical blocks for storing 

information (Figure 1 3 . 1 ) .  These blocks can be written to and read any number of 
times. They are uniquely identified by their logical block number (LBN). The first 

logical block has the number 0, the last block has the number n-1 .  The value of n-1 

can be determined by means of the READ CAPACITY command. 
In contrast to tape drives, the logical blocks of a disk drive allow direct access to 

any block. The actual fetching of the data is completely transparent to the host. In 
general the host has no idea where on the medium a logical block is  located. 
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Logical blocks 
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Figure 13.1 Organization of the SCSI medium. 

Normally, a logical block contains user information exclusively. However, there 
are optional commands that allow limited access to format information such as ECC 
or CRC. 

The size of a logical block can vary between 1 byte and 64 Kbytes .  The most 
widely used size is 5 1 2  bytes, as is the case for the DOS operating system. In the 
UNIX world there are also blocks of 4 Kbytes.  A SCSI drive can accommodate more 
than one block size on a single medium. Theoretically, each block may be a differ­
ent size. 

Mapping 

The mapping of  logical blocks to  physical sectors i s  not specified in the SCSI stan­
dard (Table 1 3 . 1 ) .  However, it should be implemented in such a way that the time 
needed to access adjacent blocks is minimized. Most drives use a linear mapping, 
where adjacent logical blocks come from adjacent physical sectors. 

Table 13.1 Mapping of logical blocks . 

LBN Cylinder Head Sector 

0 0 0 0 

24 

Head switch 

25 

49 

0 0 

0 0 

0 

0 

24 

0 

24 

Adj acent track seek and head switch 

50 1 0 0 

1 9999 399 24 
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The following example will help to make this clear. Assume a drive with 400 
cylinders (tracks) ,  2 heads, and 25 sectors. A state-of-the-art disk drive can switch 
heads within the time it takes to rotate from one sector to another. A change of tracks 
typically takes around 2 ms. A linear mapping minimizes delays by switching heads 
before calling for a change of tracks. 

Extents 

A continuous sequence of blocks of the same size is called an extent. Extents are 
defined using the parameter list of a MODE SELECT command (see page 140). However, 
this optional feature is seldom employed. For most applications all blocks of a SCSI 
drive will have the same block size; that is, they will belong to a single extent. 

Notches 

Modern disk drives use zone-bit recording (ZBR) . Zone-bit recording has to do with 
how the information is stored on the medium. Here the outer tracks contain more 
sectors than the inner tracks (see Figure 1 3 .2). This becomes possible because the 
outer tracks are longer and therefore allow more sectors to be fitted on a track while 
maintaining the same recording density (bits per em) . The resulting regions of the 
drive that employ the same number of sectors per track are called notches . Notches 
are defined via notch pages in the mode parameters. In real terms, the existence of 
notches has almost no effect. However, in ZBR disks, the sustained data rate is 
higher in the outer zone than in the inner zone. 

Removable medium drives 

The medium of a SCSI drive may or may not be removable. Diskette drives, 
magneto-optical drives and removable cartridge drives are examples of removable 
medium drives. The medium is said to be 'mounted' when it is loaded into the unit 
and is ready to read or write. A SCSI drive in this state is said to be in condition 
ready. Any attempt to access a drive that is not ready leads to a CHECK CONDITION 

with the sense key NOT READY. You may use the TEST UNIT READY command to check 
whether a changeable medium is mounted or not. 

MODE· �arameter 
eader 

Block 
descriptor 1 :  
5 1 2  bytes/ 
logical block 

Block �g��ri���� : 

logical block 

MODE 
pages . . .  Extent 1 Extent 2 

Figure 13.2 SCSI extents and notches.  

Geometry 
page 

3 Sectors 
per track 

Notch 2: Notch 1 :  
four sectors three sectors 
per track per track 
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New in SCSI-3 are the so-called attached media changers . Already in SCSI-2, but 
also in SCSI-3 , there is a separate device type for media changers . These devices, 
which are often called juke boxes, allow remote-controlled transport of changeable 

media from a storage magazine into a drive and are regarded by SCSI as self-con­
tained devices with their own SCSI ID. They have their own, quite substantial set of 

commands .  
Attached media changers, instead, are integrated into the disk drive and thus have 

no SCSI ID of their own. Their command set is added to the command set of the 
drive. Attached media changers have only two commands, MOvE MEDIUM and READ 

ELEMENT STATUS . Whether a device has an attached media changer can be recognized 
by a set MChngr bit in the standard inquiry data. 

RAM disks 

The model of a SCSI disk drive does not specify that information must be stored in 
a nonvolatile manner. This allows for the implementation of a 'disk drive' out of 
RAM (hence RAM disk) . The result is lightning fast storage that loses information 
when the power is removed. 

MediiUim defects 

A medium defect prevents information from being written and read correctly. Such 

a defect renders an entire sector unusable. Defects are an unavoidable outcome of 
the plating process of rigid disks but can also result from a fingerprint on a diskette. 

Section 7 .2  goes into more detail concerning medium defects as they actually occur. 
SCSI makes it possible for a target to present a virtually defect-free medium to 

the outside world. This is done by replacing defective logical blocks with replace­
ment blocks set aside solely for this purpose. It does not concern an initiator whether 
or not a logical block has been replaced. The defect management is carried out by 
the drive alone. Replaceable medium drives like diskettes, however, cannot accom­
modate such an approach because here the physical format of the medium plays an 

important role. If SCSI defect management were employed then a diskette written 
on a SCSI drive could not be read by a standard PC floppy drive. 

There are a number of methods of defect management.  A target using automatic 
reallocation replaces a block automatically as soon as a defect is detected. This 
sounds very attractive but brings with it certain disadvantages as well. If the data in 
a logical block can no longer be read successfully the block will be replaced with a 
good one. However, the data in this block is obviously not what was written to the 
original defective block but rather the format pattern. For this reason the target 
should inform the host of such an action; it can do this using the message system. 
Automatic reallocation during writing, on the other hand, is not a problem. Here 
either the data is still in the write buffer and the target can write it to the new block 
or the target can respond to the host with a write error. Because of the inherent dif­
ferences SCSI allows these features to be enabled and disabled separately. 
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In addition to the above method where the drive autonomously manages defects 
is the more standard approach where the host is in charge. Here defective blocks are 
replaced using the command REASSIGN BLOCK. This method is preferred because the 
operating system has full control . 

Defect l i sts 

There are four different types of defect lists used with SCSI drives . The primary 
defect list (PList) contains the defects discovered by the manufacturer using analog 
testing equipment. Such equipment can find positions that might not cause errors 
until the medium ages.  The PList is permanent and never changes after the drive 
leaves the factory. The grown defect list (GList) contains additional defects that 
were discovered during the operation of the drive. These are defective blocks dis­
covered during formatting or reallocated either automatically or using REASS IGN 

B LOCK. The certification list (CList) contains defects that were discovered during the 
certification procedure of formatting. The defects of the CList belong to the GList as 
well . Finally, there are the defects that an initiator sends to the target. Called the 
DList, this list is sent to the target before formatting takes place, at which time it 
becomes part of the GList. The PList and GList together contain all medium defects. 

Data buffers all'lldl cache 

Every SCSI disk controller has a built-in memory buffer with at least enough room 
to store a sector 's  worth of data. A physical sector is written or read in entirety at 
one time, therefore the data must be processed in real time. Since SCSI cannot guar­
antee real-time performance a sector 's worth of data is first collected in the buffer 
before writing it to the medium. 

Pre-fetch 

When the data buffer is large enough to accommodate an entire track it is possible to 
implement speed enhancing options like read pre-fetch. Here a controller will assume 
that whenever a logical block X is to be read, block X+ 1 will be requested next. The 
validity of this assumption depends on the operating system of the host. Nevertheless, 
when the controller reads a sector it reads the rest of the track into the buffer as well . 
This extra work costs practically no time since it is merely a DMA transfer to the 
buffer. In the event that the subsequent blocks are called for the transfer can take place 
immediately. Otherwise, the data can simply be ignored with no penalty. 

Another method of optimization is possible when a large enough buffer is available. 
Assume that a large number of continuous blocks is requested from the drive. After 
the seek to the proper track is complete it is probably the case that the head is located 
somewhere in the middle of the set of requested blocks. Normally, the controller would 
wait until the first block rotates underneath the heads before starting to read. However, 
when the buffer is large enough the controller can begin to read the sectors into 
memory immediately. Afterwards the controller simply rearranges the order in which 
the data is sent to the host. This method can save many milliseconds of time. 
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Other methods of optimization are available when writing data to the drive. Consider 
the point in time just after the data has been collected into the controller 's  write 
buffer. Normally, the seek takes place and the data is written to the medium before 
COMMAND COMPLETE is sent to the initiator. However, if the controller responds 
immediately with GOOD status and COMMAND COMPLETE the access time is  effectively 
eliminated. This approach brings with it an element of risk. If the actual write to the 
medium should fail the host must be notified of the error. In SCSI-2 this is possible 
using AEN. Here the target informs the host that the WRITE command that originally 

terminated with GOOD status was, in fact, unsuccessful. More difficult is the situation 

where power is  lost. Drives are normally built so that once writing a sector has begun 
it can be completed, thus maintaining the integrity of the medium even when power 
is interrupted. However, implementing a feature whereby the entire data buffer could 
be saved would be much too costly. 

An operating system assumes that everything written to a drive is secure. If this 
is not, in fact, the case the results can be catastrophic. More than just data is at stake 
here : if configuration information or other operating system specific data is lost it 

may necessitate reinstallation of the entire system. However, as with any mechani­
cal device, failures do occur no matter what precautions are taken. In this case the 
increase in performance must be weighed against such risks . 

For these reasons this write feature is configurable using the cache page of MODE 

SELECT. When enabled, writes are extremely fast but data integrity is at risk; when 
disabled data integrity is maintained but with a degradation in performance. 

Cach ing 

Caching goes one step further with the data buffer than the techniques described 

above. S ince SCSI-2 provides a mode parameter page especially for configuring the 
cache we will look at caching here in greater detail .  Certain aspects of drive perfor­
mance as well as the definition of average access time can be found in Section 2 .3 .  

In  general a cache is fast storage which contains copies of  certain portions of 
another slower storage medium. The cache can be accessed usually at least an order 
of magnitude faster than the slower storage but is much smaller in capacity. A cache 
directory is used to determine whether a specific piece of data is  resident in the 

cache. When the desired data is in the cache we speak of a cache hit; otherwise it is  

called a cache miss .  
Caches were first employed in the main memory of mainframe computers. Here 

very expensive, very fast RAM is used to cache the slower, less expensive, but very 
large main memory of the system. Even though such a cache is typically only a frac­
tion of the size of main memory it is not uncommon to reach a hit quota of over 90%. 
Such success is due largely to the fact that much of computer programs are loops. 

The situation for mass storage is completely different. The effectiveness of a 
mass storage cache is very dependent on the operating system and application. At 
least in multi-user systems, disk accesses are distributed over the entire medium. 
There are, however, areas that are more frequently accessed, for example, directories 
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and tables that the operating system manages. This makes designing an effective 

disk cache very challenging. 

The hit quota of a disk cache usually lies under 50%. Nevertheless, the increase 

in performance can be quite high. A cache hit can turn a 17 ms disk access into a 

500 ns cache read. 

The effectiveness of a disk cache is strongly influenced by the way in which it is 

configured. The cache fills as read data is copied there. This can happen in parallel 

to the data transfer so that no loss in performance occurs. When write data is written 

first into the cache and then onto the disk it is referred to as write-through cache. 

Here the same potential problems can occur as earlier with the simple memory 

buffer. If the device waits until the data is written to the medium before responding 

with GOOD status there is no speed advantage. If GOOD status is returned upon receiv­

ing data into the cache, data may be lost. These two features - whether write-through 

cache is used and when status should be returned - can be controlled using the cache 

page parameters. A third option is read pre-fetch. Several parameters are used to set 

how many more blocks than requested should be read into the cache. 

The next issue relevant to cache management is determining which blocks should 

be overwritten when the cache is full .  The most simple and most commonly used 

approach displaces the data that has not been accessed for the longest time. This 

method can be enhanced by allowing certain areas in the cache to be exempt from 

being displaced. Additionally, it can be specified that pre-fetch data should be 

sacrificed first. 

1 3 .2 Hard d isk commands 

Table 13 .2 shows a l ist  of commands for disk drives. The most important of these 

are discussed here. 

Table 13.2 Hard disk commands. 

Op- Name Type Page SCS!-2 SCS!-3 Description 

code (SEC) 

OOh TEST UNIT READY M 1 3 1  7.2. 1 6  SPC Reflects whether or not the LUN is ready to 
accept a command 

O l h  REZERO UNlT 0 6. 1 . 1 3  Seek track 0 
03h REQUEST SENSE M 1 32 7.2. 1 4  SPC Returns detailed error information 
04h FORMAT UNIT M 1 63 8.2. 1 6. 1 . 1  Format the medium 
07h REASSIGN BLOCKS 0 8.2. 1 0  6 .  1 . 1 0 Defective blocks reassigned 
08h READ(6) M ! 59 8.2.5 6. 1 .5 Read. Limited addressing 
OAh WRITE(6) M ! 59 8.2.5 M 6 . 1 .20 0 Write. Limited addressing 
OBh SEEK(6) 0 8.2. 1 5  6 .  I .  I S  Seek to a logical block 
1 2h INQUIRY 7.2.5 SPC Returns LUN specific information 
I Sh MODE SELECT(6) 7.2 .8  M SPC O Set device parameters 
1 6h RESERVE UNIT 8.2. 1 2  6. 1 . 1 2  Make LUN accessible only to certain 

initiators 
1 7h RELEASE UNIT 1 36 8.2. 1 1  6. 1 . 1  I Make LUN accessible to other in i tiators 
1 8h COPY 7.2.3 SPC Autonomous copy from/to another device 
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Table 13.2 Hard disk commands (continua[). 

Op- Name Type Page SCS!-2 SCSI-3 Descriprion 

code (SBC) 

I Ah MODE SENSE(6) 1 40 7.2. I O M  S PC O  Read device specific parameters 
I Bh START/STOP UNIT 0 8.2. 1 7  6. 1 . 1 7  Load/unload medium 
I Ch RECEIVE DIAGNOSTIC 0 7.2. 1 3  SPC Read self-test results 

RESULTS 

I Dh SEND DIAGNOSTIC M 1 3 8 7.2. 1 SPC I n i tiate self-test 
I Eh PREVENT/ ALLOW 0 8.2.4 6. 1 .4 Lock/unlock medium 

MEDIU�I REMOVAL 

25h READ CAPACITY 1 62 8.2.7 6. 1 .7 Read number of logical blocks 
28h READ(IO) 1 59 8.2.6 6. 1 .6 Read logical block 
2Ah WRITE(IO) 8.2.6 M 6. 1 .2 1  0 Write logical block 
2Bh SEEK(IO) 8.2. 1 5  6. 1 . 1 5  Seek to a logical block 
2Eh WRITE AND VERIFY 8.2.22 6. 1 .22 Write logical block, verify success 
2Fh VERIFY 0 1 5 .2. 1 1  6. 1 . 1 9  Verify 
30h SEARCH DATA HIGH 0 8.2. 1 4  6. 1 . 1 4 Search logical blocks for data pattern 
3 I h  SEARCH DATA EQUAL 0 8.2. 1 4  6. 1 . 1 4 Search logical blocks for data pattern 
32h SEARCH DATA LOW 0 8.2. 1 4  6. 1 . 1 4  Search logical blocks for data pattern 
33h SET LIMITS 0 8.2 . 1. 6  6. 1 . 1 6 Define logical block boundaries 
34h PRE-FETCH 0 8.2.3 6. 1 .3 Read data into bu ffer 
35h SYNCHRONIZE CACHE 0 8.2 .8  6. 1 . 1 8  Write cache to medium 
36h LOCK/UNLOCK CACHE 0 8.2.2 6. 1 .2 Hold data in cache 
37h READ DEFECT DATA 0 8.2 .8  6. 1 . 8 Read l i st of defective blocks 
39h COMPARE 0 7.2.2 SPC Compare data 
3Ah COPY AND VERIFY 0 7.2 .4 SPC Autonomous copy from/to another device, 

verify success 
3 B h  WRITE BUFFER 0 7.2 . 1 7  SPC Write the data buffer 
3Ch READ BUFFER 0 7.2 . 1 2  SPC Read the data buffer 
3Eh READ LONG 0 1 6 1  8 .2 .9 6. 1 .9 Read data and ECC 
3Fh WRITE LONG 0 1 6 1  8.2.23 6. 1 .23 Write data and ECC 
40h CHANGE DEFINITION 0 1 39 7 . 2 . 1 SPC Set SCSI version 
4 l h  WRITE SAME 0 8.2.24 6. 1 .24 Write data pattern 
4Ch LOG SELECT 0 7.2.6 SPC Read statistics 
4Dh LOG SENSE 0 7.2.7 SPC Read statistics 
55h MODE SELECT( IO) 0 1 40 7.2.9 SPC Set device parameters 
5Ah MODE SENSE(IO) 0 1 40 7.2. 1 0  SPC Read device parameters 
A5b MOVE MEDIUM 0 2 1 8  1 6.2.3 SMC Move medium 
B8h READ ELEMENT STATUS 0 220 1 6.2.5 SMC Read element status 

Nore: Commands added to this command set in SCSI-3 are shaded light gray ; mandatory commands are 
shaded dark gray. (M) means that the command is classified differently in SCSI-2 and SCSI-3.  The 
corresponding classification is indicated after the reference to the standard. 

READ(6) (08h) and WRITE(6) (OAh) ;  
READ(l 0)  (28h) and WRITE(l 0)  (2Ah) 

The READ command requests a certain number of logical blocks from a target. The 

WRITE command provides a target with a number of logical blocks to be written to the 

medium. The structure of these commands is identical (Table 1 3 .3) .  Each contains the 

start address and the transfer length expressed in logical blocks. 
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Table 13.3 READ and WRITE commands .  

7 1 6 1 5 1 4 1 3 1 2 1 1 1 0 7 1 6 1 5 1 4 1 3 1 2 1 1 1 0 
0 READ(6) (08h) or WRITE(6) (OAh) 0 READ( 1 0) (28h)  or WRITE( I O) (2Ah) 

I (LUN) I (MSB) I (LUN) I DPO I FUA I Res. jRel 

2 Logical block 2 (MSB) 
r-- r--

3 (LSB ) 3 
r---

4 Data length 4 Logical block 
r---

5 Control byte 5 (LSB ) 

6 Reserved 

7 (MSB) Data length 
r---

8 (LSB) 
9 Control byte 

There is a 6-byte as well as a 1 0-byte version of both the READ and WRITE com­
mands . Implementation of the READ commands is mandatory in both SCSI-2 and 
SCSI-3, whereas the WRITE command is only mandatory in SCSI-2. 

The 6-byte version stems from SCSI's predecessor SASI. It has the disadvantage 
that only 2 1  bits are provided for the logical block address. Assuming a block length 
of 5 1 2  bytes, this allows a little more than a gigabyte to be addressed. For many 
modem drives this is simply not adequate. 

The 6-byte dlemo!l1l 

It is hard to believe but at  one time there existed software drivers and firmware that 
used the 6-byte READ and WRITE commands .  At the same time these adapters were 
capable of recognizing and using the full capacity of drives of more than a gigabyte. 
When a block above the magical 2 1 -bit boundary was addressed, the host adapter 
would simply ignore the uppermost bits . Of course, this would address and write the 
wrong logical block on the drive. You can imagine what happened. An operating 
system would gradually fill a drive starting with the lowermost logical blocks . The 
system would operate normally until the 2 1 -bit address was reached, at which time 
logical block 0 would be overwritten. This mistake would wipe out the boot block, 
the internal medium tables,  and the directories (in this order) . The drive would mys­
teriously become unusable without even a hardware error having been detected. For 
this reason it is highly recommended to avoid the 6-byte READ and WRITE commands,  
and if you ever find yourself the victim of unexplainable data corruption be sure to 
investigate whether or not the 6-byte demon is to blame. 

Parameters 

Other than the start address and transfer length, the 6-byte versions have no para­
meters . As with all block oriented 6-byte commands,  a transfer length of zero 
actually means that 256 are requested. In contrast, zero transfer length means just 
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that for the 1 0-byte commands and no data is sent . In the 1 0-byte version there are 

a number of additional control bits: 

® Dl?O (disable page output) : This bit helps the target to manage the cache. If it is 

set, it tells the target that the host does not intend to read the data again in the near 

future. The target may decide not to keep this data in the cache. 

® FUA (force unit access) :  When this bit is set the target is forced to read the data 

from the medium even if it resides in the cache. If the cache contains a newer 

version of the data then it must first be written to the medium and then re-read. In 

the case of a WRITE command the target must wait until the data is on the medium 

before responding with GOOD status. This affects drives with cache as well as with 

buffer memory. 

s Rei (relative addressing) : This bit, which is valid only in conjunction with linked 

commands,  causes the start address to be interpreted as an offset to the start 

address of the last command. 

READ LONG (JJEh)  and WRITE LONG (JIFh) 

The most important variants to  the READ and WRITE commands are READ LONG and 

WRITE LONG. Both are 1 0-byte commands, which operate not only on the user data 
but also on the ECC. Moreover, these commands operate on strictly one block at a 
time (Figure 1 3 .3 ) .  The transfer length is interpreted as the number of bytes to trans­

fer. There are also some differences in byte I .  The DPO and FUA bits do not exist, 

whereas bit 1 of a READ LONG command is the COOR control bit. Only if cooR is set 

will data correction be attempted in the event of a read error. Otherwise the data will 

be transferred just as it comes from the medium. 

The type of encoding used to write data onto the medium as well as the ECC poly­

nomial is vendor specific. However, the ECC polynomial must be known if we wish 

to write a valid ECC along with the data. Unfortunately, this makes it necessary to 
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know device specific information when using READ LONG or WRITE LONG, which is at 
odds with the vendor independent philosophy of SCSI. 

A very practical application of these commands is in the testing of a system's 
response to a data error. To accomplish this the drive is first connected to a PC 
running the SCSI monitor and a logical block is read using READ LONG. After modi­
fying a few bytes the data is written back to the drive using WRITE LONG. Now in the 
system, the first access to this block will result in an ECC error. With a little prac­
tice it is possible to produce correctable as well as uncorrectable data errors . 

Other variants of READ al!1ldl WRITE 

Two additional commands remain to be mentioned: WRITE AND VERIFY writes data to 
the medium and then reads it back while comparing it to the original data. The data 
is only transferred once across the SCSI bus.  Another way to insure absolute data 
integrity from host memory to the medium is to link together a standard READ and 
WRITE command and then compare the data in host memory. Finally, the command 
WRITE SAME allows one to write the same block several times to the medium. 

READ CAPACITY (25h) 
Also mandatory for disk drives is the command READ CAPACITY (Table 1 3 .4) .  I t  has 
the standard structure of 1 0-byte commands and returns eight bytes of information: 
four bytes reflect the last LBN of the drive while the remaining four reflect the block 
length. 

The PMI (partial medium indicator) control bit, byte 8 ,  bit 0, plays an important 
role. When clear, the command returns the LBN of the last logical block of the 
medium as described above. In this case the block number in the command block 
must be zero. 

When PMI is set the command returns something completely different. Now the 
LBN in the command is interpreted and the target returns the next LBN, after which 

Table 13.4 The READ CAPACITY command. 

7 I 6 I 5 I 4 I 3 I 
0 READ CAPACITY (25h)  

I (LUN)  I Reserved 

2 (MSB)  

3 Logical 

4 block 

5 

6 

7 Reserved 

8 

9 Control byte 

2 I 1 I 0 

I Rei 

(LSB)  

I PM! 



Table 13.5 The FORMAT UNIT command. 

7 I 6 I 5 I 4 I 3 

0 FORMAT UNIT (04h ) 

I (LUNJ  I Fmt I Cmpl 

2 Vendor specific 

3 (MSB)  Interleave 

4 

5 Control byte 
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I 2 I I I 0 

I Defect l i s t  format 

(LSB) 

a noticeable delay in access will occur. Delays in access occur, for example, at cylin­
der boundaries.  Using this command the operating system can determine whether a 
certain area of frequently accessed storage is ideally located. 

FORMAT UNIT (04h) 

The FORMAT UNIT command instructs the target to  format the medium of  a specific 
LUN (Table 1 3 .5 ) .  In its simplest form no parameters are sent and the target formats 
using default settings. The actual formatting procedure has two phases. First the phys­
ical medium is  formatted, meaning that each sector is written with header, data, and 
ECC information. Afterwards, the mapping from physical blocks to logical blocks 
takes place. Finally, during a second pass over the medium defective blocks are re­
allocated; that is, replaced with reserve blocks . The target will also accept a list of 
additional medium defects to be reallocated in a parameter block. Since format para­
meters are set using the MODE SELECT command it is imperative to first use MODE 
SELECT, then the FORMAT command. Only in this way will the drive configuration 
reflect the desired mode parameters (see Figure 1 3 .4) . 

MODE 
SELECT 

Extents, 
sectors, 
offsets, 
etc . . . .  

FORMAT UNIT 

I nterleave, Dlist 

Figure 13.4 Influences on formatting. 
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The following parameters are contained in the command itself: 

• Fmt (format data) : This bit must be set when a parameter list follows the FORMAT 

UNIT command. 

• Cmpl (complete) : This bit may only be set when Fmt is set. It indicates that the 
defect list in the parameter list is exhaustive. All defect lists except the PList are 

deleted and newly constructed. 

• Defect list format: This field indicates one of three defect list formats:  block 

format (OOOb), index format ( 1 00b) ,  or sector format ( l O lb) .  Only one format 
type is allowed in a single parameter list. The formats are described in detail later 

in this section under the heading 'Defect descriptors ' .  

• Interleave: The term ' interleave' i s  explained i n  Chapter 2. This field indicates 

the interleave that should be employed. A value of OOh means that the target 

should use its default values. To assure a one-to-one interleave a value of O l h  
must b e  used. 

Parameter l i sts 

Figure 1 3 .5 describes by way of example the structure of the FORMAT UNIT parame­

ter list. Bytes 0 to 3 contain the header. Next comes the optional initialization pattern 

descriptor. This has a variable length, which in this example spans from byte 4 to 

byte 8. This is followed by optional defect descriptors . Thus ,  a parameter list is nec­

essary when sending either an initialization pattern or defect lists with the FORMAT 

command. Any other pertinent format information is found in the MODE parameter 

pages, especially the format page. 

In addition to the control bits in byte 1 ,  the header of the parameter list contains 

the length of the defect lists in bytes 2 and 3. This length may be zero. The number 

of defects can be inferred from the list length together with the list format in byte 1 

of the command itself. A description of the control bits follows :  

• FOV (format option valid) : Only when this bi t  is set  are the bits DPR, DCR, STP, 
IP and DSP valid. Otherwise, these bits must be set to zero and the target will use 

its default values. 

• DPR (disable primary) :  When this bit is set a PList will not be transferred to the 
target. The PList constructed by the manufacturer, however, remains intact. 

• STP (stop format) :  This bit controls what should happen when the target does , in 
fact, accept a PList or GList to use in formatting, but the list cannot be found or 

read. In both cases the command terminates with CHECK CONDITION status .  When 
STP is set, the target will abort formatting and prepare the sense key MEDIUM 

ERROR. Otherwise, the formatting will take place and the sense key RECOVERED 

ERROR will be available. 

• IP (initialization pattern): When set this bit indicates that the parameter list con­
tains a descriptor for the initialization pattern. 

• DSP (disable saving parameters) :  Normally all mode parameters are saved during 
the formatting process. This action is inhibited when DSP is set. 
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7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 

0 Reserved 

I FOV I DPR I DCR I STP I IP I DSP I Imm I vs 

2 (MSB) Defect l is t  length 
1----

3 here 0008h 

4 IP-Mod I Reserved 

5 Pattern type 

6 (MSB) Pattern length 
1----

7 here OOO lh  

8 Initialization pattern 

9 Defect descriptor l 
1----

1 0  
-

I I  
-

1 2  

1 3  Defect descriptor 2 
-

1 4  
-

I S  
-

1 6  

7 I 6 I 5 I 4 I 3 I 
0 FORMAT UNIT (04h) 

I (LUN) I Fmt I Cmpl I 
2 Vendor specific 

3 (MSB) Interleave 
-

4 

5 Control byte 

Code Defect list format 

OOOb Block format, 4 bytes long 
L OOb Index format, 8 bytes long 
! O l b  Sector format, 8 bytes long 

Figure 13.5 FORMAT UNIT with parameter list. 

(LSB) 

(LSB) � 

2 I 1 I 0 

Defect list format 

(LSB) 

• Imm (immediate): The setting of this bit causes status to be returned as soon as 

the parameter list has been received. Otherwise the status is sent after completion 

of the task as usual. 

• VS: (vendor specific) 

If IP is set then an initialization pattern descriptor follows the parameter list header. 

This pattern is a sequence of bytes that are written as data to each block of the drive. 
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• IP-Mod: These control bits allow the target to modify a portion of the initializa­
tion pattern for each block. 0 1  b means that the first four bytes of every logical 
block should contain the logical block number. l Ob means that each physical 
block should contain the logical block number. OOb leaves the initialization 
pattern unchanged. 1 1  b is reserved. 

• Pattern type: Here OOh means that the target should use its default pattern. In this 
case the pattern length must also be zero or a CHECK CONDITION will result. A 
value of O l h  causes the supplied pattern to be used. The remaining values are 
reserved or vendor specific. 

• Pattern length: Indicates the length of the initialization pattern. 

• Initialization pattern: This pattern is written to each logical block during the 
formatting process. The pattern is repeated until the block is filled. 

The rest of the parameter block is comprised of the defect descriptors . The defect 
descriptors that are used with FORMAT UNIT as well as other commands receive 
special attention in their own section. 

In conclusion, consider again the example in Figure 1 3 .5 .  An arrow points from the 
IP bit to the beginning of the initialization pattern descriptor because only when this 
bit is set will the descriptor follow. The pattern length contains the pointer, which 
points to the end of the descriptor. The defect list length together with the pattern 
length points to the end of the entire parameter list. In the defect list format field of the 
FORMAT UNIT command is the value OOOb, indicating 4-byte long defect descriptors. 

Defect descriptors 

Defect descriptors are used by the commands FORMAT UNIT, READ DEFECT DATA, SEND 

DIAGNOSTIC and RECEIVE DIAGNOSTIC RESULTS. The various formats are selected using 
a 3-bit code. 

Block format (OOOb) 

The four bytes of the descriptor contain the LBN of the block in which the defect is  
located (Table 1 3 .6) .  When using the block format the l is t  must be constructed in 
ascending order. An LBN may correspond to more than one sector. 

I ndex format (1 OOb) 

The index pulse indicates the beginning of every track on the disk. The first four bytes 
of the index format contain the cylinder and head number of the defect (Table 1 3 .7) .  

Table 13.6 Defect descriptor in block format. 

0 (MSB)  

1 Block number of 

2 defective block 

3 (LSB)  
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Table 13.7 Defect descriptor in index format. 

0 (MSB) Cylinder number of 

I defective block 

2 (LSB) 

3 Head number 

4 (MSB)  

5 Position of defect as 

6 bytes after index 

7 (LSB)  

The remaining four bytes contain the defect position measured in bytes from the 
index. If FFFFFFFFh is given here the entire track should be regarded as defective. 
For drives that support variable sector lengths, only the index format may be used 
for the manufacturer 's  defect list (PList). 

Note that numbers such as FFFFFFFFh are often referred to as - 1 , which corre­
sponds to their signed integer interpretation. Although this is easier to pronounce, 
the width of the number is no longer apparent. 

Sector format (1 01 b) 

The sector format is in structure exactly like the index format except that bytes 4 
through 7 contain the sector number of the defect. Here too a sector number of 
FFFFFFFFh indicates that the entire track is defective (Table 1 3 . 8) .  

Commands for cache management 

In addition to the commands that implicitly modify the cache, there are a number of 
SCSI-2 commands that configure the cache directly. 

The command LOCK/UNLOCK CACHE allows certain regions in the cache to be 
locked. Locked blocks will not be overwritten by other data. The command is struc­
tured like a READ( I O) command. Byte 1 ,  bit 1 is the lock bit. When set, a region is 

Table 13.8 Defect descriptor in sector format. 

0 (MSB)  Cylinder number of  

I defective block 

2 (LS B )  

3 Head number 

4 (MSB)  

5 Defective 

6 sector 

7 (LSB)  
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locked; otherwise it is freed. Only those regions that are in the cache at the time of 
the command are affected. The command PRE-FETCH is also structured like READ( I O). 
It instructs the target to read the specified blocks from the medium into the cache. 
No transfer across the SCSI bus takes place. 

Finally, SYNCHRONIZE CACHE causes the target to write the specified region of the 
cache to the medium. This makes sense when a target has been allowed to respond 
to WRITE commands immediately with GOOD status before actually writing the 
medium. 

1 3 .3 Mode paD'ametell' pages foil' dlos� dlll'nves 

The following mode parameter pages are defined for disk drives (Table 1 3 .9) :  

Format page (03111 ) 

The format page contains the information necessary to format the medium (Table 
1 3 . 1 0) .  In particular it contains information concerning replacement sectors and 
tracks . The terms interleave, track skew and cylinder skew were already covered in 
Chapter 2 .  

A new term is introduced here, however, which has special meaning in the SCSI 
world. With respect to SCSI,  a zone refers to a group of tracks to which a certain 
number of replacement sectors or tracks are allocated. 

Outside the world of SCSI the term zone is often used in the context of zone-bit 
recording. Zone-bit recording refers to a recording technique whereby the outer 
cylinders are written with a higher bit density, and therefore more sectors , than the 
inner cylinders . In SCSI the regions with a constant number of sectors are called 
notches. It is unfortunate that the terminology is inconsistent here. 

A look at the format page reveals that many values vary with each notch. It is  pos­
sible for a target to define some or all mode parameter pages separately for each 

'fable 13.9 Mode parameter pages for disk drives . 

Page Name Page SCSI-2 SCSI-3 

code (SBC) 

0 1 h  Read/write error page 8 .3 .3 .6  7 . 1 . 3 .6  
02h D isconnect/reconnect page 1 45 7 .3 . 3 .2  SPC 
03h Format page 1 68 8 .3 . 3 . 3  7 . 1 . 3 . 3  
04h Disk drive geometry page 1 70 8 .3 .3 .7  7 . 1 . 3 .7  

05h  Floppy d i sk  page 8 .3 .3 .2  7 . 1 .3 .2  

07h Verify error page 8 . 3 . 3 . 8  7 . 1 . 3 . 8  
08h Cache page 1 72 8 . 3 .3 . 1  7 . 1 . 3 . 1  

09h Peripheral device page 1 46 7 . 3 . 3 . 3  SPC 
OAh Control mode page 1 47 7 . 3 .3 . 1  SPC 
OBh Medium type page 8 . 3 . 3 .4 7 . 1 .3 .4  
OCh Notch page 1 74 8 .3 . 3 . 5  7 . 1 . 3 . 5  
ODh Power condition page 7 . 1 . 3 .6  
1 Ch Informal exception page SPC 



Table 13.10 Format page. 

7 6 5 I 
0 PS Res 

1 

2 (MSB)  

3 

4 (MSB) 

5 

6 (MSB) 

7 

8 (MSB)  

9 

1 0  (MSB)  

1 1  

1 2  (MSB)  

1 3  

1 4  (MSB)  

1 5  

1 6  (MSB)  

1 7  

1 8  (MSB) 

1 9  

20 SSEC HSEC RMB I 
2 1  

22 

23 
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4 I 3 I 2 I I I 0 

Format page (03h) 

Page length ( 1 6h) 

Tracks per zone 

(LS B )  

Replacement sectors 

per zone (LS B )  

Replacement tracks 

per zone (LSB)  

Replacement tracks 

per LUN (LSB)  

Sectors 

per track (LSB)  

Data bytes 

per sector (LSB)  

Interleave 

(LSB)  

Track skew 

(LSB) 

Cylinder skew 

(LSB)  

S U R F  I Reserved 

Reserved 

notch. A special notch page contains the number of active notches influenced by the 

MODE commands: 

• Tracks per zone: The entire medium is divided into zones consisting of this 

number of tracks per zone. The last zone may have fewer tracks. A value of zero 

treats the entire medium as a single zone. 

• Replacement sectors per zone: A zero instructs the target to use its default 

value. However, a notch page, if implemented, can be used to achieve zero 

sectors per zone. 

• Replacement tracks per zone: Alternate tracks make it possible to replace an 

entire track that contains many defects . A value of zero is interpreted as such in 

this field. 
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• Replacement tracks per LUN: Corresponds to the above fields with respect to 
a LUN. 

• Sectors per track: This is the number of physical sectors including alternates per 
track. 

• Bytes per sector: This is the number of data bytes per physical sector. This is not 
necessarily equal to the number of bytes per logical block. 

• Interleave: This field is  only valid for MODE SENSE. It reflects the value defined 
by FORMAT UNIT. 

• Track skew: Specifies the number of physical sectors between the last logical 
block of one track and the next logical block of the next track (see also Chapter 
2) .  

• Cylinder skew: Specifies the number of physical sectors between the last logical 
block of one cylinder and the next logical block of the next cylinder (see also 
Chapter 2) .  

• SSEC (soft sector) : Specifies that the drive should use soft sectoring. 

• HSEC (hard sector) : Specifies that the drive should use hard sectoring. 

The target must support either hard or soft sectoring or both. 

• RMB (removable) : The target uses removable medium. This must reflect the 
information returned by the INQUIRY command. 

• SURF (surface) : When this bit is zero logical blocks are allocated progressively 
to the sectors of a cylinder before those of the next cylinder. When SURF is set 
logical blocks are allocated progressively to the sectors of a surface before those 
of the next surface. Most hard disks have this bit clear; most diskette drives have 
it set. 

It is obvious that alternate sectors reduce the space available for user data. If too 
many alternate sectors are allocated then storage is sacrificed unnecessarily. On the 
other hand, the medium is unusable as soon as all alternate sectors have been 
exhausted. The answer is to find a compromise somewhere in between these two 
extremes. 

In practice this is achieved in the following way:  for simplicity, assume a medium 
with constant geometry; that is, without notches. A zone is defined as being a single 
track. For each zone one alternate sector is allocated. When necessary this alternate 
sector can be read with almost no delay. If additional sectors of the track are defec­
tive the entire track is reallocated. An alternate cylinder should be set aside for every 
200 cylinders. This rule of thumb allocates between 3% and 5% of the drive capacity 
to replacement sectors . 

Disk drive geometry page (04h) 

Hard disks and diskettes use different geometry pages. In this book, however, only 
the hard disk geometry page is discussed. This page pertains to hard drives with 
removable medium as well . With the exception of spindle synchronization, the 



Mode parameter pages for disk drives 1 71 

Table 13.11 Mode commands: geometry page. 

7 6 5 I 4 I 3 I 2 I 1 I 0 

0 PS Res Geometry page (04h) 

I Page length ( 1 6h)  

2 (MSBJ  

3 Number of cyl inders 

4 (LSB)  

5 Number of heads 

6 (MSB)  Start cyl inder 

7 for 

8 write compensation (LSB)  

9 (MSB)  Start cyl inder 

1 0  for 

I I  reduced write current (LSB)  

1 2  (MSB)  Step rate 

1 3  (LSB)  

1 4  (MSB)  Cyl inder number 

1 5  of 

1 6  landing zone (LSB)  

1 7  Reserved I RPL 

1 8  Rotational offset 

1 9  Reserved 

20 (MSB) Medium 

2 1  rotation rate (LSB)  

22 Reserved 

23 

parameters deal strictly with fixed geometry information (Table 1 3 . 1 1 ) .  Changeable 

parameters such as the number of sectors and sector length belong to the format 

page. For most fields, the relevant background terminology is explained in Chapter 2 .  

The rotational position locking field is used to synchronize the spindles of two or 

more individual disk drives . Synchronization makes it possible to read and write 

blocks from different drives at precisely the same time without latency delays by 

ensuring that these blocks rotate underneath the heads of their respective drives in 

unison. The drives must not only have the same rotational speed but must also syn­

chronize the relative positions of the heads with respect to the medium. This is 

accomplished by declaring one drive the master and the remaining drives slaves, 

which govern their speed relative to the master. Here additional signals are needed 

that are not provided by the SCSI bus. Spindle synchronization is employed in RAID 
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arrays, which achieve very high throughput by accessing drives in parallel while 
eliminating latency delays.  

• RPL (rotational position locking): OOb disables synchronization; Olb instructs 

the drive to act as a slave, and lOb as a master. 

• Rotational offset: This byte reflects the amount of rotational offset a slave will 

have to its master measured in 1 1256th of a rotation. This allows a staggering of 

the individual disks. 

Cache page (08h)  

Table 1 3 . 1 2  shows the cache parameter page for the MODE commands. I n  SCSI-3 ,  the 

cache page is complemented with several parameters and bits which make its length 

grow from 1 2  to 19 bytes . First, we will describe the elements which exist both in 

SCSI-2 and in SCSI-3 .  

• WCE (write cache enable) :  When set  the target replies with a GOOD status as soon 

as all of the data has been received into the cache. Otherwise this status may not 

be returned until the data has been successfully written to the medium. Be aware 

that when WCE is set the target decides when to write the data to the medium. 

There may be a substantial delay here if a large number of 110 processes must be 

processed. The command SYNCHRONIZE CACHE forces all cache data yet to be 

secured to be written to the medium. 

• MJF (multiplication factor) : Normally the values for pre-fetch maximum and 

minimum reflect a certain number of blocks . However, when MF is set these 

values represent scalars which are to be multiplied with the transfer length to 

obtain their meaning. 

e RCD (read cache disable) : Causes the medium to be read even if the data resides 
in the cache. 

• Read retention priority and write retention priority: Specify with what prior­

ity the data either read or written into the cache is to be maintained. The priority 

given is with respect to data resulting from pre-fetch operations . Oh means that all 

data should be treated equally ; 1h gives the data a lower priority than pre-fetch 

data; Fh gives the data higher priority than pre-fetch data. 

• Disable pre-fetch transfer length: This field specifies the maximal transfer 
length for which a pre-fetch should occur. Zero disables pre-fetch. 

• Pre-fetch minimum: This field specifies the minimum number of blocks that 

should be pre-fetched regardless of whether other commands are impeded. 

® Pre-fetch maximum: This field specifies the maximum number of blocks that 

should be pre-fetched. 

The interpretation of the above two fields is independent of the MF bit. If both 

values are equal pre-fetch will occur regardless of other pending commands .  If there 
is a difference between minimum and maximum, a pre-fetch will be broken off 
inside this interval if otherwise another command would be delayed. 
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Table 13.12 Mode parameter cache page. 

7 6 5 I 4 
0 PS Res 

3 I 2 

Cache page (08h) 

I Page length (OAh, SCSJ-3 : 1 2h) 

2 I C  ABPF CAP I DISC SIZE I WCE 

J I I 

I MF I 
3 Read retention priority Write retention priority 

4 (MSB) Disable pre-fetch 

5 transfer length 

6 (MSB) Pre-fetch minimum 

7 

8 (MSB) Pre-fetch maximum 

9 

1 0 (MSB) Absolute pre-fetch maximum 

I I  

1 2  FSW LBCSS DRA I V S  vs I Reserved 

1 3 Number of cache segments 

1 4  (MSB) Cache segment size 

1 5  

1 6  Reserved 

1 7  . . .  Size of segment 

... 1 9  not reserved for cache 

0 

RCD 

(LSB) 

(LSB) 

(LSB) 

(LSB) 

(LSB) 

• Absolute pre-fetch maximum: This field only has meaning when MF is set. It 

limits the pre-fetch length resulting from the multiplication factor. 

In SCSI-3, the following new parameters are introduced: 

• IC (initiator control) : When set, the device server must adj ust its cache size 

according to the parameters in bytes 1 3  to 19 .  Otherwise, it can use its own algo­

rithm to determine the size. 

• ABPF (abort pre-fetch): The device server must abort pre-fetch processes when 

it is selected. 

• CAP (caching analysis permitted): The device server may perform an analysis of 
the cache processes in order to optimize its strategy, even if the throughput may 

momentarily suffer. When CAP is not set, this is prohibited. 

• DISC (discontinuity): The device server should pre-fetch also across discontinu­

ities and track changes, until the buffer is full. 

• SIZE (size enable): The value in bytes 14 and 15 is valid and should be used. 

• FSW (force sequential write): The device server should write logical blocks in 

the cache in ascending sequential order. When FSW is not set, the device server 

can determine the order itself. 
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• LBCSS (logical block cache segment size) : When set, the cache segment size is 
specified in logical blocks , otherwise in bytes.  

• DRA (disable read ahead): Read-ahead is prohibited. 

• VS: Vendor specific. 

Notch page (OCh) 

The notch page describes the regions of the disk with a constant number of sectors 
per track (so-called notches) .  This optional page does not even have to be imple­
mented for drives that do, in fact, contain regions of varying number of sectors 
(Table 1 3 . 1 3) .  If notch pages are implemented then each notch will have its own 
page (Figure 1 3 .6) .  

• ND (notched drive) : Only when this bit is set is the notch page valid. Otherwise 
the drive has no notches and the rest of the page is empty. 

• LPN (logical or physical notch) :  When set this bit indicates that the boundaries 
of the active notches are expressed as logical blocks . Otherwise they are 

Table 13.13 Mode commands: notch page. 

7 6 5 I 4 I 3 2 

0 PS Res Notch page (OCh) 

l Page length ( l 6h) 

2 ND LPN Reserved 

3 Reserved 

4 (MSB) Maximum number 

5 of notches 

6 (MSB) Active notch 

7 

8 (MSB) 

9 Beginning of 

1 0  active notch 

l l  

1 2  (MSB) 

1 3  End of 

1 4  active notch 

1 5  

1 6  3Fh 3Eh 3Dh I . . .  

. . .  Mode pages 

. . .  with notches 

23 . . .  I 04h I 03h 02h 

1 0 

(LSB)  

(LSB)  

(LSB) 

(LSB)  

O l h  OOh 
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Figure 13.6 Mode parameter pages with notches. 
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page 
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Cache page 

expressed as physical addresses. Here the three most significant bytes hold the 
cylinder number and the lowest byte the head number. 

• Active notch: This field contains the number of the notch to which this page and 
other MODE SELECT pages refer. This number is valid until it is changed by MODE 
SELECT. A zero means that subsequent mode commands pertain to those parame­
ters that apply across all notches. 

• Mode pages with notches : This field is 8 bytes long or a total of 64 bits . Each 
bit represents one of the MODE pages from OOh to 3Fh. The most significant bit 
corresponds to page 3Fh, the least significant to page OOh. A set bit means that 
the corresponding MODE page contains parameters that may be different for dif­
ferent notches. A zero means that the page applies to all notches . 

1 3 .4 The SCSI model of optical storage and WORM d rives 

The SCSI model of optical storage is very similar to that of regular disk drives . We 
will use magnetic disk drives as a basis for comparison and discuss the differences 
as they become relevant. 

One difference between the two is that optical storage has the potential for much 
greater storage capacity. For this reason 1 2-byte commands have been defined for 
medium access commands. These have a 32-bit logical number field, like the 1 0-
byte version, but also a 32-bit wide transfer length. 

The device type for optical storage is very diverse. It includes read-only media 
(like CD-ROM),  media that can be written only once (WORM drives) and media 
that can be rewritten indefinitely. CD-ROM and WORM drives, however, each have 
their own device type. Except for the audio dimension of CDs, these device types 
represent subclasses of the optical storage device type presented here . 

Optical storage drives are often capable of working with all three types of 
medium. For this reason an initiator must use a MODE SENSE to determine what type 
of medium is involved when working with a device of this class .  Naturally, this must 
occur whenever the medium is replaced. 

Optical storage has physical characteristics that are foreign to magnetic disk drives. 
These differences are accounted for in the command set. For example, for WORM 
drives, there is the MEDIUM SCAN command that allows the seeking to locations that 
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have not been written. Many rewritable optical medium drives require that data be 
erased before being written again. There is also a command for this purpose. 

WORM drives have their own device type, which is a proper subclass of optical 
storage. Both of these are covered here. We postpone the discussion of CD-ROM at 
this point since its audio capabilities make it worthy of a separate chapter. 

Generatimns of a �ogicai b;ock 

Many optical storage devices are capable of emulating the rewriting of a block. The 
UPDATE command writes the modified logical block to another location on the 
medium and makes it available via a pointer to the new location. The original logical 
block remains unchanged and represents an earlier generation of the data. Older gen­
erations are identified with a lower generation number, starting with zero. The older 
generations of a logical block are accessible using the READ UPDATED BLOCK 
command. 

The modlei of a SCSI WORM drive 

WORM drives are also a subclass of optical storage. Since the medium can only be 
written once some commands are dispensable. For example, the ERASE command has 
no meaning here. Also missing is the FORMAT command because a WORM medium 
is already formatted. 

1 3 .5 Com mands for optkal storage and WORM drives 

Table 1 3 . 14 lists the commands defined for optical storage and WORM drives. You 
will notice that all mandatory commands are either disk drive commands or com­
mands for all SCSI classes. This allows us to concentrate on only those commands 
that are unique to optical storage devices. 

'fable 13.JL4 Commands for optical storage devices.  

Op- Name OS WD Page SCS/-2 SCS/-3 Description 

code (SBC) 

OOh TEST UN IT READY 1 3 1  7 .2 . 1 6  SPC Reflects whether or not the LUN i s  ready to 

accept a command 

O l h  REZERO UNIT 0 0 8 .2 . 1 3  6. 1 .3 Seek track 0 

03h REQUEST SENSE 1111!! 1 32 7 .2 . 1 4  SPC Returns detailed error information 

04h FORMAT UNIT 0 0 1 63 8 .2 . 1 6 . 1 . 1  Formats medium 

07h REASSIGN BLOCKS 0 0 8 .2 . 1 0  6. 1 . 1 0 Defective blocks reassigned 

08h READ(6) 0 0 1 59 8 .2 .5  6. 1 .5 Read. Limited addressing 

OAh WRITE(6) 0 0 1 59 8 .2 .5  6 . 1 .20 Write. L imited addressing 

OBh SEEK(6) 0 0 8 .2 . 1 5  6 . 1 . 1 5  Seek to a logical block 

1 2h INQUIRY 1IIIS] 1 28 7 .2 .5  SPC Returns LUN specific information 

1 5h MODE SELECT(6) 0 0 1 40 7 .2 .8  SPC Set device parameters 

1 6h RESERVE UNIT 1 36 8 .2 . 1 2  6. 1 . 1 2 Make LUN accessible only to certain 

ini t iators 
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Table 13.:14 Commands for optical storage devices (continued) . 
Op- Name OS lVD Page SCS/-2 SCS!-3 !Jes(·ription 

code (SBC) 

1 7h RELEASE U N I T  . M M 1 36 8 .2 . 1 1  6. 1 . 1 1 Make LUN accessible to other in i t iators 

1 8h COPY 0 0 7 .2 .3  SPC Autonomous copy from/to another de\· ice 

I Ah �lODE SENSE1 6 J  0 0 1 -10 7 .2 . 1 0  SPC Read device parameters 

I Bh START/STOP U N I T  0 0 8 .2 . 1 7  6. 1 . 1 7  Load/unload medium 

I Ch RECEIVE DIAGNOSTIC 0 0 7 .2 . 1 3  SPC Read self-test results 

R E S U LTS 

I Dh S E N D  DIAGNOSTIC f,M Mi  1 3 8  7 .2 . 1 SPC Init iate se lf-test 

I Eh PREVENT/ A L LOW 0 0 8 .2 .4 6. 1 . 1 4 Lock/unlock medium 

\tE D I U M  REMOVA L  

25h  READ CAPACITY :M M 8 .2 .7  6. 1 .7 Read number of logical blocks 

28h READI I O J  M_ .lyf  1 59 8 .2 .6  6. 1 .6 Read logical block 

29h READ GENERATION 0 0 1 79 1 5 .2 .6  6 .2 .6  Read maximum generation address of LBN 

2Ah W RITE! I O J  M M  1 59 8 .2 .6  6 .2 . 1 3  Write logical block 

2Bh SEEKI I O I  0 0 8 .2 . 1 5  6. 1 . 1 5  Seck to a logical block 

2Ch ERASE 0 0 1 8 1  1 5 .2 . 1  6 .2 . 1 Erase 

2Dh READ U PDATED 0 0 1 79 1 5 .2 .7  6 .2 .7  Read specific  version of  changed block 

BLOCK 

2Eh WR ITE A N D  V E R I FY 0 0 1 5 .2 . 1 5  6 .2 . 1 5  Write logical block. verify success 

2Fh V E R I FY 0 0 1 5 . 2 . 1 1  6 .2 . 1 1  Verify data on medium 

30h S E A R C H  DATA 0 0 8 .2 . 1 4  6. 1 . 1 4 Search logical blocks for data pattern 

H I G H ( I O I  

3 l h  SEARCH DATA 0 0 8 .2 . 1 -1  6. 1 . 1 -1 Search logical blocks for data pattern 

EQUAL( I O I 

32h SEARCH DATA 0 0 8 .2 . 1 4  6. 1 . 1 4 Search logical blocks for data pattern 

LOWi l Ol  

3 3 h  SET Ll�I ITSi l ll i  0 0 8 .2 . 1 6  6. 1 . 1 6  Deline logical block boundaries 

3-lh PRE-FETCH 0 0 8 .2 .3  6. 1 . 3 Read data into buffer 

35h  SYNCH RONIZE CACHE 0 0 8 .2 . 8  6. 1 . 1 8  Write cache to medium 

36h LOCK/UNLOCK CACHE 0 0 8 .2 .2  6. 1 .2 Hold data in cache 

37h RE AD  DEFECT DATAI I O I  0 0 8 .2 . 8  6. 1 . 8 Read l i s t  of defective blocks 

38h \tE D I U M  SCAN 0 0 1 79 1 5 .2 . 3  6 .2 . 3  Search for free area 

39h COMPARE 0 0 7 .2 .2  SPC Compare data 

3Ah COPY AND V E R I FY 0 0 7 .2 .4 SPC Autonomous copy from/to another device. 

veri fy success 

3Bh W R ITE B l' FFER 0 0 7 .2 . 1 7  SPC Write the data buffer 

3Ch READ B L'FFER 0 0 7 .2 . 1 2  SPC Read the data buffer 

3Dh L'PDATE BLOCK 0 1 78 1 5 .2 . 1 0  6 .2 . 1 0  Substitute block with an updated one 

3Eh READ LONG 0 0 1 6 1  8 .2 .9  6. 1 .9 Read data and ECC 

3Fh \\' RITE LONG 0 0 1 6 1  8 .2 .23  6. 1 .23 Write data and ECC 

40h CHANGE DEFI N ITION 0 0 1 39 7 .2 . 1 SPC Set SCSI version 

4Ch LOG S ELECT 0 0 7 .2 .6  SPC Read statistics 

4Dh LOG SENSE 0 0 7 .2 .7  SPC Read statist ics 

55h �lODE SELECT I I Ii i 0 0 1 40 7 .2 .9  SPC Set device parameters 

5Ah �lODE SENSEI I I l l  0 0 1 40 7 .2 . 1 0  SPC Read device parameters 

A8h R E A D (  1 2 1  0 0 1 5 .2 .4 6 .2 .4 Read logical block 

AAh W R ITE1 1 2 i  0 0 1 5 .2 .4 6 .2 . 1 4  Write logical block 

ACh ERASE!  1 2 1  0 1 5 .2 .2  6.2 .4 Erase logical block 

AEh W R ITE A :\ D  V E R I FY 0 0 1 5 .2 . 1 6  6 .2 . 1 6  Write logical block. veri fy success 

AFh \'ERIFYI 1 2 >  0 0 1 5 .2 . 1 2  6 .2 . 1 2  Verify data on medium 

BOh SEARCH DATA 0 0 1 5 .2 . 8  6 .2 .8  Search logical blocks for data pattern 

H IG H ( l 2 >  
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Table 13.14 Commands for optical storage devices (continued). 

Op- Name OS WD Page SCS/-2 SCS!-3 Description 

code (SBC) 

B l h  SEARCH DATA 0 0 1 5 .2.8 6.2.8 Search logical blocks for data pattern 
EQUAL( 1 2) 

B2h SEARCH DATA 0 0 1 5 .2 .8 6.2.8 Search logical blocks for data pattern 
LOW( I2 )  

B3h SET LIMITS( 1 2) 0 0 1 5 .2.9 6.2.9 Set logical block boundaries 
B7h READ DEFECT 0 0 1 5.2.5 6.2.5 

DATA( I2 )  

B8h READ ELEMENT 0 0 220 1 6.2.5 SMC Read element status 
STATUS 

Note: Commands added to this command set in SCSI-3 are shaded light gray; mandatory commands are 
shaded clark gray. 

At this point I would also like to skip the 1 2-byte versions of the READ and WRITE 
commands. Here the parameters and control bits are identical to the 6- and 1 0-byte 

versions. 

UPDATE BLOCK (3Dh) 

This command is used to substitute a logical block with an updated one (Table 

1 3 . 1 5) .  The new logical block lies in an alternative area outside the normal user data. 

Therefore, the command does not change the number of free blocks on the medium 

as reported by READ CAPACITY. When the alternative blocks are used up, the 

command aborts with a CHECK CONDITION status and the sense code NO DEFECT SPARE 
LOCATION AVAILABLE. 

The new data is written to a new location on the medium, leaving the old data intact. 

In fact, the older version can still be accessed using READ UPDATED BLOCK. READ will, 

of course, always read the current version of the logical block. This command always 

operates on one logical block at a time, thus there is no transfer length. 

Table 13.15 The UPDATE BLOCK command. 

7 I 6 I 5 I 4 I 3 I 
0 UPDATE BLOCK (3Dh) 

I (LUN) I Reserved 

2 (MSB) 

3 Logical 

4 block number 

5 

6 

7 Reserved 

8 

9 Control byte 

2 I I I 0 

I Rei 

(LSB) 
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Table 13.16 The READ GENERATION command. 

7 I 6 I 5 I 4 I 3 I 
0 READ GENERATION (29h) 

l LUN I Reserved 

1 (MSB)  

3 Logical 

4 block number 

5 

6 Reserved 

7 

8 Transfer length (04h) 

9 Control byte 

Table 13.17 READ GENERATION parameter block. 

7 I 6 I 5 I 4 I 3 

0 (MSB) Most  recent 

l generation 

1 Reserved 

3 

READ GENERATION (2911!) 

I 

2 I 1 I 0 

I Rel 

(LSB) 

2 I 1 I 0 

(LSB )  

The READ GENERATION command returns the current generation number of  a logical 
block (Table 1 3 . 1 6) .  The reply is contained in the first two bytes of a 4-byte long 
parameter block (Table 1 3 . 1 7) .  

READ UPDATED BLOCK(1 0)  (21Dh) 

This command is very much like a normal READ command. Even the control bits in  
byte 1 have the same meaning. However, there is no transfer length because the 
command reads exactly one block (Table 1 3 . 1 8) .  

Bytes 6 and 7 hold the generation of the block to be read. When the Latest bit  is 
set then the most recent generation is numbered zero and the numbers incremented 
for older generations. Otherwise it is the oldest version that is numbered zero and the 
numbers incremented for newer generations . If the requested generation does not 
exist the command will return a CHECK CONDITION status.  

MEDIUM SCAN (38h) 

This command searches for a continuous region of  written or  unwritten medium 
after the start address.  The command uses a parameter block containing the length 
of the region and the length of area to be searched (Table 1 3 . 1 9) .  
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Table 13.18 The READ UPDATED BLOCK command. 

7 I 6 I 5 I 4 I 3 I 2 I 
0 READ UPDATED BLOCK( I O) (2Dh) 

I (LUN) I DPO I FUA I Reserved 

2 (MSB) 

3 B lock address (LBN) 

4 

5 

6 Latest I (MSB) Generation 

7 

8 Reserved 

9 Control byte 

I I 0 

I Rei 

(LSB) 

(LSB)  

A number of parameter bits are used (Table 1 3 .20). When the WBS (written 

block search) bit is set then the target will search for a written region; when clear, an 

unwritten region. The PRA (partial results acceptable) bit indicates that the largest 

of those regions found should be returned in lieu of a qualifying region. The ASA 

bit specifies that the written or unwritten region should be continuous .  The RSD bit 

Table 13.19 The MEDIUM SCAN command. 

7 I 6 I 5 I 4 I 3 I 
0 MEDIUM SCAN (38h) 

I (LUN) I WBS I ASA I 
2 (MSB) 

3 Start 

4 address 

5 

6 Reserved 

7 

8 Parameter l ist  length (08h) 

9 Control byte 

Table 13.20 MEDIUM SCAN parameter block. 

7 I 6 I 5 I 4 I 3 I 
0 . . .  (MSB)  Number of 

. . .  3 blocks requested 

4 . . .  (MSB) Number of 

. . .  7 blocks to scan 

2 I 1 I 0 

RSD I PRA I Rei 

(LSB)  

2 I 1 I 0 

(LSB) 

(LSB)  
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TabBe :1.3.2:1 The ERASE command for optical storage. 

7 I 6 I 5 I ./ I 3 I 
0 ERASE (2Ch J 

2 

I (LUN ) 1 Reserved I ERA 

2 (MS B l  

3 Start 

4 address (LBN) 

5 
6 Reserved 

7 (MSB)  Number 

8 

9 Control byte 

I I I 0 

I Res I Rei 

(LS B )  

(LSB)  

instructs the target to search from the end of the medium backwards. The result of 

the search process is  a status. CONDITION MET indicates that a region meeting the 
specifications was found. Then REQUEST SENSE will return the sense key EQUAL or NO 
SENSE with the LBN of the region in the information bytes. If no qualifying region 
is found then GOOD status is returned with the sense key set to NO SENSE. 

ERASE(1 0) (2Ch) 

The ERASE command instructs the target to erase a number of logical blocks begin­

ning with a start address (Table 1 3 .2 1 ) .  This command is important for rewritable 

optical drives which require erasure before writing . Although erasure is already 

implemented within WRITE commands, for performance reasons it is more effective 
to erase large regions with a single ERASE command. 

When the ERA bit is set the Number field must contain a zero, and all of the 
medium after the start address will be erased. Otherwise Number holds the number 
of blocks to be erased. 

1 3 .6 Modle parameters tor optka� stol!'age and WORM d rives 

Mode parameter headier 

The medium type (byte 1 )  and the device type specific parameter (byte 2) have the 
interpretations shown in Table 1 3 .22.  

For a MODE SENSE command WP indicates that the medium is write protected. A 

set Cache bit indicates that the target has a cache and that cache control is possible 
using the DPO and FUA bits of the WRITE command. 

The EBC (enable blank check) bit causes sectors to be verified as unwritten 
before a write is  executed. When the checking is enabled an attempt to write an 
already written sector will result in a CHECK CONDITION. 
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Table 13.22 Mode parameter header byte 1 and byte 2.  

Code Medium type 

OOh Default  

O l h  Read-only medium (R/0) 

02h WORM medium (W-0) 

03h Rewritable medium (R/W) 

04h RIO or W-0 

05h RIO or RIW 

06h W-O or RIW 

Bit 7 6 I 5 4 3 I 2 I 1 0 

WP Reserved Cache Reserved EBC 

Mode parameter pages 

The mode parameter pages are defined in Table 1 3 .23 .  

The optical device page (06h) 

The optical device page (Table 1 3 .24) contains precisely one parameter: the RUBR 
(report updated block read) bit. When set this bit causes the target to reply with 
CHECK CONDITION to a read of a block updated with an UPDATE command. In this way 
the host will know that the block being accessed does not represent the most recent 
version of the data. 

Table 13.23 Mode parameter pages for optical storage. 

Page Name Page SCS1-2 SCSI-3 

code (SBC) 

O l h  Read/write error page 8 .3 .3 .6  7 . 1 . 3 .6  

02h Disconnect/reconnect page 1 45 7 .3 .3 .2  SPC 

06h Optical device page 1 82 1 5 . 3 . 3 . 1 7 .2 .3 . 1 

07h Verification error page 8 .3 . 3 . 8  7 . 1 . 3 . 8  

08h  Cache page 172  8 .3 . 3 . 1 7 . 1 . 3 . 1  

09h Peripheral device page 1 46 7 .3 .3 .3  SPC 

OAh Control mode page 1 47 7 .3 .3 . 1 SPC 

OBh Medium type page 8 .3 .3 .4 7 . 1 . 3 .4 

ODh Power condition page 7 . 1 .3 .6  
I Ch Informal exception page SPC 

Table 13.24 Optical storage page. 

7 6 5 I 4 I 3 I 2 I 1 I 0 

0 PS Res Page code (06h) 

I Page length (02h) 

2 Reserved I RUBR 

3 



1 4  Stream -oriented devices 

The SCSI-3 document S S C  (SCSI Stream Commands) summarizes the device 
models, commands and parameters for stream-oriented devices . It contains the device 
types of tape drives (sequential access devices), printer devices and communication 
devices. 

1 4. 1  The model of a SCSI tape dr ive 

SCSI tape drives belong to the sequential access device type of the ANSI standard. I 
am not aware of any devices other than tape drives belonging to this class. 

The data in a sequential access device is organized on the medium as a linear 
sequence of blocks. In order to access the data of a certain block the medium must 
be moved from the current position through all intervening positions to the desired 
block. It is easy to see that this is precisely the situation described by a tape drive. 

At present, there have been almost no changes from SCSI-2 to SCSI-3 . The READ 
POSITION command has become mandatory and is therefore included in this book. 
Furthermore, a new parameter page, the COMPRESSION page, has been added. 
Strangely enough, it seems that the current SSC proposal does not contain attached 
medium changers for tape drives . 

The drive 

The SCSI model of a tape drive differentiates between the drive itself and the exchange­
able medium. The drive is either in ready condition or not ready. The drive is in ready 
condition when it is able to execute all possible commands. For example, the drive is 
not ready when no medium is present or when an online switch is de-activated. 

The drive can also find itself in the write protected state . Although the write pro­
tection mechanism is usually implemented on the removable medium, many drives 
have a write protection switch as well. 

The record ing medium 

The recording medium for sequential devices consists o f  a tape o f  various widths 
and lengths coated with magnetic material . This tape may be wound onto single reels 

1 83 
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or packaged in a cartridge or cassette format. When the medium is loaded in the 
device and data access is possible the medium is said to be mounted. During loading 
and unloading the medium is demounted. This terminology corresponds to that of 
replaceable medium drives. 

The usable length of a tape has a beginning and end, which are marked BOM 
(beginning of medium) and EOM (end of medium), respectively. These do not nec­
essarily correspond to the physical ends of the tape. The length beyond these marks 
is used to secure the tape to the reels .  

Many recording formats include an additional EW (early warning) marking. This 
mark is  placed at a position prior to the EOM mark. It allows the target enough time 
to warn the initiator of the end of the tape and write any data that may already be in 
its buffer. 

Recording formats 

The range of recording formats for magnetic tape is almost endless (Figure 14 . 1 ) .  
Fortunately, i t  i s  of little consequence for the discussion of SCSI tape drives which 
format i s  used on the medium itself. The format is strictly a matter of concern for the 
drive, not the SCSI controller. When a drive is compatible with a number of differ­
ent formats, the MODE SELECT command is used to choose among them. 

Nevertheless, as background information three basic recording formats are men­
tioned here. The first of these is parallel storage format. Here multiple tracks are 
recorded simultaneously in the same direction. This is the method traditional reel-to­
reel devices employ, using nine tracks , eight data and parity, on � inch wide tape. 
The parallel recording technique leads to a relatively high throughput at moderate 
tape speeds. Common specifications are 6250 bits per inch (BPI) at 1 25 inches per 
second (IPS) .  These values multiplied together yield a data throughput of 780 
Kbytes per second. The disadvantage of this method is the necessity of a relatively 
complex and therefore expensive read/write head. 

Serpentine format 

Paral lel  format 

Diagonal format 

Figure 14.1 Various tape recording formats . 
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The second technique uses a simple read/write head and only a single track. The 

data are written and read serially. When one end of the tape is reached the head is 
moved slightly so that the track can be continued in the opposite direction. This is 
repeated until the result is a serpentine track running back and forth across the tape. 
This method is used mainly in cassette devices following the QIC standard. 

The helical scan technique originally came from video cassette recording. Here a 
rotating head is used to write short diagonal tracks across the width of a relatively 
slow moving tape. This method is used by the EXABYTE drive and is also similar 
to the technique used in 4 mm DAT drives . 

Many recording formats use preformatted media. These methods make possible 
the use of physical blocks in organizing data. The physical block structure, which is 
largely hidden from the SCSI interface, can be accessed directly using the LOCATE 

command. 

Partitions 

A tape can be divided into one or  more partitions. Partition 0, which always exists, 
is called the default partition. Every partition has its own identification for begin­
ning, end, and EW, and they are called BOPx, EOPx and EWx, where x stands for 
the number of the partition. Commands for tape devices always pertain to the active 
partition. The active partition can be changed using either the device configuration 
page of MODE SELECT or the LOCATE command. 

Objects with in  a partition 

Within a partition data blocks and tape marks are used to segment the medium. 
These are organized hierarchically, with data blocks at the lowest level followed by 
filemarks and at the highest level setmarks. 

The EOD (end of data) mark is special in that its implementation is dependent on 
the type of recording format. In general, this mark is generated when a certain length 
of unwritten tape has gone past the read head. 

Data blocks 

To an initiator a tape, like a disk drive, looks like a sequence of logical blocks, and 
as with a disk drive logical blocks may or may not correspond one-to-one with phys­
ical blocks on the tape. The blocks themselves are either fixed or of variable size up 
to 16 Mbytes.  This is more than adequate. Extremely long blocks should be avoided 
since a block must be read and written as a single unit without interruption. 

Tape marks 

A tape drive may also employ the use of tape marks among the logical blocks 
holding user data. Tape marks make it possible to locate specific places on the tape 
without having to read the intervening data. Moreover, tape marks can be identified 
on higher tape speeds than are used to read actual data. This further decreases the 
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access time. There are two types of tape mark: the filemark and the setmark. 
Setmarks represent the higher level division of a partition, filemarks the lower level . 

Buffered and unbuffered modes 

The role of data buffers with respect to disk 1/0 was covered earlier in this book. 
Such a buffer is realized as onboard RAM and its contents are volatile. The buffer is 
used to store data temporarily before it is written to the medium or passed on to the 
initiator, as the case may be. 

SCSI tape devices support both buffered and unbuffered modes of operation. The 
modes relate to the way in which write operations are performed; that is, all com­
mands that write either data blocks or tape marks. In addition, some commands 
include an Immed (immediate) control bit which overrides the mode for a given 
command. 

Tape devices without a data buffer always operate in the unbuffered mode. In this 
mode any write operation will conclude with a status phase only after a write to the 
medium has occurred. However, when Immed is set, commands that do not write to 
the medium (like, for instance, REWIND) are allowed to return GOOD status immedi­
ately after the command is received. 

Tape devices with a data buffer can be configured to operate in either mode. This 
configuration is accomplished using the appropriate parameter page of the MODE 

SELECT command. 
The data buffer of a SCSI tape device may hold tape marks as well as data. In the 

buffered mode a tape device is allowed to return GOOD status as soon as write data 
has been received into the buffer. Commands with the Immed bit set are allowed to 
respond in the same manner. When Immed is clear this forces a command to be exe­
cuted in the unbuffered mode. 

1 4.2 Commands for tape devices 

Tape device commands (Table 14. 1 )  differ greatly from those of disk drives in many 
respects but this is especially so with regard to READ and WRITE commands and their 
derivatives. These commands do not make use of logical block numbers but only a 
transfer length. A command begins its reading or writing at the current position of 
the tape. 

REWIND (01 h)  

The REWIND command causes the target to position the medium to  the beginning of 
the active partition (Table 1 4.2) .  However, before doing so the target must write to 
the medium all data, filemarks, and setmarks that may reside in the buffer. 

The only parameter is the lmmed bit in byte 1 .  When set the target will return 
status after any buffered data has been written to the medium but before command 
execution has begun. When clear status will be returned only after the medium has 
been fully rewound. 
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Table 14.1 SCSI tape drive commands. 

Op- Name Type Page SCSI-2 SCS!-3 Description 

code (SCC) 

OOh TEST UNIT READY M 1 3 1  7 . 2 . 1 6  SPC Reflects whether or not the LUN is ready to 
accept a command 

O l h  REWIND M 1 86 9.2 . 1 1  5 .2 . 1 0  Rewinds tape 
03h REQUEST SENSE M 1 3 2  7 . 2 . 1 4  SPC Returns detailed error information 
04h FORMAT MEDIUM 0 1 89 9.2 .  L l  5 .2.2 Prepare medium for use 
05h READ BLOCK LIMITS M 1 9 2  9.2.5 5.2.6 Returns possible block lengths 
08h READ M 1 88 9.2 .4 5.2.5 Read 
OAh WRITE M 1 89 9.2. 14 5.2. 1 3  Write 
OFh READ REVERSE 0 1 88 9.2.7 5.2.8 Read backwards 
! Oh WRITE FILEMARKS 1 9 1  9.2. 1 5  5.2. 1 4  Write filemarks 
l l h SPACE 1 90 9.2. 1 2  5 .2. 1 1  Advance tape 
1 2h INQUIRY 1 28 7 .2 .5  5 .2 . 1 2  Returns LUN specific information 
1 3h VERIFY 0 9.2. 1 3  SPC Verify data 
1 4h RECOVER BUFFERED 0 9.2.8 5 .2.9 Recover data from buffer 

DATA 

I S h  MODE SELECT(6) 1 40 7 . 2 . 8  SPC Set device parameters 
1 6h RESERVE UNIT 1 36 9.2. 1 0  S PC Make LUN accessible only to certain 

initiators 
1 7h RELEASE UNIT 1 36 9.2.9 S PC Make LUN accessible to other initiators 
I Sh COPY 7.2 .3  SPC Autonomous copy from/to another device 
19h ERASE M 1 9 1  9.2. 1 5 .2 . 1 Erase tape 
! Ah MODE SENSE(6) M 1 40 7 . 2 . 1 0  S PC Read device parameters 
l Bh LOAD/UNLOAD 0 1 95 9.2 .2  5. 2 . 3  Load/unload medium 
! Ch RECEIVE DIAGNOSTIC 0 7.2 . 1 3  S PC Read self-test results 

RESULTS 

! Dh SEND DIAGNOSTIC M 1 3 8  7 .2 . 1 SPC Initiate self-test 
! Eh PREVENT/ ALLOW 0 8.2.4 SBC Lock/unlock door 

MEDIUM REMOVAL 

2 B h  LOCATE 0 1 93 9.2.3 5 .2.4 Seek LBN 
34h READ POSITION (M) 1 93 9.2.6 M 5 . 2 . 7  p Read current tape position 
39h COMPARE 0 7.2.2 SPC Compare data 
3Ah COPY A D VERIFY 0 7 . 2 .4 SPC Autonomous copy from/to another device, 

verify success 
3 B h  WRITE BUFFER 0 7 . 2 . 1 7  S PC Write the data buffer 
3Ch READ BUFFER 0 7 . 2 . 1 2  S PC Read the data buffer 
40h CHANGE DEFINITION 0 1 39 7 .2 . 1 S PC Set SCS I version 
4Ch LOG SELECT 0 7.2 .6  S PC Read statistics 
4Dh LOG SENSE 0 7.2 .7  S PC Read statistics 
SSh MODE SELECT( IO) 0 1 40 7 .2 .9 S PC Set device parameters 
5Ah MODE SENSE( I 0) 0 1 40 7 . 2 . 1 0  S PC Read device parameters 

Note: Commands added to this command set in SCSI-3 are shaded light gray; mandatory commands are 
shaded clark gray. (M) means that the command is classified differently in SCST-2 and SCSI-3.  The 
corresponding classification is indicated after the reference to the standard. 

SCSI- 1 compatible devices do not necessarily write buffered data to the medium 

before the execution of this command. In order to make SCSI-2 and SCSI- 1 devices 

compatible one can make use of the WRITE HLEMARKS command with the Immed bit 
set before issuing a REWIND command. 
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Table 14.2 The REWIND command. 

7 I 6 I 5 I 
0 

I (LUN) I 
2 

3 

4 

5 

4 I 3 I 
REWIND (O l h) 

Reserved 

Reserved 

Control byte 

READ (08h) and READ REVERSE (Ofh) 

2 I 1 I 0 

I Immed 

The READ command is structured differently to the disk drive version (Table 14 .3 ) .  

There is no field for the logical block number since the tape READ command always 

begins with the next logical block. The next block is the first block reached as the 
tape moves toward the EOP mark. Lacking the LBN field, the 6-byte version has 
ample room for the transfer length, making a I 0- or 1 2-byte version of this command 

unnecessary. 

In addition to the LUN number byte I contains two further parameters. The Fixed 

bit indicates whether fixed or variable length blocks are expected. This also defines 

how the transfer length is to be interpreted. 
The SILl (suppress incorrect length indicator) bit specifies how the target should 

react when a logical block is read with an unexpected length. When the SILl bit is 
clear the target will abort any command leading to length error with a CHECK CONDI­
TION status.  Otherwise, such length errors will be more or less tolerated. 

Bytes 2 to 4 contain the transfer length. When the Fixed bit is set then the transfer 

length reflects the number of blocks of fixed length to be read. The fixed block length 

can be read using MODE SELECT. If Fixed is clear then a block of variable length will 

be read and the transfer length indicates how much space the initiator has reserved for 

the data. The 24-bit transfer length is sufficient for block lengths up to 1 6  Mbytes, 

which should be adequate for years to come. When the transfer length is zero the tape 
will not be moved, nor will data be transferred. 

The read reverse command functions in exactly the same way, except that the 

reading process is carried out in the reverse direction. Thus, the logical blocks and the 

Table 14.3 The READ command for tape drives. 

7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 

0 READ (08h) or READ REVERSE (OFh) 

I (LUN) I Reserved I SILl I Fixed 

2 (MSB) 

3 Transfer length 

4 (LSB) 

5 Control byte 
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bytes within the logical blocks are transferred to the initiator in reverse order. Not all 

tape technologies support reverse reading which originates from Y:! inch reel devices . 

This command is optional . 

If a tape mark is found during the reading of a block a CHECK CONDITION status 

will be returned. The precise behavior in such a case can be modified using the mode 

parameters .  

WRITE (OAh) 

The WRITE command is analogous to the READ command and functions analogously 

as well (Table 1 4.4). Byte 1 contains the LUN number and Fixed bit with the same 

interpretation they have with the READ command. 

The WRITE command is executed in either the buffered or unbuffered mode 

depending on how the MODE SELECT parameters have been set. In the buffered mode 

the status phase takes place as soon as the target receives all data into its data buffer. 

The advantage here is that the 1/0 process completes more quickly. On the other 

hand a nonrecoverable write error may occur after GOOD status has been returned. 

SCSI accommodates such a deferred error using the mechanism already described 

on page 1 3 3 .  The data not yet written to the medium can be recovered using the 

optional command RECOVER BUFFER DATA. In the unbuffered mode the data must be 

written to the medium before the status phase takes place. The latter approach is pre­

ferred by many system administrators because it avoids such problems. 

If an EW mark is found during a WRITE command the device will attempt to finish 

writing the data and will, in any case, return a CHECK CONDITION status to the initia­

tor. It can be determined whether the data was accommodated in the partition by 

examining the sense key. 

FORMAT MEDIUM (04h) 

The FORMAT MEDIUM command (Table 14.5)  prepares the magnetic tape for use, as 

the sec document states, albeit not too clearly. There are some recording formats 

that use formatted or preformatted media which can be reformatted with this 

command. Many common media do not need any formatting, such as Y:! inch tapes,  

4 mm tapes and 8 mm Exabyte. The command is new in SCSI-3 and it is optional . 

Table 14.4 The WRITE command for tape drives. 

7 I 6 I 5 I 4 I 3 I 2 I I I 0 

0 WRITE (OAh) 

I (LUN) I Reserved J Fixed 

2 (MSB)  

3 Transfer length 

4 (LSB) 

5 Control byte 



1 90 Stream-oriented devices 

Table 14.5 The FORMAT MEDIUM command. 

7 I 6 I 5 I 4 I 3 I 
0 FORMAT MEDIUM (04h) 

I Reserved 

2 Reserved I 
3 (MSB) Transfer length 

4 

5 Control byte 

2 I 1 I 0 

I Verify I Immed 

Format 

(LSB) 

The Format field can assume the following values :  Oh denotes the default format, 
l h  to 7h are reserved, and 8h to Fh denote vendor-specific values. When the transfer 
length is greater than 0, the command can be passed a parameter list whose meaning 
is vendor specific. 

SPACE ( 1 1 h) 

The SPACE command is used to advance or rewind the tape a certain number of data 
blocks or tape marks (Table 1 4.6) .  The rewind capability is optional . 

The parameter Count in bytes 2 through 4 indicates the number of objects to be 
advanced. Negative numbers (in two's complement) indicate rewinding. 

In addition to the LUN number byte 1 contains the Code field which specifies 
what is to be counted. The possible codes are given in Table 14 .7 .  Two of these, 
filemarks and setmarks, are worth explaining. When sequential filemarks are to be 
counted then the tape is advanced until Count consecutive filemarks are found. This 
means that for Count n ,  the tape will be positioned after the nth filemark when the 
command completes. Sequential setmarks are handled in the same way. 

The hierarchy of objects plays an important role in error and event handling for 
the SPACE command. The details can be found in the ANSI specification in Section 

9 .2 . 1 2. However, a generalization can be made: if a higher level object is encoun­
tered during spacing than is being counted, then the command will be broken off at 
that point with a CHECK CONDITION status. For example, if filemarks are being 
counted a setmark will lead to command termination. 

Table 14.6 The SPACE command. 

7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 

0 SPACE ( l l h) 

I (LUN) I Reserved I Code 

2 (MSB) 

3 Count 

4 (LSB) 

5 Control byte 



Table 14.7 Meaning of the Code field. 

Code Description M/0 

OOOb B locks M 

OO i b  File marks M 

O I Ob Sequential fi lemarks 0 
O l l b  End-of-data 0 
I OOb Setmarks 0 
I O i b  Sequential setmarks 0 
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In addition, reaching either the beginning or the end of a partition during a space 
command will cause the command to be terminated with CHECK CONDITION status. 

WRITE F ILEMARKS ( 1  Oh) 

This command writes to the current position the number of tape marks given in the 
transfer length field (Table 14.8). When the WSmk bit is 1 then setmarks are written; 
when 0 filemarks are written. The Immed bit specifies that the target should reply with 
oooo status as soon as the command is recognized. Otherwise all buffered data and tape 
marks must be written before the execution of the command begins.  WRITE FILEMARKS 
with transfer length zero can be used to cause the data buffer to be written to tape. 

If an EW mark is encountered during or before the write filemarks command the 
target will attempt to finish writing the requested number of tape marks . In either 
case it concludes the command with CHECK CONDITION status .  The sense data reveal 
whether or not the tape marks were successfully written. 

ERASE ( 1 9h) 

This command erases the medium starting a t  the current position (Table 1 4.9) .  Just 
how this is carried out is device dependent. However, afterwards a data pattern 
should be in place where previously data blocks and tape marks were found. 

When the Long bit is set, the remainder of the tape starting at the current position 
will be erased. Otherwise a gap will be erased on the tape whose length is specified 
in the device configuration parameter page as gap length. The Immed bit has its stan­
dard interpretation. 

Table 14.8 The WRITE FILEMARKS command. 

7 l 6 l 5 l 4 l 3 l 
0 WRITE FILEMARKS ( I  Oh) 

I (LUNJ l Reserved 

2 (MSB)  

3 Transfer length 

4 

5 Control byte 

2 l 1 l 0 

J WSmk J Immed 

(LS B )  
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Table 14.9 The ERASE command. 

7 I 6 I 5 I 
0 

I (LUN) I 
2 

3 

4 

5 

READ BLOCK LIMITS (05h) 

4 I 3 I 2 I I I 0 

ERASE ( 1 9h) 

Reserved I Immed I Long 

Reserved 

Control byte 

This command (Table 14 . 1 0) returns the maximum and minimum block size of the 
device. There are no parameters. 

The block size information is returned in a parameter block where bytes 1 
through 3 contain the maximum block length, and bytes 4 through 5 the minimum 
block length (Table 1 4. 1 1 ) . 

A maximum block length of zero indicates that there is no block length limit. 
When the maximum and minimum lengths are equal the device supports only a fixed 
block length. In this case the READ and WRITE commands must always have the Fixed 
bit set and the block length must reflect the value returned by this command. 

Table 14.10 The READ BLOCK LIMITS command. 

7 I 6 I 5 I 4 I 3 I 2 

0 READ BLOCK LIMITS (05h) 

I (LUN) I 
2 

3 Reserved 

4 

5 Control byte 

Table 14.11 Block limits parameter block. 

7 I 6 I 5 I 4 I 
0 Reserved 

I (MSB) 

3 I 

2 Maximum block length 

3 

4 (MSB) Minimum 

5 block length 

Reserved 

2 

I I I 0 

I I I 0 

(LSB) 

(LSB) 



Table 14.12 The LOCATE command. 

7 I 6 I 5 I 4 I 3 

0 LOCATE (2Bh) 

I (LUN) I Reserved 

2 Reserved 

3 (MSB) 

4 Block 

5 number 

6 

7 Reserved 

8 Partition 

9 Control byte 

LOCATE (2Bh) 
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I 2 I 1 I 0 

I BT I C P  I Jmmed 

(LSB) 

The LOCATE command is optional but is, nonetheless, a very useful command (Table 

14. 1 2) .  On the one hand, it makes it possible to search the tape for a specific logical 

or physical block. Additionally, the command can be used to change the active 

partition. 

Since in general tape can hold an enormous number of blocks LOCATE is a 1 0-byte 

command. The block number is contained in bytes 3 through 6, allowing 4 giga­

blocks to be addressed. When the BT bit is set the block address is interpreted as a 

device specific physical address, otherwise as SCSI LBN. 

Byte 8 contains the number of the Partition to become active before positioning to the 

block number. This byte is ignored when the CP bit in byte 1 is not set. 

READ POSITION (34h) 

The READ POSITION command (Table 14. 1 3 )  detemlines the current position of the 

medium and possible blocks in the buffer. No access to the medium is made. This 

command was optional in SCSI-2 and has become mandatory in SCSI-3. 

Table 14.13 The READ POS!TION command. 

7 I 6 I 5 I 4 I 3 I 2 I I I 0 

0 READ POS ITION (34h) 

I (LUN) I Reserved I TCLP I LONG l BT 

2 . . .  

. . .  Reserved 

... 8 

9 Control byte 
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Table 14.14 READ POSITION short data format. 

7 6 5 4 3 

0 BOP EOP BCU BYCU Reserved 

l Partition number 

2-3 Reserved 

4 . . .  (MSB) Position of first block 

... 7 

8 . . .  ( M S B )  Position of last block 

... I I  

1 2  Reserved 

13 . . .  (MSB) N u mber of blocks in buffer 

. . .  1 5  

1 6  . . .  ( M S B )  Number of bytes in buffer 

. . .  1 9  

2 I 0 

BPU PERR Reserved 

(LSB) 

(LSB) 

(LSB) 

(LSB) 

In SCSI-2 and SCSI-3 the short data format (Table 1 4. 1 4) applies when the TCLP 

bit is not set. This format contains information about the data present in the buffer. 

Positions are indicated in SCSI blocks when the BT bit is not set; otherwise they are 

manufacturer specific. When the TCLP bit is not set, the LONG bit must not be set 

either. 

The BOP and EOP bits indicate that the tape has reached a BOP or EOP mark. 

The BPU (block position unknown) bit indicates that the position of the first or 

last block is unknown. If it is not set, the coiTesponding fields contain valid values. 

New in SCSI-3 are the following bits. The BCU (block count unknown) bit indi­

cates that the value of number of blocks in the buffer is invalid. BYCU (byte count 

Table 14.15 READ POS!TION long data format (SCSI-3 only). 

7 6 5 I 4 3 2 

0 BOP EOP Reserved MPU BPU 

l . . .  Reserved 

. . .  3 

4 . . .  ( M S B )  Parti tion number 

... 7 

8 . . .  (MSB) B lock number 

... 1 5  

1 6  . . .  (MSB) Fi le  mark number 

... 23 

24 . . .  ( M S B )  Record mark number 

... 32 

1 I 0 

Reserved 

(LSB) 

(LSB) 

(LSB) 

(LSB) 
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unknown) is the corresponding bit for the number of bytes in the buffer. The PERR 
(position error) bit indicates that owing to a counter overflow one or all values may 
be invalid. 

When the TCLP (total current logical position) bit is set, the LONG bit must be 
set too. Then the long data format (Table 14 . 1 5 )  applies, and the numbers of the 
current partition, the block, the filemark and the setmark are returned as well. This 
variation only exists since SCSI-3. 

The BOP, EOP and BPU bits have the same meaning as in the short data format. 
The MPU (mark position unknown) bit means that the values for filemark and 
setmark numbers are invalid. 

LOAD/UNLOAD ( 1 1Bh) 

This command loads or  unloads the medium (Table 14 . 1 6) .  In  addition, the tape can 
be re-tensioned by spooling the entire tape from one reel to the other. 

The command has no parameters but a few control bits in bytes 1 and 4. The 
Immed bit works as usual, allowing the target to return a status GOOD immediately 
rather than after the command has been completed. When the Load bit is set the tape 
is to be loaded and positioned to the BOT mark. 

If the Load bit is clear the tape will be unloaded. All buffered data and tape marks 
are written to the medium prior to unloading. If the EOT bit is set the tape will be posi­
tioned to the EOT mark, otherwise the BOT mark will be sought. In either case the 
medium is dismounted and any subsequent command calling for medium access will 
cause a CHECK CONDITION status with the sense key NOT READY. 

Finally, the ReTen control bit causes the tape to be re-tensioned before the action 
described by the Load bit is performed. 

Table 14.16 The LOAD/UNLOAD command. 

7 I 6 I 5 I 4 I 3 I 
0 LOAD/UNLOAD ( I  BhJ 

I (LUN) I Reserved 

2 

3 Reserved 

2 I 1 I 0 

I Immed 

4 I EOT I ReTen I Load 

5 Control byte 

1 4.3 Mode parameters for tape devices 

Mode parameter header 

The device type specific byte of the mode parameter header (Table 1 4. 17 )  returned 
by the MODE SENSE command contains the following information: 
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Table 14.17 Device-specific parameter byte in header. 

6 5 4 

Buffer mode 

3 2 1 

Speed 

• The WP bit indicates that the medium is write protected. 

0 

• Buffer mode is defined for three values. These pertain to commands that write 
either data or tape marks to the medium, which together are referred to as write 
operations. 

• OOOb is the unbuffered mode. For all write operations the target must wait until 
the medium has actually been written before returning status.  

• OO lb :  The target may return GOOD status as soon as all  data has been received into 
the data buffer. 

• O l Ob :  The target may return GOOD status as soon as all data has been received into 
the data buffer and all buffered data from other initiators has been written to the 
medium.  

• In the Speed field a 0 represents the device's default tape speed. The values lh 
through Fh reflect speeds from slowest to  fastest. 

Block descriptor 

Byte 0 of the block descriptor contains a device type specific code for the write 
density. The most important of these are given in Table 14 . 1 8 . 

Mode parameter pages 

The mode parameter pages in Table 14 . 19  are defined for tape devices. 

The data compression page (OFh) 

The data compression page (Table 14.20) is new in SCSI-3 .  It  contains information 
on the data compression used. 

Table 14.18 Write density for tape drives . 

Code Width Tracks BPI Fonnat Type 

O l h  V, inch 9 800 NRZI Reel-to-reel  

02h V, inch 9 1 600 PE Reel-to-reel 

03h V, inch 9 6250 GCR Reel-to-reel 

OFh Y. inch 1 5  1 0 000 GCR QIC- 1 20 cassette 

l Oh Y. inch 1 8  1 0 000 GCR QIC- 1 50 cassette 

l l h  Y. inch 26 16 000 GCR QIC-320 cassette 

1 3h 4 mm 6 1 000 DDS 4 mm DAT 

1 4h 8 mm 54 000 EXABYTE 

OOh Default density 
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Table 14.19 Mode parameter pages for tape devices. 

Page Name 

code 

O l h  
02h 
09h 
OAh 
OFh 
I Oh 
l l h 
1 2h 
1 3 h  
1 4 h  
I C h  

Read/write error page 
Disconnect/reconnect page 
Peripheral device page 
Control mode page 
Data compression page 
Device configuration page 
Partitions page I 
Partitions page 2 
Partitions page 3 
Partitions page 4 
Informal exception page 

Page SCSI-2 SCSI-3 

(SSC) 

9.3. 3.4 5.3.3.5 
1 45 7.3.3.2 SPC 
1 46 7.3.3 .3 SPC 
1 47 7.3.3 . 1 SPC 
1 96 5.3.3 . 1  
1 9 8  9.3.3. 1 5 .3.3.2 
1 98 9.3.3.3 5.3.3.3 
1 98 9.3.3.3 5.3 .3.4 
1 98 9.3.3.3 5.3 .3.4 
1 98 9.3.3.3 5.3 .3.4 

SPC 

The DCE (data compression enabled) bit activates data compression. The DDE 

(data decompression enabled) bit activates data decompression. The DCC (data 

compression capable) bit indicates that the device supports data compression. 

The RED field specifies how the device behaves when it passes borders between 

data of different compression. When data appears that has been compressed with an 

unsupported compression algmithm, the drive must report a CHECK CONDITION status 

with a MEDIUM ERROR sense code. When a change occurs between two supported 

algorithms, a simple warning may be sufficient. 

The fields for the compression and decompression algorithms contain a code. Up 

to now, only l Oh for IBM IDRC compression and 20h for DCLZ compression have 

been established. 

Table 14.20 Data compression page (SCSI-3 only). 

7 6 5 I 4 I 3 I 2 I 
0 PS Res Data compression page (OFh) 

I Page length (OEh) 

2 DCE DCC Reserved 

3 DOE RED I 
4 .  (MSB) 

. . . Data compression algorithm 

... 7 

8 .. .  (MSB) 

Data decompression algorithm 

... I I  

1 2 . 

. . .  Reserved 

. . .  1 5  

1 I 0 

(LSB ) 

(LSB)  
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Table 14.21 Device configuration page for tape devices. 

7 6 I 5 4 I 3 I 2 I 1 

0 PS Reserved Page code ( l Oh)  

I Page length (OEh) 

2 Reserved CAP I CAR Active format 

3 Active partition 

4 Write buffer empty ratio 

5 Read buffer empty
_ 
ratio 

6 (MSB) Write 

7 delay 

8 DBR BIS  I RSmk AVC I SOFC I RBO 

9 Gap size 

1 0  EOD EEG I SEW I Reserved 

I I  (MSB) 

1 2  Buffer size at EW 

1 3 

1 4  Data compression 

1 5  Reserved 

The device configuration page (1 Oh) 

I 0 

(LSB)  

I REW 

(LSB)  

The device configuration page contains various configuration information for the 

tape drive (Table 1 4.2 1 ) .  Only the more important details will be covered here. Refer 

to Section 9 .3 .3  of the ANSI specification for further information. 

Byte 3 contains the active partition. This can be modified using MODE SELECT 

when the CAP (change active partition) bit of byte 2 is set. 

Partition pages 1 through 4 (1 1 h, 1 2h, 1 3h, 1 4h)  

Partition page 1 has an  8-byte header followed by  up  to  64  partition size descriptors 

of 2 bytes each. If more partitions are needed pages 2 through 4 can be used, each 

of which accommodates 64 partitions . This allows SCSI-2 devices to support up to 

256 partitions. Partition page 1 is shown in Table 14.22. Each descriptor contains the 

length of its partition. The unit of measure for length is defined by the PSUM field. 

Here the value OOh means bytes, 0 1 h  Kbytes, and 02h Mbytes .  

In SCSI-3 the value 03h is defined. It  indicates that the partition size unit field 

specifies the exponent I 0 to the power of n of the partition size. 

Unlike page 1 ,  partition pages 2 through 4 consist of only descriptors (Table 

1 4.23) .  
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Table 14.22 Partition page 1 for tape devices. 

7 6 5 I 4 I 3 I 2 

0 PS Reserved Page code ( I I  h) 

I Page length 

2 Maximum number of partitions 

3 Number of partitions ( n +  I )  

I I I 0 

4 FOP SOP lOP I PSUM !Reserved I CLEAR I AODP 

5 Format recognition 

6 Reserved I 
7 Reserved 

8 . . . n Partition descriptors 

n+ l (MSB) Partition 

n+2 size 

Table 14.23 Partition page 2 for tape devices. 

7 6 5 I 4 I 3 

Partition size unit 

I 2 I I 

0 PS Reserved Page code ( 1 2h - 1 4h )  

I Page length 

2 . . .  n Partition descriptors 

n+ l (MSB) Partition 

n+2 size 

1 4.4 The model of a SCSI printer 

(LSB) 

I 0 

(LSB) 

The degree to which the various device types are defined in SCSI-2 varies greatly. 

Up until this point we have seen very detailed specifications for disk and tape drive 

devices. This is not the case for printers, as will become apparent in the description 

of the device model. 

According to the cun·ent draft proposals, SCSI-3 too will not change anything 

fundamental. However, the draft document is far from being finished, and there 

might be some changes in the final standard. 

The model of a SCSI printer represents to some extent an exception among SCSI 
device models (Figure 14.2). Here the design is of a bridge controller connected to a 

printer mechanism. Of course, there is nothing preventing the integration of the con­

troller into the printer itself. We will see that one advantage of this approach is that the 

MODE SELECT conm1and can be used to manipulate the physical printer interface. 

The command set basically treats the printer as a black box that accepts data. No 

page description language is defined here, rather the data format is left up to the 

initiator. Nevertheless, this 'black box' does allow internal configuration to some 
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Data Products I I LUN 2 I 
Printer 2 

L__ __ _J 
Device specific 

interfaces 

Figure 14.2 Model of a SCSI printer. 

degree using SCSI commands .  For instance, there is the optional control of printer 
fonts and forms. The printer itself may be equipped with a data buffer, making a 
buffered mode possible. 

The standard does not specify what the printer must do when it receives a particu­
lar character. While a typical dot-matrix printer will simply print any printable 
character, a PostScript compatible printer will use the page description language 
PostScript to interpret the character. To make things even more complicated there are 
also a number of printer manufacturers that have developed unique printer control lan­
guages. Some of these have become de facto standards, which are often emulated by 
other printers. For example, many printers provide HP Lasetjet emulation as well as 
Epson or Diablo emulations. Unfortunately, none of these emulations is defined in the 
SCSI-2 standard. If this were the case one could simply buy a SCSI printer and plug it 
in (Figure 14.3) .  As a result the software must be informed of the printer 's emulation 
in order to function properly. 

In summary, one can say that the SCSI-2 command set for printers is limited to 
data transfer and the control of certain parameters. With reference to the interface 
model this leaves the top level not completely defined. 

PostScript 

Command set 

Device model 

Protocol 

Physical 
i nterface 

Figure 14.3 SCSI printer interface. 
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Page printer 
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1 4.5 Printer commands 

Table 14.24 lists all of  the commands defined for SCSI printers. Printers have a rel­

atively large number of commands that are completely vendor unique. These 

opcodes are O lh, 02h, 05h, 06h, 07h, 08h, 09h, OCh, ODh, OEh, OFh, l lh, 1 3h,  1 9h 

and COh to FFh. All other opcodes are reserved. 

PRINT (OAh) 

The PRINT command sends the number of bytes contained in Transfer length to the 

printer (Table 1 4.25). Depending on buffer mode the status phase will occur either 

immediately after the data transfer or after the printing has actually taken place. 

Table 14.24 SCSI commands for printers. 

Op- Name Type Page SCSI-2 SCS/-3 Description 

code (SCC) 

OOh TEST UNIT READY M 1 3 1  7.2. 1 6  SPC Reflects whether or not the LUN is ready to 
accept a command 

03h REQUEST SENSE M 1 3 2  7 .2 . 1 4  SPC Returns detailed error information 
04h FORMAT M 203 1 0.2. 1 M  6.2 . 1 0 Font or form control 
OAh PRINT M 20 1 1 0.2.2 6.2.2 Print data 
OBh SLEW AND PRINT 1 0.2.4M 6.2.4 0 Advance and print 
I Oh SYNCHRONIZE 1 0.2.6M 6.2 .60 Print contents of bu ffer 

BUFFER 

l 2h INQUIRY 1 28 7.2.5 SPC Returns LUN specific information 
1 4h RECOVER BUFFERED 0 1 0.2.3 6.2.3 Retrieve data from the data buffer 

DATA 

I Sh MODE SELECT(6) 1 40 7.2.8 SPC Set device parameters 
l 6h RESERVE UNIT 1 36 9.2 . 1 0  SPC Make LUN accessible only to certain 

initiators 
l 7h RELEASE UNIT 1 36 9.2.9 SPC Make LUN accessible to other initiators 
I Sh COPY 7.2.3 SPC Autonomous copy from/to another device 
! Ah MODE SENSE(6) M 1 40 7.2. 1 0  SPC Read device parameters 
I B h  STOP PRINT 0 202 1 0.2.5 6.2.5 Interrupt printing 
! Ch RECEIVE DIAGNOSTIC 0 7.2 . 1 3  SPC Read self-test results 

RESULTS 

I Dh SEND DIAGNOSTIC M 1 38 7 .2 . 1 SPC Initiate self-test 
39h COMPARE 0 7.2 .2 SPC Com pare data 
3Ah COPY AND VERIFY 0 7.2 .4 SPC Autonomous copy from/to another device, 

verify success 
3Bh WRITE BUFFER 0 7.2. 1 7  SPC Write the data buffer 
3Ch READ BUFFER 0 7.2. 1 2  SPC Read the data buffer 
40h CHANGE DEFINITION 0 1 39 7.2. 1 SPC Set SCSI version 
4Ch LOG SELECT 0 7 .2.6 SPC Read statistics 
4Dh LOG SENSE 0 7.2.7 SPC Read statistics 
55h MODE SELECT( tO)  0 1 40 7.2.9 SPC Set device parameters 
5Ah MODE SENSE( tO) 0 1 40 7.2. 1 0  SPC Read device parameters 

Note: Mandatory commands are shaded dark gray. (M) means that the command is classified differently 
in SCSI-2 and SCSI-3. The corresponding classification is  indicated after the reference to the standard. 
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Table 14.25 The PRINT command. 

7 I 6 I 5 I 
0 

4 I 3 I 2 

PRINT (OAh) 

l (LUN) I Reserved 

2 (MSB) 

3 Transfer length 

4 

5 Control byte 

Table 14.26 The SLEW AND PRINT command. 

7 I 6 l 5 I 4 I 3 I 
0 SLEW AND PRINT (OBh) 

l (LUN) I Reserved 

2 S lew value 

3 (MSB) Transfer length 

4 

5 Control byte 

SLEW AND PRINT (08h) 

2 

I 1 I 0 

(LSB)  

I 1 J 0 

I Channel 

(LSB)  

This command works just  like the PRINT command except that i t  allows a certain 
number of lines to be skipped before printing, as well as a choice of forms channel 
(Table 1 4.26). When the Channel bit is set the number of the forms channel is given 
in Slew value. Otherwise, this byte is interpreted as the number of lines to be skipped 
before printing. 

STOP PRINT (1 Bh) 

This command halts printing (Table 1 4.27) . If  the Retain bit is clear then the data 
remaining in the buffer is discarded. Otherwise, it is held and a subsequent PRINT 
command or a SYNCHRONIZE BUFFER will allow printing to continue. 

Table 14.27 The STOP PRINT command. 

7 I 6 I 5 I 4 I 3 J 
0 STOP PRINT ( l Bh)  

l (LUN) I Reserved 

2 Manufacturer specific 

3 Reserved 

4 

5 Control byte 

2 I 1 I 0 

I Retain 
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Table 14.28 The FORMAT command. 

7 I 6 I 5 I -1 I 3 

0 FORMAT (O+hJ 

I 

I (LUN) I Reserved 

2 (MSB) 

3 Transfer length 

4 

5 Control byte 

Table 14.29 The SYNCHRONIZE BUFFER command. 

7 I 6 I 5 I -1 I 3 I 

2 

2 

() SYNCHRONIZE BUFFER ( 1 0h) 

I (LUN) I 
2 

3 Reserved 

4 

5 Control byte 

FORMAT (04h) 

I 1 I 0 

I Type 

( LSB ) 

I 1 I () 

This command makes it possible to send form or font data to the printer (Table 14.28) .  
The value OOb in the Type field chooses form control, the value 01 b font control. 

SYNCHRONIZE BUFFER (1 Oh) 

This command causes the printer to print the contents of the data buffer (Table 
1 4.29) . This is used to make sure that all data has been printed. Page printers some­
times need a form feed in this case. This command waits until after printing to return 
status .  If for any reason printing cannot take place a CHECK CONDITION is returned. 

1 4.6 Mode parameters for pr inters 

Mode parameter header 

The device type specific byte in the mode parameter header has the following form 
(Table 1 4.30) :  

• Buffer mode is defined for two values and is relevant for PRINT and SLEW AND 
PRINT commands. All other values are reserved. 

Table 14.30 Device-specific parameter byte in MODE header. 

Bit 7 6 I 5 I 4 3 I 2 I 
() Reserved Buffer mode Reserved 

1 I 0 
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Table 14.31 Mode parameter pages for printers. 

Page Name 

code 

02h 

03h 

04h 

05h 

09h 

OAh 

D isconnect/reconnect page 

Paral le l  interface page 

Serial interface page 

Printer options page 

Peripheral device page 

Control mode page 

Page SCS!-2 

1 45 7 .3 .3 .2  

204 1 0. 3 . 3 . 1 

205 1 0.3 . 3 . 3  

1 0. 3 . 3 .2 

146 7 .3 .3 . 3  

1 47 7 .3 .3 . 1 

SCS!-3 

(SSC) 

SPC 

6 .3 .3 . 1  

6 .3 . 3 . 3  

6 .3 . 3 .2  

SPC 

SPC 

• OOOb is for unbuffered mode. The printer controller will not return status until the 
data has actually been printed. 

• 00 1 b is the buffered mode. Here the controller is allowed to return GOOD status as 
soon as all data has been received into the buffer. 

Mode parameter pages 

Table 14 .3 1 shows the mode parameter pages defined for printers . 

Paral lel interface page (03h) 

This parameter page controls the characteristics of a parallel printer interface (Table 
1 4.32) .  The parameter Parity assumes the values OOb for no parity, O l b  for even 
parity and l Ob for odd parity. The meaning of byte 2 is explained in detail in section 
10 .3 .3 . 1  of the ANSI standard. 

Table 14.32 Parallel interface page. 

7 6 5 I 
0 PS Reserved 

4 I 3 I 2 

Page code (03h) 

1 Page length (02h) 

I 

2 Parity PIPC I Reserved I VCBP I VCBS I 
3 

Table 14.33 Serial interface page. 

7 6 5 I 
0 PS Reserved 

1 

2 Reserved 

Reserved 

4 3 I 2 I 
Page code (04h) 

Page length (06h) 

Stop bit length 

1 

VES 

1 

3 Parity I Reserved B i ts per character 

4 RTS CTS Reserved Protocol 

5 (MSB J 

6 Baud rate 

7 

I 0 

I Autofeed 

I 0 

(LSB)  
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Table 14.34 Parameters of the serial interface. 

Code Parity Code Protocol 

OOOb No parity OOOOb No protocol 
001b Mark 0001b XON / XOFF 
010b Space 0010b ETX / ACK 
011b Odd 0011b DTR 
l OOb Even 

Serial i nterface page (04h) 

This parameter page controls the characteristics of a serial RS-232C interface. The 
fields are more or less self explanatory (Table 14 .33) .  Section 2. 1 is a good source 
of background information on the serial interface (Table 14 .34). The RTS bit speci­
fies that the printer controller should activate the RTS signal of the interface. If the 
CTS bit is clear the controller will ignore the RTS signal altogether. Otherwise 
output is stopped as long as RTS is inactive. 

1 4. 7  The model of a SCSI communications device 

SCSI communications devices closely resemble processor devices. Here too data is 
received and sent across the bus. While processor devices may locally process the 
data, communications devices send it further. An important distinction is that com­
munications make possible an additional level of addressing. The channel number 
allows the addressing of different logical channels. These might be connected to 
various physical communications ports within the device. On the other hand, these 
might be used to address different LAN protocols. The channel number is 1 6  bits 
long, making 64 000 logical channels available. As always, a communications 
device may have up to eight LUNs, which explodes this number to half a million. 
Examples of SCSI communications devices are shown in Figure 14.4. 

Host 

Host 

Channel 0 

SCSI Communications Channel 1 

1-----jController 

Communications SCSI 
Controller 

Channel 2 

Channel 3 

0: TCP/IP 

1 :  IPX 
-

2: DECnet 

3:0SI 

- o  O u  ��  iTl :s  

Figure 14.4 Examples of SCSI communications devices. 

r-----1 
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As with processor devices, the SCSI bus is used strictly as a physical interface 

since the SCSI-2 standard does not specify the contents of data packets. For this 

reason communications devices Jack device-specific parameter pages. 

At the cun·ent editorial state of the SSC document there seem to be hardly any 

differences between SCSI-2 and SCSI-3 . 

1 4.8 Commands for SCSI communications devices 

Table 14.35 lists the commands defined for SCSI communications devices. For SCSI 

communications devices there are two additional commands defined, each with a 6-, 

1 0-, and 12-byte version. Since the GET MESSAGE and SEND MESSAGE commands are 

identical except for the opcode they are discussed here in pairs. 

GET MESSAGE(6) (08h) and SEND MESSAGE(6) (OAh) 

These versions of the commands are the only ones that are mandatory. In SCSI-3 

only the send message command is mandatory. Neither of the two commands offers 

support for logical channels (Table 1 4.36). 

Table 14.35 Commands for SCSI communications devices. 

Op- Name Type Page SCSI-2 SCS/-3 Descriprio11 

code (SCC) 

OOh TEST UNIT READY M 1 3 1  7.2 . 1 6  SPC Reflects whether or not the LUN is ready to 
accept a command 

03h REQUEST SENSE M 1 32 7.2. 1 4  SPC Returns detailed error information 
08h GET MESSAGE{6) {M ) 206 1 7 .2. l M  7.2. 1 0 Receive 
OAh SEND MESSAGE(6) M 206 1 7.2.4 7.2.4 Send 
1 2h INQUIRY M 1 28 7.2.5 SPC Returns LUN speci fic information 
I S h  MODE SELECf(6) 0 1 40 7 .2 .8  SPC Set device parameters 
! Ah MODE SENSE(6) 0 1 40 7.2 . 1 0  SPC Read device parameters 
! C h  RECEIVE DIAG1 OSTIC 0 7.2. 1 3  SPC Read self-test results 

RESULTS 

! Dh SEND DIAGNOSTIC M 1 38 7.2. 1 SPC Initiate self-test 
28h GET MESSAGE( IO) 0 207 1 7 .2.2 7.2.2 Receive 
2Ah SEND MESSAGE( I 0) 0 207 1 7 .2.5 7.2.5 Send 
3Bh WRITE BUFFER 0 7 . 2 . 1 7  SPC Write the data buffer 
3Ch READ BUFFER 0 7.2 . 1 2  SPC Read the data bu ffer 
40h CHANGE DEFINITION 0 1 39 7. 2 . 1  SPC Set SCSI version 
4Ch LOG SELECT" 0 7.2.6 SPC Select statistics 
4Dh LOG SENSE 0 7.2.7 SPC Read statistics 
55h MODE SELECT( IO) 0 1 40 7.2.9 SPC Set device parameters 
SAh MODE SENSE( 10)  0 1 40 7.2 . 1 0  SPC Read device parameters 
ASh GET MESSAGE( 12) 0 207 1 7 .2.3 7.2.3 Receive 
AAh SE 'D MESSAGE( 1 2) 0 207 1 7 .2.5 7 .2 .3  Send 

Nore: Mandatory commands are shaded dark gray. (M) means that the command is classi fled d i  fferenliy 
in SCSI-2 and SCSI-3.  The corresponding classification is  indicated after the reference to the standard. 
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Table 14.36 The GET MESSAGE(6) and SEND MESSAGE(6) commands .  

7 I 6 I 5 I 4 I 3 I 2 I I 
0 GET MESSAGE(6) (08h) or 

SEND MESSAGE(6) (OAh) 

I (LUN) I Reserved 

2 (MSB)  

3 Transfer length 

4 

5 Control byte 

GET MESSAGE(l 0) (28h) and SEND MESSAGE(l 0) (2Ah) 

I 0 

(LS B )  

The 1 0-byte version has no support for logical channels but does have a 1 6-bit wide 
transfer length field. The maximum length of a data packet is limited to 
64 Kbytes (Table 14 .37) .  

GET MESSAGE(1 2) (A8h) and SEND MESSAGE(1 2) (Mh) 

Finally, the 1 2-byte version supports logical channels and a transfer length field of 
32 bits wide (Table 14 .38) .  

1 4.9 Mode parameter pages for commun ications devices 

There are no device type specific mode parameter pages for communications devices . 
Table 14 .39 shows the parameter pages relevant to this class .  

Table 14.37 The GET MESSAGE( I O) and SEND MESSAGE( I O) commands .  

7 I 6 I 5 I 4 I 3 I 2 I I 

0 GET MESSAGE( ! OJ (28h) or 

SEND MESSAGE( I OJ (2Ah) 

I (LUN) I 
2 Reserved 

3 

4 (MSB)  Channel 

5 number 

6 Reserved 

7 (MSB)  Transfer 

8 length 

9 Control byte 

I 0 

(LS B )  

(LS B )  
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Table 14.38 The GET MESSAGE( 1 2) and SEND MESSAGE( l 2) commands. 

7 I 6 I 5 I 4 I 3 I 2 I 1 

0 GET MESSAGE( 1 2) (A8h) or 

SEND MESSAGE( 1 2) (AAh) 

I (LUN) I 
2 Reserved 

3 

4 (MSB) Channel 

5 number 

6 (MSB) 

7 Transfer 

8 length 

9 

1 0  Reserved 

1 1  Control byte 

Table 14.39 Mode parameter pages for communications devices. 

Page Name 

code 

02h 

09h 

OAh 

Disconnect/reconnect page 

Peri ph era! device page 

Control mode page 

Page SCSJ-2 SCSJ-3 

145 

1 46 

1 47 

7 .3 .3 .2  

7 .3 .3 .3  

7 .3 .3 . 1  

(SSC) 

SPC 

SPC 

SPC 

I 0 

(LSB)  

(LSB) 



1 5  G raph ics devices 

I n  SCSI-3,  scanners have got their own document. At the moment, they are the only 
device type in the SOC (SCSI Graphical Commands) document. Otherwise, nothing 
has really changed. As far as we currently know, commands and parameters are the 
same in SCSI-2 and SCSI-3 . 

1 5 . 1  The model of a SCSI scanner 

A scanner is a device capable of  converting pictures and text to  an electronic repre­
sentation made up of rows of pixels. Pixels can be black and white, color, or gray 
scale. The number of bits needed to represent a pixel is dependent on which of these 
three possibilities is chosen. As a result there are different data formats for storing 
scanned images . These formats are not specified in the SCSI standard ; many are 
vendor unique. Similar to the printer definition, the SCSI standard is limited to the 
exchange of data and the control of the scanner. 

A SCSI scanner uses the coordinate system shown in Figure 1 5 . 1 .  The units of 
the coordinate system can be specified using the measuring units page of the MODE 

y 

0 

Scan 
window 

Origin 

X 

Figure 15.1 Coordinate system and scan window. 

Scan 
d i rection 

209 
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Table 15.1 Window descriptor. 

7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 

0 Window identifier 

I Reserved I Auto 

2-3 X-axis  resolution 

4-5 Y-axis resolution 

6-9 X-axi s  upper left 

1 0- 1 3  Y-axis upper left 

1 4- 1 7  Window width 

1 8-2 1 Window length 

22 B rightness 

23 Threshold 

24 Contrast 

25 I mage composition 

26 Bits per pixel 

27-28 Halftone pattern 

29 RIF I Reserved I Padding type 

30-3 1 Bit  ordering 

32 Compression type 

33 Compression argument 

34-39 Reserved 

40-n Vendor specific 

SELECT command. The available units are inches, millimeters or points ( 1 172 inch) 
or fractions thereof. The unit of measure chosen does not affect the resolution of the 
scanner. 

A SCSI scanner can be configured such that the scanning surface is broken up 
into one or many windows. These windows may differ in size and location as well 
as scanning method. Each window is described by a separate window descriptor, an 
example of which is shown in Table 1 5 . 1 .  

The window descriptor 

In order to save space, parameters that occupy more than one byte are represented in 
a single line in the table. As is usually the case for SCSI the length of the parameter 
block is contained within the parameter block itself. 

Most fields here are self-explanatory. The Auto bit specifies that the scanner may 
create subwindows automatically. When reading the window parameter data this bit 
reflects whether the window was automatically created. The RIF bit indicates that 
the image is a negative. The image composition, halftone pattern and compression 
fields are essentially vendor specific. 
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1 5 .2 SCSI scanner commands 

Table 15 .2 lists all  of the commands defined for SCSI scanners. Out of these, there 

are only six commands that are specific for SCSI scanners. Two of these, namely 

READ and SEND, are quite similar to the READ( I O) and WRITE( I O) commands. They 

share the same opcode, but are structured in a slightly different way. 

SET WINDOW (24h) 

The SET WLNDOW command creates one or more scanning windows (Table 1 5 .3) .  

Here the data phase contains a window list made up of a list header and one or more 

window descriptors, as in Table 1 5 . 1 .  The header contains only the total length of 

the window descriptors (Table 1 5 .4). Individual descriptors must all be the same 

length. 

Table 15.2 Commands for scanners. 

Op- Name Type Page SCSI-2 SCSI-3 Description 

code (SGC) 

OOh TEST UNIT READY 1 3 1  7 .2 . 1 6  SPC Reflects whether or not the LUN i s  ready to 
accept a command 

03h REQUEST SENSE 1 32 7.2. 1 4  SPC Returns detailed error information 
1 2h INQUIRY 1 28 7.2.5 SPC Returns LUN specific information 
I S h  MODE SELECT(6) 1 40 7.2.8 SPC Set device parameters 
1 6h RESERVE UNIT 1 36 9.2. 1 0  SPC Make LUN accessible only to certain 

in i tiators 
1 7h RELEASE UNIT 1 36 9.2.9 SPC Make LUN accessible to other initiators 
1 8h COPY 0 7.2.3 SPC Autonomous copy from/to another device 
I Ah MODE SENSE(6) 1 40 7.2. 1 0  SPC Read device specific parameters 
I B h SCAN 0 2 1 3  1 4.2.5 6. 1 .5 Scan 
I Ch RECEIVE DIAGNOSTIC 0 7.2. 1 3  SPC Read sel f-test results 

RESULTS 

I Dh SEND DIAGNOSTIC 1 3 8 7.2. 1 SPC Initiate self-test 
24h SET WINDOW 2 1 1  1 4.2.6 6. 1 .7 Set scan window 
25h GET WINDOW 0 1 4.2 .2  6. 1 .2 Read window properties 
28h READ 2 1 2  1 4.2.4 6. 1 .4 Read 
2Ah SEND 0 2 1 2  1 4.2.7 6. 1 .6 Write 
3 1 h  OBJECT POSITION 0 1 4.2.3 6. 1 . 3 Set object position 
34h GET DATA BUFFER 0 1 4 .2 . 1  6. 1 . 1  Read data buffer subdivision and fil l ing 

STATUS rate 
39h COMPARE 0 7.2.2 SPC Compare data 
3Ah COPY AND VERIFY 0 7.2.4 SPC Autonomous copy from/to another device. 

verify success 
3Bh WRITE BUFFER 0 7.2. 1 7  SPC Write the data bu ffer 
3Ch READ BUFFER 0 7.2. 1 2  SPC Read the data buffer 
40h CHANGE DEFINITION 0 1 39 7.2. 1 SPC Set SCSI version 
4Ch LOG SELECT 0 7.2.6 SPC Select statistics 
4Dh LOG SENSE 0 7.2.7 SPC Read statistics 
55h MODE SELECT(IO) 0 1 40 7.2.9 SPC Set device parameters 
5Ah MODE SENSE(IO) 0 1 40 7.2. 1 0  SPC Read device parameters 

Note: Mandatory commands are shaded dark gray. 



2 1 2  Graphics devices 

Table 15.3 The SET WINDOW command. 

7 I 6 I 5 

0 

I (LUN) 

2 . . .  

. . .  5 

6 (MSB) 

7 

8 

9 

Table 15.4 Window header data. 

I 4 I 3 

SET WINDOW (24h) 

I 
Reserved 

Transfer length 

Control byte 

7 I 6 I 5 I 4 I 3 

0 

. . .  Reserved 

5 I 

6 (MSB) Window descriptor 

7 length 

READ (28h) and SEND (2Ah) 

I 2 I I I 0 

(LSB) 

I 2 I I I 0 

(LSB) 

The READ and SEND commands have the same opcodes as the normal READ( 1 0) and 
WRITE( I O) commands, but they have a slightly different structure. 

The READ command reads data from the scanner (Table 1 5 .5 ) .  Here different types 
of data are possible. Data type code OOh stands for image data, 02h for half tone 

Table 15.5 The READ command for scanners . 

7 I 6 I 5 I 4 I 3 

0 READ (28h) 

I (LUN) I 
2 Data type code 

3 Reserved 

4 (MSB) Data type 

5 qualifier 

6 (MSB) 

7 Data length 

8 

9 Control byte 

I 2 I I I 0 

Reserved 

(LSB)  

(LSB) 
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Table 15.6 The SCAN command. 

7 I 6 I 5 

0 

I 
I (LUN) J 
2 

3 

4 

5 

.J I 3 I 2 I I I 0 

SCAN ( I Bh J  

Reserved 

Data length 

Control byte 

masks and 03h for gamma curves . The data type qualifier is  a vendor specific 
parameter, which is required for some data types. The data length is measured in 
blocks whose size has been specified using the mode parameter block descriptor. 

In the same way, you can use the SEND command to send half tone masks and 
gamma curves to the scanner. 

SCAN (1 Bh)  

The scan command initiates the scanning process (Table 1 5 .6) .  This command i s  
optional because this is done manually for many scanners . The data length specifies 
the length of the window list supplied in the data phase of the command. The 
window list is composed of one or many window numbers previously defined. 

1 5 .3 Mode parameters for scaHll rners 

Mode parameter pages 

Table 1 5 .7 shows the Mode parameter pages defined for SCSI scanners . 

Measu rement un its page (03h) 

This page is very straightforward (Table 1 5 . 8) .  Byte 2 specifies the basic unit of 
measure, where OOh stands for inches. O l h  for millimeters, and 02h for points ( 1/72 
inch). Bytes 4 and 5 contain the number of units that should make up a basic mea­
surement unit. This means that when byte 2 contains 0 1 h  and byte 5 contains 64h the 
measurement unit is 1 1 100 of a millimeter. 

Table 15.7 Mode parameter pages for scanners . 

Page Name Page SCS/-2 SCS/-3 

code (SGC) 

02h Disconnect/reconnect page 1 45 7 .3 .3 .2  SPC 

03h Measurement units page 2 1 3  1 4.3 .3 . 1  7 . 1 . 3 . 1 

09h Peripheral device page 1 46 7 .3 .3 .3  SPC 

OAh Control mode page 1 47 7 .3 .3 . 1 SPC 
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Table 15.8 Measurement units page. 

7 I 6 I 5 I 4 I 3 I 2 I I I 0 

0 Page code (03h) 

l Page length (06h) 

2 Measurement unit 

3 Reserved 

4 (MSB) Divisor 

5 (LS B )  

6 Reserved 

7 



1 6  Med i u m-changer devices 

1 6. 1  The model of a SCSI med illl m-changer dlevke 

A SCSI medium-changer device is like a juke-box, allowing many individual media to 
be stored, loaded, unloaded, and accessed just like single media drives (Figure 1 6. 1 ) .  
There are four basic components or elements of this juke-box: the medium transport 
element (MTE), the storage element (SE), the import/export element (IOE), and the data 
transfer element (DTE). A device may, however, contain more than one of any of these 
elements. Each element is capable of being empty or holding a single medium. All ele­
ments are identified using a 16-bit address. The addresses of the various elements are 
consecutive and do not overlap, so that elements can be implicitly accessed by their 
address. In SCSI-2 all media must be of the same type. The SCSI-3 model of a medium 
changer, however, also allows a device that distributes different media such as cassette 
tape and optical disks across different drives. 

Independent and attached medium changers 

The medium changer as an independent device as it is defined in SCSI-2 is comple­
mented in SCSI-3 with the variation of the attached medium changer. The independent 
medium changer is a separate SCSI device or a separate LUN and understands the entire 
SMC command set. The attached medium changer is part of the LUN of the principal 
device. It understands only two commands, namely MOVE MEDIUM and READ ELEMENT 

STATUS. The attached medium changer belongs to the model of all SCSI devices and is 
described in the SPC document. 

Elements of the medium-changer device 

The medium transport element 

The MTE is the mechanism that moves media from one location to another. When a 
double-sided medium is being used the element contains the machinery necessary to 
tum the medium over. Since the transport element may contain a medium, it has an 
element address. Large devices contain more than one MTE. 

21 5 
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Drive Input/Output 

I Element 53 I 
I Element 54 I 

• �� Elements 1 -50 

Tra �sport 
mec h�nism Storage 

Controller El lrr �nt 0 (50 Elements) 

Figure 16.1 Model of a SCSI medium-changer device. 

The storage element 

Media is held in the SE until it is needed for access. From here individual media are 

moved by the MT element to other elements of the device. 

The import/export element 

The IOE allows an operator to load media into and remove media from the device. 

Therefore, when a medium unit is to be removed from the device the MTE moves it 

from its current position into the IOE. The IOE does not necessarily have to be 

implemented since many devices allow direct hand access to storage. Large 

medium-changers, on the other hand, may have several IOEs. 

The data transfer element 

Obviously, media can be accommodated within the DTE, the place where data is  

ultimately accessed. For this reason i t  also is addressed in the element address space. 

Large medium-changers may employ a number of these DTEs. 

From the SCSI perspective the DTE and the medium-changer are completely sepa­

rate entities. No data transfer commands are contained in the medium-changer 

command set In fact, the DTE may not even be SCSI compatible. One possibility is 

that the DTE is connected to the host using an interface other than SCSI. Another pos­

sibility is for it to be connected to the very same SCSI bus but at a different SCSI ID; 
in other words, the DTE is a separate target The latter is the standard case (Figure 1 6.2). 

Finally, the two might be implemented as individual LUNs of the same SCSI target 

This configuration is the least likely since the LUNs belong to different device types. 

Volume tags 

Volume tags are used to identify a particular piece of medium. These tags, which are 

optional, are written on the medium itself and remain with it from element to 

element. Double-sided media have a primary volume tag for the default side and an 

alternate volume tag for the reverse side. 



Commands for medium-changers 21 7 

{r = " ,- I I Drive 
LUN .""'" 0 1 

Ll 
0 

-
(f) 
u 
(f) LUN Tr n port 

0 m c·tani sm 
!-

� 

-

SCSI bus 

Figure 16.2 SCSI medium-changer configuration. 

Host 

SCSI ID 7 

Tags are assigned either using a bar code reader or with the aid of a special 

command. Table 16 . 1 shows the format of a volume tag just as it is used by the com­

mands READ ELEMENT STATUS and SEND VOLUME TAG. 
The volume identification field contains ASCII characters. In order to be com­

patible with most operating systems you should use only numbers, capital letters and 

the underscore character. In particular, question marks and asterisks, which are wild­

cards in many systems, should be avoided. 

The volume sequence number is 16 bits long and is used, for example, to keep 

track of the individual pieces of medium that belong to a single volume. 

Table 16.1 Format of a medium volume tag. 

7 _l 6 J 5 I 4 I 3 I 2 I 1 l 0 

0 

Volume identification field 

3 1  

32 Reserved 

33 

34 (MSB) Volume sequence number 

35 (LSB) 

1 6.2 Commands for medium-changers 

The major change from SCSI-2 to SCSI-3 is that the READ ELEMENT STATUS 
command has become mandatory. Since it must also be supported by attached 

medium-changers, it has been included in this edition of the book. Table 1 6.2 lists 

the commands defined for medium-changers. 
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Table 16.2 Commands for medium-changer devices. 

Op- Name Type Page SCSI-2 SCSI-3 Description 

code (SBC) 

OOh TEST UNIT READY M 1 3 1  7.2. 1 6  SPC Reflects whether or not the LUN is ready to 
accept a command 

O l h  REZERO UNIT 0 8.2. 1 3  SPC Seek track 0 
03h REQUEST SENSE M 1 32 7.2. 1 4  SPC Returns detailed error information 
07h INITIALIZE ELEMENT 0 1 6.2.2 6.2 Initialize element 

STATUS 

1 2h INQUIRY M 1 28 7.2.S SPC Returns LUN specific information 
I S h  MODE SELECT(6) 0 1 40 7.2.8 SPC Set device parameters 
l 6h RESERVE M 1 36 1 6.2.8 6.8 Make LUN accessible only to certain 

initiators 
17h RELEASE M 1 36 1 6.2.6 6.6 Make LUN accessible to other initiators 
1 Ah MODE SENSE(6) 0 1 40 7.2. 1 0  SPC Read device parameters 
I Ch RECEIVE DIAGNOSTIC 0 7 .2 . 1 3  SPC Read self-test results 

RESULTS 

L Dh SEND DIAGNOSTIC M 1 3 8  7.2. 1 SPC Initiate self-test 
! Eh PREVENT/ ALLOW 0 8.2.4 SPC Lock/unlock door 

MEDIUM REMOVAL 

2Bh POSITION TO 0 1 6.2.4 6.4 Position to element 
ELEMENT 

3Bh WRITE BUFFER 0 7 . 2 . 1 7  SPC Write data buffer 
3Ch READ BUFFER 0 7.2. 1 2  SPC Read data buffer 
40h CHANGE DEFINITION 0 1 39 7.2. 1 SPC Set SCSI version 
4Ch LOG SELECT 0 7.2.6 SPC Select statistics 
4Dh LOG SENSE 0 7. 2.7 SPC Read statistics 
SSh MODE SELECT( IO) 0 1 40 7.2.9 SPC Set device parameters 
5Ah MODE SENSE( IO) 0 1 40 7.2. 1 0  SPC Read device parameters 
ASh MOVE MEDIUM M 2 1 8  1 6.2.3 6.3 Move medium 
A6h EXCHANGE MEDIUM 0 2 1 9  1 6.2. 1 6. 1 Exchange medium 
B5h REQUEST VOLUME 0 1 6.2.7 6.7 Request volume element address 

ELEMENT ADDRESS 

B6h SEND VOLUME TAG 0 1 6.2.9 6.9 Assign volume name 
B8h READ ELEMENT (0) 220 1 6.2.S O 6.S M Read element status 

STATUS 

Note: Mandatory commands are shaded gray. (M) means that the command is classified differently i n  
SCSI-2 and SCSI-3. T h e  corresponding classi fication is indicated after t h e  reference t o  t h e  standard. 

MOVE MEDIUM (ASh) 

In SCSI-2 this is the only mandatory command that is device specific. It causes the 

target to move a piece of medium from one element to another (Table 1 6.3) .  The 

element addresses of the MTE, the source and the destination are parameters of the 

command. The Invert bit indicates that the medium should be flipped. 

If the source element is empty or the destination element is full the command will 

abort with a CHECK CONDITION status. This is also the case when an MTE is called 

for that is not supported in the mode parameter pages. 
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Table 16.3 The MOVE MEDIUM command. 

7 I 6 I 5 I 4 I 3 I 2 

0 MOVE MEDIUM (ASh) 

I (LUN) I Reserved 

2 (MSB)  Element address of 

3 transport device 

4 (MSB)  Source address 

5 

6 (MSB)  Destination address 

7 

8 

9 Reserved 

1 0  

I I  Control byte 

EXCHANGE MEDIUM (A6h) 

I I I 0 

(LSB) 

(LS B )  

(LS B )  

I Invert 

This command goes one step further than the MOVE MEDIUM command. The medium 
in the source element is moved to the destination 1 element and the medium previ­
ously in the destination 1 element is moved to the destination 2 element. The source 
element and the destination 2 element may or may not be the same. When they are 
the two media are exchanged (Table 1 6.4) . 

Table 16.4 The EXCHANGE MEDIUM command. 

7 I 6 I 5 I 4 I 3 I 
0 EXCHANGE MEDIUM (A6h) 

2 

I (LUN) I Reserved 

2 (MSB)  Element address of 

3 transport device 

4 (MSB)  Source address 

5 

6 (MSB)  First destination address 

7 

8 (MSB )  Second destination address 

9 

1 0  

I I  Control byte 

I I I 0 

(LS B )  

(LSB) 

(LS B )  

(LS B )  

I Inv l I Inv2 
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READ ELEMENT STATUS (88h) 

This command allows you a detailed overview of the configuration of the entire 
medium-changer (Table 1 6.5) .  It supplies the data of all elements or of individual 
elements of the device, on demand. As described further above, these are the 
medium transport element, the storage element, the import/export element and the 
data transfer elements. The function unit code (see Table 1 6.6) specifies which ele­
ments are to be listed. The first element and the number of elements describe the 
range on which the command works . Thus, in order to get all elements , you specify 
Oh as function unit code, Oh as the first element address, and FFFFh as number of 
elements, together with a data length of FFFFFFh. 

The element status data (Figure 1 6.3 )  consists of an eight byte header 
(Table 1 6.7) which is followed by the element pages.  The element pages themselves 
contain an eight byte header (Table 16 .8) and one or more element descriptors . The 
element descriptors are structured differently for the four function group types. 

Table 16.5 The READ ELEMENT STATUS command. 

7 I 6 I 5 I 4 I 3 I 2 I I 

0 READ ELEMENT STATUS (B8h)  

1 (LUN) I VTag I 
2 (MSB) First element address 

3 

4 (MSB)  Number of elements 

5 

6 

7 (MSB) 

8 

9 

1 0  

I I  

Table 16.6 Function unit types. 

Code Name 

Oh All  elements 

Reserved 

Data length 

Reserved 

Control byte 

l h  Medium transport element 

2h Storage element 

3h Import/export element 

4h Data transfer clements 

5 h  - Fh Reserved 

Function unit type 

I 0 

(LSB)  

(LSB)  

(LSB)  
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Element status data 
Header (B bytes) 

Element status page 1 
Header (8 bytesf 

I Elemenl descriptor 1 I Data length 

I Element descriptor 2 I '" 
page header 

Element status page 2 
Header (8 bytesf Data length 

I Element descriptor 1 I 
I Element descriptor n I 

: 
Further element status pages 

Figure 16.3 Structure of element status data. 

Table 16.7 Element status data header. 

7 I 6 I 5 I 4 I 3 

0 (MSB) First element 

I in the following l ist 

2 (MSB) Number of elements 

3 in the list 

4 Reserved 

5 (MSB) 

6 Length of l ist  in bytes 

7 

Table 16.8 Element status page header. 

7 I 6 I 5 I 4 I 3 

0 Function unit type 

in 
element status 
data header 

I 2 I 

I 2 I 
I PVT I AVT I Reserved 

2 (MSB) Length of the individual 

3 element descriptors 

4 Reserved 

5 (MSB) 

6 Length of descriptor data in bytes 

7 

1 I 0 

(LSB) 

(LSB) 

(LSB) 

1 I 0 

(LSB) 

(LSB) 
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Table 16.9 The medium transport element descriptor. 

7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 

0 (MSB) Element address 

I (LSB)  

2 Reserved I Excpt I Reserved I Ful l  

3 Reserved 

4 Sense code 

5 Extended sense code 

6 . . .  8 Reserved 

9 SVId I Invert I Reserved 

1 0  (MSB) Last storage address 

I I  of the medium in this element (LS B )  

1 2  . . . 47 Primary title (n/a i f  PYT=O) 

48 . . .  83 Secondary title (n/a if AVT=O) 

84 "' 87 Reserved (shifts upwards when a field is not applicable) 

88 . . .  z-1 Manufacturer specific (shifts upwards when a field is not applicable) 

The medium transpmt element (MTE) descriptor 

The element address is the address of the medium-changer function unit whose status 

is described in Table 1 6.9 .  

The Excpt bit indicates that the unit is in an exceptional state. In this case, the 

Sense code and the Extended sense code apply and supply further information on the 

unit. Both sense data values are interpreted in the usual way. 

The Full bit indicates that the function unit contains a medium. SVId indicates 

that the data field that holds the last storage address of the medium contains a valid 

value. The Invert bit indicates that the medium has been flipped since it was 

removed from the last storage position. 

The storage element descriptor 

The storage element descriptor looks exactly like the MTE descriptor, except for the 

additional Access bit in byte 2 (Table 1 6. 1 0) .  It indicates whether the transport 

element can access the storage element. 

The import/export element descriptor 

With the exception of byte 2, the import/export element descriptor looks exactly like 

the MTE descriptor (Table 1 6. 1 1  ). The ImEna and ExEna indicate whether this 
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Table 16.10 Storage element descriptor, byte 2. 

Reserved 

Table 16.11 Import/export element descriptor, byte 2. 

Reserved 

Table 16.12 Data transfer element descriptor, bytes 6 and 7. 

6 NoB us I Reserved I IDvld I LUvld I Reserved I 
7 SCSI ID 

LUN 

element suppm1s import or export processes. When the ImEx bit is set, the medium 

in the element comes from a user, otherwise it comes from the MTE. 

The data transfer element descriptor 

Thjs drive descriptor looks exactly like the storage descriptor, with the exception 

that bytes 6 and 7 supply information on the SCSI bus of the drive (Table 16 . 1 2).  

When the NoB us bit is set, the drive is not on the same bus as the medium-changer. 

When IDvld is set, the SCSI ID contllins a valid value. LUvld indicates that the LUN 

contains a valid value. 

1 6.3 Mode parameter pages for medium-changers 

No device-independent mode parameter pages are defined for medium-changers. 

Not even the disconnect/reconnect page exists. There are, however, three device­

specific pages, listed in Table 1 6. 1 3 . 

The device capabil ities page (1 Fh) 

Bits 0 through 3 in byte 2 specify whether the COITesponiling element is capable of 

independently storing a piece of meilium. Bytes 4-7 contllin a matrix of possible 

sources and destinations for the MOVE MEDIUM command (Table 1 6. 14).  A 1 indicates 

that a transfer between source and destination is supported. Often a direct transfer is 

not possible between the impm1/export element and the transfer element. Tills transfer 

Table 16.13 Mode parameter pages for medium-changer devices. 

Page code 

I Dh 
I Eh 
I Fh 

Name 

Element address page 
Drive group page 
Device capabi l i t ies page 

Page ANSI 

225 1 6.3.3.2 

224 1 6.3 .3.3 

223 1 6.3.3. 1 
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Table 16.14 The device capabilities page. 

7 6 5 I 4 3 2 1 

0 PS Reserved Device capabil i t ies page ( ! Fh) 

I Page length (OEh) 

2 Reserved StorDT StorliE S torST 

3 Reserved 

4 Reserved MT�DT MT�I/E MT�ST 

5 Reserved ST�DT ST�I/E ST�ST 

6 Reserved 1/E�DT 1/E�I/E 1/E�ST 

7 Reserved DT�DT DT�I!E DT�ST 

8 . . .  I I  Reserved 

1 2  Reserved MTHDT MTHI!E MTHST 

1 3  Reserved STHDT STHIIE STHST 

1 4  Reserved IIEHDT 1/EHI/E IIEHST 

1 5  Reserved DTHDT DTHI!E DTHST 

0 

S torMT 

MT�MT 

ST�MT 

1/E�MT 

DT�MT 

MTHMT 

STHMT 

IIEHMT 

DTHMT 

is accomplished by first moving through the storage element. Bytes 1 2-15  contain a 
similar matrix for the command EXCHANGE MEDIUM. 

The drive group page (1 Eh) 

Often a number of DTEs are grouped together in order to take advantage of a single 
MTE. If there are several MTEs each one is assigned a single DTE. The drive group 
(transport geometry) page contains information about the assignment of DTEs to 
MTEs and whether the latter has the capability to flip a medium (Table 1 6. 1 5) .  

Table 16.15 The drive group page. 

7 6 5 I 4 I 3 I 2 I 
0 PS Reserved Drive group page (I Eh) 

I Page length 

Drive group descriptors 

0 Reserved 

I Number in group 

1 I 0 

I Rot 
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The element address page (1 Dh) 

The element address assignment page contains the mapping of the various functional 
elements to their respective element addresses (Table 1 6. 1 6) .  

Table 16.16 The element address page. 

7 6 5 I 4 I 3 I 2 I I I 0 

0 PS Reserved Element address page ( I Dh)  

I Page length ( 1 2h)  

2 (MSB)  Medium transport 

3 element address (LSB) 

4 (MSB)  Number of medium 

5 transport elements (LSB)  

6 (MSB)  First storage 

7 clement address (LSB) 

8 (MSB)  Number of  

9 storage elements (LSB) 

1 0  (MSB)  First i mport/export 

I I  e lement address (LSB)  

1 2  (MSB)  Number of import/ 

1 3  export elements (LSB) 

1 4  (MSB)  First data transfer 

1 5  element address (LSB) 

1 6  (MSB)  Number of data 

1 7  transfer elements (LSB) 

1 8  Reserved 

1 9  



1 7  Storage array control lers 

The command set for storage array controllers (SCSI Controller Commands SCC) is 
new in SCSI-3 .  When you think of storage arrays, names like RAID arrays 
(Redundant Array of Independent Disks) come to mind. Indeed, RAID arrays can be 
implemented in many ways as SCSI storage arrays .  There is obviously quite a large 
number of array controllers already on the market, in particular for RAID arrays .  
Mostly, they also use the SCSI  bus for internal and external communication. 
However, most of them present themselves externally as a normal, maybe rather big 
SCSI-2 disk. Currently, I know of no implementation of a SCSI-3 array controller. 
For the remainder of this chapter, we will therefore be talking about future devices .  

1 7. 1  T h e  model of the SCSR storage anay 

226 

Generally speaking, SCSI storage arrays are several disk drives and other devices 
that can be accessed under a common SCSI address. The model of the SCSI storage 
array defines different objects, how they are configured, and how they interact to 
form the storage array. 

This model encompasses such easy constructions as the combination of two phys­
ical drives into one logical drive up to complicated RAID-5 storage arrays .  A linear 
volume set is defined as a combination of several drives in such a way that they form 
a single address space of logical block numbers . RAID arrays are various complex 
constructions which in addition offer some form of redundancy. However, they too 
map the logical block numbers of the different drives in the array into one single 
address space. 

The SACl 

Thus, all SCSI storage arrays share a mechanism that maps the physical block 
addresses of the individual drives into the address space of the array. This mechanism 
is called Storage Array Conversion Layer (SACL) . A typical VO subsystem consists 
of the operating system, the software driver, the host adapter, a device controller and 
a drive. The operating system requests a service, and the drive provides it. Each of 
the three levels between operating system and drive can represent the SACL. 
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lnpul device number 
+ input block address 

I 
SACL 

Output device number B 
+ output block address B 

L .,, 
Figure 17.1 Functional diagram of a SACL. 

A SACL is a formal function group (Figure 17 . 1 )  and as such is present in every 
storage array, even before SCSI-3 .  An example of a SACL at driver level is the 
Micropolis Raidion. SACLs at host adapter level are represented by the Vortex 
(ICP) SCSI array controllers . At SCSI bridge controller level we find, for example, 
devices produced by Mylex and CMD. 

Software SACl 

Each of these solutions has its advantages and disadvantages .  An important point in 
favor of software drivers is that no additional hardware is needed, which can lead 
to a lower cost. On the other hand, such a storage array is tied to a particular oper­
ating system, in most cases even to a particular version. It also needs system 

resources on the host, which can be a negative factor for the overall performance of 
the system. 

Host adapter SACl 

Here, the SACL is located in a dedicated host adapter. This host adapter has its own 
processor, buffer and usually several SCSI buses for the drives to be connected. The 
separate processor uses less resources of the host operating system. However, such 
a device is normally tied to a determined host bus, and usually special software 
drivers are needed. 

Control ler SACl 

A SACL constructed as a bridge controller is a board or an external device which 
has a SCSI bus as a connection to the host and one or more SCSI buses to connect 
the drives (Fingure 1 7 .2) .  Externally, in SCSI-2 it presents itself as one single 
normal SCSI hard disk. Therefore, the subsystem functions with any SCSI host 
adapter and with any operating system. You can take such a system with you from 
one computer platform to another. You will only have to consider that the data struc­
ture obviously varies with the operating system and therefore reformatting may be 
indicated. The only real disadvantage of such systems is their relatively high cost. 
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I 

Operating system 
I 

Device number (A) + block address (A) 

Device number(A) + block address (A) 

Device number (�) + block address (A) 

Bridge controller (SACL) 

Device number (J) + block address (B) 

I 
SCSI device SCSI device � SCSI device I 

Figure 17.2 SACL controller model. 

I 

Please note, however, that the restrictions on the biggest possible disk which vary 

with the different operating systems also apply to storage anays.  Otherwise it can 

happen that even with a SACL controller you depend on driver software that is dif­

ficult to obtain. Please consult Chapter 7 for the 528-Mbyte limit of DOS and the 

8-Gbyte limit of PC INT 1 3 .  

Objects 

A storage anay is constructed by configuring objects. This configuration must not 

necessarily happen online. It can also be permanently set by the manufacturer, but in 

any case it must be reported correctly. Therefore, in the SCSI storage array specific 

commands, the report commands are mandatory, whereas the configuration com­

mands are optional. 

Objects can be added to a storage anay. Then they are available to the applica­

tion client and can be addressed. Objects combined into redundancy groups or 

volume sets are called associated. Objects can be attached to a component or 

covered by identical objects. Thus, for example, a hard disk can be available as a 

spare in a storage array and thus cover the other hard disks. Objects can be protected. 

Protected objects can handle the failure of one or more objects without loss of user 

data or a failure of the storage array as a whole. 



Table 17.ll Component device types . 

Code DescripTion 

OOh Controller representing a SACL 

0 I h Non-volatile cache 

02h Power supply 

03h UPS power supply 

04h Display 

05h Keyboard 

06h Cool ing fan 

ComiPonents 
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The objects that constitute SCSI storage arrays are combined out of two fundamen­

tal categories. A component device is a physically addressable object which is not 
identified as a SCSI-3 device type, such as a power supply or a cooling fan. Table 
1 7 . 1 shows a list of defined component devices . Application clients can only access 
component devices by means of commands addressed to the basis address (LUN 0) 
of the storage array. 

Devices 

Devices are the physically addressable objects that can be identified by a SCSI-3 
device type, such as disk or tape drives or CD-ROMs. Application clients can physi­
cally address devices directly. Please note, however, that user data may be distributed 

arbitrarily across different devices combined into a volume set. 
The remaining objects are constructed out of these two categories or they are part 

of an object of one of these categories. 

IP !Extent 

A P _Extent is the entire area addressable by the host in a device or a continuous part 

of it. P _Extents are used by the application client to create redundancy groups and 
spares . P _Extents configured into a redundancy group are called assigned P _Extents . 

Redlamdlancy grouiP 

A redundancy group is the combination of protected user data and their check data 

into a single LUN. The P _Extents that form the redundancy group can be located on 
different devices. The check data can also be empty, that is, they can effectively be 
omitted. 

IPS !Extent 

A PS_Extent is the entire protected data area in a redundancy group of a device or 
a continuous part of it. PS_Extents are used by the application client to create 
volume sets . 
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Redundancy group A Redundancy g roup B 
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protected area A 
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Vol u me set 

Figure 17.3 Volume set with several redundancy groups .  

Volume set 

' 
' 

" 
Unassigned 

protected 
area 

A volume set is a group of one or more P _Extents combined into a LUN_ V 
(Figure 17 .3 ) .  Volume sets are created by the application client in order to create a 
continuous area of logical blocks of user data in a storage array. Volume sets must 
not overlap. 

Spare 

A spare is a replacement part. Spares exist for P _Extents, devices or components . 
Spares are associated with redundancy groups or devices. How the replacement of a 
faulty P _Extent, device or component is to be carried out is, however, left to the 
manufacturer 's  discretion. 

1 7.2 Commands for storage array control lers 

Besides several of the primary commands, the SCSI array commands contain a 
group of four command pairs , one each for the input and the output direction. 

All these commands share one peculiarity: they use the least significant five bits 
of byte 1 to specify a service action. Depending on the service action, command 
structures and parameter lists are different, so that one might really talk about dif­
ferent commands with a common opcode. This technique is not (yet) used anywhere 
else in the SCSI standards. 

Each of these commands has substantial parameter lists . I will, however, omit 
these and simply present some commands with their service actions and a brief 
explanation. This command set is too recent for the presentation of further details, 

and it still remains to be seen whether it succeeds and gets accepted. 

MAINTENANCE( IN) (A3h) 

The fundamental structure of  the MAINTENANCE(IN) command is shown in  
Table 17 .3 .  

Table 1 7 .4 lists the corresponding service actions. 
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Table 17.2 Commands for storage array controllers. 

Op· Name Type Page SCSI-3 Description 

code (SCC) 
OOh TEST UNIT READY M 1 3 1  SPC Reflects whether or not the LUN is ready to 

accept a command 
03h REQUEST SENSE M 1 3 2  SPC Returns detailed e rror information 
1 2h INQUIRY M 1 28 SPC Returns LUN speci fic i n formation 
I Sh MODE SELECT(6) 0 1 40 SPC Set device parameters 
1 6h RESERVE(6) 0 1 36 6.8 Make LUN accessible only to certain 

initiators 
1 7h RELEASE(6) 0 1 36 6.6 Make LUN accessible to other initiators 
I Ah MODE SENSE(6) 0 1 40 SPC Read device parameters 
l B h START/STOP UNIT 0 SPC Load/unload medium 
l Ch RECEIVE DIAGNOSTIC 0 SPC Read self-test resu lts 

RESULTS 

I Dh SEND DIAGNOSTIC 0 1 38 SPC Initiate self-test 
3Bh WRITE BUFFER 0 SPC Write data buffer 
3Ch READ BUFFER 0 SPC Read data buffer 
4Ch LOG SELECT 0 SPC Select statistics 
4Dh LOG SENSE 0 SPC Read statistics 
55h MODE SELECT( IO) 0 1 40 SPC Set device parameters 
56h RESERVE( I 0) 0 SPC Make LUN accessible only to certain 

initiators 
57h RELEASE( IO)  0 SPC Make LUN accessible to other i n i tiators 
5Ah MODE SENSE( 10) 0 1 40 SPC Read device parameters 
A3h MA!NTENANCE(TN) M 230 6. 1 
A4h MAINTENANCE( OUT) 0 6.2 
BAh REDUNDANCY GROUP(IN) M 232 6 .3 
B B h  REDUNDANCY GROUP( OUT) 0 6.4 
BCh SPARE(IN) M 232 6.7 
B D h  SPARE( OUT) 0 6.8 
BEh VOLUME SET( IN) M 232 6.5 
BFh VOLUME SET( OUT) 0 6.6 

Note: Commands added to this command set in SCSI-3 are shaded light gray; mandatory commands are 
shaded dark gray. 

Table 17.3 The MAINTENANC E(IN) command. 

7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 

0 MA INTENANCE(IN) ( A3h) 

I Reserved I Service action 

2 . . .  3 Reserved 

4 (MSB) LUN_x 

5 ( LSB ) 

6 . (MSB) Transfer 

. . .  9 length (LSB) 

1 0  Varies with service action 

1 1  Control byte 
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Table 17.4 Service actions for MAINTENANCE(IN) . 

Action 

OOh 

O l h  

02h 

03h 

04h 

05h 

06h 

Type 

M 

M 

M 

M 

M 

M 

M 

Serl'ice name 

REPORT ASSIGNED/UNASSIGNED P _EXTEND 

REPORT COMPONENT DEVICE 

REPORT CO:VIPONENT DEVICE ATTACH:V1ENTS 

REPORT PERIPHERAL DEVICE 

REPORT PERIPHERAL DEVICE ASSOCIATIONS 

REPORT PERIPHERAL DEVICE/CO:VIPONENT DEVICE IDENTIFIER 

REPORT STATES 

REDUNDANCY GROUP(IN) (!BAh) 

This command reports on the properties of the redundancy groups of the target. Its 
fundamental structure is shown in Table 17 .5 .  

Table 1 7 .6 shows the corresponding service actions. 

VOLUME SET( IN) (IBEh) 

This command reports on  volume sets. I t  has the same structure as  REDUNDANCY 

GROUP(IN), except for the value LUN_ V in bytes 4-5 . The command has only one 
service action, namely REPORT VOLUME SETS, which has the code OOh. 

SPARE( IN) (BOt) 

This command too is structured similarly to  REDUNDANCY GROUP(IN), except that 
bytes 4-5 now contain the value LUN_S. Table 17.7 shows the possible service actions. 

Table 17.5 The REDUNDANCY GROUP(IN) command. 

7 I 6 I 5 I 4 I 3 I 2 I 
0 REDUNDANCY GROUP(IN) (BAh) 

l Reserved I Service action 

2 .. . 3 Reserved 

4 (MSB)  LUN_R 

5 

6 . . .  (MSB) Transfer 

. . .  9 length 

1 0  Reserved 

l l  Control byte 

Table 17.6 Service actions for REDUNDANCY GROUP(IN). 

Action 

OOh 

O l h  

Type 

M 

M 

Service name 

REPORT REDUNDANCY GROUPS 

REPORT UNASSIGNED REDUNDANCY GROUP SPARE 

1 I 0 

(LS B )  

(LSB) 

I RPTS 
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Table 17.7 Service actions for SPARE(IN). 

Action 

OOh 

O l h  

Type 

M 

M 

Service name 

REPORT P _EXTENT SPARE 

REPORT PERIPHERAL DEVICE/COMPONENT DEVICE SPARE 

1 7.3 Mode parameter pages for storage array control lers 

For storage array controllers , four parameter generic pages are defined, together with 
one device type specific parameter page. Table 17 . 8  lists these parameter pages. 

lU N mapping page (1  Bh) 

The LUN mapping page (Table 1 7  .9 )  specifies to  which physical device a command 
is addressed. When the Active bit is set, the mapping is used that is associated with 
the LUN in the IDENTIFY message. Otherwise, mapping is disabled. 

Table 17.8 Mode parameter pages for storage array controllers . 

Page Name Page SCSI-2 SCSI-3 

code (SCC) 

02h Disconnect/reconnect page 1 45 7 . 3 . 3 .2  SPC 

09h Peripheral device page 1 46 7 .3 .3 .3  SPC 

OAh Control mode page 1 47 7 . 3 .3 . 1 SPC 

ODh Power condition page SBC 

! B h  LUN mapping page 233 6 .9 . 1 . 1  

Table 17.9 The LUN mapping page. 

7 6 5 I 4 I 3 I 2 I 1 j 0 

0 PS Reserved LUN mapping page ( ! Bh )  

I Page length (FAh) 

2 Reserved 

3 Reserved I Active 

4 . . .  ( M S B )  Mapping for 

. . .  I I  LUN I (LS B )  

. . .  Mappings for 

. . .  L U N  2 t o  L U N  30 

244 . . .  Mapping for 

. . .  25 1 LUN 3 1  
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Table 17.10 IDENTIFY message for SCC devices. 

7 2 0 

LUN 

The IDENTIFY message has a special format which substantially corresponds to the 
SCSI-3 format (Table 1 7 . 1 0) .  Besides the 5-bit LUN number, there is also the 
VOLSET bit. When this bit is set, the LUN number specifies a volume set and the LUN 
mapping page should not be used. 



1 8  Mu ltiEOmedia  devices 

Currently, the SCSI-3 multi-media command set document (MMC) contains only 
one device type, namely the CD-ROM. In the near future, CD recorders will be 
added. Some commands for these devices are already contained in the latest MMC 
proposal. 

The MMC is  still very much under development. Thus, the indications given in 
this chapter are to be taken as highly provisional and subject to changes.  

CD-ROM 

CD-ROM is a wide and varied topic, worthy of  an entire book. A number of  books 
have, in fact, been written on the subject. For the purposes of this discussion, 
however, we will concentrate on those aspects of CD-ROM that are relevant to the 
SCSI bus .  Because of this I will only be able to touch on topics like the recording 
format and the organization of the medium. 

1 8. 1  The model of a SCSI CID-ROM drive 

SCSI CD-ROM drives can read data that conforms to the standards laid down in the 
yellow book and the red book (IEC 908). These CDs may hold audio information in 
addition to other forms of digital data. One major aspect of CD-ROM is that data can 
only be written with a device dedicated to the function; typical CD-ROM drives do 
not write (Figure I 8 .  I ) .  

The recording format demands that the data be written at a constant linear velocity 
(CLV). This means that the transfer rate is the same over the entire medium; in other 
words, there is no zone-bit recording. Nevertheless, the bit density is kept constant by 
rotating the disk more quickly for outer tracks and more slowly for inner tracks. 

Normally the read head of a CD-ROM drive is parked as long as no data access is 
taking place. However, a CD-ROM drive can assume a HOLD state, in which the head 
remains in the area of the last read. A timeout is defined among the mode parameters, 
which specifies how long after an access the head should be kept in the HOLD state . 

With respect to data access a CD-ROM drive does not differ significantly from 
other types of drives. Of course, as mentioned, no write commands have been 
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Figure 18.1 Model of a CD-ROM drive. 

implemented. On the other hand, in addition to logical blocks CD-ROM drives also 
employ other forms of data addressing. 

Many SCSI CD-ROM drives can also read the audio format. This is accom­
plished using a separate channel that is not defined within the SCSI standard. 
However, audio commands and mode parameters are included. Therefore a SCSI 
CD-ROM drive with audio capabilities can be used as a CD player and be controlled 
across the SCSI bus. 

The CD medium (Red Book) 

In terms of the organization of the medium, the CD is fundamentally different from 
the other types of disks discussed thus far. Data is recorded sequentially in the form 
of a spiral ; this spiral is read with constant linear velocity (CLV).  This is the only 
way to play back audio information without expensive intermediate storage. The 
CLV method requires that the rotating speed of the CD drive changes constantly 
during the reading process. On the outer tracks, it is about 2 1 0  rpm, on the inner ones 
about 539 rpm. The recording format for audio CDs is defined in the so-called Red 
Book which was published by Sony and Philips way back in 1 980. 

The smallest addressable unit is a physical sector (block, large frame) ,  which in 
tum consists of 98 frames (small frames) of 24 bytes each. A sector is 1/75 of a 
second long and contains 2352 bytes of data. 

The address of a sector is specified in terms of minutes, seconds, and sectors (or 
large frames) in the form MM:SS:FF. This is referred to as the MSF format. When 
an MSF address is used in a SCSI command it is given as shown in Table 1 8 . 1 .  The 
individual fields are encoded as a binary coded decimal. A CD can contain up to 99 
titles (tracks) .  

Table 18.1 CD-ROM address in MSF format. 

0 Reserved 

I M field 

2 S field 

3 F field 
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CD-IROM (Yel low !Book) 

The Yellow Book, published in 1 983,  defines the CD-ROM as an extension of the 
CD standard for data applications . Here, embedded into the large frames of 2352 
bytes, sector lengths of 2048 (Mode 1) or 2336 (Mode 2) user data bytes are possi­
ble. Usually, Mode 1 is chosen for computer applications, because it contains 
enough space for an excellent error correction with 272 ECC bytes and because 2048 
is a multiple of 5 1 2. 

Mixed mode COs 

A mixed mode CD is  divided into up to 99 CD-ROM titles. A CD-ROM title (track) 
is a continuous sequence of sectors of the same type. Thus,  a mixed mode CD-ROM 
can contain a mixture of both data and audio tracks. A transition area must lie 
between tracks of differing types, but these areas too must be formatted. CD-ROM 
tracks can contain up to 99 indexes .  

The mapping from physical sectors to logical blocks is done linearly. This also 
takes into account the transition areas in between tracks . This results in the situation 
where not all logical blocks are accessible by all commands. For instance, the logical 
blocks containing audio information can only be read with the audio commands, not 
with the regular read commands. The logical blocks that map to transition areas 
cannot be read at all . 

CD-IROM/XA (!Extended Yel low Book) 

The CD-ROM/XA (extended architecture) allows you to mix computer data and 
audio sectors within one track. This is important for multi-media applications. In 
order to read these CD-ROMs, the drive must be XA capable. 

Multi-session (Orange Book) 

A session is a continuous sequence of tracks enclosed by a lead-in and a lead-out 
area. Traditional CDs and CD-ROMs contain a single session. With the arrival of 
CD recorders, the need arose for the possibility of writing CD-ROMs in several 
steps.  In order for such a CD to be read, each session must be written completely, 
together with its lead-in and lead-out area. Thus, every time new data is to be added, 
a new session must be written. 

1 8.2 Commands for CD-R.OMs 

For the most part the mandatory CD-ROM commands have already been introduced 
in previous chapters . An exception is READ CD-ROM CAPACITY which is a variation of 
the disk drive version. The commands unique to CD-ROMs are all optional (Table 
1 8 .2) .  Examples would include the command to read the disk table of contents and 
the audio commands. Of the latter, if any are implemented, then they must all be 
implemented. 
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Table 18.2 CD-ROM conm1ands. 

Op- Name Type Page SCSI-2 SCSI-3 Description 

code (SBC) 

OOh TEST UNIT READY 1 3 1  7.2. 1 6  SPC Reflects whether or not the LUN is ready to 
accept a command 

O l h  REZERO UNIT 8.2. 1 3 0  SBC M Seek track 0 

03h REQUEST SENSE 1 32 7 . 2 . 1 4  SPC Returns detailed error information 
08h READ(6) 1 59 8.2.5 0 SBC M Read. Limited addressing 
OBh SEEK(6) �.2. 1 5 0  SBC M Seek to LBN 
1 2h INQUIRY 1 28 7.2.5 SPC Returns LUN specific information 
I S h  MODE SELECf(6) 1 40 7.2.80 SPC M Set device parameters 
1 6h RESERVE 1 36 8.2. 1 2  SPC Make LUN accessible only to certain 

ini tiators 
1 7h RELEASE 1 36 8.2. 1 1  SPC Make LUN accessible to other initiators 
I Sh COPY 7.2.3 SPC Autonomous copy front/to another device 
I Ah MODE SENSE(6) 1 40 7.2. 1 0 0  SPC M Read device parameters 
I Bh START/STOP UNIT 8.2. 1 7 0  SBC M Load/unload medium 
I Ch RECEIVE DIAGNOSTIC 7 .2 . 1 3  SPC Read self-test results 

RESUL:I'S 

I Dh SEND DIAGNOSTIC M 1 38 7 .2 . 1  SPC Initiate self-test 
I Eh PREVENT/ ALLOW (0) 8.2.40 SBC M Lock/unlock door 

MEDIUM REMOVAL 

25h READ CD-ROM 239 1 3.2.8 4.2. 1 2  Read number o f  logical blocks 
CAPACITY 

28h READ( IO) 1 59 8.2.6 SBC Read 
2Bh SEEK( 10) 0 8.2. 1 5  4.2. 1 6  Seek LBN 
2Fh VERIFY( tO) 0 1 5 .2 . 1 1 SBC Verify 
30h SEARCH DATA 0 8.2. 1 4  SBC Search data patlern 

HIGH( IO) 

3 1 h  SEARCH DATA 0 8.2. 1 4  SBC Search data pallern 
EQUAL( IO) 

32h SEARCH DATA 0 8.2 . 1 4  SBC Search data patlern 
LOIV( IO) 

33h SET LIMITS( IO) 0 8.2 . 1 6  SBC Define logical block boundaries 
34h PRE-FETCH 0 8 .2.3 SBC Read data into buffer 
35h SYNCHRONIZE CACHE 0 8.2.8 SBC Re-read data into cache 
36h LOCK/UNLOCK CACHE 0 8.2.2 SBC Lock/unlock data i n  cache 
39h COMPARE 0 7.2.2 S PC Compare data 
3Ah COPY A D VERIFY 0 7.2.4 SPC Autonomous copy from/to another device, 

verify success 
3Bh WRITE BUFFER 0 7.2 . 1 7  SPC Write data buffer 
3Ch READ BUFFER 0 7.2. 1 2  SPC Read data bu ffer 
3Eh READ LONG 0 1 6 1  8 .2.9 SBC Read data and ECC 
40h CHANGE DEFINITION 0 1 39 7.2. 1 SPC Set SCSI version 
42h READ SUBCHANNEL 0 1 3 .2. 1 0  4.2. 1 4  Read subchannel data and status 
43h READ TOC 0 240 1 3 . 1 2 . 1 1  4.2. 1 5  Read contents table 
44h READ !·lEADER 0 1 3 .2.9 4.2. 1 3  Read LBN header 
45h PLAY AUDIO(IO) 0* 24 1 1 3 .2.2 4.2.3 Audio playback 
47h PLAY AUDIO MSF 0* 24 1 1 3.2.4 4.2.5 Audio playback 
48h PLAY AUDIO 0* 243 1 3.2.5 4.2.6 Audio playback 

TRACK/INDEX 

49h PLAY AUDIO TRACK 0* 1 3.2.6 4.2.8 Audio playback 
RELATIVE( tO) 

4Bh PAUSE/RESUME 0 24 1 1 3 .2. 1 4.2.2 'Pause' key or the drive 
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Table 18.2 CD-ROM commands (continued). 

Op- Name Type Page SCSI-2 SCSI-3 Description 

code (SBC) 

4Ch LOG SELECT 0 7.2.6 SPC Select statistics 
4Dh LOG SE SE 0 7.2.7 SPC Read statistics 
4Eh STOP PLAY/SCAN 0 4 . 1 2. 1 8  Terminate audio p layback 

55h MODE SELECT( IO) 0 1 40 7.2.9 SPC Set device parameters 
SAh MODE SENSE( tO) 0 1 40 7.2. 1 0  SPC Read device parameters 
ASh PLAY AUD10( 12)  0* 24 1 1 3 .2.3 4.2.4 Audio playback 
ASh READ( 1 2) 0 1 5 .2 .4 SBC Read 
A9h PLAY TRACK 0* 1 3 .2.7 4.2.9 Audio playback 

RELATIVE( 1 2) 

AFh VERIFY( 1 2) 0 1 5 .2 . 1 2  SBC Verify data 
BOh SEARCH DATA 0 1 5 .2 .8  SBC Search data pattern 

HIGH( 1 2) 

B l h  SEARCH DATA 0 1 5 .2 .8  SBC Search data pattern 
EQUAL( 1 2) 

B2h SEARCH DATA LOW( 12) 0 1 5 .2 .8 SBC Search data pattern 
B3h SET LIMITS( 1 2) 0 1 5 .2.9 SBC Set block limits 

B8h SELECT CD-ROM SPEED 0 4.2. 1 7  Set data rate 

B9h READ CD MSF 0 4.2. 1 1  Read C D  information (all f01mats, 

MSF addresses) 

B A h  AUDIO SCAN 0 4.2 . 1  Fast audio playback 

BCh SEND CD-ROM 0 ry 

XA ADDCM DATA 

B D h  PLAY CD-ROM XA(12) 0 ry 

BEh READ CD 0 4.2. 1 0  Read CD information (all formats. 

MSF addresses) 

Note: Commands added to this command set in SCSI-3 are shaded light gray; mandatory commands are 
shaded dark gray. (M) means that the command is classi fied differently in SCSI-2 and SCSI-3. The 
corresponding class i fication is indicated after the reference to the standard. 

READ CD-ROM CAPACITY (25h) 
This command works just like the corresponding command for disk drives (Table 1 8.3). 

Table 18.3 The READ CD-ROM CAPACITY command. 

7 I 6 I 5 I 4 I 3 I 2 

0 READ CD-ROM CAPACITY (25h) 

I (LUN) I Reserved 

2 (MSB) 

3 Logical 

4 block number 

5 

6 

7 Reserved 

8 

9 Control byte 

I 1 I 0 

I Rei 

(LSB)  

I PM! 
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When the PMI bit is clear the logical block number must be zero. In this case the 

logical block address and the length of the last valid block will be returned. For 

CD-ROMs, this value can vary by ± 75 sectors because it is taken from the TOC. 

If, on the other hand, the PMI bit is set then the command will return the address 

and the length of the logical block, after which a substantial delay in access time 

occurs relative to the block provided in the command. For CD-ROMs this means 

that the command returns the address of the last logical block of the track contain­

ing the logical block provided in the command. 

The command returns an 8-byte long parameter block. The first 4 bytes contain 

the logical block number, the last 4 bytes the block length. 

READ TOC (43h) 

This command reads the table of contents of the medium (Table 1 8.4). Track zero is 

where the table of contents begins. The MSF bit indicates that the CD-ROM address 

should be returned in MSF format, otherwise a logical block number is returned. 

The command returns a data block containing the table of contents with the struc­

ture shown in Table 1 8.5 .  It consists of a header and a track descriptor for each track. 

Table 18.4 The READ TOC conm1and. 

7 I 6 I 5 I 4 I 3 I 
0 READ TOC (43h) 

I (LUN) I Reserved 

2 I 
3 

4 Reserved 

5 

6 Track or session number 

7 (MSB) Transfer 

8 length 

9 Control byte 

Table 18.5 READ Toe data format (SCSI-2 format). 

7 I 6 I 5 I 4 I 3 I 
0 (MSB) Transfer length 

I 

2 First track number 

3 Last track number 

The fol lowing bytes 

contain the track descriptors 

2 I I I 0 

I MSF I Rei 

Fom1at 

(LSB) 

2 I 1 I 0 

(LSB) 
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Table 18.5 READ TOC data format (SCSI-2 format) (continued). 
7 I 6 I 5 I ./ I 3 I 2 I 1 I 0 

0 Reserved 

l ADR I Attribute 

2 Track number 

3 Reserved 

4 . . .  (MSB)  Logical block number 

. . .  7 of the l i rst block of this track (LSB)  

In SCSI-3 further data formats have been added. The new Format field indicates 

which of these is going to be used. A value of Oh means SCSI-2 format. 4h stands 
for the new session format, and 8h indicates the new Q subcode format. 

In byte 6 of the command, it is now possible to specify the track or session 
number from which the TOC is to be read. 

1 8.3 Audio com m ands for CO-ROMs 

The audio commands make it possible to control a SCSI CD-ROM drive across the 
SCSI bus like a remote-controlled CD player. Audio information is transmitted via 

the audio output ports. 

PAUSE/RESUME (4Bh) 

This 1 0-byte command simulates the pause button of a CD player. No parameters are 
involved except the Resume bit (byte 8, bit 0). When this bit is clear, playing should 
stop; otherwise it should continue. 

PLAY AUDI0(1 0) (45h) andl PLAY AUDI0(1 2) (A5h) 

The PLAY AUDIO commands cause the playing of  audio data. The data to  be  played i s  
specified by the Start address and Transfer length fields. In  addition, the SOTC bit 
of the CD-ROM audio page has influence on these commands. 

The 1 0-byte version of the command is shown in Table 1 8 .6 .  The 1 2-byte version 
uses no additional parameters and follows the usual format. 

If the start address is not found or the data specified is not audio information, or 
if the data type changes during playing, the command will abort with a CHECK CON­

DITION status .  

PLAY AUDIO MSF (47h) 

This command also initiates playback of audio data but uses the MSF addressing 
format (Table 1 8 .7) .  The data to be played is specified using the starting and ending 
address. 



242 Multi-media devices 

Table 18.6 The PLAY AUDIO( I O) command. 

7 I 6 I 5 I 4 I 3 I 
0 PLAY AUDIO( I O) (45h) 

I (LUN) I Reserved 

2 (MSB) 

3 Start address 

4 (logical block) 

5 

6 Reserved 

7 (MSB) Transfer 

8 length 

9 Control byte 

Table 18.7 The PLAY AUDIO 'MSF command. 

7 I 6 I 5 I 4 I 3 I 
0 PLAY AUDIO MSF (47h) 

2 

2 

I (LUN) I Reserved 

2 Reserved 

3 Start address, M field 

4 Start address, S field 

5 Start address, F field 

6 End address, M field 

7 End address, S field 

8 End address, F field 

9 Control byte 

Table 18.8 The PLAY AUDIO TRACK/INDEX command. 

7 I 6 I 5 I 4 I 3 _l 2 

0 PLAY AUDIO TRACK/INDEX (48h) 

I (LUN) I Reserved 

2 Reserved 

3 

4 Start address, track 

5 Start address, index 

6 Reserved 

7 End address, track 

8 End address, index 

9 Control byte 

I 1 I 0 

I Rei 

(LSB) 

(LSB) 

I I I 0 

I I I 0 
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This variant of PLAY AUDIO uses tracks and indexes to specify the data to be played 
(Table 1 8 .8) .  Both of these parameters assume values between 0 and 99. 

1 8.4 Mode parameters for CO-ROMs 

Mode parameter header 

The mode parameter header contains two parameters for CD-ROM. The field with 
the medium type assumes the values shown in Table 1 8 .9.  

The device-specific byte contains only a single parameter. Bit 4 is the Cache bit 
and is only defined for MODE SENSE. When set it indicates that the target is equipped 
with a cache and that the DPO and FUA bits of the WRITE command are supported. 

Mode parameter block descriptor 

The write density parameter in the mode parameter block descriptor takes on the 
values shown in Table 1 8 . 1 0. 

Mode parameter pages 

The mode parameter pages in Table 1 8 . 1 1  have been defined for CD-ROM devices. 

Table 18.9 CD-ROM medium types. 

Code 

OOh 

O l h  

02h 

03h 

Medium type 

Default 

1 20 mm CD-ROM, data only 

1 20 mm CD-ROM, audio only 

1 20 mm CD-ROM, audio and data 

Table 18.10 CD-ROM write density. 

Code 

OOh 

O l h  

02h 

Write dellSit)· 

Default 

2048 bytes/sector 

2336 bytes/sector 

Code 

04h 

05h 

06h 

07h 

Code 

03h 

04h 

Medium t)pe 

Reserved 

80 mm CD-ROM, data only 

80 mm CD-ROM, audio only 

80 mm CD-ROM, audio and data 

Write dellSit)· 

2340 bytes/sector 

Audio information 

Table 18.11 Mode parameter pages for CD-ROM devices. 

Page Name Page SCS/-2 SCS/-3 

code (MMC) 

O l h  Read/write error page 1 3 .3 .3 .3  4 .3 .3 .3  

02h Disconnect/reconnect page 1 45 7 .3 .3 .2  SPC 

07h Verify error handling page 4 .3 .3 .4 

08h Cache page 1 72 SBC 

09h Peripheral device page 1 46 7 .3 .3 .3  SPC 
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Table 18.11 Mode parameter pages for CD-ROM devices (continued). 

Page Name Page SCSI-2 SCSI-3 

code (MMC) 

OAh Control mode page 1 47 7 .3 .3 . 1 SPC 

OBh Medium type page 8 .3 .3 .4 SBC 

ODh CD-ROM page 244 1 3 .3 .3 .2  4 .3 .3 .2  

OEh CD-ROM audio page 244 1 3 .3 .3 . 1 4 .3 .3 . 1 

The CD-ROM page (ODh) 

The CD-ROM page is valid for all medium types (Table 1 8 . 1 2) .  The inactivity 
timeout (Inactive) specifies how long the head should remain in the hold state before 
being parked. A key to timeout values is shown in Table 1 8 . 1 3 .  

The parameter MSF seconds per MSF minute i s  self-explanatory. The default 
value here is 60; the default value for MSF frames per MSF second is 75 .  

The CD-ROM audio page (OEh) 

The Immed bit has the usual meaning. When set a status is returned immediately. 
When the SOTB (stop on track boundaries) bit is set the target will stop the playback 
at a track boundary. Otherwise playback will continue until the transfer length has 
been exhausted, even if it extends across several CD-ROM tracks (Table 1 8 . 14) .  

Table 18.12 The CD-ROM page. 

7 6 5 I 
0 PS Reserved 

1 

2 

3 Reserved 

4 (MSB) 

4 I 3 I 2 I 
CD-ROM page (ODh) 

Page length (06h) 

Reserved 

I Inactive 

Number of 

5 MSF seconds per MSF minute 

6 (MSB) Number of 

7 MSF frames per MSF second 

Table 18.13 Timeout values .  

Code Timeout Code Timeout 

OOh Vendor specific 08h 16 seconds 

O l h  1 25 ms 09h 32 seconds 

02h 250 ms OAh I minute 

03h 50() IllS OBh 2 minutes 

04h I second OCh 4 minutes 
05h 2 seconds ODh 8 minutes 

06h 4 seconds OEh 1 6  minutes 

07h 8 seconds OFh 32 minutes 

I I 0 

(LSB) 

(LSB) 



Table 18.14 The CD-ROM audio page. 

7 6 5 I -1 I 
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3 I 2 I I I 0 

0 PS Reserved CD-ROM audio page (OEh) 

I Page length (QEh) 

2 I Immed I SOTB I Reserved 

3 Reserved 

4 

5 APRV Reserved I LBA factor 

6 (MSB)  Number of  

7 LBAs per second (LS B )  

8 Reserved I Output port 0 select 

9 Port 0 volume 

1 0  Reserved I Output port I select 

I I  Port I volume 

1 2  Reserved I Output port 2 select 

1 3  Port 2 volume 

1 4  Reserved I Output port 3 select 

1 5  Port 3 volume 

A set APRV (audio playback rate valid) bit indicates that the LBA factor and the 

number of LBAs per second is valid. 

The Number of LBAs per second field specifies the rate at which data is to be 

played back. The LBA factor is a multiplier that allows greater resolution for the 

setting of the LBAs per second. A Oh in this field causes Number of LBAs per 

second to be multiplied by 1 and a value of 8h multiplies by 1 1256. 

The end of the parameter page consists of settings for the four output channels.  

The Output port n select enables channels to port n. For instance, OOOOb will mute 

the port, 000 1 b will connect channel 1 ,  00 1 Ob will connect channel 2, and so on. The 

value for Port n volume can range from OOh for very quiet to FFh for very loud. 

1 8 .5 CD recorders 

The CD recorder is a new device in SCSI-3 . Only 22 pages are dedicated to it in the 

3 .0 proposal for the MMC document of 27 .9 . 1 995 . They mostly contain a descrip­

tion of the specific commands and some diagrams supposed to document the writing 

of a CD-ROM. The diagrams show that a CD recorder is a rather complex device. 

This, however, is not yet reflected in the text of the MMC proposal. 

Thus,  I will only briefly outline this still ongoing development. You should also 

be aware that the following information will be subject to changes .  
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1 8.6 Commands for CD recorders 

Besides the commands for all SCSI devices, CD recorders must be able to handle 

some specific commands which are listed in Table 1 8 . 1 5 .  

WRITE SESSION (51 h)  

This command (Table 1 8 . 1 6) sends the data for writing a whole CD or a whole track. 

The structure of this command is completely different from the normal WRITE 

command. Although it is only a 1 0-byte command, it has a transfer length field of 

32 bits in bytes 2 to 5. Except for the control byte, the command has no further 

parameters. 

FORMAT/RESERVE TRACK (53h) 

This command (Table 1 8. 1 7) reserves the space for a data track on the CD, that is ,  

it writes start and end address into the program memory area (PMA). No space can 

be reserved for audio tracks. 

Table 18.15 Specific commands for CD recorders. 

Op- Name Type Page SCS!-3 Descriprion 

code (SCC) 

2Ah WRITE( IO) M 1 59 SBC 
35h SYNCHRONIZE CACHE M SBC 

Write 
Write cache to medium 

S l h  WRITE SESSION M 246 5 . 1 . 1 . 1  Writing of a whole CD or a who le track 
53h FORMAT/RESERVE TRACK M 246 5 . 1 . 1 .2 Reserve a data track 
59h READ MASTER CUE 0 5 . l .2 . 1  Read master information from a master C D  
5Bh CLOSE SESSION/TRACK M 247 5 . 1 . 1 .3 Write the lead-in and lead-out areas of a 

session 
5Ch READ BUFFER STATUS 0 5 . 1 .2 .2 Read buffer status 
5 Fh RECOVER TRACK 0 5 . 1 .2.3 Repair damaged track 

Table 18.16 The WRITE SESSION command. 

7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 

0 WRJTE SESSION (5 1 h) 

I Reserved 

2 (MSB) 

3 Transfer length 

4 in bytes 

5 (LSB) 

6 

7 Reserved 

8 

9 Control byte 
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Table 18.17 The FORMAT/RESERVE TRACK command. 

7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 

0 FORMAT/RESERVE TRACK (53h)  

l . . .  Reserved 

. . .  4 

5 (MSB)  

6 Number of logical blocks 

7 to be reserved 

8 (LSB) 

9 Control byte 

The next free track automatically becomes the new track number. Bytes 5 to 8 
contain the length in blocks of the data track to be reserved. The track must at least 
be 4 seconds long, and there must obviously be enough space left on the medium to 
accommodate the required length. 

CLOSE SESSION/TRACK (FINALIZE) (5Bh) 

I t  does not seem clear as  yet how the command (Table 1 8. 1 8) will be  finally called. 
In any case, the command finishes all unfinished titles and writes the lead-in and 
lead-out areas of the session. With audio or single-session CDs, or with multi­
session CDs where no further session is permitted, byte 8 contains the value OOh. A 
value of O l h  allows you to append further sessions to multi-session CDs. 

Table 18.18 The CLOSE SESSION/TRACK command. 

7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 

0 CLOSE SESSION/TRACK (58h)  

l 

2 . . .  I Padding 

. . . Reserved 

. . .  7 

8 Next session 

9 Control byte 



1 9  The parallel SCSI i nterface 

Up to SCSI-2, the only SCSI interface was the parallel interface. Only with SCSI-3 
are other interface alternatives being introduced. Each of these new interfaces -
SSA, Fibre Channel and Fire Wire - has some good arguments in its favor. How and 
whether any of these new interfaces will succeed is difficult to say. 

But the parallel SCSI interface has seen some innovations with SCSI-3 .  Thus, the 
P cable was introduced, which allows 1 6-bit wide SCSI with only one cable. This 
cable is already widely used with devices that otherwise adhere to the SCSI-2 stan­

dard. Furthermore, SCSI-3 allows devices on the wide SCSI bus to have IDs up to 
1 5  or even 3 1 .  Finally, a separate document defines Fast-20 (also known as Ultra­
SCSI), a transfer mode with a speed of 20 Megatransfers per second. 

1 9.1  Overview 

248 

The parallel SCSI interface exists in many variations. Each new generation of the 
SCSI standard has brought more or less drastic additions which have, however, 
always maintained backward compatibility with the previous standards .  

Single-ended/d ifferential 

Since SCSI- 1 and up to today there are two basic variations of the parallel SCSI 
interface which are electrically incompatible with each other: the single-ended and 
the differential interface.  These two interface variations cannot be used together on 
the same SCSI bus. There are, however, some reliable converters on the market 
which allow the transition from single-ended SCSI to differential SCSI. 

The single-ended interface is the most widely used. It is usually fully sufficient 
for connections inside a cabinet. In the best case, it allows a cable length of up to 
6 m. With higher data rates and long external connections, the s ingle-ended interface 
becomes extremely critical. SCSI-3 states that a single-ended SCSI bus should not 
be longer than 3 m. Only if no use is made of fast SCSI, are up to 6 m allowed. Ultra­
SCSI (Fast-20) limits this to a further degree: when up to four devices are connected, 
3 m of cable may be used, otherwise the length of the bus must be limited to 1 .5 m. 
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Figure 19.1 SCSI cable lengths. 
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25 m 

These problems are not shared by the differential interface. It is far more resistant 

against external interferences and allows cable lengths of up to 25 m. Because of the 

high power consumption, however, the differential drivers cannot be integrated into 

the SCSI protocol chip. For this reason, they are more expensive and not widely 

available. Figure 1 9. 1  summarizes the allowable cable lengths.  

low voltage d ifferential (lVD) 

The new low voltage differential interface is supposed to bring the advantage of 

single-ended and differential interfaces, namely low cost and high stability com­

bined with long cable length. Its power consumption is so low that it can be 

integrated into the SCSI chip; on the other hand, it is so immune to interferences that 

cable lengths of up to 1 2 m will be possible. Standardization is practically finished, 

so that the first devices will be on the market before the end of 1 997. 

Narrow and Wide SCS� 

Originally, the SCSI bus was 8 bits wide. With SCSI-2, 1 6-bit and 32-bit wide SCSI 

buses were introduced. The additional B cable for bits 8 to 31 has never been a 

success. Wide SCSI uses the 68-pin P and Q cables now standardized in SCSI-3 . The 
P cable carries the data bits 0 to 1 5  and the control signals, the Q cable carries the 

data bits 16 to 3 1 .  

There is, however, an important difference between wide SCSI-2 and wide SCSI-3 : 

while a wide SCSI-2 bus can principally handle only eight devices, a wide SCSI-3 

bus can serve up to 16 or 32 devices, depending on the bus width. 

Narrow and Wide SCSI can be mixed on the same bus. More details follow later 

in this chapter. 



250 The parallel SCSI interface 

Speed 

SCSI- 1 had two transfer options : asynchronous transfer with about 1 .5 to 3 
Mbytes/sec and synchronous transfer with up to 5 Mbytes/sec. SCSI-2 introduced 
fast synchronous transfer with up to 10 megatransfers/sec (for 8-bit width) . Finally, 

as an addition to the SPI document, SCSI-3 defines the Fast-20 (Ultra-SCSI) 
standard with a transfer rate of 20 megatransfers/sec. 

Since SCSI devices negotiate their transfer rates as a function of their capabilities, 
devices of different speeds can be used together on one bus. 

1 9.2 SCSI s ignals 

The standard 8-bit wide SCSI-2 bus has 1 8  signals, nine data signals and nine control 
signals. In Wide SCSI, additional data signals are added, plus two further control signals 
for a second cable. 

In this book all timing diagrams show signals as active-high; in other words, a logic 
1 is represented by a high signal. In reality, however, signals are either active-low or dif­
ferential for SCSI. In either case they must be driven into the active state. Termination 
resistors negate the signals, holding them nonactive until bus drivers drive the signal 
active. This makes it possible to leave devices on the bus whose power has been turned 
off. With the introduction of Ultra-SCSI, more and more devices use active negation 
with time-critical signals, that is, the devices even actively drive the signals to non­
active level. 

Three of the SCSI signals ,  BSY, SEL, and RST, must be implemented as wired-or. 
This allows more than one driver to activate the signal at a given time. Of course, 
only one driver is necessary to make it active. All other signals need not be wired­
or and are usually implemented with tri-state drivers . 

Figure 1 9.2  shows a wired-or signal implemented with open collector transistors . 
As long as the transistor is inactive, the terminator assures the high, inactive state. 

Signal Signal Signal 

Device 1 Device 2 Device 3 

Figure 19.2 Wired-or bus signals .  
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Figure 19.3 Byte ordering for Wide SCSL 
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32-bit 

Q cable P cable 

Byte 3 I Byte 2 I Byte 1 I Byte 0 I 

When the transistor turns on it pulls the voltage down to the active state. Even if 

more than one transistor becomes active simultaneously the result is the same. 

Wide SCSI 

Wide SCSI is a SCSI-2 option, which makes possible 1 6- or 32-bit wide data 

transfers. In order to handle the extra width an additional 29 signals are necessary. 

1 6-bit wide SCSI fits on the P cable defined in SCSI-3 for the primary SCSI bus. For 

32-bit wide SCSI a second cable, the Q cable, is needed, which accommodates the 

secondary SCSI bus. Physically, the P cable and the Q cable are identical : both have 

68 pins. Figure 1 9.3 shows the ordering of bytes for 8-, 1 6- and 32-bit wide transfers. 

The devices involved negotiate whether or not to use Wide SCSL This is possible 

because commands and messages always take place across the 8-bit bus. It is even 

possible to mix devices using different data widths on the same bus. Figure 1 9.4 

shows such a configuration. 

Table 1 9 . 1  lists all SCSI signals along with their function. A look at the SCSI bus 

phase descriptions in Section 19 .8  will make it easier to understand the role of each 

signal. 
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Table 19.1 The SCSI signals. 

Abbreviation Name 

BSY 

SEL 

c/o 

1/0 

MSG 

REQ 

REQQ 

ACK 

ACKQ 

ATN 

RST 

DB(7) . • •  

DB(O) 

DB(P) 

DB(3 1 )  . . .  

DB(S) 

DB(P3) . . .  

DB(P I )  

BUSY 

SELECT 

COMMAND/DATA 

INPUT/OUTPUT 

MESSAGE 

REQUEST 

ACKNOWLEDGE 

ATTENTION 

RESET 

DATA BUS 

DATA BUS 

Termination 

Function 

Wired-or signal indicating that the bus is in use.  

Wired-or signal used during selection and reselection. 

Used by the target to indicate the type of data transfer. When 

active,  control information (commands or messages) i s  transferred .  

Used by the target to indicate the direction of the data transfer  

(with respect to  the  init iator) . When active the  init iator receives 

data.  Also d ifferentiates selection from reselection. 

Used by the target during the MESSAGE phase. 

Used by the target during the handshake sequence . This s ignal 

exists twice: REQ on the A and P cables, and REQQ on the Q cab le .  

Used by the  init iator during the  handshake sequence . Th is  s ignal 

also exists on the A and P cables and on the Q cable. 

Used by the ini t iator to indicate the ATTENTION condit ion.  

Wired-or signal that indicates the RESET condition. 

8 data bits and parity bi t  that comprise the data bus.  

The data bits are also used during the arbitrat ion 

phase. Parity i s  odd. 

24 data bits and 3 parity bits that expand the data bus.  

Each end of the physical SCSI bus must be terminated with the appropriate resistors . 
These set the signals to inactive level and prevent reflections at the cable ends which 
would overlay the signal . Most SCSI devices have sockets for the terminating resis­
tors or, even better, they have active terminator chips that can be switched on and off 
with a jumper or via software. The terminators in the two devices located at the ends 
of the bus should be left installed; the other devices should have their terminators 
removed or disabled. If a cable does not happen to end at a device then this loose 
end must be terminated with an external terminator. 

A SCSI terminator must be supplied with +5 V. Leads in the SCSI cable are 
reserved for this purpose. These terminator power leads can be connected to the 
+5 V of any device by means of a jumper. Usually, only the host adapter supplies the 
terminator power. Thus,  the terminators are powered as soon as the host is switched 
on. With very long cables (differential up to 25 m) the line drop of terminator power 
can become too high. In such cases, also the last device on the SCSI bus should 
supply terminator power. A diode in the supply lead ensures that switched-off 
devices do net get their supply voltage from the terminator power lead. Single-ended 
and differential SCSI need different terminators. 

The data parity bit 

The only way to detect a corrupted data byte sent over the SCSI bus is through the 
parity bit. Parity works as follows: the sender of a data byte sets the parity bit in such 
a way that the sum of all bits becomes odd. This is called odd parity. The receiver 
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Original 1 1  1 1 I 0 1 1 I 0 I 0 I 0 I 0 I 0 I Parity OK 

1 Error 1 1 1 1 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I Parity error 

2 Errors 1 1  1 1  1 1  I 0 I 0 I 0 I 0 J 0 I 0 I Parity OK 

Figure 19.5 Shortcomings of SCSI parity. 

then checks to see if the total number of l s  in the data and parity bits is odd. When 
this is the case the receiver assumes that the data is intact. The implementation of a 
parity bit went from optional in SCSI- I to mandatory in SCSI-2. There is one parity 
bit for every eight data bits (that is, four for 32-bit Wide SCSI). If a SCSI device 
detects a parity error it will ask that the data be sent again. A detailed example of 
this can be found on page 30 1 .  

One deficiency in the parity bit approach is that only an odd number of 'bad' bits 
can be detected. This means that it is possible for corrupted data to go unnoticed 
(Figure 1 9.5 ) .  If an initiator sends a byte where two bits change their value on the 
bus, the parity bit will still be good. The target receives the byte and has no way of 
detecting the corrupted byte. When the target writes this data to the drive the error 
remains but the data is recorded as good. Although this is an obvious shortcoming, 
in practice it is extremely rare for an even number of bits to change their value. 

Using a single parity bit as the sole method of error detection is not uncommon. 
Almost all memory buses, from PC to mainframe, share this design. Although 110 
buses are generally exposed to noisier environments than internal buses, this simple 
method of ensuring data integrity proves to be effective here as well. 

1 9.3 Cables alf'lld colf'lllf'lledors 

SCSI cables 

As opposed to the ATA standard for the IDE interface, the SCSI standard primarily 
defines the SCSI bus cable, but not the power supply of the devices. An exception is 
the integrated SCA connection for hard disks which has been added to the SPI-2 
document in the context of SCSI-3 . 

The single-ended and the differential pin assignments for SCSI are designed to 
make it possible to use the same cables.  The A cable is a 50-pin cable while the P 
and Q cables are 68-pin. Either implementation may use either ribbon cable or 
twisted-pair, the latter being also allowed as shielded or unshielded round cable. For 
differential buses only twisted pair cable is recommended. Cables should have an 
impedance between 90 and 1 40 ohms. 

When Fast SCSI is being used - that is, transfer rates above 5 MHz - the cable 
requirements are somewhat stricter. The cable should be shielded with an impedance 
between 90 and 1 3 2  ohms and a signal attenuation of less than 0.095 dB at 5 MHz. 
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SCSI-3 requires even stricter impedance values. At the same time, SCSI-3 defines 
a single-ended and a differential impedance measuring method. Especially for Ultra­
SCSI (Fast-20) , high-quality cables with Teflon isolation are recommended because 
their impedance comes nearest to the ideal value of 90 ohms. 

For use of round cables with the single-ended SCSI bus, the SCSI-3 standard 
defines the following rules for the arrangement of lead pairs : 

• Lead pairs 47/48 (ACK) and 57/58 (REQ) must be located in the cable core. If 
there are more than three lead pairs in the core, these two must not lie opposite to 
each other. 

• The lead pairs for data signals must form the outer layer of the cable. 

• Each lead pair must consist of the signal lead and the corresponding ground. 

Since no lead pair assignment is defined for the differential bus, cables that meet 
the above requirements can be used for both interface variations. 

Beware of pitfal l s !  

SCSI cables, i n  particular incorrectly wired round cables,  are a frequent cause of 
malfunctioning SCSI configurations. The least critical is still ye goode olde ribbon 
cable. Thus, if you run into inexplicable problems, try to swap the external cables 
with a ribbon cable directly connected to the devices. And do not forget to check 
correct termination ! 

I nternal cables and connectors 

The most common choice for device internal SCSI connections are 50-pin ribbon 
cables with 1 .27 mm (0.05 inch) conductor spacing. Ribbon cable connectors are 
directly crimped on. The device electronics typically use a 50-pin male header which 
fits the female ribbon cable connector. The contact numbers of connectors and cables 
match 1 : 1 ;  see connector scheme 1 in Table 1 9 .2 (page 259). 

Wide SCSI too internally employs ribbon cable, but in a 68-pin high density 
version with a conductor spacing of 0.54 mm (0.025 inch). Thus an internal Wide 
SCSI cable is physically narrower than an internal narrow SCSI cable. Here the 
normal SCSI scheme is used: cables have male headers while devices have female 
connectors. The connectors used are unshielded high density connectors (Mini-Sub-D) 
with a contact distance of 1 .27 mrn (0.05 inch) . 

SCSI backplanes 

RAID subsystems in particular employ SCSI backplanes which us the 80-pin SCA 
connector. The SCA-2 connection has been additionally incorporated into the SCSI-3 
SPI-2 document. 

SCA-2 contains not only all signals for Wide SCSI, but also the supply voltages 
and some additional signals , such as spindle synchronization of disk drives. In 
SCA-2 the contacts are of different length so that when plugging and unplugging the 
devices, power supply voltages and signals are connected in a specified sequence .  
This is a very simple way of exchanging devices during operation (hot swapping) . 
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Figure 19.6 SCSI connectors . 

External SCSI connediolllls 

For external connections shielded round cables are recommended, for which the 
SCSI-2 standard defines two basic connector variations . On the one hand, the 50-pin 
'Centronics '  connectors can be used which are already known from SCSI- I .  Cables 
with such connectors are often, though not completely correctly, called SCSI- I 
cables .  On the other hand, the standard specifies shielded 50-pin high density con­
nectors (Mini-Sub-D) .  These are commonly called SCSI-2 connectors , but they are 
also officially allowed in the SCSI-3 standard. For types, connector scheme 2 of 
Table 1 9.2  applies .  Figure 1 9 .6 gives detailed specifications .  

Wide SCSI nearly exclusively uses the 68-pin high density connector (Mini-Sub-D) 
with the pin assignments defined in SCSI-3 . This Wide SCSI cable is commonly called 
SCSI-3 cable, although Wide SCSI and SCSI-3 do not necessarily belong together. 
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New in the SPI-2 standard of SCSI-3 is the VHDCI connector (Very High 
Density Cable Interconnect). This Wide SCSI connector is so small that two of them 
will fit onto one PC slot cover. 

Finally, there are some pin assignments that are not described in the SCSI speci­
fication. One of these comes from Apple and is also used in a number of inexpensive 
PC host adapters and devices. Here, the external connector is a DB-25 female con­
nector. This solution is rather unsatisfactory and completely unusable for Fast-20 
(Ultra-SCSI), because there is no separate ground lead for each signal. Obviously, 
differential and LVD will not work with this either. The pin assignment is shown 
under connector scheme 3 in Table 1 9 .2 (page 259). 

1 9.4 S ingle-ended! SCS� 

The vast majority of devices sold today are equipped with single-ended SCSI. The 
main reason for this is the extra cost in implementing differential and the cost of 
twisted-pair cabling. Most SCSI chips have single-ended drivers already built in. 

Bus lengtll 

Single-ended SCSI allows a bus of up to 6 meters. When higher transfer rates than 
5 Megatransfers per second are to be used, SCSI-2 limits the lengths to 3 m. The 
SCSI-3 Fast-20 option requires a further restriction: when more than four devices are 
connected, the bus must be only up to 1 .5 m long. This is adequate for most appli­
cations within a single enclosure. Also allowed are short extensions from the bus, 
so-called stubs, of 10 em or less .  These must be kept at least 30 em apart. Bear in 
mind that the distance from the protocol chip to the connector must be attributed to 
the stub length. 

Signal levels and! termination 

Figure 19.7 shows the implementation of a typical single-ended SCSI signal . The 
output driver is a NAND gate. One input is for the signal and the other for enabling 
the output. The driver must meet the following specifications : 2 .5-5 .25 V (inactive) ; 
0 .0-0.5 V (active). It must be capable of sinking 48 rnA at 0 .5 V, of which 44 rnA 
come from the termination. The input must recognize 0.0-0.8 V as active and 
2 .5-5 .25 V as inactive. The input current for an active signal of 0.5 V must lie 
between 0.0 and -0.4 rnA . For an inactive signal the current must lie between 0.0 
and 0. 1 rnA at 5 .25 V. The input hysteresis must be at  least 0 .2 V and the input 
capacitance at most 25 pF. These values must also hold for devices without power. 

Pass ive termination 

Also shown in the figure is the passive signal termination which in SCSI fulfills two 
tasks : it defines the inactive level of the signals and damps the signals at the bus end 
in order to prevent reflections. In SCSI- 1 and SCSI-2 it consists of a pair of resistors 



Single-ended SCSI 257 

+5 v 

Bus 

signal 

Terminator 

Figure 19.7 Typical single-ended SCSI. 

for each signal of the SCSI bus .  The 220 ohm resistor connects to +5 V while the 
330 ohm connects to ground. Together the resistors bring the signal level to 3 V 
when no drivers are active. The resistors are allowed a tolerance of ± 5 %  although 
± 1 %  is recommended. This passive termination scheme was introduced in SCSI- I .  

Active term i1I11atioll1l 

SCSI-2 introduces an alternative for terminating a single-ended bus which has 
meanwhile widely succeeded as the better one. The most important condition here 
is that the signal impedance lie between 100 and 1 32 ohms. This active termination 
circuit, which is  shown in Figure 1 9 .8 ,  is less sensitive to noise than the passive 
termination. Active terminator chips also allow the termination to be switched on 
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Figure 19.8 Alternative SCSI-2 termination. 
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and off via software. SCSI-3 defines a set of rules for correct termination which 

practically forces active termination. 

Forced perfect termination 

Forced perfect termination is a variation of active termination which works with an 
array of diodes and Zener diodes. It has often been praised as a possibility to run an 

overlong SCSI bus safely. However, since modem devices with fast SCSI interfaces 

use the active negation technique, use of forced perfect terminators should be 
strongly discouraged. In the worst case, it can lead to the destruction of SCSI driver 

chips through excessively high currents . 

Active negation 

In more recent SCSI chips, the active negation technique is employed in order to 

improve signal quality independently of terminators and, consequently, TERMPWR. In 

active negation, an active signal is not simply set to high resistance, but the driver 

actively sets it to a level of about 3 V. This is obviously possible only for signals for 

which the or-wiring is not needed. Usually, REQ and ACK and the data signals are 

operated with active negation. While the SCAM protocol is active, active negation 
must be disabled. 

I mproper termination 

What happens when a single-ended bus is incorrectly terminated? I can give the fol­

lowing account from my own experience. If the bus has no termination at either end, 

there is  no reference level for the signals and nothing will work. This rarely happens ,  

however, because usually the host adapter has its termination installed. In general a 

SCSI bus with termination at only one end will work without problems over short 
lengths .  However, if the bus is very long or is in a noisy environment then it will be 

susceptible to intermittent hanging. This is also true for other forms of improper ter­
mination. When the termination is not located at the physical end of the bus the 
problem will usually go unnoticed for quite some time. A bus with three terminators 

also tends to function without difficulties, in my experience. 

This tolerant behavior is attractive but can lead to insidious problems. It is true that 
an incorrectly terminated bus will often work quite well . However, if the system is then 
moved or an additional device is added to the bus it may suddenly hang or show inter­
mittent problems. When problems like this occur it always makes sense to begin 

looking for the problem bottom up by asking whether the bus is properly terminated. 

Pin ass ignmenrts 

The various connectors defined in the SCSI standard were described in Section 19 .3 .  
There are at  least three different pin layouts for the different connectors. The same con­
nectors always use the same assignment. There are three schemes for this assignment: 
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• The A cable with 25 lead pairs for 'narrow' SCSI. 

• The P cable with 34 lead pairs for 16-bit wide SCSI. 

• The Q cable, again with 34 lead pairs, contains the hjgher 16 data bits and, in 

combination with the P cable, allows 32-bit wide SCSI. 

Table 1 9.2 lists the pin assignments for the single-ended SCSI-2 A cable. 

Wide SCSI 

For Wide SCSI the SCSI-2 standard had defined an additional 68-pin B cable. It was, 

however, seldom employed in practice. Even the first Wide SCSI implementations 

used the P cable which is now defined as part of SCSI-3 . It contains the control 

signals and the data bits 0 to 15 together with the two associated parity bits. These 

constitute the primary SCSI-3 bus. 

For 32-bit wide SCSI, the SCSI-3 standard defines the additional Q cable for the 

secondary SCSI bus (Table 1 9.3) .  The Q cable contains data bits 16 to 3 1  together 

with the handshake signals REQQIACKQ. Tills doubling of handshake signals on the 

secondary bus is necessary because the primary and the secondary bus can be of 

different lengths and thjs leads to different signal transit times on the two cables. 

Table 19.2 The A cable for single-ended SCSI. 

Signal Connecror Cable and Connecror Connecror Signal 

assignme/1/ connecror assig111nenr assignme/1/ 

2 assigmnent 1 2 3 

Ground I 2 26 1 4  DB(O) 

Ground 2 3 4 27 2 DB( I )  

Ground 3 s 6 28 I S  DB(2) 

Ground 4 7 8 29 3 DB(3) 

Ground s 9 1 0  30 1 6  DB( -I) 
Ground 6 I I  1 2  3 1  4 DB(5) 

Ground 7 1 3  1 4  32 17 DB(6) 

Ground 8 I S  1 6  3 3  s DB(7) 

Ground 9 1 7  1 8  34 1 8  DB(P) 

Ground 1 0  1 9  20 35 19 Ground 
Ground I I  2 1  22 36 1 3  Ground 
Reserved 1 2  23 24 37 9 Reserved 
Not connected 1 3  2S 26 38 +5 V terminator 
Reserved 14 27 28  39  Reserved 
Ground I S  29 30 40 8 Ground 
Ground 1 6  3 1  32 4 1  20 ATN 

Ground 1 7  .).:'I 34 42 6 Ground 
Ground I S  35 36 43 23 BSY 

Ground 1 9  37 3 8  44 22 ACK 

Ground 20 39 40 4S 1 0  RST 

Ground 2 1  4 1  42 46 2 1  MSG 

Ground 22 43 44 47 7 SEL 

Ground 23 4S 46 48 I I  C7i5 
Ground 24 47 48 49 24 REQ 

Ground 2S 49 so so 1 2  170 
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Table 19.3 The P cable for single-ended SCSI-3 . 

Signal Connector Cable Connector 

Ground 1 1 2 35 
Ground 2 3 4 36 
Ground 3 5 6 37 
Ground 4 7 8 38 
Ground 5 9 10 39 
Ground 6 1 1  1 2  40 
Ground 7 1 3  1 4  4 1  
Ground 8 1 5  1 6  42 
Ground 9 1 7  1 8  43 
Ground 1 0  1 9  20 44 
Ground I I  2 1  2 2  45 
Ground 1 2  2 3  24 46 
Ground 1 3  25 26 47 
Ground 14  27 28 48 
Ground 1 5  29 30 49 
Ground 1 6  3 1  32 50 
+5 V terminator 1 7  33 34 5 1  
+5 V terminator 1 8  35 36 52 
Reserved 1 9  3 7  38 53 
Ground 20 39 40 54 
Ground 2 1  4 1  42 55 
Ground 22 43 44 56 
Ground 23 45 46 57 
Ground 24 47 48 58 
Ground 25 49 50 59 
Ground 26 5 1  52 60 
Ground 27 53 54 6 1  
Ground 28  55 56 62 
Ground 29 57 5 8  63 
Ground 30 59 60 64 
Ground 3 1  6 1  62 65 
Ground 32  63 64 66 
Ground 33 65 66 67 
Ground 34 67 68 68 

Mixing narrow and wide SCSI 

Signal 

DB( I 2 )  
DB( I 3 )  
DB( I4 )  
DB( I S )  
DB( P I )  
DB(O) 
DB( I )  
DB(2) 
DB(3) 
DB(4) 
DB(S) 
DB(6) 
DB(7) 
DB(P) 
Ground 
Ground 
+5 V terminator 
+5 Y terminator 
Reserved 
Ground 
ATN 

Ground 
BSY 

ACK 

RST 

MSG 

SEL 

C/D 
REQ 

1/0 
DB(8) 
DB(9) 
DB( IO )  
DB( I I )  

It has already been mentioned that you can mix narrow and wide SCSI on one bus. 

How does this look in practice? The simplest case is when you wish to connect a 

device with a nanow interface to a 68-pin internal bus. Then you simply need an 

adapter that connects the pins of an A cable socket with those of a conesponding P 

cable connector. You can, however, not use this adapter at the end of the bus because 

it does not terminate the superfluous data signals. By the way, the P cable uses the 

same assignments on leads 1 1  to 60 as the A cable on its 50 leads. 

If you want to connect an external P cable with an external A cable, you need an 

adapter which not only connects the correct signals, but also terminates the super­

fluous signals. Figures 1 9.9 and 1 9 . 1 0  show typical mixed configurations, while a 

circuit diagram of the cable adapter is shown in Figure 1 9  . 1 1 .  When mixing devices 

please note that an 8-bit SCSI device cannot see any IDs higher than 7 !  
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Figure 19.9 Typical mixed configuration of narrow and wide SCSI. 

........._ Only 1 1 6-bit device! 

Figure 19.10 Various mixed configurations. 

P cable 

r-- -
Ground 1 ... 08(12) 2 0 Ground 3 1il 08(13) 4 
Ground 5 c: 
08(14) 6 .E Ground 7 ... 
08(15) 8 � Ground 9 
08(P1) 10 
Ground 1 '  

Ground J2 

+
5 { 33 

Termi· 34 
35 nator 36 

Res. 37 
Res. 3R 

ii5 oO 
Ground 61 ... 
08(8) 62 0 
Ground 63 1il 08(9) 64 c: Ground 65 

.E 08(10) 66 
Ground 67 ... 
08( 1 1 )  68 � '---- '--

A cable 

Ground 

22 Ground 
23 Res. 
24 Res. 
25 Ope 
26 

+
SV Term. 

27 Res. 
?A Res. 

50 ii5 

Figure 19.11 Circuit diagram of an A to P cable adapter for single-ended SCSI. 
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1 9.5 Differential SCSI 

Differential SCSI is used mostly in applications that require cable lengths greater 

than 6 meters. The maximum length allowed here is 25 meters, independently of the 

speed. Stub lengths must be less than 20 em. It is highly recommended that only 

twisted-pair cables be used for an external differential bus. Tables 1 9.4, 1 9.5 and 

1 9.6 show the A, P and Q cables for differential SCSI, respectively. 

Signal levels and termination 

Each differential signal on the SCSI bus uses two wires, named +signal and -signal. 

The signal is recognized as active when the voltage of +signal is greater than that of 

-signal and inactive when the converse is true. 

The sensor signal makes it possible to implement a circuit for protecting the dif­

ferential drivers. The conesponding pin on the single-ended cable is connected to 

ground. In this way if a cable with a single-ended device attached is connected to a 

differential device the sensor signal becomes grounded, disabling the differential 

drivers. 

Table 19.4 The A cable for differential SCSI. 

Signal 

Ground 
+DB(O) 
+DB( I )  
+DB(2) 
+DB(3) 
+DB(4) 
+DB(S) 
+DB(6) 
+DB(7) 
+DB(P) 
Sensor line 
Reserved 
+5 V terminator 
Reserved 
+ATN 
Ground 
+BSY 
+ACK 
+RST 
+MSG 
+SEL 
+CID 
+REQ 
+l/0 
Ground 

Connector 

assignment 

2 

2 
3 
4 
5 
6 
7 
8 
9 

1 0  
I I  
1 2  
1 3  
1 4  
1 5  
1 6  
l 7  
1 8  
19  
20 
2 1  
2 2  
23 
24 
2� 

Cable and 
connector 

assigwnem 1 
2 

3 4 
5 6 
7 8 
9 10  

I I  1 2  
1 3  14  
1 5  1 6  
1 7  1 8  
1 9  20 
2 1  22 
23 24 
25 26 
27 28 
29 30 
3 1  32 
33 34 
35 36 
37 38 
39 40 
41 42 
43 44 
45 46 
47 48 
49 50 

I Connector Signal 

assignment 

2 

26 Ground 
27 -DB(O) 
28 -DB( I )  
29 -DB(2) 
30 -DB(3) 
3 1  -DB(4) 
32 -DB(5) 
33 -DB(6) 
34 -DB(7) 
35 -DB(P) 
36 Ground 
37 Reserved 
38 +5 V terminator 
39 Reserved 
40 -ATN 
4 1  Ground 
42 -BSY 
43 -ACK 
44 -RST 
45 -MSG 
46 -SEL 
47 -CID 
48 -REQ 
49 -110 
50 Ground 



Differential SCSI 263 

Table 19.5 The P cable for differential Wide SCSI. 

Signal Conneuor Cable Connector Signal 

+08 ( 1 2) 2 35 -08( 1 2) 

+08( 1 3 ) 2 3 4 36 -08( 1 3 ) 

+08 ( 1 4) 3 5 6 37 -08 ( 1 4) 

+08( 1 5) 4 7 8 38 -08( 1 5 ) 

+08( P l )  5 9 1 0  39 -08( P I )  

Ground 6 I I  1 2  40 Ground 

+08 (0) 7 1 3  1 4  4 1  -08(0) 

+08( 1 )  8 1 5  1 6  42 -08( 1 )  

+08(2) 9 1 7  1 8  43 -08(2) 

+08(3) 1 0  1 9  20 44 -08(3) 

+08 (4) I I  2 1  22 45 -08(4) 

+08(5)  1 2  23 24 46 -08(5) 

+08 (6) 1 3  25 26 47 -08(6) 

+08(7) 1 4  27 28 48 -08(7) 

+D8 (P) 1 5  29 30 49 -D8(P) 

Sensor l i ne 1 6  3 1  32 50 Ground 

+5 V terminator 1 7  33 34 5 1  +5 V terminator 

+5 V terminator 1 8  35 36 52 +5 V terminator 

Reserved 1 9  37 38 53 Reserved 

+ ATN 20 39 40 54 -ATN 

Ground 2 1  4 1  42 55 Ground 

+8SY 22 43 44 56 -8SY 

+ACK 7" _.) 45 46 57 -ACK 

+RST 24 47 48 58 -RST 

+MSG 25 49 50 59 -MSG 

+SEL 26 5 1  5 2  60 -SEL 

+C/O 27 53 54 6 1  -C/D 

+REQ 28 55 5 6  62 -REQ 

+110 29 57 58 63 -110 

Ground 30 59 60 64 Ground 

+08(8)  3 1  6 1  62 65 -08(8) 

+08 (9) 32 63 64 66 -08(9) 

+08 ( 1 0) 33 65 66 67 -08 ( 1 0) 

+08( 1 1 ) 34 67 68 68 -08( 1 1 ) 

Differential termination 

The differential SCSI bus needs different terminators than the single-ended bus. 

Differential terntinators are always passive terminators. Figure 1 9 . 1 2  shows the dif-

ferential interface for a signal along with its termination. 

Beware of pitfal ls! 

While single-ended SCSI can also work with cables in  which not all leads are wired, 

for differential SCSI you need practically all of the lead pairs. Cable adapters, for 

example from Mini-Sub-D to Centronics connectors, are often sloppily designed 

too. Developers often think only of single-ended SCSI and wire pins to ground 

which in differential (and LVD) SCSI carry signals. In case of doubt, please test the 

assignments with an ohmmeter. 
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Table 19.6 The Q cable for differential Wide SCSI. 

Signal Connec/Or Cable 

+0B(28) I 2 
+0B(29) 2 3 4 
+0B(30) 3 5 6 
+0B(3 1 )  4 7 8 
+0B(P3) 5 9 10 
Ground 6 I I  1 2  
+0B( I 6) 7 1 3  14  
+0B( I 7) 8 1 5  1 6  
+0B( I 8) 9 1 7  1 8  
+08( 1 9) 1 0  1 9  20 
+08(20) I I  2 1  22 
+08(2 1 )  1 2  23 24 
+08(22) 1 3  25 26 
+08(23) 14 27 28 
+08(P2) I S  29 30 
Sensor l ine 1 6  3 1  32 
+5 V terminator 1 7  33 34 
+5 V terminator 1 8  35 36 
Reserved 1 9  37 38 
Terminated 20 39 40 
Ground 2 1  4 1  42 
Terminated 22 43 44 
+ACKQ 23 45 46 
Terminated 24 47 48 
Terminated 25 49 50 
Terminated 26 5 1  52 
Terminated 27 53 54 
+REQQ 28 55 56 
Terminated 29 57 58 
Ground 30 59 60 
+08(24) 3 1  6 1  62 
+08(25) 32 63 64 
+0B(26) 33 65 66 
+08(27) 34 67 68 

Output enable 

Signal out 

Signal in 

Input enable 

Figure 19.12 Differential SCSI driver. 

Con nee/Or Signal 

35 -OB(28) 
36 -OB(29) 
37 -OB(30) 
38 -OB(3 1 )  
39 -OB(P I )  
40 Ground 
4 1  -OB ( I 6) 
42 -OB( I 7) 
43 -OB( I 8) 
44 -OB ( I 9 )  
45 -OB(20) 
46 -08(2 1 )  
47 -08(22) 
48 -OB(23) 
49 -08(P2) 
so Ground 
5 1  +5 V terminator 
52 +5 V terminator 
53 Reserved 
54 Terminated 
55 Ground 
56 Termi nated 
57 -ACKQ 
58 Terminated 
59 Terminated 
60 Terminated 
6 1  Terminated 
62 -REQQ 
63 Terminated 
64 Ground 
65 -08(24) 
66 -OB(25) 
67 -OB(26) 
68 -OB(27) 

+5 V Terminator 

- Bus signal 

+ Bus signal 

Terminator 
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Low voltage diferential (LVD) 265 

The disadvantages of traditional parallel SCSI interfaces have more and more devel­

oped into a serious obstacle for the further development of SCSI. Single-ended SCSI 

is  interference-prone, the cable length is  too short with fast speeds and Fast-20 

(Ultra-SCSI) is how far this inteiface can go. Differential SCSI, on the other hand, 

is too expensive because of its high power consumption, so the drivers cannot be 

integrated into the protocol chip. 

One way out of this dilemma is promised by the low voltage differential (LVD) 

inteiface. It is defined in the recent SCSI-3 SPI-2 document and a few of them will 

probably become available by the end of 1997. LVD is a differential interface with 

substantially reduced power requirements which allows it to be integrated into the 

SCSI protocol chip. Tllis will place it more or less on the same price level as the 

single-ended interface, although it is slightly more expensive to manufacture: the 

chips need more contacts because each SCSI signal needs two leads. 

Further - faster 

Final specifications for operation of LDV are still outstanding, but it looks as though 

a cable length of 1 2 m will be supported for all speeds. At the same time there are 

Table 19.7 The A cable for low voltage differential SCSI. 

Signal Enema/ Cable and Exrernal Signal 
connecrors internal connectors connecrors 

+DB(O) 2 26 -DB(O) 
+DB( I )  2 3 4 27 -DB( ! )  
+DB(2) 3 5 6 28 -DB(2) 
+DB(3) 4 7 8 29 -DB(3) 
+DB(4) 5 9 1 0  30 -DB(4) 
+DB(5) 6 I I  1 2  3 1  -DB (5) 
+DB(6) 7 1 3  1 4  32 -DB(6) 
+DB(7) 8 1 5  1 6  33 -DB(7) 
+DB(P) 9 1 7  1 8  34 -DB(P) 
Ground 1 0  1 9  20 35 Ground 

DIFFSENSE I I  2 1  22 36 Ground 

Reserved 1 2  23 24 37 Reserved 

+5 V terminator 1 3  25 26 38 +5 V terminator 

Reserved 1 4  27 28 39 Reserved 

Ground 1 5  29 30 40 Ground 

+ATN 1 6  3 1  32 4 1  -ATN 
Ground 1 7  3 3  34 42 Ground 

+BSY 1 8  35 36 43 -BSY 
+ACK 1 9  37 3 8  44 -ACK 
+RST 20 39 40 45 -RST 
+MSG 2 1 4 1  42 46 -MSG 
+SEL 2 2  43 44 47 -SEL 
+CID 23 45 46 48 -C/D 
+REQ 24 47 48 49 -REQ 
+110 25 49 50 50 -l/0 
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Table 19.8 The P cable for low voltage differential Wide SCSI. 

Signal Connec10r Cable Connector Signal 

+DB( l 2) I 1 2 35 -DB ( l 2) 
+DB( l 3) 2 3 4 36 -DB( l 3) 
+DB( l 4) 3 5 6 37 -DB( l 4) 
+DB( I S )  4 7 8 38 -DB( I 5 )  
+DB(P l )  5 9 1 0  39 -DB(P 1 )  
+DB(O) 6 1 1  1 2 40 -DB(O) 
+DB( I )  7 1 3  1 4  4 1  -DB ( ! )  
+DB(2) 8 1 5  1 6  42 -DB(2) 
+DB(3) 9 1 7  1 8  43 -DB(3) 
+DB(4) 1 0  1 9  20 44 -DB(4) 
+DB(5) I I  2 1 22 45 -DB(5) 
+DB(6) 1 2  23 24 46 -DB(6) 
+DB(7) 1 3  25 26 47 -DB(7) 
+DB(P) 14 27 28 48 -DB(P) 
Ground 1 5  29 30 49 Ground 
DIFFSENSE 1 6  3 1  32 so Ground 
+5 V terminator 1 7  33 34 5 1  +5 V terminator 
+5 V terminator 1 8  35 36 52 +5 V terminator 
Reserved 1 9  3 7  38  53 Reserved 
Ground 20 39 40 54 Ground 
+ATN 2 1  4 1  42 55 -ATN 

Ground 22 43 44 56 Ground 
+BSY 23 45 46 57 -BSY 
+ACK 24 47 48 58 -ACK 

+RST 25 49 50 59 -RST 
+MSG 26 5 1  52 60 -MSG 
+SEL 27 53 54 61  -SEL 
+CID 28 55 56 62 -C/0 

+REQ 29 57 58 63 -REQ 
+110 30 59 60 64 -VO 

+DB(8) 3 1  6 1  62 65 -DB(8) 
+DB(9) 32 63 64 66 -DB(9) 
+DB( I O) 33 65 66 67 -DB ( I O) 
+DB( I I ) 34 67 68 68 -DB( 1 1 )  

already discussions about Fast-40, Fast-80 and more in connection with LVD .  Thus, 

the parallel interface has definitely not yet reached its peale 

Universal drivers 

The specific problem of the transition phase from single-ended to LVD has been 

solved quite cleverly: devices will be equipped with universal drivers (and termina­

tors) which allow single-ended and LVD devices to work on the same bus. As long 

as any single-ended device is connected, the LVD devices switch into single-ended 

mode. At that moment the advantages of LVD are lost, but this strategy allows a 

smooth introduction of LVD without having to exchange all devices at one go. 

You too can already make your provisions: from now on, only use cables in which 

all 25 or 34 lead pairs are wiJ:ed through. 
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1 9. 7  SCSI expal11ldlers 

For quite some time various manufacturers have offered devices such as  single­
ended to differential SCSI converters or SCSI repeaters . These devices are , however, 
not covered by the SCSI standard. Presently, ANSI is working on a technical report 
under the title EPI (Enhanced Parallel Interface) which amongst others deals with 
these devices. A technical report is less than a standard. It describes marginal areas 
not covered by the standard itself, but it is not binding. On the other hand, it does 
not have to go through the complicated approval process. 

The area covered by the EPI is defined as follows: 'This document is an ANSI 
technical report that provides guidance to experienced implementors and users of 
parallel SCSI beyond that contained in the formal standards. ' 

Segment 

First, the EPI defines the term segment. A segment is a parallel SCSI connection ter­
minated at both physical ends with a terminator. So far, this is more or less the 
common definition of the SCSI bus.  The novelty is that several segments can be 
joined with expanders . 

Each SCSI segment is electrically independent of the others. Thus, limits such as 
maximum length and bus load apply to each individual segment. Expanders can also 
connect segments with different interfaces, for example single-ended with differential . 

Domain 

All segments joined by expanders constitute a SCSI domain. This term is already 
known from the SAM (SCSI Architectural Model) .  All devices of a domain appear 
as logically connected. Thus, all devices of a domain share the available IDs and the 
bandwidth . 

1Expa1111dlers 

An expander transparently connects two parallel SCSI segments . This means that it  
is invisible to the SCSI protocol and consequently has no SCSI ID. It cannot arbi­
trate by itself and it cannot send out its own messages. The signal delay must be as 
short as possible. 

In reality, an expander will obviously cause signal delays. These limit the number 
of expanders that can be used in one SCSI domain. PARALAN, for example, 
specifies that at most two of their expanders may lie between any two devices. 

Appl ications 

A simple application is the connection of  a single-ended SCSI  segment with a dif­
ferential one. Thus, you can connect a subsystem with differential devices via a 
25-m cable and a single-ended/differential expander to a single-ended host adapter 
(see Figure 1 9 . 1 3 ) .  
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Figure 19.13 Single-ended/differential expander. 
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Another important application is the extension of a SCSI bus. Especially with 

Ultra-SCSI, the limit of 1 .5 m for more than four devices is  quickly reached. Here 

one can often not only reach an overall length of 2 x 1 .5 m, but with a smar1 appli­

cation of an expander, the bus can be divided into two segments in such a way that 

Ultra·SCSI 
hard disk 

Ullra·SCSI 
hard disk 

Ullra·SCSI 
host adapter 

Without expander: total cable length: 1 .5 m 

With expander: Total cable length: 2 x 3 m  

Figure 19.14 SCSI bus extension with expanders. 
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Figure 19.15 SCSI 'backbone ' .  
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up to 25 m differential SCSI  

neither of the two segments contains more than four devices, which allows the total 

length to be increased to 6 m (see Figure 1 9 . 14) .  

Some manufacturers of SCSI expanders go even further. In a point-to-point con­

nection of the expanders, that is, without any further devices in between, they allow 

much longer connections between the expanders than specified by the standard. 

Thus,  with two differential expanders connected 'back to back' it is possible to cover 

a distance of 50 m. 

Expanders cannot only be employed at the end of a SCSI segment; they can also 

branch off in the middle of a segment. This allows you to build configurations in 

which single-ended segments branch off a differential backbone segment (Table 

19 . 1 5) .  Thus, all kinds of chain or tree structures are legal as long as the maximum 

number of expanders between two elements is not exceeded. Obviously, there are 

also illegal configurations with expanders . All kinds of loops are prohibited, which 

also excludes all configurations that contain alternative access paths to SCSI 

elements .  

Serial expaD11ders 

Serial expanders consist of two expander parts that are connected via a serial cable 

(see Figure 1 9 . 1 6) .  The cables can be twisted pair, coax or fiber optical cables .  Serial 

expanders can connect much longer distances than parallel expanders . There are 

devices available on the market that cover distances between 100 m and several kilo­

meters . Owing to the high signal transit times with long distances, it is not sufficient 

to serialize and deserialize the parallel signals .  Instead, data and commands must be 

buffered;  this makes such devices extremely expensive and also causes them not to 

work properly in highly complex applications. Here, we can only recommend proper 
consultancy and a trial installation under real-life operating conditions. 
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Figure 19.16 Serial expanders . 

1 9.8 SCSI !bus phases 

SCSI segment 2 

All transactions on the SCSI bus are composed from eight distinct bus phases. 
SCSI-3 even defines one more bus phase. However, the emphasis of the SCSI-3 
documentation is no longer on the bus phases, but on the description of service 
requests and service responses, in correspondence with the SAM architecture model. 
Therefore, you will also find no more timing diagrams in the SPI document. In spite 
of this fundamental change in the documentation it must still be said that from 
SCSI-2 to SCSI-3 nothing substantial has changed in the transactions, mainly 
because downward compatibility must be ensured. 

Therefore, in our present description of SCSI-2, we shall stay with bus phases and 
timing diagrams. Only towards the end of the section will the new representation in 
SCSI-3 briefly be sketched. 

Phase sequernces 

Everything begins and ends with the BUS FREE phase. BUS FREE describes the situa­
tion where no device is in control of the SCSI bus .  

Three phases deal exclusively with bus protocol. During the ARBITRATION phase 
one or more initiators will indicate their wish to use the bus. If more than a single 

lFigure :0.9.:0.7 Simplified SCSI phase diagram. 
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initiator arbitrates, the one with the highest SCSI ID wins. The successful initiator 
then uses the SELECTION phase to choose a target with which to communicate. The 
RESELECTION phase fulfills a similar function : after successfully arbitrating, a target 
that released the bus to execute a command re-establishes the connection to its 
initiator. 

Finally, there are four phases for exchanging data. The COMMAND phase is used 
for transferring command opcodes, the DATA phase for data bytes. During a MESSAGE 

phase a target sends or receives information concerning the protocol itself. Finally, 
using the STATUS phase the target concludes a SCSI command and informs the ini­
tiator of its success or failure. 

At any given time the SCSI bus can be in only one specific bus phase. The suc­
cession of phases is restricted ; it is not possible for any phase to follow any other 
phase. Figure 1 9 . 1 7  shows a simplified phase diagram of the normal progression of 
a command. After BUS FREE follows ARBITRATION, SELECTION and a MESSAGE OUT 

phase. After these come the COMMAND and DATA phases, followed by a STATUS phase. 
The rules governing phase changes have evolved between SCSI- 1 and SCSI-2. 
While ARBITRATION and the MESSAGE ouT phase were optional after a selection in 
SCSI- 1 ,  these have become mandatory in SCSI-2. 

Figure 1 9 . 1 8  shows the complete SCSI phase diagram for SCSI-2. The arrows 
between the phases indicate that a transition from one phase to another is allowed. 
Thus,  for example, in SCSI-2, COMMAND and DATA phases can only occur after a 
MESSAGE phase has taken place. Likewise, a MESSAGE phase must also conclude these 
phases. 

At first glance this phase diagram can be very confusing; much more so than the 
average SCSI command. Figure 1 9 . 1 9  depicts an actual TEST UNIT READY command 
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Figure 19.19 Phase sequence for TEST UNIT READY. 

as captured by a SCSI analyzer. It begins with BUS FREE. After the typical sequence 

ARBITRATION, SELECTION, MESSAGE (IDENTIFY) comes a COMMAND phase of six bytes. 

Since no data is transferred with this command, the succession concludes immedi­

ately with the STATUS phase and the MESSAGE (COMMAND COMPLETE) . 

SCSI lbiLOs tim i1111g 

When electrical signals change their value, they never do so as cleanly and abruptly 

as is shown in a timing diagram. In reality edges are much rounder, and - as is the 

case with the SCSI bus , where relatively long cables are used - reflections lead to 

'ringing' and other distortions . In order to prevent these phenomena from causing 

ill effects , a number of delays have been built into the protocol. These delays allow 

the signal enough time to settle on the new value. Tables 1 9 .9 and 1 9 . 1 0  list and 

briefly explain all of the timing values defined in the SCSI protocol . More detailed 

explanations follow in the sections on the individual bus phases. 

Table 19.9 SCSI-3 timing values for Fast SCSI. 

Name Fast-20 

Fast assertion period I I  ns 

Fast cable skew delay 3 ns 

Fast deskew delay 15 ns 

Fast hold time 1 6 .5 ns 

Fast negation period 15 ns 

Fast 

22 ns 

4 ns 

20 ns 

33 ns 

30 ns 

Description 

Minimum time that REQ (REQB) and ACK (ACKB) must 

be active for fast synchronous transfers 

Maximum time for skew between any two signals on a 

SCSI cable for fast transfers 

Minimum time required for deskew of certain signals 

for fast synchronous transfers 

Minimum time required for fast synchronous transfers 

for data to remain on the bus after REQ (REQB) or ACK 

(ACKB) so that the receiver can safely store them 

Minimum time for fast transfers between the two REQ 

( REQB) pulses of a target. The same holds for the ACK 

(ACKB) pulses of an initiator 
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Table 19.10 SCSI-2 timing values (SCSI-3 values in parentheses) .  

Name 

Arbitration delay 

Assertion period 

Bus c lear delay 

Bus  free delay 

Bus set delay 

Bus settle delay 

Cable skew delay 

Data release delay 

Deskew delay 

D isconnection delay 

Hold t ime 

Negation period 

Power on to selection 

Reset to selection 

Reset hold t ime 

Selection abort t ime 

Selection t imeout delay 

Transfer period 

Time 

2.4 f.' S  
9 0  ns 

(80 ns )  

800 ns  

800 ns  

1 . 8 f.'S 

400 ns  

10  ns  

(4 ns )  

400 ns  

45 ns  

200 f.'S 

45 ns  

(53 ns )  

90 ns  

(80 ns)  

10 s 

250 ms 

25 f.' S  
200 ms 

250 ms 

pro gr. 

The BUS FREE phase 

Description 

During arbi tration 

REQ ( REQB ) and ACK (ACKB ) must be active at least this amount 

of time 

A device must release al l  signals within this amount of  time 

after it has detected a BUS FREE phase 

After detecting a Bus FREE phase a device must wait at least 

this long before arbi trat ing for the bus 

Maximum time a device may act ivate BSY and its ID during 

arbitration 

Minimum time a device must wait in  order that all bus signals 

sett le to their new values 

Maximum difference in propagation t ime for any two signals 

of the SCSI cable 

Maximum time for an ini tiator to release DB( X )  active after 1/o 

goes false 

Minimum time necessary to deskew ce1tain signals 

When a target has freed the bus due to a DISCONNECT message 

i t  should wait at least this long before taking part in  arb itrat ion 

For synchronous transfers the data must be set at least this 

long after the activation of REQ ( REQB ) or ACK (ACKB)  

Minimum t ime that  target must  negate REQ ( REQB ) for 

synchronous transfers. The same holds for ACK (ACKB)  for 

the ini t iator 

Recommended maximum time that a target should need after 

power-up to reply to commands l i ke TEST UNIT READY 

Recommended maximum t ime that a target should need after 

a SCSI reset to reply to commands l ike TEST UNIT READY 

Minimum time that RST must be active 

Maximum time for a device to activate BSY after being selected 

Recommended minimum time that device should wait for a 

busy response during a SELECTION 

Minimum time between two REQ or ACK pulses for 

synchronous transfers 

When the SCSI bus is not being used by a device it remains in the BUS FREE phase. 
The bus is defined to be in this phase when the signals BSY and SEL have been inactive 
for longer than a bus settle delay of 400 ns. After power has been turned on or a 
SCSI reset has occurred the bus enters the BUS FREE phase. 

In normal operation there are two standard cases in which the BUS FREE phase is 
entered. The first occurs after a command has been executed and the message 
COMMAND COMPLETE has been sent. The other normal case occurs when a target 
releases the bus after first sending a DISCONNECT message. 

In addition to those just mentioned, there are exceptional cases, which the initiator 
can bring about by sending a message to the target. In response to these messages the 
target releases the bus. These messages are ABORT, BUS DEVICE RESET, RELEASE RECOV­

ERY, ABORT TAG and CLEAR QUEUE. If an initiator detects a BUS FREE during the execution 
of a command that did not follow from one of these messages, it treats this as an error. 
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This error is called unexpected disconnect. The initiator then attempts to deter­
mine the reason for the error by sending a REQUEST SENSE command to the target. 
Another error situation that results in a BUS FREE occurs when a device does not 
respond after selection or reselection. 

The ARBITRATION phase 

The ARBITRATION phase is used to determine which device obtains control of the bus 
after a BUS FREE. If a device wishes to arbitrate for the bus it simultaneously acti­
vates the BSY signal along with the data bit that corresponds to its SCSI ID. All other 
signals must be left alone. Figure 19 . 19  shows the data bus with COh during an ARBI­

TRATION phase. Since OB(7l and OB(Sl are set this means that the devices with SCSI 
IDs 7 and 5 are competing for the bus . 

At this point each device arbitrating for the bus must wait for at least an arbitra­
tion delay of 2.4 !..I S .  The device then looks at the data bus to see if a SCSI ID greater 
than its own has been asserted. The device with the higher ID, in this example ID 7 ,  
wins the arbitration and in  response asserts the SEL signal . This indicates to  all other 
devices that they should release BSY and remove their ID bit from the data bus within 
a bus clear delay of 800 ns. The delay concludes the ARBITRATION phase. The suc­
cessful device now commences with either a SELECTION or RESELECTION phase. 

Wide SCSI in SCSI-3 allows 16 or 32 devices to be present. For the lower eight 
IDs the old scheme remains : ID 7 has the highest priority ( 1 )  and ID 0 the lowest 
priority (8) .  This scheme is now transferred to the higher order bytes : ID 15 has pri­
ority 9 and ID 8 has priority 16 ;  ID 23 has priority 17 and ID 16 has priority 24; and, 
finally, ID 3 1  has priority 25 and ID 24 the lowest of all priorities, namely 32 .  

When you connect buses of different width, you can only use IDs that are allowed 

by the narrowest bus segment. Otherwise, the devices on the narrow bus cannot rec­
ognize devices with higher IDs and arbitration will not work. 

As opposed to SCSI- 1 ,  arbitration is mandatory in SCSI-2 even when the config­
uration includes only one initiator. In fact, targets also must arbitrate for the bus. 
This occurs after disconnecting from an initiator to execute a command. When the 
target is ready it arbitrates for the bus and reselects the initiator. This means that even 
in a configuration with a single initiator and a single target true competition for the 
bus can take place, for example when a target wants to reconnect to the initiator at 
the same time as the initiator wants to send the target another command. 

The SELECTION lf>hase 

A selection phase takes place after an initiator wins the arbitration phase. If a target 
wins arbitration then the reselection phase follows. Selection and reselection differ 
in the state of the 1/0 signal . For reselection 1/0 is asserted; for selection it is not. A 
device can therefore identify itself as an initiator by not asserting 1/0 during the 
selection phase. 

During the selection phase a connection is established with the desired target. BSY, 

SEL, and the initiator ID are all still active from arbitration. Now the initiator asserts 
the data signal corresponding to the ID of the desired target along with the ATN 
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signal . The attention signal indicates that a MESSAGE OUT phase will follow selection. 

In the example in Figure 1 9 . 1 9, the value 8 1 h  is on the data bus during selection. 
This means that the initiator with ID 7 wishes to establish a connection with the 
target with ID 0. After at least two deskew delays the initiator releases BSY. 

At this point all devices look to see whether their SCSI ID bit is asserted on the 
data bus . The selected device identifies the initiator by the other set data bit on the 
bus. Before a select abort time of 200 ms has elapsed the selected device must assert 

BSY and take over control of the SCSI bus .  This is an important moment. From this 
point on the target has complete control over the sequencing of SCSI bus phases. It 
decides when to receive messages, command bytes or data from the initiator and 
when to send status.  The target also decides whether or not to disconnect during a 
command and when to reconnect. Although the initiator controls what commands 
the target executes, the target alone is in charge of the bus protocol. 

No more than two deskew delays after the target's assertion of BSY, the initiator 
must release the SEL signal .  With this the selection phase is completed. SCSI-2 now 
calls for a MESSAGE OUT phase. 

A selection phase is unsuccessful if the target device never responds to the ini­
tiator. In this case the initiator waits at least a selection abort time, after which it has 
two options .  The initiator can either assert the RST signal, causing a transition to the 
BUS FREE phase, or it can release first the data signals then SEL and ATN in order to 
get back to BUS FREE. 

An additional word on the effect of SCSI timing on throughput: the selection 
abort time of 200 ms is very long. In 200 ms a disk drive can perform around 1 0  110 
operations. For this reason it is very important for a target to react as quickly as pos­
sible to selection. A slow target that requires, for example, 5 ms to react to a 

selection not only reduces its own throughput, but also blocks the bus for all other 
devices during this time and degrades the overall throughput of the SCSI bus . 

Figure 1 9.20 shows a schematic timing diagram of an ARBITRATION and SELECTION 

phase. Delay times have been omitted in the interest of simplicity. Actual timing dia­
grams that reflect precisely what has taken place on a bus can look very different. 
Figure 1 9 .2 1 shows such a sequence recorded by a logic analyzer. 

BSY 
SEL 
C/D 
1/0 
MSG 
ATN 
D0-7 

Figure 19.20 ARBITRATION and SELECTION. 
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Figure 19.21 ARBITRATION and SELECTION as seen on a logic analyzer. 

Some explanations of the figures showing logic analyzer output is called for. In 
the line directly above the timing diagram, you see 'Time/Div 5 .000 11s ' . This is the 
length of time (in j.lS)  per division shown on the upper and lower edges of the 
diagram. 'Sample period = 1 0  ns' tells you that measurements are made every 1 0  ns.  
On the left-hand side you see the names of all of the signals.  

In this example it is easy to see that during the SELECTION phase the BSY signal is 
inactive for about 1 11 s ;  this moment represents the transfer of control from the ini­
tiator to the target. A glitch can be seen on the data lines during the SELECTION phase. 
This is caused by the toggling of the target's SCSI ID on the data bus . Such glitches 
are the reason why delays are built into the protocol. 

The RESELECTION phase 

The RESELECTION phase allows a target to reconnect to the initiator after having dis­
connected to complete a command. Following a successful arbitration the target 
reselects the initiator that sent it a SCSI command. This phase is differentiated from 
selection by the active I/0 signal. Otherwise, these phases are identical . 

The MESSAGE phase 

The phase following a successful selection is always a MESSAGE OUT phase. A 
message phase is used by the target to either send or receive a message byte. 
Message bytes contain information concerning the SCSI bus protocol, where IN and 
OUT are interpreted with respect to the initiator. A list of messages and their mean­
ings is given in Chapter 20. A message can consist of one, two or a variable number 
of bytes. The first byte tells which of these three types of messages is being sent. A 
variable length message is referred to as an extended message, in which case the 
length of the message is contained in the second byte. What follows is a description 
of the timing and protocol of the message phase. 
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Figure 19.22 RESELECTION and MESSAGE IN .  
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Target 

MESSAGE I N  

A look at the phase diagram in Figure 19 .22 shows that a MESSAGE IN phase can 
take place after each information transfer phase as well as after a RESELECTION. 

Following the flow of the message phase in Figure 19 .22 we see that the BSY signal 
is still set from the SELECTION phase. The target then activates MSG, rio and c/o in 
order to proceed to the MESSAGE IN phase. 

Now the message byte is put on the data bus. After deskew and cable deskew 
delays the target sets the REQ signal. In response the initiator reads in the message 
byte and sets ACK. The target can now remove the byte from the bus and release REQ. 

Finally, the initiator responds by releasing ACK. Such an exchange is known as an 
asynchronous request/acknowledge handshake or REQ/ACK sequence. This method of 
transfer is used for the command, data, and status phases as well. 

At this point the bus is still in the MESSAGE IN phase. If additional bytes are to be 
sent, that number of REQ/ ACK sequences take place to transfer them. To end the 
message phase the target releases the MSG signal . 

The target receives a message from the initiator during a MESSAGE OUT phase. An 
extra step is needed here since the initiator must inform the target of its intention to 
send a message. To do this the initiator activates the ATN signal, which is permitted 
during any phase except BUS FREE or ARBITRATION . During data and command phases 

it is up to the target whether to receive the message byte immediately or wait until 
the end of the phase. ATN during a selection, message or status phase calls for imme­
diate transfer of the message byte after the current REQ/ ACK sequence .  

This transfer unfolds almost identically to the REQ/ ACK sequence described above. 
The target activates REQ. In response to this the initiator places the message byte onto 
the data bus and after the proper delays activates ACK. The target then reads the byte 
and releases REQ. Finally, the initiator releases ACK and the transfer is complete. The 
target knows whether additional bytes will follow by examining the first message byte. 
The initiator releases ATN when it has sent all of its message bytes. The target ends the 
MESSAGE phase by releasing the MSG signal . 
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Figure 19.23 MESSAGE OUT and COMMAND. 

�tor 

Afterwards, if a command phase takes place the signals r/o and c/o are already in 
the proper state, as Figure 1 9 .23 shows. 

The COMMAND JPhatse 

The COMMAND phase is used by the target to receive the actual SCSI commands from the 
initiator. It is important to remember that the target has taken control of the bus since the 
end of the SELECTION phase. First it finishes the MESSAGE OUT phase, which the initiator 
brought about using ATN. Immediately thereafter is the beginning of the COMMAND phase. 
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Figure 19.24 COMMAND phase as seen on a logic analyzer. 
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DATA I N  DATA OUT 

JFigure 19.25 DATA IN and DATA OUT. 

A command phase is characterized by the c/o line being active while I/o and MSG 

are inactive .  The command phase proceeds with REQ/ ACK sequences in the same 

manner as a MESSAGE OUT phase until all command bytes have been transferred. 

On the leftmost side of the timing diagram (Figure 1 9 .24) you can see the target 

already waiting with active REQ signal. After the first ACK little time is needed for the 

target to read the first byte and release REQ. Almost immediately after the initiator 

releases ACK the target is requesting the second byte. The initiator needs a relatively 

long time to prepare the bytes, as indicated by the distance between REQ/ ACK 

sequences. This command happens to be an INQUIRY command ( 1 2  00 00 00 FF 00) , 

which is covered in greater detail in Chapter 1 2. 

By examining the first command byte the target can tell how many additional 

bytes will follow. It collects all bytes from the initiator and releases c/o, thus ending 

the COMMAND phase .  

lhe DATA IN  aurud DATA OUT IP!hases 

Almost all command sequences contain a data phase. This is how control informa­
tion and user data are exchanged between target and initiator. The target begins a 

data phase by de-asserting c/o and MSG. At this point either asynchronous or syn­
chronous transfers may take place, depending on a previous agreement between the 
two devices. The asynchronous method will be described here, while synchronous 
transfer is covered in Section 19 . I  0. 

If the target wishes to send data to the initiator it asserts the I/o signal, indicating 

a DATA IN phase .  On the other hand, when the target wishes to receive data it de­
asserts I/o for a DATA OUT phase. Figure 19 .25 depicts a single DATA IN and DATA OUT 

transfer, and Figure 1 9 .26 shows the DATA phase as seen on a logic analyzer. The 
REQ/ACK sequences proceed as described in the message phases. 
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Figure 19.26 DATA phase as seen on a logic analyzer. 

The STATUS phase 

A target uses the status phase to send status information to an initiator. In contrast to 
a message, which can be sent at any time during a command sequence, a status phase 
only takes place when a command has completed, been interrupted or been refused 
by the target. In this phase c/o and rio are asserted while MSG remains de-asserted.  
Status information, always one byte in length, is transferred in a single REQ/ ACK 
sequence. A list  of status bytes and their meanings can be found in Section 1 1 .2 .  

Figure 1 9.27 shows the status phase and subsequent MESSAGE IN phase of an average 
SCSI command. The COMMAND COMPLETE message tells the initiator that this command 
is finished. Afterwards the target releases the bus completely and BUS FREE results. 

BSY 

SEL 

C/D 

1/0 

MSG 

ATN 

REQ Target n 
ACK Initiator 

D0-7 

STATUS 

Figure 19.27 STATUS and MESSAGE IN.  

MESSAGE IN  
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1 9.9 The service model 

The SAM (SCSI Architectural Model) of SCSI-3 introduces the client-server model. 

This is also followed by the SPI insofar as it defines the services that the parallel 

interface supplies as connection system to the upper level protocols. 

Confirmed and unconfirmed services 

There are confirmed and unconfirmed services. A confirmed service consists of 

request, indication, response and confirmation. An unconfirmed service consists 

only of a request and an indication. Figure 19.28 shows the model of a confirmed 

service. Thus, an SPI service has the following steps. First, the service is started by 

the client with a request of the upper level protocol (ULP) to the parallel interface 

agent (PIA). The transport system forwards it to the server PIA. At the server's side, 

the PIA triggers an indication to the ULP. The ULP answers with a response to the 

PIA. This response is  forwarded via the transport system to the client PIA which ter­

minates the service with a confirmation to the client ULP. 

There are ten different services which in part directly correspond to the bus 

phases. They are listed in Table 1 9. 1 1 .  

Example: command service 

The command service is a confirmed service which transports a command byte from 

the initiator to the target. If you compare the following description with the SCSI-2 

command phase and the timing diagram you will soon notice the correspondence. 

• Command request: The command request does not contain parameters. When 

the target PIA receives a command request, it must set the c/o signal, negate the 

MSG and r/o signals and start a REQ/ ACK cycle by setting REQ. 

U pper level Upper level 
protocols protocols 

c "' I Ui .Q "' c "' '" c .Q 
::l 

.� 
0 '" 0" 0. u "' SPI service "' '6 a: c "' 

0 interface a: E 
- - - � - - - - - -� - - - - - - - - - - - - - - - - - - � - - - - - - - - - -

I - - - _ .. 
•' ' PIA SPI transport PIA I ' system .., _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ , 

Client Server 

Figure 19.28 Confirmed services. 
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Table 19.11 SCSI protocol services. 

Service Type 

Bus free service Unconfirmed 

Reset service Unconfirmed 

Selection service Confirmed 

Reselection service Confirmed 

Command service Confirmed 

Data out service Confirmed 

Data in service Confi rmed 

Status service Confi rmed 

Message out service Confirmed 

Message in  service Confirmed 

• Command indication: The command indication contains no parameters . When 
the initiator PIA detects the c/o signal, sees that the MSG and 1/o signals are negated 

and that a REQ/ ACK cycle has begun, then it must generate a command indication. 

• Command response: The command response contains the command byte and 

the attention flag as parameters . When the initiator PIA receives a command 
response, it must put the command byte on the data lines, set the ATN signal in 
accordance with the attention flag and terminate the REQ/ ACK cycle. 

• Command confirmation: The command confirmation contains the command 

byte together with the attention flag and parity flag as parameters . When the target 
PIA detects the termination of the REQ/ACK cycle, it must read the command byte 

from the data lines, and set the parity flag in accordance with the parity check and 

the attention flag in accordance with the ATN signal. With these parameters, it then 
generates the command response. 

1 9.1 0 Synch ronous transfers and fast SCS � 

The normal SCSI transfer mode is asynchronous. Commands, status and messages 

are always transmitted asynchronously. Only for data transfer can an alternative syn­

chronous transfer mode be negotiated. 

In SCSI, asynchronous data transfer is by definition slower than synchronous 

transfer. Furthermore, because of the signal transit time through the SCSI cable, 
asynchronous transfer depends on the distance between the individual devices. 
Figure 1 9 .29 shows this correlation. 

Synchronous transfer is a SCSI data transfer mode which in its original definition 
allows data rates of up to 5 Mbytes per second, independently from the distance. 

Already in SCSI- I ,  synchronous transfer was specified as optional . SCSI-2 increases 
the data rates to 10 MHz by offering what is known as Fast SCSI. Measuring the 

speed in MHz makes sense here because SCSI-2 also provides for bus widths of up 
to 4 bytes. The data rate is simply the bus width in bytes times the rate in MHz. Table 
1 9. 1 2  lists various SCSI throughputs. 

Both the original and the Fast synchronous transfers use the same bus protocol. 
For Fast SCSI, however, the built-in delays are shorter and the overall times are 



Synchronous transfers and Fast SCSI 283 

Mby1es/ 
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lFigure 19.29 Asynchronous data rates relative to the distance. 

25 m 

faster. The method with which a target and initiator negotiate transfer parameters has 
also remained the same for Fast SCSI. Because of their similarity, the general term 
'synchronous transfers ' will be used for both methods . 

The use of synchronous transfers is negotiated between the initiator and the target 
using messages .  Chapter 20 covers this aspect in greater detail .  

Synduonm.IIS DATA IN  CllB1lldJ DATA OUT JPihlatses 

When a target uses the synchronous method of data transfer it is allowed to send a 
certain maximum number of REQ pulses without waiting for ACK pulses. The pulses 
occur at a fixed period, called the synchronous transfer period. The maximum number 
of REQ pulses without receiving an ACK is called the REQIACK offset. Another way to 
look at the offset is this :  given that at the end of a transfer an equal number of REQ 

and ACK pulses must occur, the offset is the maximum number of outstanding ACK 

pulses. If the offset is reached then the target must wait until the initiator sends an ACK 

before it sends further REQS . The result of this approach is that cable delays - the time 
it takes signals to traverse the length of the SCSI cable - are effectively eliminated 
from the transfer speed. For asynchronous transfers the transfer rate is directly depen­
dent on the cable length. For each byte sent there is a delay equal to the following: 
the time it takes the leading edge of the REQ to travel from target to initiator, plus the 
time it takes the leading edge of the ACK to travel back to the host, plus the time it 
takes for the trailing edge of the REQ to reach the initiator, plus the time it takes for 
the trailing edge of the ACK to make it back to the host. The synchronous method 
eliminates the interlocking handshaking and with it the cable delays .  

'fable 19.12 Various SCSI throughputs. 

Transfer rate 

Transfer width 

Asynchronous (approximately 3 MHz) 

Synchronous 

Fast 

Fast-20 

8-bit 

3 Mbytes/sec 

5 Mbytes/sec 

1 0  Mbytes/sec 

20 Mbytes/sec 

Bandwidth 

16-bit 

6 Mbytes/sec 

I 0 Mbytes/sec 

20 Mbytes/sec 

40 Mbytes/sec 

32-bit 

1 2  Mbytes/sec 

20 Mbytes/sec 

40 Mbytes/sec 

80 Mbytes/sec 
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Figure 19.30 Synchronous data phases. 

Figure 1 9 .30 shows synchronous DATA IN and DATA OUT phases. Here a REQ/ACK 

offset of five is being used. Let us look first at the DATA OUT phase. The target sends 
five REQ pulses at a fixed frequency determined by the synchronous transfer period. 
It must then wait since the offset of five outstanding ACK pulses has been reached. 
Finally, the ACK pulses come along with the data from the initiator at the same fre­
quency. With the arrival of the first ACK pulse the number of outstanding pulses has 
dropped below the offset and the target responds by sending data continually at the 
defined frequency. In this way the transfer proceeds with maximum efficiency. 

The synchronous DATA IN  phase looks very much the same. Here, however, the 
target places a byte on the data bus before the first REQ pulse. The byte is held there 
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Figure 19.31 Synchronous data phase as seen on a logic analyzer (part 1 ) .  
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Figure 19.32 Synchronous data phase as seen on a logic analyzer (part 2) .  

until the first ACK signal has been read. Afterwards the transfer takes place at  the rate 

determined by the transfer period. 

Figures 1 9 . 3 1 and 1 9.32 show this phase once again, this time as seen by a logic 

analyzer. These are DATA IN phases as they occur in the real world. The target sends 

15 REQ pulses and the accompanying data bytes, then all is still because no ACKs are 

returned. It is safe to assume that the transfer offset is 1 5 .  In the second diagram, 

which occurs approximately 1 30 l-IS later, the ACK pulses are returned by the initia­

tor. After the second REQ the target proceeds to send the remaining five data bytes. 

The ACK pulses continue until a total of 20 have been sent. 

1 9.1 1 U ltlra-SCS I or fast-20 

Fast-20 is an extension of the SCSI-3 SPI document frequently called Ultra-SCSI by 

the industry. Depending on the bandwidth used, it  allows a data rate of 20, 40 or 80 

Mbytes/second. Fast-20 works in the same way as Fast SCSI, with the exception that 

some timing values are slightly tighter (see Table 1 9. 9). The bus length of the single­

ended bus is limited too: when up to four devices are connected, the bus length can 

be up to 3 m. From four devices up to the maximum of eight devices, the bus can 
only be 1 .5 m long. For differential buses and LVD there is no length restriction : 

here the usual 25 or 1 2  m are allowed. 

1 9 .1 2  U ltra-2 SCSI o r  Fast-4((]) arnd more? 

At least on the marketing side, the competition of the serial interface alternatives has 
put supporters of the parallel SCSI interface under severe pressure. As a reaction 
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they organized themselves in the SCSI Trade Association (STA) which has the aim 
of pushing the development of ever faster parallel transfer modes .  

As a first result, the standardization of the Fast-40 (Ultra-2) transfer mode is 
expected, and there are already speculations about Fast-80. Fast-40 works with 40 
Megatransfers per second, that is 40 Mbytes/sec with narrow and 80 Mbytes/sec 
with 1 6-bit wide transfer. However, it must be noted that all transfer rates higher than 
20 Megatransfers per second can only be realized with the differential interface or 
with the new LVD interface. 

Neither the differential nor the LVD interface is compatible with the wide-spread 
single-ended interface. In order to facilitate the transition from traditional SCSI to 
LVD, LVD devices will supposedly be equipped with dual-mode drivers . These bus 
drivers use the DIFFSENSE signal to detect whether they are connected to a single­
ended bus or a LVD bus and set themselves accordingly. 

19.13 Wide SCSD  

Wide SCSI uses the same hardware protocol as the 8-bit transfers . The most widely 
spread is the 1 6-bit wide transfer because the additional nine signals needed for this 
fit on the 68-pin P cable of SCSI-3 (see Section 1 9.2) .  The SCSI-2 B cable is  prac­
tically never used. Often Wide SCSI is thought to be equivalent to 1 6-bit wide 
transfer; however, the SCSI-3 SPI document defines 32-bit wide transfer as well. 

In 32-bit wide SCSI, the data signals are distributed across two cables. In order 
to prevent signal skewing problems resulting from different cable lengths, an addi­
tional REQ and ACK are included on the second cable. This allows an independent 
REQIACK sequence for each cable. During all but the DATA IN and DATA OUT phases the 
second cable is unused. 

Just as is the case with Fast SCSI, the use of Wide SCSI is negotiated between 
devices using the message system. 

19.14 SCAM 

SCAM stands for SCSI configured automatically or, as marketing buffs prefer to 
read, ' automagically ' .  This term hides a relatively complicated protocol which 
allows SCSI devices to have their SCSI ID dynamically assigned during initializa­
tion of the SCSI bus .  The idea behind this concept is to make the SCSI bus 
plug-and-play capable, so that the user must no longer carry out any manual config­
uration when he/she adds or removes devices to or from the bus .  There is even a 
specification for plug-and-play SCSI which will be presented in Section 1 9. 1 5. It 
builds on SCAM but contains additional specifications, for example for cables and 
connectors . 

SCAM is  mere chi ld 's play 

Maybe one could best compare the phases of the SCAM protocol with the prepara­
tions for a fictitious children's game. The game only works when each participant 
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(device) has a unique number (ID). These numbers are distributed after the follow­

ing scheme. 

First it is determined who of the participants is a suitable leader (dominant initia­

tor) . If there is more than one candidate , the best one is selected following certain 

rules .  Under the leader 's direction, the preparation proper be&�ns. First, the leader 

assigns participants that can only work with a determined number (SCAM tolerant 

devices) exactly that number. All other participants (SCAM devices) have a name 

(ID string) . In each round, the participants put the letters of their names one after the 

other on the table. Whose letter is lower in the alphabet than that of any other par­

ticipant stops playing. Thus,  after each round only those remain whose names are the 

same up to that point and whose names are 'high ' .  (When names are identical, it is 

dad's car registration plate that counts .)  When only one player is left, he/she/it is 

assigned a number and no longer participates in the game. Then, the next game 

starts, and so on, until all players have got their number (ID).  Now the SCSI game 

can begin . By the way, each morning (after powering up) and after accidents (SCSI 

resets) the numbers are distributed anew. 

The SCAM protocol is described in Appendix B of the SCSI-3 SPI document. Its 

implementation is optional , but when it is implemented it must comply with the 

specifications .  The author knows lots of children's games. Maybe they will be the 

subject of another book. 

Conformity levels 

There are three levels of  conformity with SCAM. Devices which completely refuse 

to function under SCAM are SCAM intolerant. 

The first level is constituted by SCAM tolerant devices. They do not support the 

SCAM protocol, but their functioning is not affected by SCAM and they do not 

affect the SCAM protocol. This conformity level is only defined for targets . 

The second level is constituted by devices that support SCAM level 1 .  They can 

participate in the SCAM protocol but do not support some further-reaching capabil­

ities of level 2 ,  such as more than one initiator and the hot-plug capability. For home 

and office use this will play practically no role, for which reason I regard SCAM 

level 1 as absolutely sufficient. Furthermore, SCAM level l can be realized with tra­

ditional SCSI chips provided they satisfy two conditions : first, the SCSI signals must 

be software controllable independently from each other. Oldtimers such as the NCR 

53C80 obviously support this feature, but even more recent chips mostly have at 

least a maintenance mode in which the individual signals can be controlled sepa­

rately. The second condition is that either the chip does not use active negation or 

that it can be disabled. 

The complete implementation of SCAM is SCAM level 2 .  Level 2 devices can 

carry out a SCAM configuration even when the bus is operating. Furthermore, level 

2 supports more than one host adapter on the bus. However, SCAM level 2 cannot 

be implemented without hardware support, that is, the capability must already exist 

in the chip. 



288 The parallel SCSI interface 

SCAM H IIJs 

The SCAM protocol distinguishes between different states of SCSI IDs .  
The SCSI ID with which a SCSI port is working at  the moment is called current 

ID. This can be an ID set via firmware, switches of jumpers, or an ID assigned via 
SCAM. The current olD reflects the view of the device. 

From the point of view of the SCAM protocol there exist assigned and unas­
signed IDs. An assigned ID is the ID assigned to a device by the SCAM protocol. 
As soon as the assignment has been carried out, the assigned ID is also the current 
ID. SCAM tolerant devices are always assigned their current ID. An unassigned ID 
is the current ID of a SCAM device which has not yet been assigned an ID in the 
course of the SCAM protocol. 

SCAM iB1l ntiators 

Even in a configuration with several SCAM initiators, only one of them has the task 
to assign IDs to the devices on the bus . This initiator is called the dominant SCAM 
initiator. Initiators that are not dominant are called subordinate SCAM initiators. If 
there is more than one initiator on the bus, they first have to negotiate which of them 
will become the dominant initiator. This capability is, however, reserved to level 2 
initiators . When level 1 initiators find another initiator on the bus, they assume that 
they are subordinate initiators . Therefore there must be only one level 1 initiator on 
any one SCSI bus. 

After power-on or a reset, a dominant initiator first builds a table of the SCSI IDs 
and marks all entries as unassigned. During a selection, SCAM tolerant devices must 
report after 2 ms, whereas SCAM devices are implicitly assigned their current ID 
when they are selected for more than 4 ms. Therefore the dominant initiator selects 
each device, for more than 2 ms but less than 4 ms. When a device answers, the 
initiator has found a SCAM tolerant device and enters it into the table. In order to 
return in an orderly way to a bus free phase, the initiator should follow the selection 
with an INQUIRY command. In this way, the initiator goes through all IDs and finds 
the SCAM tolerant devices. 

Afterwards it initiates the SCAM protocol, isolating all SCAM devices one after 
the other and assigning them their IDs. Once this process is finished, the initiator 
sends a function sequence CONFIGURATION PROCESS COMPLETE and terminates the 
SCAM protocol . 

The SCAM target state diagram 

After power-on or a reset, SCAM level 1 targets (Figure 1 9 .33)  first go into the 
SCAM monitor state, where they wait either for a normal or for a SCAM selection. 

The simplest case occurs when a SCAM target already has a current ID which is, 
for example, set via firmware or jumpers . When the device is selected under this ID 
for at least 4 ms, the ID becomes an assigned ID. This simplified procedure without 
the complicated SCAM protocol is called implicit assignment. 

Until the next power-on or bus reset, a target with assigned ID behaves like a 
SCAM tolerant device. In particular, it no longer participates in the SCAM protocol. 
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When a target in the monitor state detects a SCAM initiation, it passes into an ID 

assignable state in which the ID can be assigned via the SCAM protocol. Now the 

device participates in the SCAM protocol until it has been assigned an ID or the pro­

tocol is terminated. When the target is assigned its ID via a SCAM action, it behaves 

like a SCAM tolerant device and no longer participates in the SCAM protocol. 

Once all IDs are assigned, the SCAM protocol is terrrunated with the SCAM 

function CO!\'FIGURATION PROCESS COMPLETE and the dominant irutiator releases the 

c/o signal. However, the SCAM protocol can also end before the device is assigned 

an ID, for example when the protocol is abot1ed because the c/o signal changes to 

false in the middle of the process. In tills case the device passes into a state without 

ID and does not answer any SCSI selection. However, it continues to monitor the 

bus and when it detects another SCAM protocol, the device passes again into the 

assignable state. 

The state diagram of a level 2 SCAM target differs only by the fact that it initi­

ates the SCAM protocol after power-on.  Depending on whether a SCAM initiator 

answers or not, it passes into the monitor state or the assignable state. Owing to this 

capability, SCAM level 2 devices can also be added to an operating bus (hot plug). 

SCAM in itiation 

The SCAM protocol makes extensive use of the wired-or of the SCSI signals. 

Remember that a single-ended SCSI signal is active when it is low. In the inactive 

state, the signals are set to high by the terminator. A signal is activated by shm1ing 

a device to ground. When several devices activate different signals, the bus carries 

the wired-or of all signals. In order to make tills function, devices that use single­

ended drivers with active negation must disable their active negation while the 

SCAM protocol is running. 
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Only those devices participate in the SCAM protocol that still have no assigned 
ID. Thus,  neither SCAM tolerant devices participate because their fixed ID is always 
immediately their assigned ID, nor do the SCAM targets that had their current ID 
implicitly assigned by way of a selection. One after the other, the remaining devices 
receive their IDs via the SCAM protocol and do not participate in it until the next 
power-on or bus reset. 

A device initiates the SCAM protocol by first arbitrating and then executing a 
SCAM selection. One peculiarity is that in this case a device without ID is allowed 
to arbitrate. This leads to the requirement for SCAM tolerant devices that they must 
not be affected in their functioning by arbitration without ID. 

When the device has won the arbitration, the 8SY and SEL signals are set. Then it 
must free all data lines and set MSG. Shortly after, it must release 8SY.  Thus the 
device waits at least one SCAM response delay and then also releases MSG. Then it 
waits until all other devices have released MSG. 

Devices that are still participating in the SCAM protocol recognize a SCAM 
selection by the fact that SEL and MSG are set, but not 8SY. After a certain delay they 
release the MSG signal and wait until all other devices have done the same. Then each 
participating SCAM device sets BSY and waits for a moment until it sets several 
other signals .  

Now a SCAM target sets the signals 1/o, 08(6)  and 08(7 ) ;  a SCAM initiator also 
sets c/o. Then the devices release the SEL signal . When the SEL signal is inactive on 
the bus, then because of the wired-or it means that the signal has been released by 
all devices. Now all SCAM devices release the signal 08(6) and monitor the bus . 

When c/o is not set, no SCAM initiator is participating and all devices release the 
bus. In such a case, the SCAM protocol has not been initiated successfully. When, 
however, c/o is set, the participating devices set SEL and the SCAM protocol is 
initiated. 

SCAM configuration n.a!es 

From what has been said up to now, it follows that the following conditions must be 
satisfied in order for a SCAM configuration to work: 

• No SCAM intolerant devices must be installed on the bus. In particular, older 
targets may be SCAM intolerant, and this is obviously not mentioned in the 
owner's  manual when the device was built before SCAM was developed. 

• Each initiator on the bus must be a SCAM initiator. Only one initiator may be of 
SCAM level 1 ;  all other initiators that might be present must support level 2. 

• SCAM tolerant targets and those with level 1 must be powered on before or 
together with the SCAM initiator. The same holds for all targets when the initia­
tor only supports level 1 .  

SCAM tra1111sfer cydes 

All SCAM devices participate in the SCAM protocol that have not yet been assigned 
an ID. During this process, some devices send data to all other devices. One peculiar 
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feature is that more than one device is allowed to send and that the data on the bus 

results in a wired-or of all data sent. In most cases the participating devices must not 
only send their data but also at the same time evaluate the data on the bus. Thus, 

there are no read and write cycles, but as in some networks data is read by all devices 

and written by one or more of them. 

Data is sent over asynchronous transfer cycles (Figure 1 9 .34). Only the data lines 

are used. DB(O) to DB<4> are user data, DB< 7 >  is used for cycle control, DB<S >  as request 

signal and DB(6 )  as acknowledge signal. 

8 A transfer cycle begins when D B ( 7 J  is active, but DB(5 J and DB(6) are inactive. 

® All devices that have to send data put this on signals DB(O)  to DB(4)  and all devices 
set DB(5 )  as request signal . 

<t All devices release DB(7 )  and wait until all other devices have done the same. 

<t All devices read the data from DB(O> to DB(4) and set DB(6J as acknowledge signal. 

® All devices release the request signal DB<5 >  and wait until all other devices have 
done the same. 

<t Sending devices now release data lines DB(O) to DB(4) .  All devices set DB(7) .  

• All devices release the acknowledge signal DB<6 >  and wait until all  other devices 
have done the same. This ends the transfer cycle. 

SCAM fulllldnollll seqpUiellllces 

The stream of SCAM transfer cycles consists of one or more SCAM function 

sequences. A function sequence always starts with a synchronization transfer cycle 

in which the data lines DB(O l  to DB<4> are all set. Also when this data pattern occurs 
in the middle of a current function sequence, a new function sequence starts imme­
diately after this pattern . 

The second transfer cycle contains the function code (Table 1 9 . 1 3) .  The 

CONFIGURATION PROCESS COMPLETE function which terminates the SCAM protocol 
has no further parameters . 

The two ISOLATE functions are followed by an isolation stage in which one after 
the other all targets but one are eliminated from the function sequence. Eliminated 
devices wait for the next synchronization cycle. 



292 The parallel SCSI interface 

Table 19.13 SCAM function codes. 

Function code Description 

DB(4) to DB(O) 

OOOOOb 

OOOO ! b  

OOO l l b  

O l l l l b 

l l l l l b 

ISOLATE 

Isolation of a device 

ISOLATE AND SET PRIORITY FLAG 

Isolate with priority 

CONFIGURATION PROCESS COMPLETE 

Configuration terminated 

DOMINANT INITIATOR CONTENTION 

Determination of the dominant initiator 

SYNCHRONIZATION 

Synchronization 

In the following transfer cycles, all targets that participate in the isolation process 
send values on data lines DB(Ol to DB(4) which derive bitwise from their identification 
string (Table 1 9 . 14) .  At the same time they read from the same data lines the value 
that results from the wired-or of all values sent. A target that reads a higher value 
than it has sent itself or whose identification string is terminated is eliminated and 
waits for the next synchronization cycle. Thus, in the end the target remains whose 
identification string was the highest in bitwise comparison. 

The identification string is composed of a type code, the SCSI manufacturer iden­
tification (as in the INQUIRY command) and a manufacturer specific code. This last 
code is  needed to distinguish between identical devices of the same manufacturer 
and will therefore contain something like a serial number. The priority code consists 
of the priority mark of the device, followed by a zero. This priority mark is imme­
diately set after switching the device on. The code of the maximum ID is l Ob for 
'narrow' SCSI devices (ID 0-7),  O l b  for 1 6-bit wide SCSI (ID 0-F) and OOb for 32-
bit wide SCSI (ID 0-l F) .  The 'ID valid' field contains OOb when the field is not 
valid. Code O l b  means that the ID field contains the current ID of the device, but that 
it is not yet assigned. Code 1 1  b, finally, means that the ID field contains the assigned 
ID. The SNA (serial number available) field indicates whether the entire ID string is 
currently available. Some devices have their serial number recorded on the medium 
and can only read it when they are READY. 

Table 19.14 The SCAM identification string. 

7 I 6 5 I 4 3 

0 Priority code Max ID code Reserved 

I Reserved I 
2 . . .  

. . .  Manufacturer identification 

. . .  9 

1 0  . . .  

. . .  Manufacturer specific code 

. . .  30 

2 I I 0 

ID valid SNA 

ID 
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'fable 19.15 SCAM action codes . 

First quintet Second quintet Description 

I I OOOb ccnnnb Assign ID OOnnnb 
I OOO ! b  ccnnnb Assign ID 0 I nnnb 
I OO ! Ob ccnnnb Assign ID ! Onnnb 
O I O ! l b  ccnnnb Assign ID l l nnnb 

I I OOOb Delete priority mark 
I O I OOb I OO ! Ob Localize off 

O I O ! l b  Localize on 

After the isolation process, the initiator sends an action code (Table 1 9 . 1 5) which 
consists of two consecutive transfer cycles. The action code is always addressed to 
all devices that are still participating in the current function sequence.  

Most action codes assign the device its  ID. One action code deletes the priority 
mark of a device, which automatically gives its identification string a rather low 
value so that the device is isolated only late. Localizing is an action with which a 
device attracts attention, for example with a blinking LED. In certain situations this 
action is meant to help the operating personnel find a determined device. 

lermol!1latooll1l of tlhle SCAM IPD'Otm::oi 

After initiation the SCAM protocol consists of a sequence of transfer cycles during 
which the c/n signal is always kept set by the dominant initiator. Release of the c/n 

signal terminates the SCAM protocol in any case, no matter in which state the 
devices are.  All devices must release all signals, so that the bus changes into a 
normal bus free phase. Normally, after having assigned an ID to all devices, the 
dominant initiator will send the SCAM function sequence CONFIGURATION PROCESS 

COMPLETE and then release the c/n signal . 

Plug-and-Play (PnP) SCSI is supposed to make SCSI easier for the user. This is 
achieved in two ways. On the one hand, the options offered by SCSI are severely 
restricted to ensure, for example, that connectors and cables of all Plug-and-Play 
SCSI systems fit together. On the other hand, the SCAM protocol is used to assign 
the SCSI IDs .  Together with appropriate operating system software, this is meant to 
ensure that a user must only switch his/her computer off, connect a new SCSI 
device, and switch the computer back on. The host adapter automatically assigns the 
new device its ID and, if needed, the operating system installs the corresponding 
drivers . 

less is  more: restridiol!1ls Oll1l options 

PnP SCSI devices have a single-ended interface and must have parity implemented. 
The only external connector allowed is the 50-pin high density connector. External 
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Table 19.16 Plug-and-Play SCSI default IDs. 

SCSI ID PnP SCSI default lD 

7 Host adapter 

6 Magnetic disk drive 

5 

4 Tape drive or rewritable optical disk 

3 CD-ROM 

2 Scanner or printer 

I 

0 

connectors must be identified with the symbol for single-ended SCSI. Only active 
terminators are permitted. Devices that supply TERMPWR must employ an auto­
matic fuse which after having been activated must close the circuit at the next 
power-up of the device. 

PnP SCSI devices must support SCAM level 1 .  In addition, the PnP document 
suggests default IDs for certain devices. The dominant initiator should preferably 
assign devices their default ID (Table 19 . 1 6) ;  if this is not possible, the next smaller 
free ID. 

System co1111figurations 

PnP configurations can only contain internal devices, external devices or a mixture 
of both internal and external devices. PnP host adapters that support external devices 
must possess a terminator at the external pmi that switches on and off automatically 
depending on whether a device is connected or not. PnP SCSI devices must not ter­
minate the bus. Instead, external PnP subsystems must be terminated by an external 
terminator which is plugged into the output socket of the last external subsystem. 

For the internal SCSI bus, coded sockets and connectors must be used to ensure 
that cables cannot be connected erroneously. The internal SCSI bus is terminated by 
an internal terminator on the cable and not, as usual, on a device. When the host 
adapter is integrated on the mother board, it terminates the bus.  The internal cable 
leads from the host adapter to the internal devices and from there possibly to a socket 
that leads to the outside world . This socket must contain an automatic terminator that 
switches off when an external cable is connected. 

Software cons ideratimus 

A common compatibility problem with hard disks can occur when a disk has been 
formatted using an adapter of manufacturer 'A' and is then connected to an adapter 
of manufacturer 'B ' .  When the mapping, that is, the assignment of logical blocks to 
the sectors of PC interrupt INT 1 3h, is handled differently by both adapters, disks 
formatted with one adapter cannot be used with the other one. 

Mind you, mapping of physical sectors to logical SCSI blocks is the disk's 
business and independent from the host adapter and transparent to the outside. Here 
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we are talking of the conversion of SCSI logical blocks to the CHS values of the PC 
BIOS interrupt INT 1 3h. PnP SCSI specifies that this mapping must follow the 
documentation of Microsoft's INT1 3  extensions . 

Chapter 9 of the PnP SCSI specification lists some more general points that PnP 
SCSI devices must adhere to. 

8 The READ CAPACITY command must indicate the capacity value effectively avail­
able to the user (without spare sectors) .  

® After power-on, the device should react without great delay to the INQUIRY 

command, that is, possibly before it is READY. 

® Each device must tolerate negotiation of synchronous transfer, that is ,  it must 
either accept it or refuse it correctly. 

® Host adapter manufacturers should supply software for one or more of the driver 
levels ASPI, CAM or Miniport (WIN 95 , NT) . 

• A host adapter should be software-configurable. This applies both to hardware 
resources such as address and interrupt and to SCSI options such as synchronous 
transfer. 

® A host adapter should assign the SCSI IDs via SCAM in a reproducible way. 
Thus,  as long as the configuration does not change, the devices should be 
assigned the same IDs at every system start. 
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The SCSI interlock protocol (SIP) is the protocol of the parallel SCSI interface. It has 
been called SIP only since SCSI-3;  before, it was simply the SCSI protocol. It has 
practically not changed from SCSI-2 to SCSI-3 and consists mainly of the SCSI 
message system. One important change has been made, however, to the IDENTIFY 

message which now supports 32 LUNs. 

20. 1 The message system 

296 

In the previous chapter we went over the workings of the MESSAGE phase in detail. 
We saw that during the course of a normal SCSI command at least two MESSAGE 

phases occur: after SELECTION or RESELECTION and before the final BUS FREE phase. 
SCSI messages represent the lowest level of bidirectional communication on the 
SCSI bus. 

We now take a closer look at the SCSI message system. SCSI messages are used 
for a number of different purposes . Messages are the only means by which an ini­
tiator can inform a target of a problem. As an example, consider a parity error on the 
data bus (see Section 20.3) .  In general, a message can interrupt the normal flow of 
phases at any time. The initiator simply sets the ATN signal, completely asynchro­
nously, and the target then collects the message. 

The target also uses messages to inform the initiator of events that the initiator 
cannot foresee. An example of this is when the target wishes to free the bus during 
a running command. In this case it tells the initiator to secure certain information 
vital to the 110 process and also informs it of the imminent release of the bus .  

Table 20.]. SCSI message format. 

Value 

OOh 

O l h  

02h- 1 Fh 

20h-2Fh 

30h-7Fh 

80h-FFh 

Message format 

One-byte message (COMMAND COMPLETE) 

Extended messages 

One-byte messages 

Two-byte messages 

Rest:rved 

One-byte message ( IDENTIFY) 



The message system 297 

Table 20.2 Extended message format. 

Byte 

0 

2 

3 - n + l 

Value 

O l h  

n 

Ext. Code 

Description 

Extended message 

Number of following message bytes 

Extended message code 

Message arguments 

Finally, messages are used to negotiate the parameters of the various options such 
as synchronous or Wide transfers. Here either the target or initiator sends a number of 
messages indicating the desired option and parameters. The other device then returns 
messages either echoing these parameters or values conesponding to its capabilities. 

SCSI messages consist of one, two or an arbitrary number of bytes. The first byte, 
known as the message code, determines the format of a message. Table 20. 1 shows 
the message format. In the case of an extended message the second byte gives the 
length and the third byte contains the extended message code. Table 20.2 depicts the 
general structure of an extended message. 

The following discussions of the individual messages are grouped by function. 
Table 20.3 is an overview of all SCSI messages ordered by message code. 

Table 20.3 SCSI message codes. 

Code Jni Tar Name Page Direction ATN neg. 

OOh L.tlWil COMMAND COMPLETE 300 In 

0 1 ,  XX, OOh 0 0 MODIFY DATA POINTER 30 1 I n  

O l , xx, O i h  0 0 SYNCHRONOUS DATA TRANSFER REQUEST 303 In/Out Yes 
Q J ,  XX, 03h 0 0 WIDE DATA TRANSFER REQUEST 304 In/Out Yes 

02h 0 0 SAVE DATA POINTERS 301  I n  

03h 0 0 RESTORE POINTERS 30 1 I n  
04h 0 0 DISCONNECT 302 In/Out Yes 
05h M M INITIATOR DETECTED ERROR 300 Out Yes 
06h 0 M ABORT 307 Out Yes 
07h M M MESSAGE REJECT 308 In/Out Yes 
08h M M NO OPERATION 300 Out Yes 
09h M M MESSAGE PARITY ERROR 308 Out Yes 
OAh 0 0 LINKED COMMAND COMPLETE 300 In 
OBh 0 0 LINKED COMMAND COMPLETE (WITH FLAG) 300 In 
OCh 0 M BUS DEVICE RESET 307 Out Yes 
ODh 0 0 ABORT TAG 307 Out Yes 
OEh 0 0 CLEAR QUEUE 307 Out Yes 
OFh 0 0 INITIATE RECOVERY Out Yes 
!Oh 0 0 RELEASE RECOVERY Out Yes 
l l h 0 0 TERMINATE 1/0 PROCESS 307 Out Yes 
1 2h 0 0 CONTINUE TASK Out Yes 
l 3h 0 0 TARGET TRANSFER DISABLE Out Yes 
1 4h 0 I M )  B U S  DEVlCE RESET OTHER PORT Out Yes 
1 6h M M CLEAR ACA 308 Out 

20h 0 0 SIMPLE QUEUE TAG 306 In/Out No 
2 l h  0 0 HEAD OF QUEUE TAG 306 Out No 
22h 0 0 ORDERED QUEUE TAG 306 Out No 
23h 0 0 IGNORE WIDE RESIDUE 305 In 
24h ACA QUEUE TAG 306 Out 

SOh+ IDENTIFY 299 In/Out No 
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20.2 1/0 processes (tasks) 

U/0 pmcess ai!'Ddl 1111exus 

The terms 'nexus'  and '110 process ' ,  a s  described in the SCSI standard, are loosely 
defined. In SCSI-3 an 1/0 process is called a task. S ince this book is based on 
SCSI-2, I will continue to use the term 1/0 process .  An 1/0 process begins with the 
initial selection of a target by an initiator and extends through all bus free phases and 
reselections until a final bus free is reached. The 1/0 process may consist of a single 
SCSI command or a series of linked commands . The process normally ends with the 
BUS FREE phase which follows the final COMMAND COMPLETE message. A process can 
be terminated in response to a number of different messages, a SCSI reset or a 
protocol error. 

The initiator maintains an area in memory of the host for each 1/0 process to store 
COMMAND, DATA, and STATUS information. For each area, or so-called buffer, there exist 
two pointers : the current and saved pointers. At the start of the process all three current 
pointers point to the beginning of their respective buffers. As the process progresses 
these pointers advance through memory. When a disconnect takes place another 
process may start up and use the bus, so prior to this the active pointers need to be 
saved. This is actually accomplished by the target, which sends a SAVE POINTERS 

message to the initiator. Later when the process becomes active again the saved 
pointers are copied back to the active pointers and the process continues to completion. 

Nexus is the term used to describe the relationship between an initiator and a 
target during an 1/0 process. As soon as the selection of a target takes place an ini­
tiator-target nexus (I_T nexus) is established. However, an I_T nexus alone is  not 
enough to carry out an 1/0 process. 

SCSI commands sent by an initiator are not executed by a target itself, but rather 
by one of its LUNs or target routines . As we saw earlier, LUNs are the physical 
devices connected to the target. Target routines are a set of very particular programs 
that run on the target. These routines are optional and mainly used for diagnostic 
purposes. They are, however, only seldom implemented and have therefore been 
omitted in SCSI-3 .  A closer look at target routines is taken in Section 1 2. 1 .  

With the sending of an IDENTIFY message to the target, either a LUN or a target 
routine is addressed. This replaces the existing I_T nexus with an initiator­
target-LUN nexus (I_T_L nexus) or an initiator-target-routine nexus (I_T_R nexus), 
respectively. The SCSI standard speaks of an I_T_x nexus when referring to either of 
these.  An I_T_x nexus is sufficient to carry out an 1/0 process .  

Tagged queues, which are optionally supported by targets, are an ordered stack for 
SCSI commands. They allow a target to store up to 256 commands from various ini­
tiators. Tagged queues do not exist for target routines. When supported, a QUEUE TAG 

message follows immediately after the IDENTIFY message. The existing I_T_L nexus 
is thereby replaced by an initiator-target-LUN-queue nexus (I_T_L_Q nexus). The 
SCSI standard speaks of an I_ T _x_y nexus when referring to either an I_ T _x or an 
I_T_L_Q nexus (Figure 20. 1 ) .  We will see more on queues later in this chapter. 

Without a tagged queue a target can accept only one command per LUN for each 
initiator on the SCSI bus. In this case only I_T_L nexuses are ever established. 
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The IDENTIFY message is used to establish a connection, or nexus ,  between a device 
and a LUN or target routine. For the initial SELECTION of an 1/0 process it is an ini­
tiator that establishes this so-called I_ T _x nexus. For any subsequent RES ELECTION 

the target then uses an IDENTIFY message to identify a particular I_T_x nexus and 
thus which 1/0 process to activate . 

The IDENTIFY message itself, which is one byte long, is shown in Table 20.4. As you 
can see IDENTIFY messages have a variable field within this single byte of information. 
Bit 7 is always set. In effect this reserves all messages from 80h to FFh as IDENTIFY 

messages.  The remaining seven bits carry the variable information: 

• DiscPriv (disconnect privilege) :  This bit may only be set by an initiator. It allows 
a target to use its own discretion to disconnect from the initiator and thus free the 
bus for others to use. 

• LUNTAR (LUN/target routine) :  When this bit is set a target routine is addressed, 
otherwise a LUN is addressed. (Note that the name implies otherwise ! )  

• LUNTRN (LUN/target number) : The LUN o r  target routine number. 

In SCSI-2, target routines were intended for maintenance and diagnostic purposes. 
They were, however, seldom implemented and have disappeared with SCSI-3 .  

In SCSI-3 ,  the structure of the IDENTIFY message is slightly different. Since target 
routines no longer exist, bit 5 is now reserved. On the other hand, since SCSI-3 now 
supports up to 32 LUNs, bits 0 to 4 are used for this purpose (Table 20.5) .  

Table 20.4 IDENTIFY message in SCSI-2. 

7 6 5 4 3 2 _l I I 0 

I DiscPri v  LUNTAR Reserved Reserved LUNTRN 

Table 20.5 IDENTIFY message in SCSI-3 .  

7 3 2 0 

LUN 
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Since most SCSI devices have embedded controllers - that is, they recognize 

only LUN 0 - the most common IDENTIFY message is COh. This means IDENTIFY, 

LUN 0 with disconnect privilege. If the target is not allowed to release the bus 

during command execution the message becomes 80h. 

An initiator is allowed to send multiple IDENTIFY messages during a single 1/0 
process. However, only the disconnect privilege may be modified. Should an initia­

tor attempt to change the LUN or target routine number this will cause the target to 

bring about BUS FREE. Such an unexpected disconnect terminates the 1/0 process. 

There are many ways in which an IDENTIFY message will be considered invalid. 

The simplest case is when either of the two reserved bits is set. Also, a message 

addressing a target routine is invalid when no such routines are implemented. Here 

the target may respond with either a MESSAGE REJECT message or a CHECK CONDITION 

status .  

A rese!ection to an 1/0 process that does not exist is called an unexpected rese­

lection. In this situation the proper response is an ABORT message. 

COMMAND COMPLETE (00h) 

The target uses this message to inform the initiator that the 1/0 process has com­

pleted. Afterwards a BUS FREE phase is brought about by the target. 

L INKED COMMAND COMPLETE (OAh) and 
LINKED COMMAND COMPLETE (WITH FLAG) (OBh) 

These messages are sent instead of  COMMAND COMPLETE for linked commands of a 

command chain. LINKED COMMAND COMPLETE (WITH FLAG) is used when the control 

byte of the command had its flag bit set. The last command of a chain uses the 

regular COMMAND COMPLETE message. 

NO OPERATION (08h) 

This dummy message, as the name implies, does nothing. As an example of when it 

might be useful, consider an initiator that has asked to send a message by setting ATN .  

In  the time i t  takes the target to  switch to  the message phase the initiator may elimi­
nate the need for the message. In this case it sends a NO OPERATION in order to use up 
the message phase and allow the command to continue. 

IN ITIATOR DETECTED ERROR (05h) 

An initiator uses this message when it encounters an internal problem but believes it  

can continue with the process. Since it is possible that the active pointers have 
become defective the target must either send a RESTORE POINTERS message or cause 
BUS FREE (without SAVE DATA POINTERS) and then reselect the initiator. 
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Figure 20.2 Parity error. 

20.3 SCSI pointers 

As mentioned earlier, each initiator manages a set of  three pointers for each I/0 
process. These pointers keep track of the current position in the COMMAND, DATA and 
STATUS buffers . The target can influence these pointers using the message system. 

SAVE DATA POINTERS (02h) 

This message causes the initiator to  save the active data pointer to  the saved data 
pointer. It is sent before every BUS FREE phase change. 

RESTORE POINTERS (03h)  

RESTORE POINTERS causes the initiator to copy the saved pointers to the current point­
ers. This mechanism is put to use, for example, when a target detects a parity error 
in a COMMAND, DATA or STATUS byte (see Figure 20.2). As soon as such an error is 
discovered the target sends a RESTORE POINTERS message to the initiator. Afterwards 
the next DATA OUT phase starts the transfer at the beginning of the data buffer. 

MODIFY DATA POINTER (01 h, 05h, 00h, byte 3 . . .  byte 6) 

This message allows the target to directly modify the value of the data pointer (Table 
20.6). The 4-byte argument is interpreted as a signed integer, which is added to the 
current value of the data pointer. 

Table 20.6 MODIFY DATA POINTER. 

Byte Value Description 

0 O l h  Extended message 

05h Length of extended message 

2 OOh MODIFY DATA POINTER 

3 n (MS B )  

-l n 
Argument 

5 n 

6 n (LS B )  
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20.4 Discormed:/recmuoed: freeing the bus 

One of the most important characteristics of  the SCSI bus is the ability to  interrupt 

a running 110 process in order to free the bus for other devices. This opportunity 
arises frequently for targets that must access data from a physical medium. Hard 

drives typically require in the order of 20 ms to access their data, while tape drives 
sometimes need several minutes. 

When and under what conditions a device should free the bus can be programmed 

into the target using the MODE SELECT command. An entire parameter page, the dis­

connect/reconnect page, is dedicated to this purpose. In addition, the DiscPriv 

(disconnect privilege) bit in the IDENTIFY message tells the target whether it may dis­
connect for the current I/0 process. Besides the DISCONNECT message, which will 

now be introduced, the SAVE DATA POINTERS message of the previous section plays an 
important role in freeing the bus . 

DISCONNECT (04h) 

Using the disconnect/reconnect parameters supplied by the initiator, the target 

decides when to free the SCSI bus .  It then sends the messages SAVE DATA POINTERS 

and DISCONNECT, and brings about the BUS FREE phase. It is important to remember 

that the DISCONNECT message does not cause the data pointer to be saved. DISCON­

NECT indicates only that the target intends to switch to the BUS FREE phase. 
The initiator may also send the DISCONNECT message, which is understood by the 

target as an ultimatum. In this case the target switches to the MESSAGE IN phase and 

sends the SAVE DATA POINTERS and DISCONNECT messages. The target must wait for at 

least a disconnect delay of 200 !J S  after BUS FREE before arbitrating again for the bus. 

Let us tum now to Figure 20.3 .  Time runs from left to right in the figure. 110 
process 1 frees the bus after only a short time. During this disconnect time two other 

processes take the opportunity to use the bus . The numbers in the boxes represent the 

data (in hex) on the SCSI bus during the various bus phases, while the details are 
explained above. 

At the left-hand side the initiator with SCSI ID 7 arbitrates for the bus. We see bit 

7 set in the data byte or 80h. It wins the arbitration and starts the first 110 process. 

During the SELECTION phase it chooses the target with ID 0.  The 8 l h  on the data bus 

reflects the addition of bit 0 to the initiator 's own bit 7 .  Following selection comes a 
MESSAGE OUT phase, which the initiator uses to send an IDENTIFY message with 
DiscPriv set for LUN 0 (COh) . Now comes a READ(6l command with the opcode 
(08h), logical block number (OOOOOh), number of blocks (O l h) ,  and control byte 

(00h) . After accepting the command the target decides to release the bus . It sends the 
message SAVE DATA POINTER (02h) and DISCONNECT (04h) and frees the bus for other 
devices. 

A little later, after two other processes have been active, 110 process 1 again takes 
control of the bus .  It first arbitrates with ID 0 (O l h) and reselects the initiator by 
adding ID 7 to its own ( 8 1  h). At this point it could very well be the case that the 
target and initiator have several active I/0 processes. Using an IDENTIFY message, the 
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target indicates the specific LUN and therefore 110 process. With this established the 
target sends the actual data of the requested logical blocks . Finally, a GOOD status 
(OOh) and COMMAND COMPLETE message (OOh) conclude the 110 process. 

20.5 Transfer options 

SYNCHRONOUS DATA TRANSFER REQUEST (01 h, 03h,  01  h, m m ,  111l01)  
The target and initiator negotiate whether to  use synchronous transfers using the 
message system. Bear in mind that such transfers apply only to the data phases. 
Commands, messages, and status are always sent asynchronously. 

A SCSI device that wishes to use synchronous transfers sends the message SYN­

CHRONOUS DATA TRANSFER REQUEST to the other device. Contained in this extended 
message are the desired transfer period and offset. The value in byte 3 times 4 ns 
equals the transfer period, while byte 4 equals the offset (Table 20.7).  An exception 
to this rule is the value 1 2h, 50 ns, which is needed for Fast-20. 

The other device,  either initiator or target, replies immediately with its own SYN­

CHRONOUS DATA TRANSFER REQUEST. This message either echoes the first request or 
contains less demanding parameters , such as longer period, less offset. If the device 

Table 20.7 

Byte Value 

0 O l h  

03h 

2 O l h  

3 n 

-1 n 

SYNCHRONOUS DATA TRANSFER REQUEST. 

Description 

Extended message 

Number of  message bytes after byte 2 

SYNCHRONOUS DATA TRA'ISFER REQL'EST 

Transfer period 

REQ/ ACK offset 
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Figure 20.4 Synchronous transfer request. 

does not support synchronous data transfer at all it can send either a MESSAGE REJECT 

or a SYNCHRONOUS DATA TRANSFER REQUEST with the offset set to zero. In both cases 
the result is asynchronous transfers for the data phases. Figure 20.4 shows a relevant 
sequence taken from a SCSI analyzer. 

In principle, either target or initiator can request synchronous transfers .  In practice, 
however, the initiator or in general the host adapter is the one that initiates this nego­
tiation. Some older host adapters were known to have difficulty with a SYNCHRONOUS 

DATA TRANSFER REQUEST from a target. For this reason some target devices allow the 
synchronous transfer option to be disabled by jumper. 

This negotiation does not take place for every 110 process .  Rather the agreement 
holds between devices until the next SCSI reset or a BUS DEVICE RESET message. Of 
course, either device may decide to negotiate new parameters should a reason arise. 

WIDE DATA TRANSFER REQUEST (01 h, 02h, 03h, nn)  

A device that wishes to  uses Wide SCSI sends its partner device a WIDE DATA TRANS­

FER REQUEST. This message contains the desired bus width encoded in byte 3. Here 

Table 20.8 WIDE DATA TRANSFER REQUEST. 

Byte 

0 

2 

3 

Value 

O l h  

02h 

03h 

n 

Description 

Extended message 

Number of message bytes after byte 2 
W I D E  DATA TRANSFER REQUEST 

Transfer width 23+" 
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OOh means 8-bit, 01 h 1 6-bit and 02h 32-bit wide transfers (Table 20.8) .  Just as with 
the synchronous negotiation, the partner device replies immediately with its own 
WIDE DATA TRANSFER REQUEST message here either echoing the width or sending a 
smaller value. If Wide SCSI is not supported then it either replies with a width of 
zero or sends the MESSAGE REJECT message. 

This agreement also holds until a SCSI reset or BUS DEVICE RESET message. 
Likewise, the negotiation does not take place before each UO process. Such an imple­
mentation would increase the overhead of the SCSI protocol unnecessarily. 

Of course, it can also occur that the total number of bytes to be sent is not divis­
ible by the transfer width. Here the valid bytes of the final transfer are padded with 
one or more dummy bytes. In this case a message is sent immediately following the 
transfer indicating how many bytes to ignore. 

IGNORE WIDE RESIDUE (23h, rnn) 

IGNORE WIDE RESIDUE indicates which bytes of  a final wide transfer to  ignore. Table 
20.9 shows the structure of the message and the meaning of byte 1 .  

20.6 Tagged q ueues 

We took a first look at  tagged queues during the definition of a nexus .  Tagged queues 
are a SCSI-2 option which allows each LUN to queue up to 256 UO processes per 
initiator. The main advantage of this approach is that it makes optimization possible. 

For targets that support tagged queues, implementing the QUEUE TAG message is 
obligatory. An initiator enters a command into the queue by sending QUEUE TAG 

immediately following IDENTIFY. This action sets up an I_T_L_Q nexus replacing the 
I_T_L nexus previously established. 

There are three types of QUEUE TAG messages . All contain a reference number for 
the UO process or queue tag in byte 1 (Table 20. 1 0). This same tag is sent in a QUEUE 

TAG message at reselection time to identify which process is resuming. 

l'able 20.9 IGNORE WIDE RESIDUE. 

BYte Descriptioll 

0 IGNORE W I D E  RES I D U E  (23h)  

Byte  mask 

fil m  lid hits 

Byte mask 32-hit tralls/i!rs 1 6-hit trallsjers 

OOh Reserved Reserved 

O l h  DBO I -24) DB( 1 5-8)  

02h DBO I - 1 6) Reserved 

03h DBO I -8 )  Reserved 

04h-FFh Reserved Reserved 
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Table 20.11 The QUEUE TAG messages. 

Bvte Description 

0 Message (20h, 2 l h. 22h) 
Number 

Using the QUEUE TAG messages, an initiator also has the ability to influence the 

position of commands within the queue. 

SIMPLE QUEUE TAG (20h) 

This message causes the 1/0 process to be added to the command queue. It is up to 

the target to decide exactly when to process it (provided no ORDERED QUEUE TAGS 

have been received, which are discussed next) . Commands with a S IMPLE QUEUE TAG 

allow, for example, disk drives to optimize time intensive seeks to the medium. 

Targets always use this message when reselecting an initiator for a tagged process.  

HEAD OF QUEUE TAG (21 h) 

This message leads to  placing the I/0 process in question at  the beginning of the 

queue. The currently active process is run until completion. Subsequent HEAD OF 

QUEUE TAG processes are placed ahead of older ones at the beginning of the queue. 

In this way multiple HEAD OF QUEUE TAG processes are executed in last-in, first-out 

order. 

ORDERED QUEUE TAG (22h) 

This message causes 1/0 processes to be executed in the order in which they were 

received. In other words, all processes that were already in the queue will be exe­

cuted before this process and likewise all processes that arrive afterwards will be 

executed after this one. An exception to this is made for processes with the HEAD OF 

QUEUE TAG. 

ACA QUEUE TAG (24h) 

This message is new in SCSI-3 and causes a task to be entered into the queue as an 

ACA task (auto contingent allegiance) . The device server handles this task accord­

ing to the rules set forth in the SCSI architecture model. 

Tagged queues and error handl ing 

A target that does not support tagged queues will reply to a QUEUE TAG message with 

MESSAGE REJECT. If an initiator receives a command tagged with a number already in 

the queue the result is a so-called incorrect initiator connection. In response, the 

target terminates all I/0 processes of this initiator and sends the CHECK CONDITION 
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status .  A subsequent request sense command would then return the sense key 

ABORTED COMMAND and the extended sense key OVERLAPPED COMMANDS ATTEMPTED. 

If a target attempts to reselect with an incorrect number in the QUEUE TAG 

message, the initiator will respond with ABORT TAG. 

20. 7 Termination of VO processes 

There are a number of ways to terminate or kill 110 processes , for instance simple 

termination of all processes of a target or LUN. In tagged queues either all or only 

active processes can be halted. Additionally, an 110 process can be made to termi­

nate 'as soon as possible ' .  

BUS DEVICE RESET (OCh) 

This message tells the target to kill all active and outstanding 110 processes. In 

reality, the target performs a soft reset. This action not only kills all 110 processes 
but also nullifies device reservations and causes device parameters to be reset to 

start-up values. The target enters unit attention condition, which means that it will 

reply to the next command with a CHECK CONDITION status .  The sense key for the fol­
lowing REQUEST SENSE command will be UNIT ATTENTION (06h) . 

CLEAR QUEUE (OEh) 

This message is only implemented by devices supporting tagged queues. The CLEAR 

QUEUE message kills the active 110 processes and those waiting in the queue from 

any and all initiators for this LUN or target routine. 

ABORT TAG (O[)h) 

The ABORT TAG message allows 110 processes within ordered tagged queues to  be 

terminated. This message kills only the currently active process. Neither status nor 
a final message will be sent for the terminated process. The 110 processes in the 
queue are unaffected. The state of the LUN remains unchanged in all other respects . 

ABORT (06h) 

The abort message terminates all running 110 processes and all those in the queue 
for this I_T_L nexus .  As with the ABORT TAG message, the target skips the status and 
message phases and immediately brings about BUS FREE. All other I_T_L nexuses 
remain unaffected. 

TERMINATE 1/0 PROCESS ( 1 1 h) 

This message tells the target to terminate the current 110 process as soon as possi­
ble. There are a few differences here with respect to the methods just described. 
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Firstly, it is up to the target' s  own discretion as to when to end the process. In this 
way it can see to it that, for example, the data structure of a tape is not damaged by 
continuing a write until the end of the record. If the write were immediately cut short 
a damaged record would result. 

After the target has terminated the process the progression to the sus FREE phase 
takes place normally. First, the status I/o PROCESS TERMINATED is sent followed by a 
COMMAND COMPLETE message. If by chance an error occurs when terminating the 
process the status byte will reflect this. 

The message TERMINATE rio PROCESS is intended for longer 1/0 processes that may 
delay the execution of more important tasks . A subsequent request sense command 
will return the sense key NO SENSE (OOh) and the extended sense key I/o PROCESS TER­

MINATED (OOh, 06h) . The information field of the sense data will contain the 
difference between the amount of data requested and the amount transferred. 

CLEAR ACA ( 1 6h) 

This message is new in SCSI-3 .  The target terminates the auto contingent allegiance 
state and releases the bus . 

20.8 Error handl i ng in the message system 

Two problems may occur when sending messages for which there is a means to 
recover. Since the message system represents the lowest level of communication on 
the SCSI bus, special messages exist to handle precisely these cases. 

MESSAGE REJECT (07h) 

This message is appropriate when a device does not support an optional message. 
After receiving the unsupported message the device responds immediately with 
MESSAGE REJECT. 

If an initiator wishes to reject a message it must first assert ATN before de-assert­
ing the ACK of the last REQ/ ACK sequence. 

In the case of a target, which can control bus phases directly, it simply brings about 
the MESSAGE IN phase and sends the message. If ATN is still active after the MESSAGE 

REJECT message the target switches back to MESSAGE OUT and collects the messages. 

MESSAGE PARITY ERROR (09h) 

The target responds to parity errors during COMMAND, DATA, and MESSAGE OUT phases 
with a RESTORE POINTERS message. This action makes it possible to retry the transfer 
with the same data. 

However, parity errors during a MESSAGE IN phase require a special procedure. In 
this case the initiator sends the MESSAGE PARITY ERROR message. As always, it asserts 
ATN to inform the target of its desire to send a message. The target reacts to MESSAGE 

PARITY ERROR by resending the original message. 
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20.9 Asynch ron1ous event notnficatnon 

In addition to messages SCSI provides targets with an alternative method of inform­
ing an initiator of unforeseen difficulties. This optional mechanism is called 
asynchronous event notification (AEN) . 

To carry out AEN the initiator and target must be able to trade roles temporarily. 
The target (acting as an initiator) sends the initiator (acting as a target) the SEND 

command. The data within the command contains information describing the 
target's difficulties. 

The SEND command and the AEN format for the data are described in Chapter 1 2. 
There are a number of applications for AEN. For example, devices of the com­

munications or processor class often have data for an initiator that is not the direct 
result of a command. AEN allows the target to inform the initiator of the situation, 
which in tum can request the data from the device. 

Another application is the implementation of a write cache for a disk or tape 
drive. A write cache allows a device to send GOOD status and COMMAND COMPLETE 

immediately upon receiving the write data into its cache, effectively eliminating the 
access time from the command execution time. Of course, at this point the data has 
not been written to the medium and therefore a write error could still occur. AEN is 
used to inform the initiator of the problem by sending it the sense data describing the 
nature of the error (Figure 20.5) .  

There is a possible alternative to the above approach for devices that have write 
cache but do not implement AEN. Here the target simply responds with a CHECK 

CONDITION status for the next command. The disadvantage of this method is  obvious :  
an initiator does not learn of the error until i t  sends that same device another 
command. Up until that point it goes on believing that the command was successful. 
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Figure 20.5 Asynchronous event notification. 
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31 0 

Many expectations in connection with SCSI-3 are directed towards the new serial 

interfaces. They can and will remedy the fundamental problems of the parallel SCSI 

bus. Since at the same time an important part of SCSI, namely device models, com­

mands and parameters, remains untouched, the higher level software drives can also 

remain unchanged. In other words, when someone builds a host adapter with a Fibre 

Channel interface, they must only supply an ASPI driver for this host adapter in 

order to make existing operating systems and application programs work with the 

new interface. 

Three competing serial interfaces have been integrated into SCSI-3 : Fibre 

Channel, Fire Wire and SSA (Figure 2 1 . 1 ) .  None of these interfaces has been 

invented by the SCSI committee. Fibre Channel is backed by an industrial consor­

tium and, as SCSI, is standardized by ANSI. Fire Wire is a development initiated by 

Apple and an IEEE standard (P1 394). SAA, finally, is an IBM development. 
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Figure 21.1 The new SCSI interfaces. 
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In spite of the enthusiasm shown by supporters of each of these interfaces, one 

fact should not be forgotten: although some of the standards have been ready for a 
fairly long time, there are still hardly any devices that implement them. This is 
exactly the opposite of how the successful SCSI standards have developed. They 
were always developed on the basis of such a popular demand that they were imple­
mented into large numbers of devices even before the standard was finalized. All 

will depend on whether there is enough user demand for the features of one of the 
new interfaces before they have become obsolete. 

Another important point of development and success of SCSI must not be for­
gotten: the parallel SCSI interface makes it possible to offer peripheral devices with 
only one interface for all computer systems, from home computers to PCs, to work­
stations and even mainframes. This means enormous cost savings for manufacturers 
and commerce and, in the end, the users. This is why the differential parallel inter­
face, in spite of its undisputed advantages, has never had a broad success .  

The new interfaces would once again mean stockpiling of different versions of 
the same device. And even worse, Fibre Channel comes in countless variations: 
twisted pair, coaxial cable, and several kinds of fiber optic cables . SSA too has 
defined twisted pair and fiber optic cables. 

Thus,  I hardly believe that all three serial interfaces will succeed on the market. 
Only one of them will probably make it. Personally, I think it even possible that none 
of these SCSI interfaces will actually succeed. 

21 . 1  Fundamental probiems of the p«ua� �e� SCS� o nterface 

The wish for other interface alternatives originates out of real deficiencies of the par­
allel SCSI interface. Some of these deficiencies can be remedied, others are 
fundamental and nothing can be done about them. 

Cables 

50-pin or 68-pin cables are relatively expensive and the voluminous connectors 
stand in the way of further miniaturization of the devices. 

Serial interfaces are better off. Fire Wire only needs 6 leads, but the cable is rel­
atively thick because it also carries a power supply voltage . Fibre Channel can use 
fiber optic, coaxial and 9-pin twisted pair cables.  SSA too only needs a 9-pin cable. 

Bus length 

For many applications, the bus length is too short. Even though it is possible to reach 
up to 25 m with the differential interface, the problem remains that the differential 
interface is only available for a few devices. The single-ended interface allows a 
maximum of 6 m which is reduced by the new fast variation down to 3 or even 1 .5 m. 

Fire Wire can connect 16 devices that can be up to 4.5 m from one another. SSA 
allows a device distance of 20 m with twisted pair cables and 680 m with optical 
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fiber cables. With up to 1 28 devices, this allows quite a distance to be covered. 
Things look similar with Fibre Channel. Distances of up to 50 m with twisted pair 
cables and up to 10 km with optical fiber are possible between two devices. The 
maximum number of devices lies between 1 27 and 16 million. 

Data rate 

The original data transfer rate of 10 Mbytes/sec was too low. Here, however, things 
have been changing. With SCSI-3 the propagation of 1 6-bit wide SCSI is growing, 
and at the same time Fast-20 was defined. In combination this results in a data rate 
of 40 Mbytes/sec. Most recent developments under discussion are Fast-40 and Fast­
SO. Should these developments succeed, the data rate of 1 60 Mbytes/sec will be 
higher than that of some serial alternatives . I would like, however, to remind you that 
command transfer is carried out in all parallel SCSI variations with a maximum of 
about 5 Mbytes/sec. 

Fire Wire allows data rates of 3 to 50 Mbytes/sec and thus runs the risk of being 
surpassed by parallel SCSI. SSA goes up to 80 Mbytes/sec and Fibre Channel even 
up to 200 Mbytes/sec. 

Real time/guaranteed bandwidth 

With the widespread introduction of multi-media applications such as video, an old 
issue becomes important again. The parallel SCSI interface is not real-time capable 
and can also not provide a guaranteed bandwidth for a given device. 

Fire Wire and Fibre Channel allow isosynchronous transfer. This is a transfer 
with guaranteed delivery of data in a specific time window. In the worst case, data 
is delivered incorrectly rather than too late. This is exactly the feature needed for 
multi-media. Applied to video, 'incorrect' means a (maybe only minimally) dis­
turbed image, whereas 'too late' means a jerky image. 

Data integrity 

With only one parity bit per byte, the parallel SCSI interface is not particularly well 
protected against data errors. 

Here, the serial interfaces promise remedy. Fibre Channel and SSA, which have 
error correction built in at hardware level, are excellent. Fire Wire is only mediocre 
with its error correction being carried out on the higher protocol levels. 

21 .2 F ibre Channel 

Fibre Channel is a universal serial high-speed interface for computers and mass 
storage. In contrast to all other interfaces and buses discussed in this book, it pos­
sesses features of both an J/0 channel and a local network. Indeed, Fibre Channel 
can serve as the transport medium for both application areas. However, the Fibre 
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Channel does not contain a higher protocol of its own, but protocols such as SCSI-3, 

IPI or IP build on Fibre Channel as their base (Figure 2 1 .2) .  

Fibre Channel allows data rates from 1 2.5 to 100 Mbytes/sec; up to 400 Mbytes/sec 

are being planned. Fibre Channel allows point-to-point connection, a ring or a switch 

topology. The number of nodes is practically unlimited. Other than its name suggest, 

Fibre Channel can use twisted pair, coaxial and fiber optic cables as transport 
medium. Depending on speed and transport medium, distances from a few meters up 

to 1 0  km can be covered. With fiber optic cables, covering the maximum distance is 

even possible at 1 00 Mbits/sec. 

Fibre Channel originates from the development of an improved physical interface 

for IPL It was developed from 1988 by the ANSI committee X3T9, and it was clear 

from the beginning that Fibre Channel would also be used as a physical interface for 
other protocols. Wide industry support made this development possible. The main 

part of this support comes from IBM who contributed their experience with the 

ESC ON channel and the patented 8Bi l OB coding. Outside ANSI there is the indus­

trial Fibre Channel Association (FCA) whose aim is to promote marketing of the 

Fibre ChanneL Meanwhile the X3T9 committee has been split, and now X3T 1 1  is 

responsible for the Fibre ChanneL 

fibre Channel protocol layers 

The Fibre Channel main document is FC-PH and is available in Revision 4.3 of June 
1 994. Extensions to FC-PH are laid out in FC-PH2. FC-PH is divided into four 
layers, FC-0 to FC-4 (Figure 2 1 .3) .  
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Figure 21.3 Fibre Channel protocol layers. 

• FC-0 describes the physical interface, that is transport media, connections, 

senders and receivers. All variations, such as twisted pair, coaxial and fiber optic 

cables are covered. In FC-PH2 the original definition is complemented with 

transfer rates of 2 and 4 Gigabits/sec. 

• FC-1 describes the 8B/1 0B coding method. This method is an IBM patent and is 

also used by the SSA interface (see Section 2 1 .6) .  

• FC-2 describes the signaling protocol. This contains all mechanisms needed to 

transport data from one node to another. FC-2 describes the addressing and the 

possible topologies.  The protocols of FC-4 use these mechanisms. 

• FC-3 describes services that regard all ports of a node. 

• FC-4 contains the mappings of the various protocols ,  that is SCSI, IPI, HIPPI 

or IP. 

Fibre Channel terminology 

In the following pages, Fibre Channel is often abbreviated as FC. Devices that can 

be accessed via Fibre Channel are called nodes. FC nodes have at least one port. A 

node that initiates a transaction is called an originator; the node that answers it is 

called a responder. 

Besides nodes, there are Fibre Channel switches .  In a network constructed out of 

switches, the entirety of the switches is called the fabric .  For the nodes, the fabric 

represents a kind of black box : nodes do not have to know what happens in the fabric 

and they also have nothing to tell the fabric. The fabric forwards data packets from 

a source to a destination. Connections between FC ports are called links. 
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Sender Medium 
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p long-wave Multi mode 
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i 
short-wave M ultimode 

Laser 50 f.1 m  
c short-wave Multimode 

a Laser 

1 long-wave 
Monomode 

Laser 50 f.1 m  

short-wave Multimode 

Laser 
Monomode 

long-wave 

E CATV coax 

1 Submin coax 

e Twisted pair 

c CATV coax 

t ECL Submin coax 

r Twisted pair 

i CATV coax 

c Submin coax 

a CATV coax 

1 Submin coax 

Fibre Channel interfaces 

Rbre Channel 3 1 5 

Throughput 
Distance 

Mbaud Mbytes/sec 

1 32 .8 1 1 2 .5 l km 

2 or 1 0  km 

265.62 25 l .5 km 

2 km 

1 km 

53 1 .25 50 

2 or 10 km 

I km 

1 062.5 1 00 

2 or 1 0  km 

1 00 m 

1 32 .8 1 1 2.5 40 m 

1 00 m 

75 m 

265.62 25 30 m 

50 m 

50 m 
53 1 .25 50 

20 m 

25 m 
1 062.5 1 00 

l O rn 

Fibre Channel defines a large number of physical interfaces. Fiber optic, coaxial and 

twisted pair cables can be used as the transport medium. Speeds reach from 1 2.5 

Mbytes/sec to 1 00 Mbytes/sec , in future even up to 400 Mbytes/sec . Distances reach 

from a few meters to 1 0  kilometers. Table 2 1 . 1 lists the variations.  

This variety is a result of the attempt to find a compromise between cost ,  through­

put and transfer distance for different applications. However, not all variations are 

compatible with each other. This will certainly lead to the effect that only a few vari­

ations will finally succeed. Furthermore, a whole new market might open up for 

adapter products with and without speed adaptation. 

Fibre Channel topologies 

Fibre Channel supports three fundamental topologies: the point-to-point connection, 

the ring (arbitrated loop) and the fabric (see Figure 2 1 .4). 
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Figure 21.4 Fibre Channel topologies. 

A ring can have 1 26 nodes. The address space of a fabric is only limited by the 

length of the ID (24 bits). This allows for about 16 million nodes. 

FC frames 

Data packets in Fibre Channel are called frames. A frame consists of a start mark, 

the header, the payload, a checksum and an end mark (Figure 2 1 .5). The payload 

may contain further headers if they are required by the protocol. These additional 

headers, however, reduce the amount of transported user data. 

A sequence consists of one or more frames and has a sequence ID (SEQ_ID) .  

Within a sequence the frames are numbered by a sequence number (SEQ_CNT) .  A 

sequence always represents a unidirectional operation. 

Several, even simultaneous sequences can be combined into an exchange. 

Exchanges can be bidirectional. An exchange has an ID on both the originator and 

the responder side. 

4 bytes 24 bytes 0 - 21 1 2 bytes 

Start 
Header 

Payload 
mark (optional header and user data) 

Figure 21.5 Structure of a Fibre Channel frame. 

4 bytes 4 bytes 

CRC 
End 
mark 
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Table 21.2 Header of a Fibre Channel frame. 

Byte O Byte I Byte 2 I Byte 3 

Bit 3 I  Bit 0 

0 Routing Destination ID 

4 Reserved Source ID 

8 Type Frame control 

1 2  Sequence ID Data control Sequence number 

1 6  Originator exchange ID Responder exchange ID 

20 Parameters 

The FC header primarily (Table 2 1 .2) contains the source and destination IDs .  
The routing field contains the routing information. The Type field specifies the 
contents of the payload. For SCSI FCP it contains the value 08h. 

2 1 .3 From F ibre Chan nel to SCSB �J : 

the Fibre Chan nel Protocol (IFCIP) 

FCP_LUN 

FCP_CNTL 

FCP_CDB 

FCP_DL 

The Fibre Channel protocol defines the mapping of SCSI processes onto Fibre 
Channel. A SCSI task (SCSI-2: 110 process) corresponds to a FC exchange. SCSI 
requests and responses as defined in the SAM (they correspond to SCSI-2 bus 
phases) are mapped onto information units (IV) . 

The information un its 

All SCSI processes are combined out of four basic IV types : FCP _CMN D  (command) , 
FCP _DATA (data), FCP _XFER_RDY (ready to transfer) and FCP _RSP (response) . Table 
2 1 .3 shows,  by way of example, the structure of the FCP _CMND information unit. 

Table 21.3 Structure of a FCP _CMND IV. 

7 I 6 I 5 I 4 I 3 

0 . . .  7 LUN number 

8 Reserved 

9 Reserved 

1 0  
TRM I CLR I TRGT I Reserved 
TAS K  ACA RESET 

I I  Reserved 

12 . . .  SCSI command block 

. . .  27 (CDB ) 

28 . . .  3 1  Transfer length 

2 I I I 0 

Task attributes 

CLR I ABRT I TSKST TSKST 
Reserved 
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Figure 21.6 Execution of a SCSI READ command on the Fibre Channel. 

Figure 2 1 .6 shows the schematic execution of a SCSI READ command on the 
Fibre Channel. 

2 1 .4 Fire Wore O EEIE  P1 394) 

Fire Wire is the marketing name given by the initiator Apple to the serial IEEE P 1 394 
bus. Fire Wire has been especially designed for the requirements of multi-media 
applications . It supports arbitration and both asynchronous and isosynchronous trans­
fer. Asynchronous transfer might be characterized by the motto 'better late than 
wrong ' ,  isosynchronous transfer by 'better wrong than late ' . 

P l 394 was developed as a peripheral bus with the aim of low cost and appropri­
ate transfer speed and delay. Its configuration is shown in Figure 2 1 .7 .  

P l 394 uses either the conductors of  a backplane or  a shielded cable with three 

wire pairs . Two of them are used for signal transmission; the third one carries the 
power supply voltage for the peripheral device. The signal lines employ differential 
CMOS transceivers with a signal voltage of 220 m V. Fire Wire allows devices to be 
connected or disconnected during normal operation. 

Data transfer is carried out half duplex, that is, either one or the other device can 
send on one connection. The serial transfer rate for backplane buses is  24.5 or 
49 Mbits/sec. For external P l 394 it is a multiple of 98 .304 Mbits/sec. The coding 
allows every device to determine the speed at which data is sent by itself. 

P l 394 devices are called nodes . On the cable, two nodes may be up to 4.5 m from 
each other. Since a P l 394 cable bus can have 1 6  nodes, the total cable length can be 
72 m. The total address space, however, is much higher. The node ID is 1 6  bits long. 
The higher 10 bits address the bus, the lower 6 bits the node. An entire system can 
thus have 64 449 nodes, 63 each on l 023 buses. 



Figure 21.7 Fire Wire configuration. 

Protocol structure 

Fire Wire (IEEE 1394) 31 9 

The P1 394 protocols are divided into tlu·ee layers: the transaction layer, the link 

layer and the physical layer (Figure 2 1 .8) .  

Transaction layer 

(READ, WRITE, LOCK) 

Link layer 

Packet sender 

Physical layer 

Arbitration 

Figure 21.8 P1 394 block diagram. 

Cycle control 

Signals 
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Transaction layer 

The transaction layer defines a complete protocol in the form of request and 

response. It defines three transactions, namely READ, WRITE and LOCK. A READ trans­

action transfers data from an answering device, the responder, to the requesting 

device, called the requestor. Vice versa, a write transaction transfers data from a 

requestor to one or more responders. A LOCK transaction corresponds to the well­

known read/modify/write cycle: data is sent from a requestor to a responder which 

processes it and sends it back to the requestor. 

Link layer 

The link layer provides half-duplex packet transrrusswn. Two subactions are 

defined: one delivers an asynchronous packet, the other delivers an isosynchronous 

packet. Each subaction consists of three parts: arbitration, packet transmission and 

acknowledgment. 

Physical layer 

The physical layer obviously includes cables and connectors. P 1 394 uses a shielded 

twisted pair cable with two wire pairs for the signals and one for the power supply 

voltage. Figure 2 1 .9 shows the connector plug. 

The topology of the cable bus is  tree-shaped. It has one root node, branching 

nodes and end nodes (leaves). This tree-like structure also implies that, as opposed 

to the parallel SCSI bus, the bus signals must be forwarded actively. Thus, at least 

the root and each branching node must be switched on. 

Arbitration too belongs to the physical protocol layer. P 1 394 has three arbitration 

modes: fair, urgent and isosynchronous arbitration. Isosynchronous arbitration 

always has precedence. Only after all nodes that want to transfer isosynchronously 

have finished their transfers, a pause occurs which is long enough to begin an urgent 

or a fair  arbitration. In this procedure, the distance between a node and the root has 

no influence on the arbitration. 

Finally, a very important feature of P 1394 belongs to the physical layer: the auto­

configuration. In Fire Wire, no addresses must be configured. The bus configures 

itself as part of the initialization process. The bus also detects when a node is added 

or removed after initialization. Then it executes a reinitialization. Here a node may 

receive a new physical node address. 

Figure 21.9 P 1 394 connector. 
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21 .5 from P1 394 to §CS I -3 : the §er8a� IBI!.Ils Protoco� (SIBP) 

The task of the SBP is to map the elements defined by the SCSI architecture model 
onto the P 1 394 architecture . The main elements are SCSI commands,  task manage­
ment functions and error handling. 

l n itiai izatioll1l 

First the P 1 394 bus must initialize itself. Then the SBP makes use of the transaction 
layer services to transmit commands, data and status.  Each P 1 394 node contains a 
configuration ROM which stores a 64-bit long, worldwide unique node 10. 
Furthermore, it contains information on whether a node supports the SBP and with 
it the SCSI-3 protocol. 

After initialization, an initiator scans the P 1 394 bus and logs in with the targets 
that support the SBP. Only then can normal SCSI commands be issued. An SBP 
target contains one or more command FIFOs for SCSI commands. A FIFO (first in 
first out) is a form of a waiting queue. 

The CDS 

The Command Data Structure (CDS) is a data structure that transports commands 
and control information from an initiator to a target (Table 2 1 .4). When an initiator 
writes a CDS into a target, this is called a TAP operation. When a target gets a CDS 
from an initiator, this is called a FETCH operation. 

Table 21 .4 SCSI CDS . 

Bytes Description 

0-3 (MSQ) Address of 

4-7 next CDS (LSQ) 

8- 1 1  (MSQ) Address of 

1 2- 1 5  this CDS (LSQ) 

1 6- 1 9  Reserved Identifier LUN 

20-23 CDS codes Task codes Reserved Protocol flags 

24-27 COB 0 CDB I CDB 2 CDB 3 

28-3 1 CDB 4 CDB S CDB 6 COB 7 

32-35 COB 8 COB 9 COB 1 0  COB I I  

36-39 COB 1 2  COB 1 3  COB 1 4  C O B  1 5  

40-43 CDS transfer length 

44-47 Data transfer control CDS sense length 

48-5 1 (MSQ) Data buller 

52-55 address (LSQ) 

56-59 (MSQ) CDS status FIFO 

60-63 address (LSQ) 

64-67 (MSQ) CDS sense data 

68-7 1 buffer address (LSQ) 
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Figure 21.10 READ command execution. 

Information is transferred on the P 1 394 bus in quadlets, that is four bytes, or 
octlets, that is eight bytes. The data structure of a CDS is divided into quadlets. The 
most significant quadlet is called MSQ, the least significant quadlet LSQ. 

There are five different types of CDS : the login CDS, the SCSI CDS, the man­
agement CDS, the isosynchronous SCSI CDS and the isosynchronous control CDS. 
Table 2 1 .4 shows a SCSI CDS . A SCSI CDS offers space for a SCSI-CDB up to 
1 6  bytes long. 

Command execution 

Figure 2 1 . 1 0  shows the example of a READ command execution. 

21 .6 SSA 

SSA stands for Serial Storage Architecture. It was originally developed by ffiM as 
JJO channel 9444 and made available to the entire computer industry in 1 99 1  as an 
alternative to the parallel SCSI-3 interface. Since 1 994, the ANSI X3T 1 0. 1 commit­
tee is concerned with its standardization and documentation. 
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SSA is a high performance interface designed as an 110 bus from the very begin­

ning. SSA builds on ports that are capable of transmitting 20 Mbytes/sec in full 

duplex mode. Dual port architecture allows a theoretical maximum speed of 80 

Mbytes/sec to be reached. 

The dual port architecture also allows fault-tolerant connections between host and 
110 device to be established. Figure 2 1 . 1 1  shows one of the many possible SSA 

configurations .  

features 

SSA has several features that are missing in the parallel SCSI interface .  SSA cables 

and connectors are relatively small. For internal connections ,  a 6-pin cable with a 

minute connector is used. Externally, a shielded cable and Mini-DB9 connectors are 

employed. With copper wire cable, SSA can be transmitted over 20 m, with fiber 

optic cable a distance between two nodes of up to 680 m can be covered. 

The reliability of the data connection is higher than with SCSI. Already at hard­

ware level, CRC allows an error rate of one error per I 0" bytes to be reached. A 

further data check is carried out on the link layer. 

SSA devices can be exchanged during normal operation. The dual port architec­
ture allows you to configure fault-tolerant subsystems with high availability. 

The mm:llu les 

An SSA system consists of different basic modules. A node is a system, a controller 
or a peripheral device with one or more SSA connections . There are three types of 

node: single port nodes, dual port nodes and switch nodes . 

A link is a dedicated connection between two individual ports of two nodes.  

When a link does not transmit data, synchronization characters are exchanged which 
allow you to establish whether the link is working or not. 

The physical SSA connection is called a port. A port can be connected to exactly 
one link. 
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Host 

SSA adapter 
(single port node) 

Figure 21.12 SSA modules. 

A node can assume the role of an initiator or a target. As the SSA initiator, it 

issues requests to other nodes. At least one SSA node must be an initiator. This is 

the master node. An SSA target executes the requests of SSA initiators. Up to 1 28 

SSA LUNs can be connected to an SSA target. 

A logical unit (LUN) is a physical or logical device which can be accessed by a 

target. Figire 2 1 . 1 2  summarizes the configuration of SSA modules. 

A router is a functional unit in a dual port node which decides whether an incom­

ing frame is destined to this node or should be forwarded via the other pmi. 

Topology 

Three different topologies can be realized with SSA: the bus, the ring and the con­

nection of several buses via switches. Figure 2 1 . 1 3  shows the different topologies. 

A bus can have 1 29 nodes, a ring 1 28. The end of a bus can be a switch, whereas 

a ring cannot contain any switches. A switch can have up to 96 ports and be itself 

connected to other switches, which allows one to build very large SSA networks. 

Data transfer 

The SSA transport layer is defined in the SSA TLl document (X3Tl0. 1 /0989D). 

Information transfer is carried out on the basis of frames. A frame consists of a 

control character, a one to six character address, between zero and 1 28 characters of 

data and four CRC characters (Figure 2 1 .1 4). 

Data bytes and protocol functions are coded as characters in the 8B/10B code, an 

IBM development. A particular feature of this code is that there are special characters 
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which can be found in a continuous data stream because they use bit sequences 
which otherwise do not occur. These special characters are used for structuring the 
data stream and for protocol functions. 

There are three different types of frame. Application frames are used for data 
transport and for all information of the higher protocol layers . SCSI commands, data 
status and messages are transported in application frames .  Privileged frames are 

One frame 

1 character 1 -6 characters 0-128 characters 4 characters 

I FLAG Control I Address I Data I C RC FLAG I 
I 

t t 

I SSA I I User 
messages data 

(max. 32 bytes) {max. 
1 28 bytes) 

lFigu.re 2]..]14 SSA frames. 
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- 1 byte 

Path 

Figure 21.15 SSA address field. 

Channel 

used by the transport layer for configuration and error handling. Control frames are 
used by the transport layer to reset nodes or links . 

The data field of an application frame is of particular interest. It can contain either 
user data or a SSA message structure (SMS) .  The latter contains, for example, SCSI 
messages, commands and status .  

Address ing 

The address of an application frame consists of six bytes (Figure 2 1 . 1 5) .  Four bytes 

address the path and two the channel. In each address byte, the most significant bit 
is the extend bit. When set, it means that this byte is complemented by the follow­
ing byte. Thus, from left to right, the first byte with the extend bit not set is the end 
of the path, and the second one is the end of the channel. 

The addressing itself, that is the structure of a path, is more than strange.  It is opti­

mized to make routing as easy as possible. It can best be understood by looking at 

the routing rules .  By means of these simple rules, routing can be carried out entirely 

by the hardware, thus very fast. 

Routing na les 

The routing rules are represented in a syntax similar to that of the Pascal program­
ming language. 

A single port node follows this routing rule: 

I f  F i r s t By t e  = DOh 

t h e n  

b e g i n  

' A c c e p t  t h e  f r am e ' ; 

' I n t e r p r e t  t h e  r e ma i n d e r  of t h e  a d d r e s s  a s  c h a n n e l ' ; 

e n d  

e l s e  ' R e j e c t  t h e  f r a m e ' ; 

A dual port node follows this routing rule: 

I f  F i r s t By t e  = D O h  

t h e n  

b e g i n  

' A c c e p t  t h e  f r ame ' ; 

' I n t e r p r e t  t h e  r e ma i n d e r  o f  t h e  a d d r e s s  a s  c h a n n e l ' ; 

e n d  



e l s e  

From SSA to SCSI-3: the Serial Storage Protocol (SSP) 327 

i f  F i r s t By t e . I n d e x  0 

t h e n  

b e g i n  

e n d  

F i r s t By t e . I n d e x  . - F i r s t Byt e . I n d e x  - 1 ;  
' F o r w a r d  f r ame v i a o t h e r  p o r t ' ; 

e l s e ' R e j e c t  t h e  f r a m e ' ; 

Thus,  in a frame that is forwarded, the index is decremented by 1 .  The frame is 
forwarded until the index is zero. Then it has reached its destination. The routing 
rules for a switch are only slightly more complicated. 

2 1 . 7  from SSA to §CS � -3 : the Serna� Storage lfllrotooo� (S§Ifll) 

The task of the SSP is to map the elements defined by the SCSI architecture model 
onto the SSA architecture. The main elements are SCSI commands, task manage­
ment functions and error handling. Task management is carried out by the SSP via 
SSA message structures (SMS). Although there are SSA message structures which 
correspond exactly to one SCSI message, this is not always the case. SSA message 
structures and SCSI-3 messages must not be confused. 

The SCSll commall1ldl SMS 

As an example of SCSI SSA message structures, Table 2 1 .5 shows you how a SCSI 
command is embedded in the SCSI command SMS. Table 2 1 .6 lists the types of 
SCSI SMS. 

Table 21.5 SCSI command SMS. 

7 I 6 I 5 I 
0 

I 

2 0 0 0  3 

4 0 0 0  

. . .  7 

8 

9 

1 0  DORM I 
I I  

1 2  . . .  I 3  

1 4  0 0 0  I S  

1 6  0 0 0  

. . .  3 1  

4 I 3 J 2 I I I 0 

SMS code (82h)  

SSP code ( I  Oh) 

Tag 

Ini t iator 

path 

LUN 

Reserved 

Reserved I Queue Cntl 

Reserved 

Init iator channel 

Reserved 

SCSI command 

block (COB ) 
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Table 21.6 Types of SCSI SMS. 

SMS name SMS code SSP code Sender Receiver 

SCSI RESPONSE 82h 03h Target Init iator 

SCSI COMMAND 82h ! Oh Init iator Target 

SCSI STATUS 82h I I h Target Ini t iator 

ABORT TAG 82h 30h In i t iator Target 

ABORT 82h 3 l h  In i t iator Target 

CLEAR QUEUE 82h 32h Init iator Target 

DEVICE RESET 82h 33h Init iator Target 

CLEAR ACA CONDITION 82h 34h Init iator Target 
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It is fortunate that SCSI-2 defines devices so precisely on the target side. The result 

is that a SCSI-2 host adapter works well with all SCSI-2 targets. However, what 

about the relationship between the host and the host adapter? Here the operating 

system must understand which SCSI commands to send to the target. 

For host adapters that emulate a standard disk drive controller this is  no problem. 
The host adapter receives drive commands like any PC disk drive controller and then 
translates the actions to appropriate SCSI commands. However, this hardly takes 
advantage of the full functionality of the SCSI bus. Here the controller is dedicated 

to the disk and cannot, for example, control a scanner or printer on the same bus . 
There is much more involved in supporting a so-called transparent host adapter, 

one capable of sending arbitrary commands to any SCSI target device .  There is a 

large number of such host adapters and each of them is designed differently ; each 
must be supported differently by the operating system. 

Help comes in the form of an additional software layer between the host adapter 
and the operating system or application. This software is delivered with hardware 
(since it is hardware specific) and provides a standardized software interface to the 
operating system. The result is that from the operating system's point of view all 
host adapters using this software interface look the same. 

Here there are a number of examples of such an approach in the industry. The 

VMS operating system for DEC VAX machines uses the concept of class and port 

drivers . These are already integrated into the system so that the interplay of subsys­
tems is clearly defined. In the PC domain two important software interfaces have 

emerged specifically for SCSI: the ANSI CAM (Common Access Method) specifi­
cation and the ASPI interface from Adaptec, Inc . 

At the moment ASPI drivers are easier to come by than CAM drivers. In fact, the 
SCSI monitor program (with source code) included with this book sits on top of 
ASPI. This application represents a good example of an ASPI implementation and 
it makes sense to give an overview of ASPI at this time. We will go into just enough 
detail to understand how ASPI is used in the SCSI monitor. The complete docu­
mentation for ASPI under DOS, Windows, OS/2, Novell and UNIX is available 
from Adaptec . 

329 
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Figure 22.1 ASPI functional overview. 

22.1  The concept of ASIPB  

AS P !  manager 
for 

adapter C 

ASPI stands for Advanced SCSI Programming Interface. Figure 22. 1 depicts the 
functional layers of the interface. Different host adapters use different ASPI man­
agers , and multiple managers can be installed simultaneously. The host software, 
whether device drivers or applications, talks to the SCSI bus through the ASPI inter­
face .  In this way the host software is isolated from the specific hardware details of a 
given host adapter. 

In a DOS environment the ASPI manager is loaded at boot time by the system. 
Therefore, in order to use ASPI one must first obtain the entry point from DOS . 
When a call is made to ASPI using the entry point the address of a SCSI request 
block is put onto the stack. All the information necessary to carry out the SCSI pro­
cedure is contained in the request block. In the following section I show how this is 
done by way of short examples in Turbo Pascal (7.0). 

22.2 SCSI request b�ocks 

ASPI fu.nnd:noHll ca� �s  

ASPI has a set of  seven function calls, which are listed in  Table 22. 1 .  I t  is  worth 
pointing out that no hard SCSI reset is included among these. This is certainly due 

Table 22.1 ASPI function codes. 

Code Meaning 

OOh HOST ADAPTER I N Q U I RY 

O l h  GET DEVICE TYPE 

02h EXECUTE SCSI COM �IAND 

03h ABORT SCSI COM MAND 

04h RESET SCS I DEVICE 

05h S E T  H O S T  ADAPTER PA RAMETERS 

06h GET DISK DRIVE I N FORMATION 
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Table 22.2 ASPI status bytes. 

Status Description 

OOh In progress 
O l h  O K  

02h SRB cancelled by host 
04h Error 
SOh Invalid SRB 
S l h  Invalid host adapter 
82h SCSI target not found 

to the fact that ASPI is capable of multi-tasking and allows many active SCSI 

processes to be active simultaneously. A SCSI reset would abort all of these 

processes in one fell swoop. On the other hand, a little experience with the SCSI 

monitor will show that an illegal command causes some host adapters to crash, and 

only a SCSI reset or system boot will correct this. The ASPI status bytes are shown 

in Table 22.2. 

SCSI request block (SRB) fields either contain parameters to be set or they 

deliver information back and can only be read. In the SRBs depicted here the fields 

that contain information returned from ASPI have a gray background. 

SRB header 

An SRB always includes an 8-byte long header. Following the SRB come a certain 

number of parameter bytes, depending on the function. The SRB header is shown in 

Table 22.3 :  

• Function: One o f  the function codes given i n  Table 22. 1 .  

• Status: This byte takes o n  the values given i n  Table 22.2. 

• Host adapter: The ASPI number of the host adapter. This number is assigned by 

the ASPI manager. The first adapter is assigned zero. 

• Flags: These flags are independent of the function. 

HOST ADAPTER INQUIRY (00h) 

This function call returns information on the installed host adapter (Table 22.4). The 

host adapter number must be provided to the call. 

Table 22.3 Format of an SRB header. 

7 I 6 I 5 I 4 

0 

I 

I 3 

Function 

Status 

2 Host adapter 

3 Flags 

4 . . .  7 Reserved 

I 2 l 1 l 0 
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Table 22.4 HOST ADAPTER INQUIRY. 

7 I 6 I 5 I 4 I 3 -I 2 

0 HOST ADAPTER INQUIRY (OOh) 

l Status 

2 Host adapter 

3 Reserved 

4 . . .  7 Reserved 

8 Number of host adapters 

9 SCSI ID 

10 . . .  25 SCSI manager name 

26 ... 4 1  Host adapter name 

42 ... 57 Host adapter specific 

I I I 0 

The Host adapter ID field contains the SCSI ID of the host adapter. The Host 

adapter name and SCSI manager name fields are ASCII. 

The function call GET DEVICE TYPE returns information on the SCSI device class. 

This can be accomplished using the INQUIRY command, so we skip it here. 

EXECUTE SCSI COMMAND (02h) 

This call is used to send an arbitrary SCSI command (Table 22.5) .  After the call the 

SRB status must be polled until a value other than zero appears . The Adaptec docu­

mentation describes an alternative to polling which uses a so-called POST routine. 

This is not recommended for application programs but is preferable for device 

drivers. 

In byte 3 we are only concerned with the Direction bits. A value of 0 here means 

that the direction of the data transfer is determined by the SCSI command. 

• Target ID: The SCSI ID of the target to receive the command. 

• LUN: The LUN number sent in the IDENTfFY message. 

• Data buffer length: The number of data bytes to be transferred. 

• Sense data length: The number of bytes reserved for sense data at the end of this 

SRB .  For the SCSI monitor this is set to 0 and the automatic requesting of sense 

data should be turned off at the host adapter. 

• Data buffer: Segment and offset of the data buffer. 

• SRB link pointer: Pointer to the next SRB in set of linked conunands (its use 

should be avoided). 

• SCSI command length: Length of SCSI command. 

• Host adapter status: Here five status codes are defined. 

OOh: OK 

l lh :  Target does not respond 
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Table 22.5 EXECUTE SCSI COMMAND. 

7 I 6 I 5 I 4 I 3 I 2 

0 EXECUTE SCSI COMMAND (02h) 

l Status 

2 Host adapter 

I 

3 Reserved I Direction I Reserved I 
4 . . .  7 Reserved 

8 Target ID 

9 LUN 

1 0  ... 1 3  Data buffer length 

1 4  Sense data length 

1 5  ... 1 6  Data buffer (offset) 

1 7  ... 1 8  Data buffer (segment) 

1 9  . . .  20 SRB link pointer (offset) 

2 1  . . .  22 SRB link pointer (segment) 

23 

24 

25 

26 ... 27 

28 . . .  29 

30 ... 63 

64 . . .  64+111 

64+m . . .  

64+m+n 

1 2h :  Data overrun 

1 3h :  Unexpected BUS FREE 

1 4h :  Target bus phase error 

SCSI command length 

Host adapter status 

Target status 

POST routine (offset) 

SRB routine (segment) 

Reserved 

SCSI command 

Sense data 

I 

Link 

• Target status: This is the byte returned during the SCSI status phase. 

• SCSI command: The bytes of the SCSI command. 

I 0 

I Post 

• Sense data: Reserved for sense data when the host adapter is set to automatically 

request sense. 

ABORT SCSI COMMAND (03h) 

This function call attempts to  abort a SCSI command (Table 22.6). The call itself 

always returns with a GOOD status. Whether or not the command was actually 

aborted can be determined only by examining the status of the otiginal SRB. 
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Table 22.6 ABORT SCSI COMMAND. 

7 I 6 I 5 I 4 I 3 I 2 

0 ABORT SCSI COMMAND (03h) 

1 Status 

2 Host adapter 

3 Reserved 

4 . . .  7 Reserved 

8 . . . 9 SRB address (offset) 

1 0  . . .  I I  SRB address (segment) 

22.3 ASPI in itial ization and function calls 

ASPI initial ization 

I 1 I 0 

In order to call ASPI the entry point must be known. This is achieved using DOS 

interrupt 2 1 h, as shown in the following program sample. First ASPI is opened and 

the entry point is determined; afterwards ASPI is closed. 

ASPi open 

f un c t i on F i l eOpen ( F i l eN a me : s t r i ng ) : i n t e g e r ;  

c o n s t  D O S_O PEN_F I LE = $ 3 D ;  

v a r  re g i s t e r : r eg i s t e r s ;  

b e g i n 

F i l eN a m e : = F i l eName+ c h r ( O ) ; 

w i t h  r e g i s t e r  

do 

beg i n  

a x  : =  D O S_OP E N_F I L E  s h l  8 ;  
bx : =O ;  

c x : =O ;  

d s  . - s e g ( F i l eName ) ;  

d x  : =  o f s ( F i l eN a me ) + 1 ; { be c a u s e  P a s c a l s t r i n g s  

e n d ;  

M S D O S ( r e g i s t e r ) ;  

c a r r y  t h e i r L en g t h  i n  b y t e  0 } 

i f  ( r e g i s t e r . f l a g s  a nd F C a r ry )  0 
t h e n  F i l eOpe n : =-1 

e l s e  F i l eOpen : = r eg i s t e r . a x ;  

e n d ;  
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p r o c e d u r e  G e t A S P I E n t r y ( F i l e H a n d l e : i n t e g e r ;  v a r 

A s p i E n t ry : MemAd r e s s ) ;  

c o n s t  A S P I_E N T RY_L E N G T H  = 4 ;  

D O S_I O C T L_R E A D  = $44 0 2 ;  

v a r r e g i s t e r : r e g i s t e r s ;  

b e g i n 

w i t h  r e g i s t e r  

d o  

b e g i n  

a x  . - D O S  -I O C T L_R E A D ;  

b x  . - F i l e H a n d l e ;  

e x  . - A S P !  -E N T R Y  _L E N G T H ;  

d s  . - s e g ( A s p i E n t ry ) ;  

d x  . - o f s ( A s p i E n t ry ) ;  

e n d ;  

M S D O S ( r e g i s t e r ) ;  

e n d ;  

ASPI close 

f u n c t i o n F i l e C L o s e ( F i l e H a n d l e : i n t e g e r ) : i n t e g e r ;  

c o n s t  D O S_C L O S E_F I L E = $ 3 E ;  

v a r r e g i s t e r : r e g i s t e r s ;  

b e g i n  

w i t h  r e g i s t e r  

d o  

b e g i n  

a x  : = D O S_C L O S E_F I L E  s h l 8 ;  

b x : = F i l e H a nd l e ;  

e n d ;  

M S D O S ( r e g i s t e r ) ;  

i f  ( r e g i s t e r . f l a g s  a n d  F C a r r y )  0 

t h e n  F i l e C L o s e : =D 

e l s e  F i l e C L o s e : = re g i s t e r . a x ;  

e n d ;  

And al l together . . .  

f u n c t i o n I n i t i a l i z e A S P I ( va r  

A s p i E n t rypo i n t : MemAd r e s s ) : boo l e a n ;  
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c o n s t  A S P I_NA M E  = ' S C S I MG R$ ' ; 

va r r e s u l t : i n t e g e r ;  

A s p i F i l e H a n d l e :  i n t e g e r ;  be g i n  

A s p i F i l e H a n d l e : = F i l e Open C A S P I_NAM E ) ;  

i f  A s p i F i l e H a nd l e-1  

t h e n  

b e g i n  

G e t A S P I E n t ry ( A s p i F i l e H a n d l e , A s p i E n t r y Po i n t > ;  

F i l e C l o s e ( A s p i F i l e H a n d l e ) ;  

I n i t i a l i z e A S P I : = t r u e ;  

e n d  

e l s e  I n i t i a l i z e A S P I : = f a l s e ;  

e n d ;  

Cal l ing ASPI 

The following function calls ASPI to execute an SRB. The variable AspiEntryPoint 
is a global variable of the main program: 

p r o c e d u r e  S RB e x e c u t e ( va r  S R B : S R Ba r r a y ) ; 

va r S R B s e g me n t ,  S R Bo f f s e t : i n t e g e r ;  

b e g i n  

S R B s e g m e n t : = s e g C S RB ) ; 

S RB o f f s e t : =o f s ( S RB ) ; 

a s m  

m o v  a x ,  S RB s e g m e n t  

p u s h  a x  

mov a x ,  S R Bo f f s e t  

p u s h  a x  

L E A  B X ,  A s p i E n t ryPo i n t  

c a l l  D W O R D  P T R  [ b x J  

a d d  s p , 4  

e n d ;  

e n d ;  

Afterwards the SRB status must be  polled until i t  changes from 0 to  another value:  

P r o c e d u r e  H o s t i nq u i r e ;  

c o n s t  

S R B_S T A T U S  = $ 0 1 ; 

H A_S C S I  I D  = $09; -

E N T R Y_L E N G T H  = $ 1 0 ;  

MANAG E R_N A M E  $ 0 A ;  

H A_N A M E  = $ 1 A ;  



v a r k :  i n t e g e r ;  

S t a t u s : b y t e ;  

S R B : S R Ba r r a y ;  
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D a t a Bu f f e r  : D a t a B u f f e r T y p e ;  

b e g i n  

f o r  k : =O t o  h i g h ( S R B )  do S R B [ k J : =D ; 

{ W h a t  i s  t h e  r e s u l t  of t h i s A S P !  c a l l ?  

R i g h t ! H O S T  A D A P T E R  I N QU I R Y H o s t  a d a p t e r  n u mb e r  Q }  

S RB e x e c u t e ( S R B ) ; 

r e p e a t  u n t i l S R B [ S RB_S T A TU S J O ;  

i f  S R B [ S RB_S T A T U S J  = 1 

t h e n  

b e g i n  

w r i t e l n ( ' H o s t  Ad a p t e r  S C S I  I D :  

' , S R B [ H A_S C S I_I D J ) ;  

w r i t e  ( ' N a m e  o f  H o s t  A d a p t e r : ' ) ; 

f o r  k : =O t o  E N T RY_L E N G T H - 1  d o  

w r i t e ( c h a r ( S R B [ H A_N A M E+ k J ) ) ;  

w r i t e l n ;  

e n d  

e l s e  w r i t e l n ( '  S R B  E x e c u t i o n E r r o r ! ' ) ;  

e n d ;  

In  Appendix E and on  the accompanying diskette you will find the source code to 
SCANSCSI.PAS . The program is relatively easy to follow and provides a good 
example using an ASPI interface call to execute a SCSI command. 
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Accompanying this book is a diskette containing a SCSI monitor program. This 
program allows you to send arbitrary SCSI commands to a SCSI device, including 
the sending and receiving of data. For users without the necessary SCSI host adapter 
the program includes a target simulator so that a bit of experimentation is still pos­
sible. 

The program runs on an IBM PC compatible computer with at least 5 1 2  Kbytes 
of memory running DOS 3 .3  or later. A hard disk is  not required. Also necessary is 
a SCSI host adapter and ASPI (developed by Adaptec) manager software supporting 
the host adapter. It is also possible to integrate the driver software into the program 
itself. The hooks for this are included in the source code. 

A list of tested host adapters is contained in the README.DOC file of the 
diskette. Please take note that Adaptec host adapters can be configured to send a 
REQUEST SENSE automatically upon a CHECK CONDITION status .  This is not desirable 
for use with a monitor program since here the user wants to be in full control of the 
sequence of commands. This feature can be disabled by a switch or jumper on the 
host adapter board. 

Warning 

This program gives no warning or  feedback concerning the outcome of  SCSI  com­
mands on a target. It allows you to give any and all SCSI commands regardless of 
their effect. Be extremely careful when sending commands to a disk drive contain­
ing important information. A seemingly innocent write command could destroy 
valuable data. 

The program is useful for familiarizing yourself with the many details of SCSI 
protocol and commands. In order to avoid undesired results reserve the test target 
using the RESERVE UNIT command. 

And a bit of advice: if you aren't  exactly sure what something will do, don' t  do it !  

Program design 

The SCSI monitor program is written in Borland Pascal 7.0.  You should also be able 
to compile it using Turbo Pascal 7.0.  It will definitely not run unmodified with Turbo 
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Pascal versions 6.0, 4.0 and earlier. In order to make the program easier to port to 

other systems it is written in standard Pascal . I have not made use of any special 

features unique to Turbo Pascal. However, a minimal amount of machine specific 

assembler code has been incorporated. 

The user interface is simple but at first perhaps a little cryptic. After some prac­

tice, however, it is quick and easy to work with. Be careful not to confuse commands 

for the monitor program with SCSI commands. 

The monitor program makes use of 10  command buffers and 10 data buffers for 

holding SCSI commands and SCSI data. Each data buffer is 4 Kbytes long. A 

command buffer has room for 1 2  command bytes as well as a status byte, a byte for 

the SCSI ID, a byte for the LUN, a byte for the command length, and finally a byte 

indicating the next command buffer to be used. Both the command and data buffers 

are numbered, respectively, from 0 to 9 .  

The current command and data buffer are displayed on the screen. The command 

buffer and data buffer are completely independent of each other. For example, 

command buffer 3 can be used with the data in data buffer 0. 

The d isplay 

Figure 23 . 1 shows the display of the SCSI monitor. All values are in hexadecimal. 

At the top of the display you see the current command buffer along with ID, LUN, 

and status .  Below this the current data buffer is shown in hexadecimal. To the right 

are the corresponding ASCII characters , which is useful for interpreting the data 

from commands such as INQUIRY.  A value of 40h is added to control characters 

below 20h and displayed in inverse video . 

S C S I  Hon i t o �  ·n . o - - .  o :-:: .:1 - .  . 3 . 9 3 i f S I  
l d  L u  S t  :C :·J nz 

S C S I  c o::-e:.:!ar!.d 0 0 :  O rJ  0 0  0 0  0 0  ? ?  0 0  " "'  

S C S I  d a t a  bt.:. f f e :-:·  
' T ..-

0 0 0 0 : 0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  c o  0 0 

0 0 1 0 : 0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  o u  0 0  0 0 0 0  0 0  0 0  IJ O  0 0  

0 0 2 0 : 0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  D O  0 0  0 0  u o  0 0  

0 0 3 0 : 0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0 D O  0 0  D O  •J 0 0 0 

O O cJ O : 0 0  0 0 0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0 c, L) 0 0 

0 0 5 0 : 0 0  0 0 0 0  0 0  0 0  0 0 0 0  0 0 0 0  '- 0 o c  
0 0 6 0 : 0 0  0 0  0 0  0 0  0 0  0 0  0 0 11 11  0 0  IJ O 0 0  0 0 0 0  IJ O  (J 0 0 0  

O O 'i O : 0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0 0 0  0 0 0 0  0 0  0 0 0 0  0 0 

0 0 8 0 : 0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  

0 0 9 0 : 0 0 0 0  0 0  0 0  

D D ::. O : 0 1] C< 

O D B O : c o  0 (1 
O O C O : 0 0 0 0 0 0 u 0 �  

D O D O : 0 0  0 0  0 0  O D  

O O E O : 0 0  0 0  0 0  0 0  0 0  0 0  0 0 0 0  0 0  0 0  0 0  O CJ  0 0  

O O F O : 0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 (1  0 0 0 0  0 0  0 0  n n  11 0 0 0  

C onuna n d : H 
C or:una n d s :  D a t a , End , Go , ! i ,_ : i p ,  l ei ,  C c::-"T�a r:.cl , l e N g t h , ci h 1 '-! t: r  

Figure 23.1 SCSI monitor with help information . 
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The command buffer 

• Command nn: The current command buffer. 

• Id (SCSI 10) : The ID of the device to receive the command. 

• Lu: LUN to which the command pertains .  

• St: SCSI status of the last executed command. This value remains unchanged 
until another command is executed. Even if the command buffer, the LUN, or the 
SCSI ID is edited the status remains unchanged. 

Three special symbols are displayed in this field: 

? ? No command has been executed from this buffer. 

* * SCSI command is now being executed. 

-- The target does not reply. 

• IN: Length of the command. If this value is zero then the default command length 
defined for SCSI-2 command groups is used. Otherwise no command is sent. The 
behavior depends on the hardware employed (see README.DOC). 

• nX: Next command buffer to be used when this command has completed. 

Monitor commands 

C (Command) 

Syntax: C<Number>,<Offset>,<Count> <Byte l> <Byte2> . . .  

• Number: Number of the command buffer. The current command buffer changes 
to display this buffer. Default: the current buffer. 

• Offset: Byte position in the buffer where the command should be placed. Default: 
OOh. 

• Count: When this parameter is included then only one command byte can be 
given. This single command byte is then copied into the buffer 'Count' times.  
Default: OOh. 

• Byte l . . .  ByteN: The command bytes. 

Examples 

C 1 1 2  00 00 00 FF 

This example writes ' 1 2  00 00 00 FF' starting at byte 0 into command buffer 1 and 
makes this the current command buffer. 

C3 

This command makes command buffer 3 the current command buffer. 

C,3 AA 

This command writes AAh into byte 3 of the current command buffer. 

C,A O 
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This command fills the current command buffer with zeros.  

I (ID) 

Syntax: I <ID> 

ti ID: The ID for the current command buffer is changed to this value. 

L (LUN) 

Syntax: L <LUN> 

ti LUN: The LUN for the current command buffer is changed to this value. 

N (leNgth) 

Syntax: N <Value> 

• Value: The command length for the current command buffer is changed to this 
value. 

X (neXt) 

Syntax: X <CommandBuffer> 

® CommandBuffer: The number of the command buffer, which should be executed 
automatically after the execution of the current command. The value FFh means 
that no command is to be executed afterwards. Looping on the current command 
buffer is allowed. 

D (.Data) 

Syntax: D<Number>,<Offset>,<Count> <Byte l>  <Byte2> . . .  
This command, along with its arguments, works completely analogously to the 

'C'  command. It allows modification of the data buffer. 

G (Go) 

Syntax: G 
This command starts the execution of the SCSI command in the current command 

buffer. When necessary the current data buffer is employed. During the execution 
time of the command the status will display ' *  * ' . The execution of a string of com­
mands linked using the nX field can be aborted by hitting any key. 

H or ? (Help) 

Syntax : H 
This causes a short command overview to be displayed. 

R (dRiver) 

Syntax: R <Driver> 

® Driver: A for the ASPI driver or S for the target simulator. The target simulator 
emulates a target at ID 0, LUN 0. The target simulator is capable of executing 
TEST UNIT READY, INQUIRY and REQUEST SENSE. 

Q (Quit) 

Syntax: Q 
Quit the program. 
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Getting started! 

Insure that the SCSI monitor is working by sending an INQUIRY command. INQUIRY 

will return a GOOD status even if an invalid LUN is addressed or if the target is in 
UNIT ATTENTION. 

I assume here that a host adapter has been installed and that the ASPI manager 
has been successfully loaded. Connect a SCSI target device with ID 0 to the bus. You 
can easily determine whether your device is recognizable to the host adapter using 
the program SCANSCSI.EXE, which is also on the diskette. 

Afterwards run the SCSI monitor and enter the following command: 

Command: C 12 0 0 0 FF 

You should now see this command in the current command buffer. The ID and LUN 
should both be zero, the default settings, which need not be modified. The status 
' ? ? ' indicates that a command has yet to be executed. 

Now enter: 

Command: G 

Now a OOh should be seen in the status field. Furthermore, data returned from the 
target should now occupy the current data buffer. You should see the product name 
written to the right of the buffer in ASCII. 

If status is ' - - '  then SCSI ID 0 did not reply. In general this means that the 
device was not properly installed. 

Examples 

When working with the SCSI monitor bear in mind that i t  is possible to send any 
arbitrary SCSI command, whether valid or not. Therefore, always check the status 
field after sending a command to see whether it has been successfully executed. 

S C S I  Mo n i t o r  V l . O  r e v  0 2 4  1 1 . 3 . 9 3 ( f s l  

S C S I  c omma n d  0 0 : 0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  

S C S I  d a t a  bu f f e r  No . 0 0 : 

0 0 0 0 : 0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  

0 0 1 0 : 0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  

0 0 2 0 : 0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  

0 0 3 0 :  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  

0 0 4 0 : 0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  

0 0 5 0 : 0 0  Q O  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  

0 0 5 0 : 0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  

0 0 7 0 : 0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  

0 0 8 0 : 0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  

0 0 9 0 : 0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  

O O A O : 0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  

O O B O : 0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  

O O C O : 0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  

D O D O : 0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  

O O E O : 0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  

O O F O : 0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  0 0  

Conunand : G 

Figure 23.2 SCSI monitor after TEST UNIT READY. 
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Figure 23.3 How REQUEST SENSE is set up. 
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The first example in Figure 23.2 shows a CHECK CONDITION status (02h) after a TEST 
UNIT READY command. Why was this status returned? To answer this question, the 
command REQUEST SENSE is set up in the command buffer. This is shown in Figure 23 .3 .  

Finally, the example in Figure 23 .4 shows the results of the REQUEST SENSE 
command. The erTor code is 70h, indicating that the error pertains to the last exe­
cuted command. The sense key is 02h (NOT READY) . The sense code 29h means 
POWER-ON OR RESET. This is just what is expected from a LUN receiving its first 
command after power-up. 

In order to observe this with my configuration I had to turn the SCSI target off 
and on after the system had already booted. In this way I prevented the host adapter 
from clearing the UNIT ATTENTION when it scans the bus at boot time. 
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Two components are needed in order to test SCSI targets practically: a SCSI emula­
tor capable of sending arbitrary SCSI commands,  and a logic analyzer with which 
one can monitor the happenings on the SCSI bus. For testing initiators the same 
setup is needed except that the emulator must be capable of emulating a target. 

24. 1  SCSI analyzers 

344 

A SCSI analyzer permits the logging of SCSI bus activity and displaying it in a 
variety of formats. The most basic form of representation is the timing diagram. 
Such diagrams have been presented throughout this book in schematic form. Here 
we will see diagrams generated from an actual piece of measurement equipment 
(Figure 24. 1 ) .  
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Figure 24.1 SCSI timing diagram. 
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Timill1lg diagrams 

Timing diagrams of the SCSI bus can, in principle, be made using any logic ana­

lyzer. However, the device should have a time resolution of at least 1 0  ns (that is ,  
1 00 MHz) . For Fast SCSI this resolution is almost too low. The Fast hold time, the 

minimal time between the activation of REQ or ACK and the changing of the data 

lines, is defined to be 1 0  ns. If I were trying to track down Fast synchronous data 

transfer problems I would prefer the successor model with a resolution down to 1 ns. 

If there are problems with phase sequencing on the SCSI bus there is no way to 

avoid the need for a timing analysis. Fortunately such problems have become very rare 

now that bus timing is controlled by protocol chips. Nevertheless, the potential for bus 
timing problems will always exist, no matter how reliable the protocol chips are. 

Another application of a timing diagram is to gain an overview of longer time inter­

vals. For example, how long does a target need from arbitration to the MESSAGE OUT 

phase? Here, there may be a world of difference in the behavior of different SCSI 

devices. Alternatively, how long are the gaps between bursts for fast synchronous 

transfers? Does a device disconnect from the bus and how long does it take to do so? 

All of these questions can be answered using the timing diagram. 

Bus phase l i st 

Another important representation of bus activity is in the form of a list of bus phases . 

Here the individual bus phases are listed one after another, usually stamped with a 

time mark. This representation is especially helpful for software development. Did 

the host adapter really send the command it was supposed to send? Why was nothing 

returned? Did the target answer? Was the correct LUN addressed in the MESSAGE OUT 

phase? 

A number of logic analyzers equipped with a SCSI disassembler are capable of 

delivering a list of bus phases. However, most of these have very small buffers, 
holding 1 Kbyte or less. Here it becomes extremely important to trigger on an event 

close enough to the activity of interest, otherwise it will pass through and out of the 

shallow buffer. 

Better still are a number of dedicated SCSI analyzers offered by various manu­

facturers. Although they may lack timing diagram capabilities, they possess buffers 

for the bus phase lists of 32 Kbytes and larger. 

24.2 SCSI emulators 

The SCSI mo1111 itor pmgram 

The SCSI monitor included with this book is an easy to use program (without rival 
as far as price is concerned) which allows arbitrary SCSI commands to be sent to 
any target on the SCSI bus. Although it is really intended as an educational device for 
the SCSI bus it can also be used for simple evaluation testing of SCSI peripherals. 
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With a little practice you can modify the MODE parameters and format a disk 
drive. Such tasks are a little cumbersome without the ability to execute a series of 
preprogrammed commands. The source code of the monitor is included on the 
diskette, so it is easy to modify and extend the original program (but note that this is 
not allowed for commercial purposes) .  

Commercial solutions 

Commercial SCSI emulators have more flexibility. For example, these are often 
capable of generating SCSI bus errors and other conflicts that are extremely useful 
for evaluating SCSI devices. Moreover, they allow lengthy test sequences to be pro­
grammed and run, and often come delivered with tests designed for various devices.  
Target emulation is also possible with some equipment. This makes it possible to put 
initiators through tests that might be impossible using actual target devices.  How do 
you get a normal target to return more data than was requested? A target emulator is 
designed to do just that. 

24.3 Exam ples from industry 

The intent here is not to give a comprehensive overview of products but rather a 

feeling for the variety of devices by way of a few examples. 

Logic analyzers 

Among the classic logic analyzers are the HP 1 630 and HP 1 650 machines. A SCSI 
bus adapter, the HP 1 0343B, is available for both of these. The adapter makes con­
necting to both single-ended and differential buses very simple. Wide SCSI support, 
however, is lacking. The adapter comes with SCSI disassembler software, which 
enables the analyzer to display output in the form of a bus phase list. The analyzer 
is capable of resolution down to 10 ns which is more than adequate for most situa­
tions.  The only weak point is the very small event buffer of 5 1 2  bytes . The timing 
diagrams and bus phase lists in this book were generated using the HP 1 650B 
together with the HP 1 0343B.  

The successor to  this product is the HP 1 6500 logic analyzer family. This device 
is capable of measuring down to 1 ns. The event buffer size has been increased to 1 6  
Kbytes.  There is also an HP E2423A SCSI preprocessor available. This adapter, like 
the HP 1 0343B, allows access to single-ended and differential SCSI buses . In addi­
tion, Wide SCSI is supported. 

SCSI analyzers 

Adaptec builds an entire family of SCSI analyzers (see Figure 24.2) .  These are all 
implemented as PC boards with associated software. The SDS-3 1 0  is designed for 
transfer rates up to 5 Mbytes per second (50 ns resolution) and 8-bit SCSI. The 
SDS-3 1 OF supports fast synchronous transfers (20 ns resolution) and 1 6-bit SCSI as 
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Figure 24.2 Bus phase list of Adaptec analyzer. 

well. Both devices have a 32 Kbyte buffer. A special adapter is required for differ­
ential buses . 

I-Tech is a company that specializes in SCSI test systems. It makes the IPC-6500, 
an analyzer with 20 ns resolution for Fast and Wide SCSI. This device comes with 
a 64 Kbyte buffer and is capable of timing diagram as well as phase list output. 
I-Tech also makes SCSI emulators and pocket testers . The latter use LEOs and are 
useful for diagnosing bus problems, such as a differential device connected to a 
single-ended bus. 

SCSI emulators 

Ancot is another important name in the area of SCSI test systems . The INI-350 is a 
SCSI initiator capable of generating controlled errors. The device is able to test SCSI 
targets by putting them through strange phase sequences. It is important for a target 
to be able to recover from improper sequences and, above all, not to lock up the bus. 
For these reasons the INI-350 is valuable in the design verification process .  Of 
course, it is  also fully capable of normal operation and serves well as a SCSI com­
pliant initiator. Ancot also offers the usual assortment of test equipment, with an 
emphasis on standalone devices. 

SCSI development systems 

The SDS-3F family of test equipment is ideal for testing the entire range of SCSI 
options including fast synchronous and 1 6-bit wide transfers. These products repre­
sent an integrated development system complete with SCSI analyzer and emulator. 
The analyzer component has a configurable event buffer of up to 256 Kbytes.  Its 
time resolution, however, is only good down to 20 ns. Various configurations of the 
emulator are capable of playing both initiator and target roles. 

Adaptec has also announced the SDS-5 series of equipment. Among the improve­
ments are an event buffer of 2 Mbytes and resolution down to 1 0  ns .  
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Summary 

If you are mainly interested in occasionally testing SCSI targets for overall func­
tionality then the SCSI monitor should be more than adequate for you. 

If, on the other hand, you really need to know what is happening on the SCSI bus 
then there is no way to avoid investing in either a logic analyzer or a dedicated SCSI 
analyzer. In general, logic analyzers have better time resolution than dedicated SCSI 
analyzers, but the latter are less expensive and have larger event buffers. 

In most circumstances the combination of a powerful SCSI emulator together 
with a SCSI analyzer should suffice for the testing and evaluation of SCSI targets . 

For professional design work an extensive SCSI development system is an 
invaluable tool, especially for work on initiators . What is more, targets supporting 
tagged queues are almost impossible to test without the aid of such a system. 



25 SCS I ch ips 

The development of SCSI followed closely the development of the SCSI protocol 
chips .  Without an inexpensive, fast implementation of the bus interface SCSI would 
never have captured the market in the way it has . In this chapter I introduce three 
VLSI protocol chips which have helped to make this possible. In general, each of 
them is suited to a different application. 

Chip  characteristics 

When choosing a protocol chip a number of criteria must be taken into considera­
tion. 

Initiator or target? 

Most protocol chips are capable of playing either the initiator or the target role. 
Nevertheless,  some chips are better suited to one application or the other. In partic­
ular, there are chips for host adapters that require no additional logic for use with the 
ISA bus. In addition, these chips have a lot of SCSI overhead built in. 

SCSI features 

By SCSI features I mean, above all, the support of (fast) synchronous transfers as 
well as Wide SCSI. Here the maximum REQ/ ACK offset is of interest. For Wide SCSI, 
if the second 8-bit data path is not implemented on the chip then there should at least 
be provision for the REQB/ ACKB signals of the B cable. 

SCSI bus drivers 

Whether or not SCSI line drivers are integrated into the chip represents an important 
cost consideration. Chips with integrated single-ended drivers are the norm, but they 
should also provide the control signals for additional differential circuitry. 

CPU interface 

The CPU interface is key to smooth integration of the SCSI chip into the device 
design. A SCSI chip designed for an Intel 286 microprocessor will not only require 
extra 'glue' logic to make it work with a Motorola 68000, but it will also work less 
efficiently. Since this information is sometimes lacking in the chip 's data sheets ,  you 
should ask the manufacturer. 

349 
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Host bus interface 

Recently, more and more chips are entering the market that come with an integrated 

host bus interface, for example for the PCI bus.  Often the same chip kernel is avail­

able with different host bus or CPU interfaces. 

Architecture 

The architecture of a chip includes various aspects of the hardware, including the 

data path width, and the number and kinds of registers . Another important point is 

to what extent the firmware of the SCSI device must intervene in the SCSI bus pro­

tocol. Ideally, the firmware should be responsible for setting up transfers, and the 

rest should be handled by the chip. With respect to this area, there are chips that 

cover the entire spectrum, beginning with those that need to be led by the firmware 

through every single bus phase. 

Another important architecture issue is the presence of a buffer for SCSI trans­

fers .  The larger the buffer is on the chip, the more time the firmware has to react 

without slowing overall performance. 

25 . 1  The NCR 5385 

The NCR 5385 was the original single chip SCSI controller. Over the years it was 

succeeded by the 5385E and then the 5386. All three versions have fundamentally 

the same design. You would be hard pressed to find a 5385 in a newly developed 

product. The NCR chip business has since passed into the hands of the new Symbios 

Logic corporation which produces chips with latest state-of-the-art technology. 

Nevertheless, here we take a quick look at the very first NCR chip, in order to gain 

a perspective for the later generations. 

The 5385 is equally suited to target and initiator applications. It supports exclu­

sively asynchronous transfers with a maximum transfer rate of approximately 2 

Mbytes per second. The 5385 even needs external SCSI line drivers . Additional 

logic is necessary for differential drivers as well. 

Table 25.1 NCR 5385 registers . 

Address Type Register 

Oh R/W Data register 

l h  R/W Command register 

2h R/W Control register 

3h R/W Target ID 

4h R Extra status 

5h R ID register 

6h R I nterrupt register 

7h R Source ID 

9h R Diagnostic status 

Ch R/W (MSB)  

Dh R/W Transfer counter 

Eh R/W (LSB) 
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The 14  registers of the 5385 (Table 25. 1 )  are selected using four address lines. It 
is up to the hardware designer whether to map the registers to the memory or 110 
space of the processor. 

The 5385 is not capable of linking together complex SCSI phase sequences. What 
is more, every phase change must be controlled by the firmware. Here the chip occu­
pies three states :  DISCONNECTED, INITIATOR, and TARGET. In each state only certain 
commands are possible. This keeps the firmware from initiating invalid bus phases. 
For example, the command RESELECT is only possible in the DISCONNECT state. 

25 .2 PC host adapters : fUTll.J RIE DOMAD N TMC-950 

The TMC-950 i s  an example of a single chip SCSI host adapter (Figure 25 . 1 ) .  No 
additional components are necessary to build an ISA to SCSI adapter; only if you 
wish to integrate a BIOS will an EPROM and decode circuitry be required. This 
solution is seen on a number of low cost host adapters from the Far East. Because of 
its popularity we take a closer look now at the workings of the TMC-950. The chip 
on the Seagate STO 1 and ST02 host adapters has a different name but is identical. 

The chip comes in a JEDEC 68-pin PLCC package. It incorporates both single­
ended SCSI drivers and an ISA bus interface. It supports only the initiator role and 
cannot be used for target applications. Only asynchronous SCSI transfers are possi­
ble, and this at a maximum rate of 2 Mbytes per second. Although such features put 
the chip at the lower end of the performance spectrum, its low cost and simplicity 
make it very attractive in many applications. It lends itself well to a system where 
access to a CD-ROM and perhaps a SCSI tape drive is necessary but speed is not 
crucial. If, on the other hand, access to a number of fast disk drives is called for, the 
TMC-950 is not recommended. 

Programming the chip is very simple. For example, to cause the chip to arbitrate 
involves the sending of a single command. Afterwards one merely waits until the 
chip responds that it has succeeded. 

ISA bus 

SCSI 

Figure 25.1 Three-chip PC host adaptor using TMC-950. 

S C S I  bus 
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Base 

AOOOO 
FFFFF 

PC address space 

8 Kbyte TMC-950 

640 Kbyte 
main memory 

1 Mbyte 

640 Kbyte 

00000 '--------' 0 Kbyte 
9FFFF 

Base . + 1 FFF 

Base + 1 EOO 

Base + 1 DFF 

Base + 1 COO 

Base + 1 8FF 
Base + 1 800 

Base 
Base 

+ 1 7FF 

Figure 25.2 Address space of TMC-950. 

Hardware mode� 

TMC-950 address space 

SCSI data 512 Bytes 

ControVstatus 5 1 2  Bytes 

RAM (internal) 256 Bytes 

EPROM 
(external) 

6 Kbyte 

The model of the TMC-950 is unusual and differs from those chips designed pri­
marily for target applications (Figure 25 .2).  From the host' s  perspective the chip is 
an 8 Kbyte window in memory above the 640 Kbyte boundary. Four base addresses 
can be selected, the default of which is CAOOOh. The lower 6 Kbytes address the 
external ROM. The ROM holds disk BIOS routines. Above this at base+ 1 800h 
comes 256 bytes of internal RAM. This is used to store BIOS variables and flags. 
The area from base+ l COOh to base+l DFFh is the control/status register, regardless 
of which of the 5 1 2  bytes is addressed. The same is true for the area from 
base+ l EOOh to base+ l FFFh, which addresses the SCSI data register. For the Seagate 
STO l and ST02 the control/status register lies in memory between base+ lAOOh and 
base+ lBFFh, and the SCSI data register lies between base+ l COOh and base+ l FFFh. 

When read, the control/status register returns status information; when written, 
control bits are set or cleared (Table 25.2).  

lhe contmi register 

The bits RST, SEL, BSY and ATN activate the corresponding signals on the SCSI bus .  
I t  is the responsibility of the software to assure a proper sequence of bus phases. This 
allows for the generation of invalid phases in order to test the response of a target 

® Arb (start arbitration) :  When this bit is set the chip will begin arbitration. 

• Par (SCSI parity enable) : Turns on the generation of the SCSI parity bit 

® ISel : When this bit is set the chip will generate an interrupt when the SEL signal 
goes active. 
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Table 25.2 The control and status registers of the TMC-950. 

Control register 

7 6 5 -1 3 2 l 

Dri !Sci  Par Arh ATN BSY SEL 

Status register 

7 6 5 4 3 2 1 
ArhC Par SEL RnA C/D 1/0 MSG 

0 

RST 

0 
BSY 

• Dri (SCSI bus drivers enable): The SCSI line drivers of the TMC-950 are only 

enabled during arbitration or when this bit is set along with an active VO signal. 

The statiUis register 

The bits BSY, MSG, VO, CID and SEL reflect the state of the corresponding signals 
of the SCSI bus (Table 25.2) .  

• RnA (request and not acknowledge) :  This bit is  set as long as REQ but not ACK is  

active. This is the precise moment when the data register must be written or read. 

• Par: This bit is set when a SCSI parity error occurs . 

• ArbC: This bit is set when the chip wins arbitration. 

The SCSI data register 

The SCSI data register is used to exchange data with the SCSI bus. By program 
control the signals Ilo and REQ are monitored through the status register. As soon as 

REQ is active the value of r/o determines whether a read or a write is performed. 

Afterwards the chip activates the ACK signal . 

Summary 

The TMC-950 is a chip designed exclusively for use in PC host adapters . No addi­

tional components are necessary for integration in an ISA system. On the SCSI side 

the chip supports only asynchronous transfers. Single-ended SCSI drivers are incor­

porated in the chip. To a certain extent SCSI bus phases are handled by the chip 
autonomously. The lack of a data buffer for SCSI data transfers results in a slower 
transfer rate. 

25.3 PCI bus to Fast-20: Sym bios logic SYM53C860 

Symbios Logic was excorporated from NCR and has taken over the entire chips 

business of NCR. The SYM53C860 is a particularly advanced chip of the 53C8xx 
family. It has an 8-bit wide single-ended SCSI interface which besides asynchronous 
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PCI 
master 

and 
slave 

control 

SYM53C860 

Figure 25.3 SYM53C860 block diagram. 

and synchronous SCSI also supports Fast-20, that is synchronous transfer with up to 

20 Mbytes/sec. The chip has a complete PCI interface as its system interface (Figure 

25.3). The SYM53C860 can be programmed in two different ways. On the one hand, 

it contains a processor which interprets a special script language. For these scripts 

there is a complete development package which even contains ASPI and CAM 

drivers. On the other hand, as with first-generation chips, each SCSI signal can be 

accessed at register level. Thus, if you want to build a simple SCSI analyzer or tester 

yourself, the 53C860 is a possible candidate. 

SCRIPTS 

In first-generation SCSI chips, a microprocessor or the host CPU must control and 

monitor each individual bus phase. This results in a massive workload for the 

Host syslem 

Figure 25.4 SCRIPTS functional overview. 
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Figure 25.5 Sample SCRIPTS program. 

processor and, if there is insufficient computing power, in a slow SCSI transfer. 
Modem chips reduce this workload by processing parts of SCSI sequences without 
the aid of the external processor. 

The Symbios Logic chips go one step further. They contain their own RISC 
processor which executes instructions of the script language SCRIPTS which is spe­
cially targeted toward SCSI (Figure 25 .4) . The SCRIPTS processor itself fetches the 
instructions via DMA from main memory. Ready-made scripts for initiator and 
target applications are available as a development package from the chip manufac­
turer. The scripts themselves can be exchanged among the various chips of Symbios 
Logic.  

SCRIPTS programs look like assembler programs (Figure 25 .5) .  Also the pro­
gramming technique is much the same and consists of creating data structure tables 
and writing routines for different initiator or target states .  The different routines are 
accessed by jumps or by interrupts. Programmers familiar with any assembler 
should not have any difficulties with SCRIPTS . 





Ap p e n d i x A 
SCSI-2 commands (by opcode) 

Key: 

M Mandatory 

0 Optional 

v Vendor specific 

D Disk drives T Tape drives 

p Printers E Processor drives 

w WORM drives R CD-ROM 

s Scanners 0 Optical storage 

M Medium-changers c Communication devices 

Opcode D T p E w R s 0 M c Command 

00 M M M M M M M M M M TEST UNIT READY 

01 M REWIND 

0 1  0 v 0 0 0 0 REZERO UNIT 

02 v v v v v v v 

03 M M M M M M M M M M REQUEST SENSE 

04 0 FORMAT 

04 M 0 FORMAT UNIT 

05 v M v v v v v READ BLOCK LIMITS 

06 v v v v v v v 

07 0 IN ITIALIZE ELEMENT STATUS 

07 0 v v 0 0 v REASSIGN BLOCKS 

08 M GET MESSAGE(06) 

08 0 M v 0 0 0 v READ(06) 

08 0 RECEIVE 

09 v v v v v v v 

OA M PRINT 

OA M SEND MESSAGE(06) 

OA M SEND(06) 

OA 0 M 0 0 v WRITE(06) 

OB 0 0 0 0 v SEEK(06) 

OB 0 SLEW AND PRINT 
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Opcode D T p E w R s 0 M c Command 

oc v v v v v v v 

OD v v v v v v v 

OE v v v v v v v 

OF v 0 v v v v v READ REVERSE 

1 0  0 0 SYNCHRONIZE BUFFER 

1 0  v M v v v WRITE FILEMARKS 

1 1  v M v v v v SPACE 

1 2  M M M M M M M M M M INQUIRY 

1 3  v 0 v v v v VERIFY(06) 

1 4  v 0 0 v v v RECOVER BUFFERED DATA 

1 5  0 M 0 0 0 0 0 0 0 MODE SELECT(06) 

1 6  M M M M 0 RESERVE 

1 6  M M M RESERVE UNIT 

1 7  M M M M 0 RELEASE 

1 7  M M M RELEASE UNIT 

1 8  0 0 0 0 0 0 0 0 COPY 

1 9  v M v v v v ERASE 

l A  0 M 0 0 0 0 0 0 0 MODE SENSE(06) 

1 B  0 LOAD/UNLOAD 

1 B  0 SCAN 

1 B  0 STOP PRINT 

l B  0 0 0 0 START/STOP UNIT 

l C  0 0 0 0 0 0 0 0 0 0 RECEIVE DIAGNOSTIC RESULTS 

l D  M M M M M M M M M M SEND DIAGNOSTIC 

1 E  0 0 0 0 0 0 PREVENT/ALLOW MEDIUM 

REMOVAL 

20 v v v v 0 

2 1  v v v v 0 

22 v v v v 0 

23 v v v v 0 

24 v v v M SET WINDOW 

25 0 GET WINDOW 

25 M M M READ CAPACITY 

25 M READ CD-ROM CAPACITY 

26 v v v 

27 v v v 
28 0 GET MESSAGE( IO) 

28 M M M M M READ( IO)  

29 v v v 0 READ GENERATION 

2A 0 SEND MESSAGE ( I O) 

2A 0 SEND( IO)  

2A M M M WRITE( IO)  

2B 0 LOCATE 

2B 0 POSITION TO ELEMENT 

2B 0 0 0 0 SEEK( IO) 
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Opcode D T p E w R s 0 M c Command 

2C v 0 ERASE( I O) 

20 v 0 0 READ UPDATED BLOCK 

2E 0 0 0 WRITE AND VERIFY( IO) 

2F 0 0 0 0 VERIFY( IO )  

30 0 0 0 0 SEARCH DATA HIGH( IO )  

3 1  0 OBJECT POSITION 

3 1  0 0 0 0 SEARCH DATA EQUAL( IO )  

32 0 0 0 0 SEARCH DATA LOW( I 0) 
33 0 0 0 0 SET LIMITS ( I O) 

34 0 GET DATA BUFFER STATUS 

34 0 0 0 0 PRE-FETCH 

34 0 READ POSITION 

35 0 0 0 0 SYNCHRONIZE CACHE 

36 0 0 0 0 LOCK/UNLOCK CACHE 

37 0 0 READ DEFECT DATA( I 0) 
3S 0 0 MEDIUM SCAN 

39 0 0 0 0 0 0 0 0 COMPARE 

3A 0 0 0 0 0 0 0 0 COPY AND VERIFY 

3B 0 0 0 0 0 0 0 0 0 0 WRITE BUFFER 

3C 0 0 0 0 0 0 0 0 0 0 READ BUFFER 

3D 0 0 UPDATE BLOCK 

3E 0 0 0 0 READ LONG 

3F 0 0 0 WRITE LONG 

40 0 0 0 0 0 0 0 0 0 0 CHANGE DEFINITION 

4 1  0 WRITE SAME 

42 0 READ SUB-CHANNEL 

43 0 READ TOC 

44 0 READ HEADER 

45 0 PLAY AUDIO( IO )  

47 0 PLAY AUDIO MSF 

4S 0 PLAY AUDIO TRACK INDEX 

49 0 PLAY TRACK RELATIVE 

4B 0 PAUSE/RESUME 

4C 0 0 0 0 0 0 0 0 0 0 LOG SELECT 

40 0 0 0 0 0 0 0 0 0 0 LOG SENSE 

55 0 0 0 0 0 0 0 0 0 MODE SELECT( IO )  

S A  0 0 0 0 0 0 0 0 0 MODE SENSE( IO)  

AS M MOVE MEDIUM 
AS 0 PLAY AUDI0( 1 2) 

A6 0 EXCHANGE MEDIUM 

AS 0 GET MESSAGE( I 2) 

AS 0 0 0 READ( I 2 )  

A9 0 PLAY TRACK RELATIVE( I 2) 
AA 0 SEND MESSAGE( I 2 )  
AA 0 0 WRITE( I 2) 



360 Appendix A 

Ope ode D T p E w R s 0 !M c Command 

AC 0 ERASE( I 2) 

AE 0 0 WRITE AND VERIFY( I 2) 

AF 0 0 0 VERIFY( I 2) 

BO 0 0 0 SEARCH DATA HIGH( I 2) 

B l  0 0 0 SEARCH DATA EQUAL( I 2) 

B2 0 0 0 SEARCH DATA LOW( I 2) 

B 3  0 0 0 SET LIMITS ( I 2) 

B5 0 REQUEST VOLUME ELEMENT 

ADDRESS 

B6 0 SEND VOLUME TAG 

B7 0 READ DEFECT DATA( I 2) 

B8 0 READ ELEMENT STATUS 



A p p e n d i x B 

SCSI -2 commands 
(alphabetically) 

Command Opcode D T p 

CHANGE DEFINITION 40 0 0 0 
COMPARE 39 0 0 0 
COPY 1 8  0 0 0 
COPY AND VERIFY 3A 0 0 0 
ERASE 1 9  v M v 
ERASE( I O) 2C v 
ERASE( 1 2) AC 
EXCHANGE MEDIUM A6 

FORMAT 04 0 
FORMAT UNIT 04 M 
GET DATA BUFFER STATUS 34 

GET MESSAGE(06) 08 
GET MESSAGE( IO) 28 

GET MESSAGE( I 2) AS 
GET WINDOW 25 

INITIALIZE ELEMENT STATUS 07 
INQUIRY 1 2  M M M 
LOAD/UNLOAD I B  0 
LOCATE 2B 0 
LOCK/UNLOCK CACHE 36 0 
LOG SELECT 4C 0 0 0 
LOG SENSE 4D 0 0 0 
MEDIUM SCAN 38 

MODE SELECT(06) 1 5  0 M 0 
MODE SELECT( I O) 55 0 0 0 
MODE SENSE(06) l A  0 M 0 
MODE SENSE( IO) SA 0 0 0 
MOVE MEDIUM AS 

OBJECT POSITION 3 1  

PAUSE/RESUME 4B 
PLAY AUDIO MSF 47 
PLAY AUDIO TRACK I DEX 48 
PLAY AUDIO( I O) 45 
PLAY AUDI0( 1 2 ) AS 

E w R s 0 M c 

0 0 0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
v v v 

0 
0 

0 

0 
0 

M 
0 
0 

0 
0 

M M M M M M M 

0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 

0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

M 
0 

0 
0 
0 
0 
0 
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Command Opcode D T p E w R s 0 M c 

PLAY TRACK RELATIVE( IO) 49 0 

PLAY TRACK RELATIVE( I 2) A9 0 

POSITION TO ELEMENT 2B 0 

PRE-FETCH 34 0 0 0 0 

PREVENT/ALLOW MEDIUM I E  0 0 0 0 0 0 

REMOVAL 

PRINT OA M 

READ BLOCK LIM ITS 05 v M v v v v v 

READ BUFFER 3C 0 0 0 0 0 0 0 0 0 0 

READ CAPACITY 25 M M M 

READ CD-ROM CAPACITY 25 M 

READ DEFECT DATA( IO) 37 0 0 

READ DEFECT DATA( I2 )  B7 0 

READ ELEMENT STATUS B8 0 

READ GENERATION 29 v v v 0 

READ HEADER 44 0 

READ LONG 3E 0 0 0 0 

READ POSITION 34 0 

READ REVERSE OF v 0 v v v v v 

READ SUB-CHANNEL 42 0 

READ TOC 43 0 

READ UPDATED BLOCK 2D v 0 0 

READ(06) 08 0 M v 0 0 0 v 

READ( I O) 28 M M M M M 

READ( I 2) A8 0 0 0 

REASSIGN BLOCKS 07 0 v v 0 0 v 

RECEIVE 08 0 

RECEIVE DIAGNOSTIC RESULTS 1 C  0 0 0 0 0 0 0 0 0 0 

RECOVER BUFFERED DATA 1 4  v 0 0 v v v 

RELEASE 1 7  M M M M 0 

RELEASE UNIT 1 7  M M M 

REQUEST SENSE 03 M M M M M M M M M M 

REQUEST VOLUME ELEMENT B5 0 

ADDRESS 

RESERVE 1 6  M M M M 0 

RESERVE UNIT 1 6  M M M 

REWIND 01 M 
REZERO UNIT 0 1  0 v 0 0 0 0 

SCAN l B  0 

SEARCH DATA EQUAL( IO) 3 1  0 0 0 0 

SEARCH DATA EQUAL( I 2) B l  0 0 0 

SEARCH DATA HIGH( IO) 30 0 0 0 0 

SEARCH DATA HIGH( I 2) BO 0 0 0 

SEARCH DATA LOW( IO) 32 0 0 0 0 

SEARCH DATA LOW( I 2) B2 0 0 0 

SEEK(06) OB 0 0 0 0 v 

SEEK( IO) 2B 0 0 0 0 
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Command Opcode D T p E w R s 0 M c 

SEND DIAGNOSTIC l D  M M M M M M M M M M 

SEND MESSAGE(06) OA M 

SEND MESSAGE( I O) 2A 0 

SEND MESSAGE( I 2) AA 0 

SEND VOLUME TAG B6 0 

SEND(06) OA M 

SEND( IO) 2A 0 

SET LIMITS( I O) 33 0 0 0 0 

SET LIMITS( I 2) B3 0 0 0 

SET WINDOW 24 v v v M 

SLEW AND PRINT OB 0 

SPACE 1 1  v M v v v v 

STOP PRINT 1 B  0 
START/STOP UNIT 1 B  0 0 0 0 
SYNCHRONIZE BUFFER 1 0  0 0 

SYNCHRONIZE CACHE 35 0 0 0 0 
TEST UNIT READY 00 M M M M M M M M M M 

UPDATE BLOCK 3D 0 0 
VERIFY(06) 1 3  v 0 v v v v 

VERIFY( I D) 2F 0 0 0 0 
VERIFY( I 2) AF 0 0 0 
WRITE AND VER!FY( IO) 2E 0 0 0 
WRITE AND VER!FY( I 2) AE 0 0 
WRJTE BUFFER 3B 0 0 0 0 0 0 0 0 0 0 
WRITE FILEMARKS 1 0  v M v v v 

WRITE LONG 3F 0 0 0 
WRITE SAME 4 1  0 

WRITE(06) OA 0 M 0 0 v 

WRITE( I O) 2A M M 
WRITE( I 2) AA 0 0 
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SCSI-2 sense codes 

Sense Extended Meaning 

code sense code 

00 00 NO ADDITIONAL SENSE INFORMATION 

00 0 1  FILEMARK DETECTED 

00 02 END-OF-PARTITION/MEDIUM DETECTED 

00 03 SETMARK DETECTED 

00 04 BEGINNING-OF-PARTITION/MEDIUM DETECTED 

00 05 END-OF-DATA DETECTED 

00 06 1/0 PROCESS TERMINATED 

00 1 1  AUDIO PLAY OPERATION IN PROGRESS 

00 1 2  AUDIO PLAY OPERATION PAUSED 

00 1 3  AUDIO PLAY OPERATION SUCCESSFULLY COMPLETED 

00 1 4  AUDIO PLAY OPERATION STOPPED DUE TO ERROR 

00 1 5  N O  CURRENT AUDIO STATUS TO RETURN 

0 1  00 INDEx/SECTOR SIGNAL 

02 00 SEEK COMPLETE 

03 00 PERIPHERAL DEVICE WRITE FAULT 

03 0 1  N O  WRITE CURRENT 

03 02 EXCESSIVE WRITE ERRORS 

04 00 LOGICAL UNIT NOT READY 

04 0 1  LOGICAL UNIT I S  I N  PROCESS O F  BECOMING READY 

04 02 LOGICAL UNIT NOT READY 

04 03 LOGICAL UNIT NOT READY 

04 04 LOGICAL UNIT NOT READY 

05 00 LOGICAL UNIT DOES NOT RESPOND TO SELECTION 

06 00 REFERENCE POSITION FOUND 

07 00 MULTIPLE PERIPHERAL DEVICES SELECTED 

08 00 LOGICAL UNIT COMMUNICATION FAILURE 

08 0 1  LOGICAL UNIT COMMUNICATION TIME-OUT 

08 02 LOGICAL UNIT COMMUNICATION PARITY ERROR 

09 00 TRACK FOLLOWING ERROR 

09 0 1  TRACKING SERVO FAILURE 

09 02 FOCUS SERVO FAILURE 

09 03 SPINDLE SERVO FAILURE 

364 
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Sense Extended Meaning 

code sense code 

OA 00 ERROR LOG OVERFLOW 

oc 00 WRITE ERROR 

oc 0 1  WRITE ERROR RECOVERED WITH AUTO REALLOCATION 

oc 02 WRITE ERROR - AUTO REALLOCATION FAILED 

1 0  00 CRC OR ECC ERROR 

1 1  00 UNRECOVERED READ ERROR 

1 1  0 1  READ RETRIES EXHAUSTED 

1 1  02 ERROR TOO LONG TO CORRECT 

1 1  03 MULTIPLE READ ERRORS 

1 1  04 UNRECOVERED READ ERROR - AUTO REALLOCATE FAILED 

1 1  05 L-EC UNCORRECTABLE ERROR 

1 1  06 CIRC UNRECOVERED ERROR 

1 1  07 DATA RESYNCHRONIZATION ERROR 

1 1  08 INCOMPLETE BLOCK READ 

1 1  09 NO GAP FOUND 

1 1  OA MISCORRECTED ERROR 

1 1  OB UNRECOVERED READ ERROR - RECOMMEND REASSIGNMENT 

1 1  oc UNRECOVERED READ ERROR - RECOMMEND REWRITE THE DATA 

1 2  00 ADDRESS MARK NOT FOUND FOR lD FIELD 

1 3  00 ADDRESS MARK NOT FOUND FOR DATA FIELD 

1 4  00 RECORDED ENTITY NOT FOUND 

14  01  RECORD NOT FOUND 

1 4  02 FILEMARK OR SETMARK NOT FOUND 

1 4  03 E D-OF-DATA NOT FOUND 

1 4  04 BLOCK SEQUENCE ERROR 

15  00 RANDOM POSITIONING ERROR 

15  0 1  MECHANICAL POSITIONING ERROR 

1 5  02 POSITIONING ERROR DETECTED BY READ OF MEDIUM 

1 6  00 DATA SYNCHRONIZATION MARK ERROR 

1 7  00 RECOVERED DATA WITH NO ERROR CORRECTION APPLIED 

1 7  0 1  RECOVERED DATA WITH RETRIES 

1 7  02 RECOVERED DATA WITH POSITIVE HEAD OFFSET 

1 7  0 3  RECOVERED DATA WITH NEGATIVE HEAD OFFSET 

1 7  04 RECOVERED DATA WITH RETRIES AND/OR CIRC APPLIED 

1 7  05 RECOVERED DATA USING PREVIOUS SECTOR 1D 

1 7  06 RECOVERED DATA WITHOUT ECC - DATA AUTO-REALLOCATED 

1 7  07 RECOVERED DATA WITHOUT ECC - RECOMMEND REASSIGNMENT 

1 8  00 RECOVERED DATA WITH ERROR CORRECTION APPLIED 

1 8  0 1  RECOVERED DATA WITH ERROR CORRECTION AND RETRIES APPLIED 

1 8  02 RECOVERED DATA - DATA AUTO-REALLOCATED 

1 8  03 RECOVERED DATA WITH CIRC 

1 8  04 RECOVERED DATA WITH LEC 

1 8  05 RECOVERED DATA - RECOMMEND REASSIGNMENT 

1 9  00 DEFECT LIST ERROR 

1 9  0 1  DEFECT LIST 10T AVAILABLE 

1 9  02 DEFECT LIST ERROR IN PRIMARY LIST 
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Sense Extended Meaning 

code sense code 

1 9  03 DEFECT LIST ERROR IN GROWN LIST 

l A  00 PARAMETER LIST LENGTH ERROR 

1 B  00 SYNCHRONOUS DATA TRANSFER ERROR 

l C  00 DEFECT LIST NOT FOUND 

l C  0 1  PRIMARY DEFECT LIST NOT FOUND 

l C  02 GROWN DEFECT LIST NOT FOUND 

1 D  00 MISCOMPARE DURING VERIFY OPERATION 

l E  00 RECOVERED ID WITH ECC CORRECTION 

20 00 INVALID COMMAND OPERATION MODE 

2 1  00 LOGICAL BLOCK ADDRESS OUT OF RANGE 

2 1  0 1  INVALID ELEMENT ADDRESS 

22 00 ILLEGAL FUNCTION (SHOULD USE 20 00) 

24 00 INVALID FIELD IN CDB 

25 00 LOGICAL UNIT NOT SUPPORTED 

26 00 INVALID FIELD IN PARAMETER LIST 

26 0 1  PARAMETER NOT SUPPORTED 

26 02 PARAMETER VALUE INVALID 

26 03 THRESHOLD PARAMETERS NOT SUPPORTED 

27 00 WRITE PROTECTED 

28 00 NOT READY TO READ TRANSITION (MEDIUM MAY HAVE CHANGED) 

28 0 1  IMPORT O R  EXPORT ELEMENT ACCESSED 

29 00 POWER ON 

2A 00 PARAMETERS CHANGED 

2A 0 1  MODE PARAMETERS CHANGED 

2A 02 LOG PARAMETERS CHANGED 

2B 00 COPY CANNOT EXECUTE SINCE HOST CANNOT DISCONNECT 

2C 00 COMMAND SEQUENCE ERROR 

2C 0 1  TOO MANY WINDOWS SPECIFIED 

2C 02 INVALID COMBINATION OF WINDOWS SPECIFIED 

2D 00 OVERWRITE ERROR ON UPDATE IN PLACE 

2F 00 COMMANDS CLEARED BY ANOTHER INlTIATOR 

30 00 INCOMPATIBLE MEDIUM INSTALLED 

30 0 1  CANNOT READ MEDIUM - UNKNOWN FORMAT 

30 02 CANNOT READ MEDIUM - INCOMPATIBLE FORMAT 

30 03 CLEANING CARTRIDGE INSTALLED 

3 1  00 MEDIUM FORMAT CORRUPTED 

3 1  0 1  FORMAT COMMAND FAILED 

32 00 NO DEFECT SPARE LOCATION AVAILABLE 

32 0 1  DEFECT LIST UPDATE FAILURE 

33 00 TAPE LENGTH ERROR 

36 00 RIBBON 

37 00 ROUNDED PARAMETER 

39 00 SAVING PARAMETERS NOT SUPPORTED 

3A 00 MEDIUM NOT PRESENT 

3B 00 SEQUENTIAL POSITIONING ERROR 

3B 0 1  TAPE POSITION ERROR AT BEGINNING-OF-MEDIUM 
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Sense Extended Meaning 

code sense code 

3B 02 TAPE POSITION ERROR AT END-OF-MEDIUM 

3B 03 TAPE OR ELECTRONIC VERTICAL FORMS UNIT NOT READY 

3B 04 SLEW FAILURE 

3B 05 PAPER JAM 

3B 06 FAILED TO SENSE TOP-OF-FORM 

3B 07 FAILED TO SENSE BOTTOM-OF-FORM 

3B 08 REPOSITION ERROR 

3B 09 READ PAST END OF MEDIUM 

3B OA READ PAST BEGINNING OF MEDIUM 

3B OB POSITION PAST E D OF MEDIUM 

3B oc POSITION PAST BEGINNING OF MEDIUM 

3B OD MEDIUM DESTINATION ELEMENT FULL 

3B OE MEDIUM SOURCE ELEMENT EMPTY 

3D 00 INVALID BITS IN IDENTIFY MESSAGE 

3E 00 LOGICAL UNIT HAS NOT SELF-CONFIGURED YET 

3F 00 TARGET OPERATING CONDITIONS HAVE CHANGED 

3F 0 1  MICROCODE HAS BEEN CHANGED 

3F 02 CHANGED OPERATING DEFINITION 

3F 03 INQUIRY DATA HAS CHANGED 

40 00 RAM FAILURE (SHOULD USE 40 NN) 
40 NN DIAGNOSTIC FAILURE ON COMPONENT NN (80H-FFH) 
4 1  00 DATA PATH FAILURE (SHOULD USE 40 NN) 
42 00 POWER-ON OR SELF-TEST FAILURE (SI-IOULD USE 40 NN) 
43 00 MESSAGE ERROR 

44 00 INTERNAL TARGET FAILURE 

45 00 SELECT OR RESELECT FAILURE 

46 00 UNSUCCESSFUL SOFf RESET 

47 00 SCSI PARITY ERROR 

48 00 INITIATOR DETECTED ERROR MESSAGE RECEIVED 

49 00 INVALID MESSAGE ERROR 

4A 00 COMMAND PHASE ERROR 

4B 00 DATA PHASE ERROR 

4C 00 LOGICAL UNIT FAILED SELF-CONFIGURATION 

4E 00 OVERLAPPED COMMANDS ATTEMPTED 

50 00 WRITE APPEND ERROR 

50 01 WRITE APPEND POSITION ERROR 

50 02 POSITION ERROR RELATED TO TIMING 

5 1  00 ERASE FAILURE 

52 00 CARTRIDGE FAULT 

53 00 MEDIA LOAD OR EJECT FAILED 

53 0 1  UNLOAD TAPE FAILURE 

53 02 MEDIUM REMOVAL PREVENTED 

54 00 SCSI TO HOST SYSTEM INTERFACE FAILURE 

55 00 SYSTEM RESOURCE FAILURE 

57 00 UNABLE TO RECOVER TABLE-OF-CONTENTS 

58 00 GENERATION DOES NOT EXIST 
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Sense Extended Meaning 

code sense code 

59 00 

5A 00 

5A 0 1  

5A 02 

5A 03 

5B 00 

5B 0 1  

5B 02 

5B 03 

5C 00 

5C 01  

5C 02 

60 00 

61  00 

6 1  0 1  

6 1  02 

62 00 
63 00 

64 00 

UPDATED BLOCK READ 

OPERATOR REQUEST OR STATE CHANGE INPUT (SPECIFIED) 

OPERATOR MEDIUM REMOVAL REQUEST 

OPERATOR SELECTED WRITE PROTECT 

OPERATOR SELECTED WRITE PERMIT 

LOG EXCEPTION 

THRESHOLD CONDITION MET 

LOG COUNTER AT MAXJMUM 

LOG LIST CODES EXHAUSTED 

RPL STATUS CHANGE 

SPINDLES SYNCHRONIZED 

SPINDLES NOT SYNCHRONIZED 

LAMP FAILURE 

VIDEO ACQUISITION ERROR 

UNABLE TO ACQUIRE VIDEO 

OUT OF FOCUS 

SCAN HEAD POSITIONING ERROR 

END OF USER AREA ENCOUNTERED ON THIS TRACK 

ILLEGAL MODE FOR THIS TRACK 
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The SCSI bu l leti n board 

The ANSI SCSI specification can also be acquired i n  an electronic format from the 
SCSI bulletin board (SCSI BBS) in the US. The telephone number (as of January 
1 997) is :  

+ 1 -7 1 9-533-7950 

If you are calling for the first time, you will need to register for a user account. In 
general it takes a few days to set up the account and the permissions that allow you 
to access data on the BBS.  The SCSI BBS offers access to the various X3T9 docu­
ments, among other important documentation and information. You can follow, for 
example, ongoing discussions concerning the SCSI-3 standard. It is also possible to 
access information on other X3T domains such as IPI, ATA, or HIPPI. 

W I L DCAT ! Copy r i g h t  ( c )  8 7 , 9 5  t�u s  tang So f twa r e , I n c . A l l  R i g h t s  R e s e rv e d . 

Reg i s t r a t i on Numbe r : 9 2 - 3 7 2 5 . v 4 . 1 0 M l O ( Mu l t i L i n e  1 0 ) . Node : 1 .  

Conne c t ed a t  1 4 4 0 0  bps . Re l i ab l e  connec t i on . ii.NS I  d e t e c t ed . 

The S C S I  Bu l l e t i n  Board S y s t em 

P r o v i ded by S ymb i o s  Log i c  I n c . ( f orme d y  "CR M i c ocoe l e c t ron i c s ) 

U s i ng t h e  W i l dC a t !  B B S  P a c kage Ve r s i on 4 . 1 0 M 1 0  Node 1 

Modem . . . . . . . . . . . . . . . . . .  U S R  Cou r i e r  H S T ( tm )  Dua l S t andard ( tm )  

Baud r a t e s  . . . . . . . . . . . . .  3 0 0 - - 1 4 4 0 0  ( + H ST 1 6 8 0 0 ) 

You may e i t h e r  u s e  y o u r  REAL name ( wh i c h  g i v e s  you m o r e  p r i v i l eg e s  AFTER I 

upgrade y o u r a c c o u n t )  or t h e  gu e s t  a c c o u n t  ( wh i c h l e t s  you l i s t  a n d  down l oad 

files w i t h o u t r eg i s t e r i ng ) . 

To u s e  t h e  g u e s t a c c o u n t , l og in a s : 

F i r s t  Name ? G u e s t  

La s t  Name ? ( j u s t  p r e s s  e n t e r ) 

P a s swo r d ?  [ ( j u s t  p r e s s  e n t e r ) 

Wha t  i s  y o u r  fi r s t  name ? f r i edh e l m  

Wha t i s  you r l a s t  name ? s c hm i d t  

Look i ng up " FR I EDHELH S C HM I DT " . P l ea s e  \·la i t . . .  

Your name " F R I EDHELM S C H!H D T "  w a s  n o t  f ound i n  t h e  u s e r  d a t a  b a s e . 

H e l l o ! You a r e  a new u s e r  to t h e  s y s tem and we v-1a n t  to we l come you . 

369 



370 Appendix D 

There are many f ea tures to d i s cover , so please read the HELP fi l e s  and 
experimen t wi th new choi c e s . 
Check the Bu l l e t in menu and News l e t ter fi l e  for add i t i onal i n forma t i on . 
We l come to The S C S I  BBS . 
For our BBS records we wou l d  l ike to g e t  some add i t ional i n forma t i on .  
P l e a s e  answer a s  corre c t l y  a s  pos s ib l e  t o  enab l e  u s  t o  provide 
the bes t  service and support pos s i bl e .  

and s o  o n  . . .  
* * * * * * * * * * * * * * * * * * * * * * * * * *  Dra f t  S tandards * * * * * * * * * * * * * * * * * * * * * * * * *  
Whi l e  thi s BBS i s  c a l l e d  The S C S I  BBS , there are o ther I /0 i n t e r f a c e s  c overed 
here a s  we l l . I have s eparated the files for thes e  proj e c t s  into d i f ferent 
fi l e  areas in a rather ad hoc fashion . Here is the map : 

SCS I - 1  F i l e  Area 7 
SCS I - 2  8 F i l e  Area 
S C S I - 3  
ATA 
CAM 
ESDI 
H I P  PI 
I P I  
F i bre Channel 

F i l e  
F i l e  
F i l e  
F i l e  
F i l e  
F i l e  
F i l e  

Area 
Area 
Area 
Area 
Area 
Area 
Area 

2 0  
1 5  
1 3  
2 1  
1 6  
1 4  
1 7  

P l e a s e  remember tha t the s e  fi l e s  are provided for review and commen t  purpo s e s  
only . The fina l  ANS I - approved ver s i ons wi l l  n o t  b e  pos ted here ; i f  you 
want an ANS I - approved s tandard , you mus t  purchas e  the paper copy from ANSI 
( or G l obal Engineering Documen t s ) . Ordering informa tion is contained in 

ano ther bul l e t i n . 
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Sou rce code for SCANSCSI . PAS 

SCANSCSI is a short utility program that also serves as a good example of an ASPI 
application. It checks all LUNs of all SCSI IDs to see whether a device is present. It 
does not rely on the ASPI internal table of devices but rather sends an INQUIRY 

command to each LUN. In this way devices that have been added to the bus after the 
loading of the ASPI manager are also discovered. 

p r o g r a m  s c a n s c s i ( i n p u t , o u t p u t ) ;  

{ * * *  C o py r i g h t  N o t i c e :  T h i s s o u r c e  c o d e  b e l o n g s  t o  t h e  boo k 

" T h e  S C S I  B u s  a n d I D E  I n t e r f a c e " f r om Add i s o n-We s l e y .  

} 

I t  m a y  be po r t e d  a n d  mod i f i e d f o r  n o n - c omme r c i a l  

p u r p o s e s  w h e n  t h i s c o p y r i g h t  n o t i c e i s  i n c l u d e d . 

Au t h o r i z a t i o n o f  t h e  p u b l i s h e r  i s  n e c e s s a ry f o r  

comme r c i a l  p u r p o s e s . 

u s e s  C R T ,  D O S ; 

c o n s t  

PNAM : s t r i n g = '  S C S I - S c a n n e r V 1 . 0  r e v  003 2 5 . 2 . 93 ( f s ) ' ; 

{ A S P I  S p e c i f i c  C o n s t a n t s }  

A S P I_S R B_L E N G T H  = $ 7 F ;  

S R B_C OMMA N D_C O D E  = $ 0 0 ;  

S R B_S T A T U S  = $ 0 1 ; 

S R B_T A R G ET_I D = $ 0 8 ;  

S R B_LU N  = $ 0 9 ;  

S R B_D A T A_L E N G T H  $ 0 A ;  

S R B_BU F F E R_O F S  = $O F ;  

S R B_BU F F E R_S E G  = $ 1 1 ;  

S R B_S C S I_L E N  = $ 1 7 ;  
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S R B_HA_S T A T U S  = $ 1 8 ;  

S R B_TA R G E T_S T A T U S =  $ 1 9 ;  

S R B_S C S I_C M D  $ 4 0 ;  

S R B_X_S C S I C M D  = $02 ; 

{ S C S I  S p e c i f i c C o n s t a n t s }  

S C S I_C M D_L E N G T H  = 1 1 ;  

{ P r o g r a m  s p e c i f i c c o n s t a n t s }  

D A T A_L E N G T H  = $ F F ;  

{ M e s s a g e s }  

A S P I_C O N N E C T E D  

A S P I_O P E N_E R R O R  

= ' A S P I  l o a d e d ' ; 

= ' E r r o r  o p e n i n g A S P I ' ; 

t y p e  

{ G e n e r i c Type s }  

MemAd r e s s  = r e c o r d  

{ A S P I -Type s }  

O f f s e t : i n t e g e r ;  

S e g m e n t : i n t e g e r ;  

e n d ;  

S RB s i z e =  O . .  A S P I_S RB_L E N G T H ;  

S RB a r r a y  a r r a y [ S RB s i z e J  o f  by t e ;  

{ S C S I -Type s }  

S C S I Cmd S i z e  = O . .  S C S I_C M D_L E N G T H ; 

S C S I C m d  = r e c o r d  

C o m m a n d : a r r a y [ S C S I Cm d S i z e J  o f  b y t e ;  

S t a t u s : byt e ;  

I D :  b y t e ;  

L U N : b y t e ;  

L e n : b y t e ;  

T i m e O u t : i n t e g e r ;  

e n d ;  

B u f f e r L e n g t h  = O . .  D A T A_L E N G T H ;  

D a t a Bu f f e rType = a r r a y [ Bu f f e r L e n g t h J  o f  b y t e ;  

v a r 

Comma n d Bu f f e r  

D a t a Bu f f e r  

I D , LU N  

S C S I Cm d ;  

D a t a B u f f e rTyp e ;  

b y t e ;  



A s p i E n t r y P o i n t : MemAd r e s s ;  

S R B : S RB a r r a y ;  

S C S I C o n n e c t e d : s t r i n g ;  

{ * * * *  L o w  Le v e l F u n c t i o n s }  
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f u n c t i on F i l e O p e n ( F i l e N a me : s t r i n g ) : i n t e g e r ;  

c o n s t  D O S_O P E N_F I L E = $ 3 D ;  

va r r e g i s t e r : r e g i s t e r s ;  

b e g i n  

F i l e N a m e : = F i l e N a m e + c h r ( O ) ; 

w i t h  r e g i s t e r  

d o  

b e g i n  

a x  : =  D O S_O P E N_F I L E s h l  8 ; 

b x : =O ;  

c x : =O ;  

d s  . - s e g ( F i L e N a me ) ;  

d x  : =  o f s ( F i l e N a m e ) + 1 ; { b e c a u s e  P a s c a l s t r i n g s  c a r r y t h e i r 

L e n g t h  i n  b y t e  0 } 

e n d ;  

M S D O S ( r e g i s t e r ) ;  

i f  ( r e g i s t e r . f l a g s  a n d  F C a r r y )  > 0 

t h e n  F i l e O p e n : = - 1  

e l s e  F i l e O p e n : = r e g i s t e r . a x ;  

e n d ;  

f u n c t i o n F i l e C L o s e ( F i l e H a n d l e : i n t e g e r ) : i n t e g e r ;  

c o n s t  D O S_C L O S E_F I L E  = $ 3 E ;  

va r r e g i s t e r :  r e g i s t e r s ;  

b e g i n  

w i t h  r e g i s t e r  

d o  

b e g i n  

a x  : =  D O S_C LO S E_F I L E  s h l  8 ;  

bx : = F i l e H a n d l e ;  

e n d ;  

M S D O S ( r e g i s t e r ) ;  

i f  ( r e g i s t e r . f l a g s  a n d  F C a r r y )  = 0 

t h e n  F i l e C L o s e : =O 

e l s e  F i l e C L o s e : = r e g i s t e r . a x ;  

e n d ; 

{ * * * *  M i s c e l l a n o u s  G e n e r i c F u n c t i o n s }  
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{ * * * *  S C S I  g e n e r i c f u n c t i o n s }  

f u n c t i o n S C S I Cm d L e n ( O p c o d e : byt e ) : by t e ;  

b e g i n  

S C S I C m d L e n : =O ;  

i f  O p c o d e  a n d $ E O  = $00 t h e n S C S I CmdLen : =6 ;  

i f  O p c od e  a n d  $ E O  $ 2 0  t h e n  S C S I CmdLen : = 1 0 ; 

i f  O p c o d e  a n d  $ E O  $ 4 0  t h e n  S C S I C m d L e n : = 1 0 ; 

i f  O p c o d e  a n d  $ E O  = $AD t h e n  S C S I CmdLen : = 1 2 ; 

e n d ;  

{ * * * *  A S P I - s p e c i f i c  f u n c t i o n s }  

p r o c e d u r e  G e t A S P I En t r y ( F i l e H a n d l e : i n t e g e r ;  va r 

A s p i E n t r y : M emAd r e s s ) ;  

c o n s t  A S P !  E N T R Y  L E N G T H  = 4 ;  

D O S_I O C T L_R E A D  = $ 4 4 0 2 ;  

v a r r e g i s t e r :  r e g i s t e r s ;  

b e g i n  

w i t h  r e g i s t e r  

d o  

b e g i n  

a x  : =  D O S_I O C T L_R E A D ;  

b x : = F i l e H a n d l e ;  

c x : = A S P I_E N T R Y_L E N G T H ;  

d s  : =  s e g ( A s p i E n t r y ) ;  

d x  : =  o f s ( A s p i  E n t r y ) ; 

e n d ;  

M S D O S ( r e g i s t e r ) ;  

e n d ;  

p r o c e d u r e  S C S I 2 S R B ( v a r  S R B : S R B a r r a y ;  C omma n d : S C S I C md ; 

v a r D a t a B u f f e r : D a t a Bu f f e rType ) ;  

v a r k : i n t e g e r ;  

b e g i n  

f o r  k : =O t o  H i g h ( S R B )  d o  S R B [ k J : =O ;  

S R B [ S R B_C OMMAN D_C O D E J : = S RB_X_S C S I C M D ;  

w i t h  C omma n d  d o  

b e g i n  

S R B [ S R B_T A R G E T_I D J : = I D ;  

S R B [ S R B_LU N J : = L U N ; 

S R B [ S R B_S C S I_L E N J : = S C S I CmdLen ( Comman d [ 1 J ) ;  

f o r  k : = O t o  S R B [ S RB_S C S I_L E N J - 1  do 

S R B [ S RB_S C S I_C M D + k J : = C omma nd [ k J ;  

e n d ;  
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S R B [ S R B_D A T A_L E N G T H J : = l o ( DATA_L E N G T H ) ;  

S R B [ S R B_D A T A_L E N G T H + 1 J : = h i ( DATA_L E N G T H ) ;  

S R B [ S RB_BU F F E R_S EG J : = l o ( s e g ( D a t a Bu f f e r ) ) ;  

S R B [ S RB_BU F F E R_S E G + 1 J : = h i ( s e g ( D a t a B u f f e r ) ) ;  

S R B [ S R B_BU F F E R_O F S J : = l o ( o f s ( D a t a Bu f f e r ) ) ; 

S R B [ S R B_BU F F E R_O F S + 1 J : = h i ( o f s ( D a t a B u f f e r ) ) ;  

e n d ;  

p r o c e d u r e  S R B e x e c u t e ( va r S R B : S R Ba r r a y ) ;  

va r S RB s e gm e n t ,  S R B o f f s e t : i n t e g e r ;  

b e g i n  

S R B s e g m e n t : = s e g ( S R B > ; 

S RBo f f s e t : =o f s ( S RB ) ;  

a s m 

mov a x ,  S RB s e g m e n t  

p u s h  a x  

mov a x ,  S R B o f f s e t  

p u s h  a x  

L E A  B X ,  A s p i E n t r y Po i n t  

c a l l  D W O R D  P T R  [ b x J  

a d d  s p , 4  

e n d ;  

e n d ;  

f u n c t i o n I n i t i a l i z e A S P I ( va r  A s p i E n t rypo i n t : MemAd r e s s ) : b o o l e a n ;  

c o n s t  A S P I_NA M E  = ' S C S I MG R$ ' ; 

v a r  r e s u l t : i n t e g e r ;  

A s p i F i l e H a n d l e : i n t e g e r ;  

b e g i n  

A s p i F i l e H a n d l e : = F i l e O p e n ( A S P I_N A M E ) ; 

i f  A s p i F i l e H a n d l e>-1  

t h e n  

b e g i n  

G e t A S P I E n t r y ( A s p i F i l e H a n d l e , A s p i E n t ryPo i n t ) ;  

F i l e C l o s e ( A s p i F i l e H a n d l e ) ; 

I n i t i a l i z e A S P I : = t r u e ;  

e n d  

e l s e  I n i t i a l i z e A S P I : = f a l s e ;  

e n d ;  

p r o c e d u r e  i n i t i a l i z e ;  

v a r By t e N b r  : i n t e g e r ;  
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b e g i n  

w i t h  C omma ndBu f f e r  d o  

b e g i n  

f o r  Byt e N b r : =D t o  S C S I_C M D  L E N G T H  do 

C omma n d [ By t e N b r J : =D ;  

I D : =D ;  

LUN : =O ;  

S t a t u s : =$ F F ;  

e n d ;  

f o r  Byt e N b r : =D t o  DATA_L E N G T H  do D a t a Bu f f e r [ B y t e N b r J : =O ;  

e n d ;  

P r o c e d u r e  I n q u i r e ( I D , LU N : by t e ) ;  

c o n s t  I N QU I RY : a r r a y  [ S C S I CmdS i z e J  o f  b y t e  = 

( $ 1 2 , $0 , $0 , $0 , $ f f , $0 , $ 0 , $0 , $0 , $0 , $0 , $0 ) ;  

va r k :  i n t e g e r ;  

S t a t u s : byt e ;  

be g i n  

f o r  k : =O t o  S C S I_C M D  L E N G T H  d o  Comma ndBuf f e r . command [ k J : = I N QU I R Y [ k J ;  

Comm a n d B u f f e r . I D : = I D ;  

Comm a n d Bu f f e r . LUN : = L U N ;  

I f  LUN=O t h e n  w r i t e l n ( ' S C S I - I D  ' , I D , ' : ' ) ; 

S C S I 2 S R B ( S RB , C omma n d B u f f e r , D a t a B u f f e r ) ;  

S RBe x e c u t e ( S RB ) ;  

r e p e a t  u n t i l S R B [ S RB_STATU S J <>O; 

i f  S R B [ S RB_STATU S J  = 1 t h e n  

i f  S R B [ S RB_H A_S T AT U S J =  0 t h e n  

b e g i n 

S t a t u s : = D a t a Bu f f e r [ Q J  a n d  $ E O ;  

i f  S t a t u s =D t h e n  

b e g i n  

w r i t e ( ' LUN ' , LUN , ' : ' ) ; 

f o r  k : =8 t o  3 5  do w r i t e ( c h r ( Da t a B u f f e r [ k J ) ) ;  

w r i t e l n ;  

e n d ;  

e n d  

e l s e i f  L U N = D  t h e n  w r i t e l n ;  

e n d ;  

b e g i n  

w r i t e l n ( PN AM ) ; 

i n i t i a l i z e ;  

i f  I n i t i a l i z e A S P I ( A s p i E n t ryPo i n t )  

t h e n  

b e g i n  

w r i t e l n ( A S P I_C O N N E C T E D ) ;  

f o r  I D : =O t o  7 d o  

f o r  LUN : =O t o  7 d o  I n q u i r e ( I D , LU N ) ;  

e n d  

e l s e  w r i t e l n ( A S P I_O P E N_E R R O R ) ;  

e n d . 
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Add resses of man ufactu rers 
and organ izations 

Adaptec (SCSI host adapters and chips) 

Adaptec, Inc . 
69 1 South Milpitas Blvd. 
Milpitas , CA 95035 
USA 
Tel . :  + 1 -408-945-8600 
Fax: + 1 -408-262-2533 
http :/ /www.adaptec.com 

AdvanSys (SCSI host adapters and chips) 

Advanced System Products, Inc . 
1 150 Ringwood Court 
San Jose, CA 95 1 3 1  
USA 
Tel. :  + 1 -408-383-9400 
Fax: + 1 -408-383-96 1 2  
http://www.advansys.com 

Ancot (SCSI testers) 

Ancot Corporation 
1 1 5 Constitution Drive 
Menlo Park, CA 94025 
USA 
Tel. :  + 1 -4 1 5-322-5322 
Fax: + 1 -4 1 5-322-0455 
http :/ /www.ancot.com 

Apcon (SCSI expanders and switches) 

APCON, Inc . 
17938 SW Upper Boones Ferry Road 
Portland, OR 97224 
USA 
Tel. :  + 1 -503-639-6700 
Fax: + 1 -503-639-6740 
http ://www.apcon.com 
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Buslogic (SCSI host adapters) 

BusLogic, Inc. have been taken over by My lex. 

DTP (SCSI host adapters) 

Distributed Processing Technology 
1 40 Candace Drive 
Maitland, FL 3275 1 
USA 
Tel. :  + 1 -407-830-5522 
Fax: + 1 -407-260-5366 
http:/ /ftp.dpt.com 

Emulex (Fibre Channel) 

Emulex Corporation 
3545 Harbor Blvd 
Costa Mesa, CA 92626 
USA 
http:/ /www.emulex.com 

ENDL (Documentation) 

ENDL inc. 
1 4426 B lack Walnut Court 
Saratoga, CA 95070 
USA 
Tel. :  + 1 -408-867-6630 
Fax : + 1 -408-867-2 1 15 
dal_allan@ mcimail.com 

FCA (Fibre Channel) 

FCA Fibre Channel Association 
1 2407 MoPac Expressway North 100-357 
P.O.  Box 9700 
Austin, TX 78766-9700 
USA 
Tel. :  + 1 -5 1 2-328-8422 
Fax: + 1 -5 12-328-8423 
http://www.amdahl.com/ext/CARP/FCA/FCA.html 

Future Domain (SCSI host adapters and chips) 

Future Domain Corporation have been taken over by Adaptec. 

Global Engineering (SCSI standards) 

Global Engineering Documents 
1 5  lvemess Way East 
Englewood, CO 80 1 12 
USA 
Tel. :  + 1 -303-792-2 1 8 1  
Fax: + 1 -303-792-2 1 92 



I-Tech (SCSI testers) 

I-Tech Corporation 
6975 Washington Ave. SO. 
Edina, MN 55439 
USA 
Tel . :  + 1 -6 1 2-94 1 -5905 
Fax: + 1 -6 1 2-94 1 -2386 
http :/ /www.i-tech.com 

ICP (SCSI Raid) 
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Vortex Computersysteme GmbH 
FalterstraBe 5 1 -53  
D-74223 Flein 
Tel . :+49-7 1 3 1 -59720 
Fax: +49-7 1 3 1 -255063 
sales @vortex .de 

IntraServer (Host adapters) 

IntraServer Technology, Inc . 
1 25 Hopping Brook Park 
Holliston, MA 0 1 746 
USA 
Tel. :  + 1 -508-429-0425 
Fax: + 1 -508-429-0430 
http://www. intraserver.com 

Mylex (Host adapters, RAID controllers) 

Mylex Corporation 
3455 1 Ardenwood Blvd. 
Fremont, CA 94555 
USA 
Tel . :  + 1 -5 1 0-796-6 1 00 
Fax: + 1 -5 1 0-745-752 1  

Paralan (SCSI expanders) 

Para1an Corporation 
7875 Convoy Court 
San Diego, CA 92 1 1 1  
USA 
Tel . :  + 1 -6 1 9-560-7266 
Fax: + 1 -6 1 9-560-8929 
http://www. paralan.com 

Promise (SCSI host adapters) 

Promise Technology, Inc . 
1460 Koll Circle 
San Jose, CA 95 1 1 2 
USA 
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Tel. :  + 1 -408-452-0948 
Fax: + 1 -408-452- 1 534 
http://www.promise.com 

QLogic (SCSI chips, Fibre Channel products) 

QLogic Corporation 
3545 Harbor Blvd 
Costa Mesa, CA 92626 
USA 
Tel. :  + 1 -7 1 4-668-5359 
Fax: + 1 -7 1 4-668-5090 
http://www.qlc.com 

SSA 

SSA Industry Association 
http://www.ssaia.org 

STA 

SCSI Trade Association 
c/o Technology Forums Ltd 
333 1 Brittan Avenue, Suite 4, 
San Carlos, CA 94070 
USA 
Tel . :+ 1 -4 1 5-63 1 -7 1 52 
Fax: + 1 -4 1 5-63 1 -7 1 54 
http://www.scsita.com 

Symbios Logic (SCSI chips) 

Symbios Logic 
1 635  Aeroplaza Drive 
Colorado Springs, CO 809 1 6  
USA 
Tel . :  + 1 -7 1 9-573-3200 
http ://www.symbios.com 

Western Digital (SCSI host adapters, chips and peripheral devices) 

Western Digital Corporation 
8 1 05 Irvine Center Drive 
Irvine, CA 927 1 8  
USA 
Tel. :  + 1 -7 1 4-932-5000 
Fax: + 1 -7 14-932-4300 
http://www. wdc.com 



SCSI 

IDE 

SCSI-3 

G lossary 

Active high 

An electrical signal is active high when it is interpreted as true for high voltage 
levels . See also Active low. 

Active low 

A signal that is interpreted as true in the low voltage state. Often such signals have 
a bar over the name, such as DASP.  

Since all  SCSI signals are active low they are not marked in any special way in 
the SCSI chapters. 

Active low signals are marked with a bar in the IDE chapters. 

Application client 

An application client is an abstract construction inside an initiator which handles 
exactly one SCSI command or task management request. The application client dies 
with the termination of the associated function. 

FC Arbitrated loop 

SCSI, 
SSA, FC 

A ring-shaped topology for Fibre Channel. It is less demanding on the hardware than 
the Fabric and thus less expensive. 

Arbitration 

The process used by the devices connected to the bus to determine which of them 
can use the bus next. 

AT bus 

Refers to either the system bus of IBM AT compatible computers, the ISA bus, or 
the IDE interface. The term AT bus is not used in this book but instead ISA bus and 
IDE interface are used. 

ATA standard 

The ANSI version of the IDE interface is called ATA. The name comes from AT 
Attachment. In this book ATA is used whenever the ANSI standard is meant. 

Bandwidth 

see Throughput. 
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SSA Bridge 

A connection from an internal backplane bus to the external cable bus. 

scsi Bridge controller 

A SCSI device controller which is not integrated into the device, but accesses the 
device via an additional 110 bus. 

Cache 

A small storage capable of very fast access. For disk drives such a cache is imple­
mented as RAM, usually at least 1 Mbyte in size. All data read from the medium is 
stored here. Data that is already in the cache can be read up to 20 times faster. When 
the cache is full the oldest data is overwritten. 

SCSI CAM 

The Common Access Method is a standard for the software interface between oper­
ating system and host adapter. 

SCSI CCS 

The Common Command Set is an extension to SCSI- 1 which defines the command 
set for magnetic disks much more precisely. The CCS looks very similar to the disk 
commands in SCSI-2. 

scsi Contingent allegiance condition 

This is created for an I_T_x nexus after a CHECK CONDITION or COMMAND TERMINATED 

status .  In this condition a LUN holds sense data pertaining to the I_T_x nexus.  If a 
LUN is only capable of holding data for a single I_T_x nexus then attempts by all 
other initiators to access the LUN will be met with BUSY status .  In the event that a 
tagged queue is implemented for this LUN other commands will not be affected (see 

Extended contingent allegiance condition). The contingent allegiance condition ends 
when a new command is received from the same initiator or by an ABORT or BUS 

DEVICE RESET message. 

Controller 

In this book a controller is a system component that controls a peripheral device. A 
controller may reside on the peripheral itself or be integrated into the host system. 
The term is often used with reference to a subsystem that is  actually a combination 
of a controller and host adapter. As an example, a disk drive controller allows for the 
attachment of disk drives to the host system. 

scsi A SCSI controller allows the connecting of one or more peripheral devices to the 
SCSI bus. The device that connects the SCSI bus to the host system is called a host 
adapter. 

CRC (cyclic redundancy check) 

A checksum that is written in addition to the data to a sector. With the aid of CRC 
data errors can be detected with higher confidence than with a simple parity bit. 

Data rate 

see Throughput. 
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Device server 

Functional unit inside a SCSI LUN responsible for the management of the physical 
device. 

DMA (direct memory access) 

Refers to the ability of a host adapter to write and read host system memory without 
host intervention. This not only makes possible very fast data transfers but also frees 
the host processor to do other tasks . This is especially advantageous in multi-tasking 
systems where multiple tasks are the norm. Programmed VO (PIO) ,  on the other 
hand, is performed entirely by the host processor. 

Domain 

An VO subsystem in which all SCSI devices are connected via a common service 
delivery subsystem. In more practical terms: all SCSI devices that are connected to 
each other in such a way that they share the SCSI ID address space. 

ECC (error correction code) 

Additional bits written with the data that allow, to a certain degree, the recognition 
and correction of data errors. Disk drives always employ error correction codes. 

scsi Extended contingent allegiance condition 

This extends the normal contingent allegiance condition in that the execution of all 
commands in the tagged queue of this LUN is also suspended. This condition exists 
for an I_ T _L nexus and is entered by the target in certain error situations . The target 
sends an INITIATE RECOVERY message after a CHECK CONDITION status. Afterwards the 
initiator should take appropriate measures to recover from the error. The extended 
contingent allegiance condition is ended when the initiator sends a RELEASE RECOVERY 

message. 

FC Fabric 

An abstract construction in Fibre Channel topology which can be best imagined as 
an electronic cross bar distributor. FC devices connected to a fabric deliver their data 
packets to the fabric which then forwards them to the correct destination device. 

Formatted capacity 

As opposed to unformatted capacity, this is the amount of space available to store 
information on a disk drive. The replacement sectors are not included. The format­
ted capacity of a drive is usually between l 0 and 30% less than the unformatted 
capacity. 

Formatting 

A hard disk or replaceable medium disk needs to be formatted before data can be 
stored on it. Here sectors for data storage are written to the medium. Since the 
sectors take up more room than just what is needed for data storage there arises a 
difference between formatted and unformatted drive capacity. 

Full duplex 

A communication mode which allows simultaneous sending and receiving. 



384 Glossary 

Geometry 

The geometry of a disk drive describes the format of the drive in terms of cylinders, 
heads, and sectors . For example, two drives with different geometries differ in the 
number of cylinders . 

Hard sector 

A type of disk drive formatting where the beginning of each sector is marked by a 
pulse generated by the head disk assembly. In comparison, the pulse from a soft 
sector format is generated from the read/write electronics and requires space on the 
medium. 

Host adapter 

A host adapter allows a controller to be connected to the 110 bus of the host. The 
host adapter may be integrated on the motherboard of the system or it may be imple­
mented as a separate board. 

IDE interface 

A disk drive interface used primarily in the PC domain. The name comes from inte­
grated disk electronics .  Also known as ATA interface. 

Index 

A pulse indicating the beginning of a track on a rotating disk. 

SCSI Initiator 

One of two possible roles a SCSI device can play. The initiator is the device that ini­
tiates the 110 process .  As soon as the target device is selected it controls the 110 
process as well as the SCSI protocol. 

1/0 bus 

A computer bus for the attachment of peripheral devices .  

scsi 1/0 process 

Any logical connection between two SCSI devices is referred to as an 110 process .  
I t  begins with the selection of a target by an initiator. It exists during the entire 
command execution or command chain including all BUS FREE periods . Normally, 
the process ends after the message COMMAND COMPLETE with a B US FREE phase. In 
SCSI-3, an 110 process is called task. 

ISA bus 

The original system bus of the IBM AT. The bus has since become a standard and is  
used by all AT compatible systems. The name comes from industry standard archi­
tecture. 

scsi I_T_x Nexus 

Either an I_T_L nexus or an I_T_L_Q nexus. 

SCSI LUN (logical unit) 

Each SCSI target contains at least one and up to eight LUNs. A LUN is the actual 
physical device. For example a SCSI controller connected to three disk drives con­
trols three LUNs.  
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Mapping 

For disk drives, the correspondence between physical sectors and logical block 
numbers is accomplished through a mapping. A linear mapping refers to the 

approach where first sectors of a track, then tracks of a cylinder, and finally cylin­
ders are exhausted for increasing LBN numbers . This approach insures that the 
access time for continuous logical blocks is minimal. 

Master 

When two devices or systems are in such a relationship that one of them has control 
over the other, the controlling device is the master and the other device the slave. 

IDE Master drive 

For IDE, drive 0 is the master drive. The term derives from the fact that when 
spindle synchronization is used this drive supplies the clock for the second drive. 
Otherwise the drives are independent. 

Mirrored drives 

Two disk drives that are maintained to hold exactly the same information are said to 
be mirrored. Mirroring is the responsibility of a controller or special software and is 
transparent to the user. Mirrored drives are used for redundancy purposes in the event 
of a hardware failure. 

FC Originator 

Device that initiates a Fibre Channel transaction . Corresponds to the SCSI initiator. 

Parity bit 

Simple error detection for a data byte . A parity bit transferred with the data byte 
allows the receiver to detect 1 -bit errors. Multiple bit errors may not be detected. 

Fe Payload 

SCSI-3 

The part of a Fibre Channel data packet available for user data or data of higher pro­
tocol levels .  

PIO (programmed 110) 
The exchange of data via a register or port by program control. In contrast to direct 
memory access (DMA), the processor moves each individual piece of data to 
memory, which is  very time consuming. 

Redundancy 

Insurance against data loss or downtime through the use of duplicate components. In 
order to guarantee zero downtime some systems allow for replacements 'on-the-fly ' ,  
o r  hot swaps.  

Request/response 

Transaction model introduced with the SCSI-3 SAM architecture model. 

Fe Responder 

Device that executes a Fibre Channel transaction. Corresponds to the SCSI target. 
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Rotational position sensing (JRPS) 

A controller connected to multiple disk drives which monitors the relative rotational 
position of each drive is said to employ RPS. This is accomplished by monitoring 
the index pulses of the drives. When processing multiple 1/0 requests this allows the 
controller to choose the drive that can be accessed with minimal access time. 

SSA Router 

SCSI-3 

Functional unit in a SSA node that decides whether a data packet is destined for this 
node or whether it must be forwarded. 

SAM (SCSI Architectural model) 

A new document that describes the SCSI-3 architecture. All other SCSI-3 docu­
ments must meet the requirements of the SAM. 

Slave 

see Master. 

IDE Slave drive 

see Master drive. 

Soft sectoring 

A method of formatting for a disk drive. Here the pulse marking the beginning of a 
sector is written to the medium during formatting and read from the medium during 
access to the sector, in contrast to hard sectoring, which uses slightly less space on 
the disk. 

Spindle synchronization 

Two or more disk drives that are synchronized for spindle speed and rotational posi­
tion are said to employ spindle synchronization. This allows, for example, 
simultaneous writing of mirrored drives. 

scsi Status 

A byte sent from the target to the initiator at the end of a command sequence. This 
byte reflects the success or failure of the command execution. Afterwards the 
message COMMAND COMPLETE normally follows. 

scsi Status phase 

The SCSI bus phase where a status byte is transferred from the target to the initiator. 

Target 

One of two possible roles a SCSI device can play. The target is the device that exe­
cutes commands for the initiator. After the selection phase the target takes control of 
bus protocol. 

SCSI-3 Task 

New name in SCSI-3 for the 1/0 process used in SCSI-2. 

IDE Task file 

Another name for the command register block of an IDE controller. 
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A SCSI bus must be terminated at both ends by means of a terminator. Terminators 
are different for single-ended and differential SCSI. At higher transfer rates (Fast 
SCSI, Fast-20) , single-ended SCSI needs active terminators .  

Throughput (bandwidth, data rate) 

Given in Mbytes per second, throughput relates how much data can be transferred 
over the bus in a given time. Throughput is the product of the transfer rate in MHz 
times the bus width in bytes. For example, a 32-bit wide SCSI bus with a transfer 
rate of 1 0  MHz results in a throughput of 40 Mbytes per second. As a further dif­
ferentiation, there is also the peak transfer rate and sustained transfer rate. For 
example, a disk drive typically has a sustained transfer rate of 3 Mbytes per second. 
This is how fast the data can be read from the medium. However, a controller using 
Fast SCSI might be able to reach a peak data rate of 10 Mbytes per second. 

Transfer rate 

The speed at which a data transfer occurs measured in MHz. In the case of 8-bit 
transfers this is  identical to throughput in Mbytes per second. It is often used to 
express serial rates like that of the data from the head of a drive. Here a transfer rate 
of 24 MHz corresponds to a throughput of 3 Mbytes per second. 

Twisted pair cable 

Cable built out of twisted wire pairs . Particularly suited for transmission of differ­
ential signals because they ensure that external interferences are received with nearly 
the same strength on both wires and therefore eliminate each other. 

Unformatted capacity 

The capacity of a disk drive or medium before formatting. Only the formatted capac­
ity is important to the user. Unformatted capacity is approximately 10 to 30% higher 
than this .  Manufacturers cite unformatted capacity since formatted capacity is a 
function of the exact method of formatting. 

scsi Unit attention condition 

This condition exists in a LUN relative to certain initiators when a status change has 
occurred in the LUN that the initiators did not cause. Examples of such status 
changes are the insertion of a medium in a replaceable medium drive, the setting of 
MODE parameters from a third-party initiator or a SCSI reset. As long as a unit atten­
tion condition exists the LUN will reply to all commands with a CHECK CONDITION 

status and status key UNIT ATTENTION, with the exception of INQUIRY and REQUEST 

SENSE, which will be executed normally. After this the LUN enters into a contingent 
allegiance condition. The unit attention condition ends for an initiator as soon as it 
receives the CHECK CONDITION status. Unit attention can also hold for all LUNs and 
all initiators . This occurs , for example, at power-up or after a SCSI reset. 
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