The SECOND EDITION

SCSI Bus & IDE

R . Lo - :
g P A . — TN - J

The SCSI Bus
and
IDE Interface

The SCSI Bus
and

IDE Interface
Protocols, applications
and programming
Second edition

Friedhelm Schmidt

A Addison-Wesley

A\ A 4

Harlow, England e Reading, Massachusetts ® Menlo Park, California @ New York
Don Mills, Ontario ® Amsterdam ® Bonn e Sydney ® Singapore ® Tokyo e Madrid
San Juan ® Milan ® Mexico City ® Seoul e Taipei

© Addison Wesley Longman 1998

Translated from the German edition SCSI-Bus und IDE-Schnittstelle published by Addison-Wesley
(Deutschland) GmbH.

Addison Wesley Longman Limited
Edinburgh Gate

Harlow

Essex

CM202]JE

England

and Associated Companies throughout the World.

The right of Friedhelm Schmidt to be identified as author of this Work has been asserted by him in
accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without either the prior written permission of the publisher or a licence permitting restricted
copying in the United Kingdom issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court
Road, London W1P 9HE.

The programs in this book have been included for their instructional value. They have been tested with
care but are not guaranteed for any particular purpose. The publisher does not offer any warranties or
representations nor does it accept any liabilities with respect to the programs.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Addison-Wesley has made every attempt to supply trademark information about
manufacturers and their products mentioned in this book.

Translated and typeset by Logotechnics Sales & Marketing Ltd, Sheffield.
Cover designed by Designers and Partners Ltd, Oxford.

Cover figure/photograph by

Typeset in Times 10/12

Printed and bound in the United States of America.

Second edition first printed 1997.
Firstedition first printed 1995. Reprinted 1998.

ISBN 0-201-17514-2

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library.

Preface

The SCSI bus and IDE interface are without question the two most important inter-
faces for computer peripherals in use today. The IDE hard disk interface is found
almost exclusively in the world of IBM PC compatibles. The SCSI bus, on the other
hand, is designed not only for hard drives but also for tape drives, CD-ROM, scan-
ners, and printers. Almost all modern computers, from PCs to workstations to
mainframes, are equipped with a SCSI interface.

Both SCSI and IDE are ANSI standards. However, aside from the actual ANSI
documentation, there exists almost no additional reference material to either specifi-
cation. The purpose of this book is to fill that void with a clear, concise description
of both interfaces. The essential terminology is introduced, while the commands and
protocols are broken down in full. In the interest of economy the less important
details and options have been omitted in certain cases. Often a specific section in the
ANSI documentation will be cited for easy cross-referencing. After reading this
book you should be in the position to easily understand relevant technical docu-
mentation, including the ANSI specifications themselves.

First and foremost, a thorough introduction to the terminology is in order.
Especially with respect to SCSI, there is a deluge of terms and definitions that are
used nowhere else or are used differently than in other computer domains. These
keywords, which include signal names and interface commands, are typeset in small
capital letters, for example FORMAT UNIT.

This book is intended for readers with a broad range of technical backgrounds and
interests. Those working on the design of mass storage devices, for example, will find
the protocol descriptions extremely useful. Readers writing software or device drivers
may have other interests. They will find the hardware descriptions, such as that of the
physical organization of a disk drive, very helpful.

This book is not meant to replace the ANSI documentation. On the other hand,
those specifications are not meant to explain the technology, rather to define it. It is
very difficult to find your way around in the original documentation without an
understanding of the subject matter. The book’s thorough, in-depth descriptions,
along with index and glossary, make it the perfect tutor for IDE and SCSI, as well
as a helpful guide to the ANSI literature.

Friedhelm Schmidt
February 1993

\"

vi

Preface to the second edition

More than four years have passed since the first edition of this book, but neverthe-
less the book is still of immediate interest. In the fast-paced computer industry, this
is not a matter of course. But even the SCSI bus and the IDE interface go on devel-
oping. The current version in the IDE domain is ATA-2, and work on ATA-3 is in
progress.

The SCSI-3 standard too is slowly becoming more stable; some parts of it are
already implemented in series products. Two examples are the new wide SCSI bus
with 16-bit transfers on only one cable and the possibility of having 16 devices on
one bus, and the Ultra SCSI bus (Fast-20) with its transmission speed doubled up to
20 mega transfers per second.

The really important change in SCSI-3 is the division of the standard into inter-
face, protocol, device model and command set. This allows the use of SCSI device
models and their command sets with different physical interfaces. In particular the
Fibre Channel is currently seen as the physical interface of the future. But even with
Fast-20, the current parallel SCSI interface too has not yet reached its throughput
limit. Developers are already thinking of Fast-40 or even Fast-80.

The contents of this second edition of the book have been slightly rearranged; the
structure of the SCSI part is now oriented at the SCSI-3 standard draft. The SCSI-3
architecture model and an introduction to the new physical interfaces have been
added. Once again, the time has come to part with well-known techniques and learn
something new. Enjoy reading.

Friedhelm Schmidt
May 1997

Contents

Part {

Part 01

Preface

Preface to the second edition

Introduction

Computers and peripherals
1.1 Mass storage
1.2 Peripheral interfaces

Traditional peripheral interfaces

2.1 The RS-232 serial interface

2.2 The Centronics printer interface
2.3 Hard disks and their interfaces
2.4 ST506

Computer buses
3.1 Characteristics of buses
3.2 Specialized buses

The IDE interface
Background

4.1 The origin of IDE
4.2 Overview
4.3 Documentation

The physical IDE interface

5.1 The electrical interface

5.2 Timing specifications

IDE protocol

6.1 The register model of the IDE controller

6.2 Command execution
6.3 Power-up or hardware reset

The model of an IDE disk drive
7.1 Organization of the medium

vii

viii

Contents

Part il
10

11

12

13

14

7.2 Defect management
7.3 The sector buffer
7.4 Power conditions

IDE commands
8.1 Mandatory commands
8.2 Optional commands

The ATAPI interface

9.1 ATAPI architecture

9.2 ATAPI transport mechanism
9.3 ATAPI transport protocol

9.4 ATAPI commands

9.5 CD-ROM command packets

The SCSI bus

Introduction

10.1 The evolution of SCSI
10.2 Overview

10.3 Documentation

SCSI architecture

11.1 The SCSI architecture model
11.2 The SCSI command model
11.3 Exceptions and error handling
11.4 Task management

11.5 Task set management

SCSI primary commands

12.1 The SCSI target model

12.2 Command structure

12.3 Commands for all SCSI devices

12.4 Mode parameter pages for all device types
12.5 The model of a SCSI processor device
12.6 Commands for processor devices

Block-oriented devices

13.1 The model of a SCSI disk drive

13.2 Hard disk commands

13.3 Mode parameter pages for disk drives

13.4 The SCSI model of optical storage and WORM drives

13.5 Commands for optical storage and WORM drives

13.6 Mode parameters for optical storage and WORM drives

Stream-oriented devices

14.1 The model of a SCSI tape drive
14.2 Commands for tape devices

14.3 Mode parameters for tape devices
14.4 The model of a SCSI printer

58
59
60

61
61
66

73
74
75
77
79
82

85

87
87
90
96

101
101
110
116
118
119

121
121
123
127
144
147
149

152
152
158
168
175
176
181

183
183
186
195
199

Contents ix

14.5 Printer commands 201
14.6 Mode parameters for printers 203
14.7 The model of a SCSI communications device 205
14.8 Commands for SCSI communications devices 206
14.9 Mode parameter pages for communications devices 207
15 Graphics devices 209
15.1 The model of a SCSI scanner 209
15.2 SCSI scanner commands 211
15.3 Mode parameters for scanners 213
16 Medium-changer devices 215
16.1 The model of a SCSI medium-changer device 215
16.2 Commands for medium-changers 217
16.3 Mode parameter pages for medium-changers 223
17 Storage array controllers 226
17.1 The model of the SCSI storage array 226
17.2 Commands for storage array controllers 230
17.3 Mode parameter pages for storage array controllers 233
18 Multi-media devices 235
18.1 The model of a SCSI CD-ROM drive 235
18.2 Commands for CD-ROMs 237
18.3 Audio commands for CD-ROMs 241
18.4 Mode parameters for CD-ROMs 243
18.5 (D recorders 245
18.6 Commands for CD recorders 246
19 The parallel SCSI interface 248
19.1 Overview 248
19.2 SCSI signals 250
19.3 Cables and connectors 253
19.4 Single-ended SCSI 256
19.5 Differential SCSI 262
19.6 Low voltage differential (LVD) 265
19.7 SCSI expanders 267
19.8 SCSI bus phases 270
19.9 The service model 281
19.10 Synchronous transfers and Fast SCSI 282
19.11 Ultra-SCSI or Fast-20 285
19.12 Ultra-2 SCSI or Fast-40 and more? 285
19.13 Wide SCSI 286
19.14 SCAM 286
19.15 Plug-and-Play SCSI 293
20 SCSl interlock protocol 296
20.1 The message system 296

20.2 1/O processes (tasks) 298

x Contents

21

22

23
24

25

Appendix A
Appendix B
Appendix C
AppendixD
Appendix E
Appendix F

20.3 SCSI pointers

20.4 Disconnect/reconnect: freeing the bus
20.5 Transfer options

20.6 Tagged queues

20.7 Termination of I/O processes

20.8 Error handling in the message system
20.9 Asynchronous event notification

The new SCSI-3 interfaces
21.1 Fundamental problems of the parallel SCSI interface
21.2 Fibre Channel
21.3 From Fibre Channel to SCSI-3:
the Fibre Channel Protocol (FCP)
21.4 Fire Wire (IEEE P1394)
21.5 From P1394 to SCSI-3:
the Serial Bus Protocol (SBP)
SSA
From SSA to SCSI-3:
the Serial Storage Protocol (SSP)

The ASPI software interface

22.1 The concept of ASPI

22.2 SCSI request blocks

22.3 ASPI initialization and function calls

The SCSI monitor program

Measuring and testing

24.1 SCSI analyzers

24.2 SCSI emulators

24.3 Examples from industry

SCSI chips

25.1 The NCR 5385

25.2 PC host adapters: FUTURE DOMAIN TMC-950
25.3 PClI bus to Fast-20: Symbios Logic SYM53C860

SCSi-2 commands (by opcode)

SCSI-2 commands (alphabetically)

SCSI-2 sense codes

The SCSI bulletin board

Source code for SCANSCSI.PAS

Addresses of manufacturers and organizations
Glossary

index

301
302
303
305
307
308
309

310
311
312

317
318

321
322

327

329
330
330
334

338

344
344
345
346

349
350
351
353

357
361
364
369
371
377
381
389

Part

Introduction

1 Computers and peripherals
2 Traditional peripheral interfaces
3 Computer buses

Computers and peripherals

A computer can be broken down into a number of interdependent functional blocks.
The most important of these are the central processing unit (CPU), main memory,
input/output (/O) and mass storage. The CPU executes the instructions of a program,
which, along with the necessary data, must reside in main memory at execution time.
Therefore, before a program can be run it must be loaded into main memory from
mass storage. The data to be processed by the program comes either from mass
storage or from an input device such as the keyboard. The CPU accesses memory at
least once for each program step in order to read the corresponding machine
instructions. In fact, several accesses are usually necessary to read and write data. For
this reason the CPU and memory are very tightly coupled: access is uncomplicated
and, above all, fast.

Terminal Printer
CPU Main ~ Serial Paralle!
memory interface interface
System bus
Hard drive Tape drive
controller controller
Drive Drive Tape

Figure 1.1 Computer system with peripheral devices.

4 Computers and peripherals

1.1

In contrast to memory, I/O devices and mass storage are located further from the
CPU, hence the name ‘peripherals’ (Figure 1.1). Access to such devices is slower
and more complicated. Communication with the peripherals is accomplished using
an interface such as SCSI or IDE. On the other end of the interface is a controller,
which in turn communicates with the CPU and memory.

Mass storage

A mass storage device is capable of storing data many times the size of main
memory. In addition, information stored here is nonvolatile: when the device is
turned off the data remains intact.

Hard disks

Disk drives or hard disks store information by writing it onto rotating disks. The
information is divided up into blocks of fixed length, each of which can be accessed
relatively quickly, typically around 30 milliseconds (ms). For this reason hard disks
are also referred to as random access mass storage devices. Among the different
types of mass storage devices are hard disks, exchangeable medium drives,
diskettes, optical disks and CD-ROM.

Tape devices

In contrast to hard disks, tape devices (or tape drives) write data sequentially onto
magnetic tape. The length of time needed to access a specific block of information
depends on which position is presently underneath the read/write head. If it is nec-
essary to rewind or fast forward the tape a very long distance, a tape access can take
as long as several minutes. Tape drives are also known as sequential mass storage
devices. Among these are the traditional reel-to-reel drives, cassette drives, drives
that use video cassettes for recording and 4 mm digital audio tape (DAT) drives.

I/O devices

Under the heading I/O devices are the monitor and keyboard used for communica-
tion between the user and the computer. Further examples of output devices are
printers, plotters and even speakers used for outputting speech. Among the many
input devices are mice, analog to digital converters, scanners and microphones used
in speech recognition.

Miscellaneous devices

Network connections also fall into this category. This is especially so today where
mass storage is often replaced by a file server across a network. Computers with no
mass storage of their own are called diskless workstations.

1.2

Peripheral interfaces 5

There are many more devices that exchange data with computers, although one
hardly refers to a computer controlled lathe or a music synthesizer as a computer
peripheral. Nevertheless, they function as peripherals and communicate with the
computer using I/O.

Peripheral interfaces

Peripheral devices are connected to computer systems via interfaces. The abstract
model of a peripheral interface is made up of many layers, the boundaries of which
are not always clear, especially for older interfaces. It is also true that some layers
are omitted in certain interface definitions. In this book I adhere to a model with four
layers for the SCSI interface, as was agreed upon by the American National
Standards Institute (ANSI) committee for the first time for SCSI-3. The strata of
layers are designed bottom up. All low level layers are mandatory for the
implementation of an interface. An uppermost layer, however, can be omitted in
some cases. A high level interface refers to the case where all possible levels have
been implemented.

Among those things defined in the lowest level are cable and connector types.
Also defined are the signal voltages and the current requirements of the drivers.
Finally, the timing and coordination of all of the signals of the bus are described
here. This lowest level is referred to as the physical interface.

Directly above the physical layer resides the protocol layer. The protocol of an
interface contains, for example, information about the difference between data bytes
and command bytes and about the exchange of messages between devices. If
corrupted data is to be corrected through the use of error correction, this is described
in the interface protocol.

On top of the protocol layer lies the peripheral device model. Here the behavior
of devices to be connected to the interface is described. These descriptions can be
very detailed and precise. The SCSI bus is an example of such a detailed model,
where in addition to the characteristics of general purpose SCSI devices, those of
hard disks, tape drives, printers and so on are defined.

Finally, some interfaces go so far as to define which commands must be
understood by the interface devices. The command set builds upon the device model
and represents the fourth layer of the interface.

The term ‘interface’ always refers to all implemented layers in their entirety.
There are distinct peripheral interfaces defined using the same physical level but a
unique protocol level. It is also possible for a single interface to allow for different
options in the physical level.

The interface used for printers is a good example of a four-layer interface. Figure
1.2 makes the relationships among the layers clear. The two lower levels are covered
by the Centronics interface. This parallel interface contains the definition of the
physical and protocol layers. The particular printer model in Figure 1.2 is a page
printer. This means that the printer constructs an entire page in internal memory
before printing it. In contrast to line printers, the lines of a page can be sent in any

6 Computers and peripherals

Command set PostScript
Device model Printer
Protocol
Centronics
Physical
interface

Figure 1.2 Layers of a printer interface.

order as long as a page boundary is not crossed. However, once a page is printed it
is impossible to retrieve it in order to make changes.

The page description language PostScript is an excellent example of a large and
complex command set. It is built upon the page printer model and makes it possible
to output text as well as various graphic elements. These elements can be positioned
freely on the current page. Naturally, there are other such page formatting languages
written for the page printer model. This makes the division between device model
and command set very intuitive.

As you can see, this interface is complete in that it contains all four interface
layers. If you purchase a printer with such an interface, it makes no difference which
brand name you choose. As long as it is true to the interface specification it will
work with any computer also equipped with the printer interface. However, if you
were to omit even only the uppermost layer of the specification, then the interface
description would be incomplete. It would still be possible to connect up the printer,
but whether it would function properly would be a matter of luck.

The IDE interface and the SCSI bus are likewise complete interface definitions.
Before getting to these, however, I would like to introduce in Chapter 2 a few classic
examples of peripheral interfaces. For the most part their definitions contain only the
lower layers of the interface model. This chapter will help to underscore the
difference between traditional interfaces on the one hand and the complete IDE and
SCSI interfaces on the other.

2 Traditional peripheral interfaces

2.1

This chapter will help to familiarize you with several classic peripheral interfaces of
the computer industry. As with the printer interface outlined in Chapter 1, these will
be described within the framework of the layered interface model. These descrip-
tions are by no means comprehensive; complete specifications would turn this book
into several volumes.

I have two goals in mind in presenting these interfaces. First of all, the interfaces
are very simple; they will allow you to become acquainted with interface character-
istics that are valid for all interfaces, including computer buses. Secondly, to a
certain degree these specifications are the forerunners of competition to the IDE and
SCSI bus interfaces. A background in the more traditional interfaces will make it
much easier to evaluate and understand their modern descendants, the main topic of
this book.

The RS-232 serial interface

RS-232C is the most widely used serial interface. ‘Serial’ means that the data is
transferred one bit at a time across a single connection. RS-232C is used mainly for
the connection of computer terminals and printers. Nonetheless, it is also appropri-
ate for the exchange of data between computers. Machine tools and measurement
instruments are frequently connected to computers using RS-232C. Understandably,
it is not a device specific interface. RS-232C is the responsibility of the Electronic
Industries Association (EIA).

The specification for RS-232C contains the physical layer and hardware protocol.
In addition, there are software protocols, of which only a few build on top of the
RS-232 hardware protocol. This leads to an uncommon situation with RS-232C and
other serial interfaces — not all applications use all of the signals. Frequently cables
are used that conduct only a few of the defined signals, a situation that would be
unthinkable for IDE or SCSI. I concentrate here on a variation of the interface using
only three signals, which I call mini-RS-232.

8 Traditional peripheral interfaces

The physical interface

Mini-RS-232 establishes a bidirectional point-to-point connection between equip-
ment. Each direction has its own data signal and a single ground signal is shared.
The data signals are called TD (transmit data) and RD (receive data). When two
devices are coupled to each other, these signals are crossed such that the TD of one
device connects to the RD of the other (Figure 2.1).

0 1 1 0 1 0o 1 0 O 1 +15 V
. . oV
[E— ol ! -15 Vv
Start bit 8 Data bits Stop bit
(always 0) (always 1)
1360~y 1407313
L E Signal ground E S
: E Transmit data Transmit_data . :
. ._' 25 Receive data Receive data g 1" =/ 1

Figure 2.1 Physical interface: mini-RS-232.

The connector chosen by the EIA standard is the 25-pin DB25. Other connectors,
however, are frequently employed, such as the DB9 for the IBM AT or the RJ11 tele-
phone connector used in various minicomputers.

On the signal lines, a logical 1 is represented by a voltage between +5 V and +15
V, and the receiver recognizes anything above +3 V as such. Likewise, logical O is
represented by a signal voltage between —5 V and —15 V. Again, the receiver recog-
nizes any signal below -3 V as such.

Data transfer takes place serially, character by character. The characters are
further broken down into bits, which are sent across the line one by one. On the other
end, the receiver then assembles the bits back into characters. The number of bits per
character lies between five and eight; eight is precisely what is needed to transfer one
byte. The data bits are preceded by a start bit and followed by a stop bit. In addition,
a parity bit may be sent for error detection. The transfer rate can range between 75
and 115 000 bits per second (baud), and a cable alone cannot compensate for differ-
ent transfer rates; the devices must be set at the same speed otherwise no exchange
of data can take place.

Now comes a rather confusing point: this method of transfer over the serial inter-
face is called asynchronous even though the data is sent and received relative to a
clock. Among other serial interfaces the term ‘synchronous’ is used whenever a
clock is involved. For RS-232C, however, the transfer is referred to as asynchronous
because the clocks are not tied to each other. The RS-232C specification includes
signals that allow the sender and the receiver to use the same clock for data transfer.

The RS-232 serial interface 9

When these signals are employed the data transfer is referred to as synchronous.
True asynchronous transfer uses control signals to exchange data. This point, among
others, will be made clear in Section 2.2.

As arule of thumb, when thinking about data throughput you can consider a byte
or character to be 10 bits (one stop, one start and eight data bits). When the fastest
transfer rate possible is employed, namely 115 000 bits per second, the maximum
throughput is approximately 11.5 Kbytes per second.

The protocol

Mini-RS-232 has no protocol of its own. However, there is a protocol that is often
used with the interface, called the XON/XOFF protocol (Figure 2.2). It works in the
following way. When the receiving device is no longer able to take on data from the
sender, it sends a special character, an XOFF byte, to indicate this. Later, when it is
ready to continue receiving data, it sends an XON byte to tell the sender to proceed.
This protocol is in no way error proof — characters are sometimes lost. In addition,
the protocol cannot be used for bidirectional transfer of binary data. The reason for
this restriction is simple: for text data only a subset of the possible bytes is sent over
the interface, those corresponding to letters, numbers, and symbols. This leaves
room for a number of special characters, of which XON and XOFF are examples.
When, on the other hand, binary data is transferred, the data is not restricted to
certain characters; any binary pattern may occur. In this situation there is no room
for the special characters and the XON/XOFF protocol is unusable. For connecting
terminals and printers, however, the protocol is actually very practical.

ro sl e e f———frlelsl || -

Printer Ly o

Figure 2.2 XON/XOFF protocol.

An example of a higher level protocol for the transfer of binary data (file trans-
fer) is Kermit. This public domain program can be used at no cost for
noncommercial purposes. A number of computer manufacturers have also devel-
oped their own internal protocols built on top of RS-232.

Commands

There are no commands special to the RS-232 interface. As RS-232 was developed,
commands were designed for specific devices apart from the interface. SCSI is
among the first interfaces to define universal command sets for whole device classes.

Nevertheless, some command sets have been designed for use with RS-232.
Examples are page formatting languages for printers, such as PostScript.

10 Traditional peripheral interfaces

2.2

Summary

As you can see, an interface that builds on top of RS-232 has many possible
variations. The complete description of my printer—PC interface would be: RS-232
at 9600 baud, 1 stop bit, no parity, XON/XOFF protocol, PostScript. If I were to
change a parameter for only the printer or only the PC, for example by not sending
PostScript or starting to use a parity bit, nothing would print. Although mini-RS-232
appears to be simple (only three wires), there are almost an uncountable number of
ways in which the connection can fail. What is missing is a protocol that allows the
devices to agree upon the available options. Although RS-232 has given a good
portion of frustration to just about everyone who has worked with it, it nonetheless
has the decided advantage that it exists on every computer and is also device
independent.

The Centronics printer interface

The Centronics interface is a parallel interface developed for printers. It is an indus-
try standard that, to my knowledge, has never been officially approved. As a result
there are many variations. This is especially so with respect to the status signals that
reflect the printer’s current state. Centronics defines the physical interface and the
protocol. As a command set, either PostScript or another printer language is used.

Originally developed as a unidirectional interface, the parallel printer link for PCs
can also be used bidirectionally. This faster, bidirectional variation, the Bi-Tronics
interface, has been standardized as IEEE-1248. It is, however, not our concern here.
We are interested in Centronics mostly as another example of the various computer
interfaces. However, it is also a good idea to know this interface in order to under-
stand the difference from SCSI printers (see Figure 2.3).

The physical interface

Centronics uses a shielded twisted-pair cable with 36 signals, of maximum length 5
meters (about 16 feet). A 36-pin amphenol connector is used on the printer end,
which most people have come to refer to as a Centronics connector. The computer
end of the cable has either a corresponding female Centronics or a female DB25.

DATA1-8 !
STROBE L _ o
BUSY | |

ACKNLG U |

Figure 2.3 Centronics interface timing.

The Centronics printer interface 11

Table 2.1 The signals of the Centronics interface.

Pin Pin Signal Souwrce Description
(Cen) (DB25)

1 1 STROBE Host Indicates valid data on DATAI-S
2 2 DATAl Host Data bit ()
3 3 DATA2 Host Data bit |
4 4 DATA3 Host Data bit 2
5 5 DATA4 Host Data bit 3
6 6 DATAS Host Data bit 4
7 7 DATAG Host Data bit 5
7 8 DATA7 Host Data bit 6
9 9 DATA3 Host Data bit 7
10 10 ACKNLG Printer Indicates printer has accepted DATAL-$
11 11 BUSY Printer Indicates printer is not ready for new data
12 12 PE Printer Paper error
13 13 SELECT Printer Printer is online
14 14 avtoreedb Host The printer should add a carriage return to cachline feed
16 SIGNAL 0 V reference point for the signals
GROUND
17 CHASSIS Protective ground
GROUND
18 +5V Printer 45 V power (50 mA maximum)
19-30 18-25 SIGNAL Grounds of the twisted signal wires
GROUND
31 16 INT Host Initialize printer
32 15 ERROR Printer General error
36 17 SLCTIN Host Select printer

Electrical specifications

The signal voltages correspond to those for transistor—transistor logic (TTL). A O is
recognized from O V to +0.8 V,a 1 from +2.4 V to +5.0 V. Table 2.1 lists the signals
of the Centronics interface. Note that I have described the data signals starting with 0;
that is, using the logical names. The actual signal names, however, are datal to
data8.

Data transfer takes place in parallel across signals DATA1 to DATAg. The signals
STROBE, BUSY and ACKNLG control the sequencing, which is shown in Figure 2.3. The
term ‘protocol’ does not apply completely here. Relative to our layer model, this
timing belongs to the definition of the physical interface.

Request/acknowledge handshake

The transfer of a byte begins when the computer sets the 8 bits on signals datal to
data8. After waiting for at least a microsecond, it then activates a pulse across strobe,
which indicates that there is valid data on the data lines. In response, the printer sets
busy and reads the data byte. As soon as the byte has been successfully read and the
printer is ready to receive the next byte, it clears the busy signal and sends a pulse
across the acknlg line. Now the computer may change the data signals and send the
next strobe for the next byte. This method of data transfer, where a signal is used to

12 Traditional peripheral interfaces

indicate a request (here strobe) and another to acknowledge that request (here
acknlg), is called asynchronous. The mechanism itself is termed request/acknowl-
edge handshake.

Throughput

Throughput, or the amount of data transferred per second, is dependent upon how
long the printer leaves its busy signal active for each byte. The other signals
involved in the handshake need at least 4 microseconds (us) in total. If a printer were
exceptionally fast, it could accept a byte in around 10 ps. This would correspond to
a data rate of 100 Kbytes per second. The handbook for my old laser printer reports
a value of approximately 100 ps for the length of busy, which allows for a rate no
faster than 10 Kbytes per second. More recent printers with Bi-Tronics interface
reach up to 400 Kbytes per second.

The protocol

The Centronics interface protocol is very simple. The flow of data is solely the
responsibility of the physical layer. When the printer is not able to receive data it
simply holds BUSY active. There are, however, a couple of status signals that reflect
the printer’s status. These fall under the category of message exchange, which places
them in the protocol layer. These signals are PE, SELECT, and ERROR. In addition to
these are the control signals AUTOFEED, INIT, and SLCT IN. All of these signals are
described in Table 2.1.

Summary

The Centronics printer interface is our first example of a device specific interface.
The method of data transfer is very similar to many parallel interfaces. Nevertheless,
the status signals for end of paper and carriage return pertain strictly to printers.
Although this is the case, devices have been developed that use Centronics as a
general purpose parallel interface simply by ignoring the printer specific signals.
Examples of these include SCSI adapters, network adapters and disk drives.

The data transfer is parallel and asynchronous, controlled by the handshaking
signals STROBE/ACKNLG. The transfer rate is dependent on the speed of the printer:
the faster the printer is able to activate its ACKNLG signal, the higher the transfer rate.
This characteristic of asynchronous transfer will appear again when we look at the
SCSI bus.

As in the case 0f RS-232, the Centronics interface itself contains neither a device
model nor a command set. As shown in Figure 1.2, all components are necessary in
order to define a complete printer interface. On the other hand, the interface as it
stands is flexible, and there are actually PC solutions for connecting peripheral
devices via the Centronics interface.

Centronics, like RS-232, establishes a point-to-point connection between devices.
This means that only a single printer can be used for each interface because the
ability to address different devices is lacking. This new feature belongs to the next
interface we will discuss.

Hard disks and their interfaces 13

2.3 Hard disks and their interfaces

This section and the following section on ST506 delve more deeply into details than
previous sections, because it is here that the foundation for understanding IDE and
SCSI is laid. If you are not well acquainted with the internals and workings of hard
disks, you will find this section especially interesting. Here, you will learn the ter-
minology of the disk drive domain.

A little history

Disk drive interfaces were standardized early on. Beginning in 1975, drives with a
diameter of 14 inches and then 8 inches were shipped with the SMD interface. The
name comes from the Storage Module Drives of the company, CDC. CDC has since
sold its drive production to Seagate. During the late 1980s, as a result of steady
improvements, SMD became the favorite interface for 8 inch high performance
drives. SMD-E, the final version, had a transfer rate of 24 MHz or about 3 Mbytes
per second. The interface, however, could not survive the transition to 5.25 inch
drives, primarily because of the very wide cable. As a result SMD died along with
8 inch drives in about 1990.

Five years after the arrival of SMD, Seagate introduced a 5.25 inch drive with a
storage capacity of 5 Mbytes. This economical disk drive, at the lower end of the
performance scale, used a new interface called ST506. You will often hear
ST506/ST412 being used to refer to the same interface. STS06 was not developed
from scratch, but evolved from the floppy interface. The transfer rate was increased
to 5 MHz (about 625 Kbytes per second) but the method of moving the heads by
sending step pulses remained the same. In the past few years, advances have allowed
the transfer rate to be doubled once again. However, the demands of modern PCs
have finally exceeded the interface’s capabilities: ST506 has been steadily losing
ground to IDE and SCSI since around 1991.

It was apparent early on that 5.25 inch drives would be capable of performance
that ST506 could not support. SMD could have fitted the bill but it was too big and
too expensive. In 1983 the disk drive manufacturer Maxtor came out with the
Enhanced Small Device Interface (ESDI) to remedy this situation. The ESDI used
the same cables as ST506 but allowed transfer rates of up to 20 MHz (2.4 Mbytes
per second). In addition, ESDI had commands, for example, seek to track. Today,
1997, the ESDI interface is practically dead and has completely been crowded out
by the SCSI interface.

The disk drive model

On our way to understanding IDE we will make a stop to examine its predecessor, the
ST506 interface. Before we do this, however, we need to become acquainted with the
basic model of a disk drive. A hard disk drive stores information on a set of rotating
disks. The information can be written and read any number of times and the data
remains intact even after the drive is turned off.

14 Traditional peripheral interfaces

The term ‘hard disk’ most often refers to a drive with nonremovable media
although some removable media drives do use hard disks. A hard disk contrasts with
the flexible media used in floppy drives.

This model of a disk drive will say nothing about the exact method of writing to
the medium. This means that it will be valid for magnetic disk drives as well as
magneto-optical, diskettes, and removable media drives. CD-ROM and WORM
drives, however, do not fall into this category; these formats lack the ability to
rewrite information.

Organization of the medium

The disk assembly of a drive usually consists of a number of writable surfaces, each
of which stores data on concentric rings called tracks. The tracks are further divided
into sectors, which are the smallest readable/writable unit. A sector is accessed by
first positioning the read/write head above the proper track. The drive then waits
until the desired sector rotates underneath the head and reads the data. Writing and
reading the sector is done serially bit by bit.

A drive usually contains somewhere between two and eight disks, and both sides
of a disk can be utilized for storage. Each surface has its own read/write head
although only one track can be written to or read at a given time. The heads are posi-
tioned collectively over the tracks. A set of tracks that can be accessed by the heads
from a single position is called a cylinder. A consequence of this organization is that
every sector of the drive can be uniquely addressed by its cylinder, head and sector
numbers. This is referred to as the drive geometry (Figure 2.4).

Sector format

In order to identify the beginning of a track there is an interface signal called INDEX,
which issues a pulse at the precise moment when the heads reach this position. This
is where the first sector of the track begins. At the start of the other sectors another

Cylinders consisting of six
vertically aligned tracks

\\\\
7

T
///

/// . \\\\\\\
)

//////,
W

Seven tracks, Three disks with a
each divided total of six surfaces
into eight sectors

Figure 2.4 Structure of disk medium.

Hard disks and their interfaces 15

syrc Header pice syne 512 Bytes data {ECC| Gap 3
- |
Cylindar | Heae | Secier ‘ CRG |

| Syng

. Soft-sector format

|
Gap VFO Waita VFO
1
1

Index pulse _‘)
' 1
iiap HeaderJﬁgF’ 512 Bytes data ECC Ggp

CRC !
J

EEEXE)

Sector

Sync

Cylinder Ir'tad

Hard-sector format

Figure 2.5 Typical sector format.

interface signal, SECTOR, issues a pulse. If the sector pulse is generated by special
circuitry that senses the relative angular position of the disks, the drive is said to be
hard sectored. The drive is soft sectored if the beginning of the sector is actually read
off the medium by the heads.

A computer uses data in parallel; that is, bytes not bits. The disk formatter is a
chip, which in addition to identifying sectors by their sector number also takes the
serial data from the heads and groups it properly into bytes. The data separator sits
between the heads and the formatter chip. When data is read from the drive it gen-
erates an accompanying clock. Finally, the read/write amplifier circuitry amplifies
the analog signals to and from the heads. The electronics that pertain to actual
reading and writing of information are collectively referred to as the data channel.

A sector is made up of a number of different fields which are together referred to
as the sector format. Sector formats differ from interface to interface but a typical
format can be described as follows: first comes a field for synchronizing the data
separator followed by the address field. The address field contains the cylinder, head,
and sector numbers. With this information the controller verifies that it is reading or
writing the correct sector. After the address field comes the cyclic redundancy code
(CRC) checksum, which is used to check whether the address was read properly. All
fields up to this point are collectively referred to as the header. Now comes the data.
Here too a synchronization field is used, followed by the actual data of the sector. In
the place where the address field has a CRC checksum, the data has a number of
error correction code (ECC) bytes. The ECC allows the controller to test whether the
data has been correctly written or read. In addition a certain number of incorrectly
read bits can actually be corrected using this code. The sector ends with a gap used
to even out small differences in motor speed. The number of data bytes in a sector
corresponds to its formatted capacity. Typical formatted sector sizes are 512, 1024
and 4096 bytes. The header, ECC and gaps use up space for between 40 and 100
bytes, depending on the sector format (Figure 2.5).

16 Traditional peripheral interfaces

Formatting, reading, and writing

Only after the drive’s medium has been formatted is it usable for data storage. This
procedure involves writing not only the headers but also the data field. An arbitrary
data pattern is usually written along with the correct ECC. Normally the entire drive
is formatted at one time although soft sectoring allows a single track and hard sec-
toring a single sector to be formatted.

The reading of a sector is relatively simple. As soon as the head is positioned at
the correct cylinder, the desired head is chosen and the formatter chip reads headers
until the proper address comes by. The data directly following this header is the data
required.

Writing a sector is a bit more complicated. A write looks just like a read until the
proper header is found, then the amplifier circuitry switches from reading to writing,
and the new data, along with ECC, is written. A write-splice is located between the
header and the data field to allow time to turn on the write current.

Format characteristics

It is not necessarily the case that two sectors with adjacent addresses are.adjacent to
one another on the medium. The limited throughput of early drive controllers made
it necessary to employ certain techniques in the format design. The techniques dis-
cussed here are pertinent to IDE as well as SCSI.

interleave

Early drive controllers had a very small local buffer which held at most a sector’s
worth of data. This situation forces the controller to pass the data on to the computer
before reading the next sector. If this cannot be accomplished in the time it takes the
head to pass over the short gap between sectors, the controller must wait for a com-
plete revolution of the disk for the sector to come around again. For drives of this
era, this meant waiting 17 ms for the next sector. In order to avoid this delay, the
format of the track can employ an interleave to insure that there is enough time to
get ready for the next sector. With an interleave of two, for example, the sector with
the next adjacent address is two physical sectors away. This makes it possible to read
all sectors of a track with only two rotations of the disk while insuring that there is
ample time to pass the data to the computer. Older devices employed even larger
interleaves. An interleave of three means that two physical sectors lie between adja-
cent sector addresses. Modern controllers no longer use interleaving; they have data
buffers, which accommodate at least an entire track.

Track and cylinder skew

To obtain the highest throughput for transferring large blocks of data the controller
or operating system will place the data on a single track. If the data occupies more
than a single track then the track of the next head in this same cylinder is used, and

Hard disks and their interfaces 17

3
Index Index

Interleave 2 Track skew 1

Figure 2.6 Interleave and track skew.

so on, until the cylinder is full. The reason for this organization is that the time
needed to change heads is much shorter than the time needed to change tracks. Only
after the entire cylinder has been used must the heads be repositioned to the next
cylinder, where the procedure can begin again.

Even switching the heads, which is done electronically, can cause enough of a
delay to miss a sector. When the last sector of a track is read and the heads are
switched to begin a new track, the resulting lag may prevent the first sector of the
track being read. Waiting for an additional revolution (called ‘missing a rev’) can be
avoided by offsetting the first sector address by one or several physical sectors. This
feature is called track skew (spiral offset). Modern controllers, however, are usually
capable of a track skew of zero with the help of very fast data channel electronics.

The delay resulting from a seek from one cylinder to the next adjacent cylinder
is of the order of 2 ms. In this case as well, an offset can be employed to avoid
missing a rev. However, transfers of this size, across cylinder boundaries, rarely
occur. Therefore, the implementation of a cylinder skew is often forgone (see Figure
2.6).

Technical specifications

The physical drive model described above is the basis for the technical specifications
cited for disk drives. The most important of these are the capacity, transfer rate, and
average seek time.

Capacity

Two capacities are usually given for a drive. The unformatted net capacity is the
product of the number of bits per track, the number of cylinders, and the number of
heads. Its value is usually given in bytes and is independent of the sector format. The
formatted capacity, on the other hand, is directly dependent on the sector format
employed. Its value is the product of the sector size, the number of sectors per track,
and the number of heads.

18 Traditional peripheral interfaces

Transfer rate and throughput

Transfer rate refers to the speed at which bits are serially read and written to the
drive by the heads. It is simply the product of the number of bits on a track and the
number of rotations of the disk per second. The units are actually megabits per
second, but MHz is often used, which corresponds to one bit per Hz.

Throughput, the amount of data the drive can deliver or accept at the interface on
a sustained basis, can be estimated fairly accurately in the following way. Divide the
transfer rate by eight (giving the number of bytes per second). Take this result and
divide it by the interleave (in this context think of interleave as the number of revo-
lutions needed to read a track). Take off 10% of this value (for headers and so on),
and you are left with the approximate throughput of the drive in bytes per second.
Throughput, then, is a function of how quickly the medium can be written to and
read, plus formatting factors. A drive’s peak transfer rate, which is an instantaneous
rate, will be higher.

Average access time

The average access time has two components. The average seek time is the mean
time it takes to position the heads to a specific cylinder. In addition to this is the time
it takes for the desired sector to rotate under the heads. On average this is the time
for half a revolution. This second component, called the rotational latency, is by no
means insignificant. For a disk that rotates at 5400 rotations per minute it takes 11
ms for a complete revolution. This translates to an average rotational latency of 5.5
ms. The same drive may have an average seek time of 11 ms which means that rota-
tional latency accounts for about 30% of the average access time.

Where to put the interface

A hard disk is actually a subsystem of many components. First of all is the drive
mechanism, consisting of the medium, the heads, the analog data electronics, and the
head positioning electronics. This group is called the head disk assembly (HDA).
Next comes the data separator to digitize the analog signal data, followed by the for-
matter for parallelization of the data. The controller is in charge of orchestrating
reading and writing, along with positioning the heads. Finally, a host adapter is the
link between the controller and the host system (Figure 2.7).

Physically, the interface is the cable that connects the unit built by the drive man-
ufacturer to the computer. There are a number different possible locations along the
data channel where this cable can be placed in the design of a drive. The trend, as
SCSI’s success indicates, is to incorporate more and more functionality in the drive
itself. This moves the cable further from the heads, so to speak.

The ST506 interface lies between the analog data electronics and the data sepa-
rator. One result of this is that the controller determines the analog method of writing
data to the drive. In practice, two techniques are employed — modified frequency
modulation (MFM) and run length limited (RLL) — across the ST506 interface. The
ESDI interface moves one step from ST506 and incorporates the data separator into

2.4

ST506 19

| :
| Control .
l (2]
; : ! ‘ _g
1 | Formatter, H !
Data : * | 1| Host '
separator %ag; buffer,| : | adapter bE
intelligence | ! BC)
(controller) | : i 2
7}
-
17}
! o
: I
ESDI . '
SCSI | :
IDE } '
N

Figure 2.7 Various drive interfaces.

the drive. Next in line, SCSI packs the formatter and controller into the drive as well.
Finally, IDE integrates almost the entire host adapter onto its circuit board. This final
step has its disadvantages: by integrating the host adapter, the drive is compatible
with only one type of host system, in this case IBM PC compatibles. This approach
makes sense in the PC market due to sheer volume.

Summary

When we finally reach the SCSI standard later in the book, you will be introduced
to a model of a type of peripherals known as logical devices. In principle, any inter-
face, for instance any of those discussed so far, could be used with such a device.
For example, a RAM disk could be equipped with an ST506 interface. Of course, in
order for the RAM disk to simulate an ST506 device it would have to simulate
sectors with track, head, and sector number. In addition, a strategy would be needed
to prevent the data being lost when the device is turned off.

ST506

The ST506 interface lies between the read/write amplifier and the data separator.
The data separator is the component that generates a clock and a data signal from the
pulses stored on the medium.

Physical interface

ST506 can address up to four drives (Figure 2.8). Two cables, named A and B, are
used to make the connections. The A cable, which is a single cable, contains control
signals, and runs from drive to drive in what is called a daisy chain. The last drive
in the chain must contain terminating resistance. The B cable carries the analog
read/write data. Each drive has its own B cable. You can recognize a controller that
supports four drives by the connectors for a single A cable and four B cables. The
maximum cable length for ST506 is 3 meters.

20 Traditional peripheral interfaces

ST506 controller
B cable
TS
A cable
NN

i = t -i -\h
-
Terminator

Drive Drive Drive Drive
0 1 2 3

Figure 2.8 ST506 configuration.

Cables, connectors, and electrical specifications

The A cable is a ribbon cable with 34 connections. On the controller end of the
cable is a ribbon connector. The drives are attached using edge connectors. The
signals are single ended; 7438/7414 open collector drivers and receivers are used
(Figure 2.9).

For the first time, we meet the need for terminating resistors in an interface. The
signals of the A cable must be connected to +5 V across a 150 ohm resistor. The
resistors for all signals are usually incorporated in a single dual in-line package.
Since only the last drive may have termination, terminators are mounted in a socket
for easy removal.

_J__ +5 W

Terminator 150
7438 ohm 74LS14

) p‘j_

ST506 A cable

26L532

ST506 B cable

Figure 2.9 STS506 drivers and receivers.

ST506 21

Table 2.2 STS506 A cable signals.

Pin Name Signal Description
source

1,3.5.7,9, GROUND

11. 13, 15,
17,19, 21,
23,25,27,
29, 31, 33
2 REDUCED WRITE Controller ~ Once used to reduce write current, now bit
CURRENT/HEAD 3 of head number
SELECT 3
4 HEAD SELECT 2 Controller Bit 2 of head number
6 WRITE GATE Controller ~ Activates write current
8 SEEK COMPLETE Drive Indicates cylinder has been reached
10 TRACK 00 Drive Indicates heads are on cylinder zero
12 WRITE FAULT Controller ~ Write error
14 HEAD SELECT 0 Controller Bit 0 of the head number
16 ERROR RECOVERY Controller
18 HEAD SELECT | Controller Bit I of the head number
20 INDEX Drive Indicates beginning of track
22 READY Drive The drive is up to speed and ready for
read/write
24 STEP Controller The heads are to be moved by one cylinder
26 DRIVE SELECT 1 Controller ~ Drive | selected
26 DRIVE SELECT 2 Controller ~ Drive 2 selected
26 DRIVE SELECT 3 Controller ~ Drive 3 selected
26 DRIVE SELECT 4 Controller Drive 4 selected
34 DIRECTION IN Controller Selects direction for head movement

The B cable is a ribbon cable with 25 connections. Like the A cable, there is a
ribbon cable connector on the controller end and an edge connector on the drive end.
The signals here are differential. A 26LS31 and 26L.S32 pair is recommended as
driver and receiver. Since each drive has its own B cable there is no need to make
termination for these signals removable.

Signals

Tables 2.2 and 2.3 show the signal assignments for the ST506 cables. Every other
signal is ground, which acts as shielding.

Addressing

In order to choose a specific sector for reading or writing, the head, cylinder, and
sector number of the proper drive must be selected. There are four signals for
addressing drives on the ST506 interface labeled DRIVE SELECT 1. This means that
each drive has a dedicated select line.

In contrast to this, the four signals HEAD SELECT 0-3 select the track under one of
16 possible heads. HEAD SELECT 3 did not exist in the original specification; origi-
nally, this connection was used to control the amount of write current. The inner

22 Traditional peripheral interfaces

Table 2.3 ST506 B cable signals.

Pin Name Signal Description
source

1 DRIVE SELECTED Drive Drive is selected

2 GROUND Ground

3 RESERVED Reserved

4 GROUND Ground

5 RESERVED Reserved

6 GROUND Ground

7 RESERVED Reserved

8 GROUND Ground

9 NOT USED Not used

10 NOT USED Not used

11 GROUND Ground

12 GROUND Ground

13 + MFM/RLL WRITE DATA Controller Differential write data
14 — MFM/RLL WRITE DATA Controller Differential write data
15 GROUND Ground

16 GROUND Ground

17 + MEM/RLL READ DATA Drive Differential read data
18 — MFM/RLL READ DATA Drive Differential read data
19 GROUND Ground

20 GROUND Ground

tracks of a disk need less write current than the outer tracks. This signal became
unnecessary as disk drives themselves controlled the amount of write current.

The method for choosing a cylinder using the ST506 interface is identical to that
for floppy drives. A pulse on the STEP signal causes the heads to move one cylinder
in the direction indicated by the signal DIRECTION IN. The status signal SEEK COM-
PLETE indicates that this positioning of the heads has been completed. Another status
signal, TRACK oo, reflects whether or not the heads are on track 0, the outermost cylin-
der. Using this signal the controller can find track 0 by sending STEP pulses until
TRACK 00 is true.

The ST506 interface supports only soft sectoring. For this reason there is no
sector pulse among the signals; the desired sector is found by the address informa-
tion in the header. The INDEX signal is generated by the drive and indicates the
beginning of the first sector. It is used during formatting to align the sectors of the
different heads.

Clearly, an ST506 controller has a lot of responsibility in controlling the drive. The
method of positioning the heads is primitive and slow. The only advantage of the step
pulse approach is that the number of cylinders is unlimited.

Data encoding

In principle, many methods of data encoding can be used with the ST506 interface.
The encoding of the data results in pulses that can be written to the actual drive
medium. Originally, MFM encoding was used and more recently RLL encoding. Not
all ST506 drives can accommodate RLL, however, because typically a drive’s data
channel electronics are optimized for MFM.

ST506 23

The data rate for MFM encoding is 5 MHz, which corresponds to 625 kilobytes
per second. MFM drives have 17 sectors per track, each of 512 bytes. RLL allows a
data rate of 7.5 MHz. Here a track can hold 22 512-byte sectors. Therefore, the use
of RLL encoding increases the capacity of the drive by 50%.

Summary

A well-defined protocol layer or command set is not defined for the ST506 interface.
The bus timing definitions belong solely to the physical layer. ST506 is undeniably
device specific; it makes no sense to use it for anything other than a disk drive.

ST506 has its weak points. The low data transfer rate makes it nearly unusable
for higher performance drives. Other low performance characteristics include its
lack of commands and step impulse positioning.

Despite its shortcomings the ST506 used to be incorporated into systems far
beyond the PC domain. Even the IDE and SCSI interfaces show signs of their ST506
origins — you still see, for instance, a parameter to reduce the write current.

24

3 Computer buses

In contrast to the peripheral interfaces discussed so far, a computer bus is designed to
connect the various components within the computer. All computers utilize a number
of internal buses. These buses transport information between the system components
like the nervous system of an organism. The more complex a computer system, the
more exotic its buses can become (Figure 3.1).

The boundary between a bus and an interface is blurred at best. I consider it an
important characteristic of a bus to connect various devices of equal authority. By
this measure the IDE interface is excluded, as are all computer memory buses, for
that matter. The SCSI bus, on the other hand, clearly matches this definition of a bus.
Of course, the discussion of such border cases is purely academic.

The layer model for interfaces canalso be applied to computer buses. It is defined
by the physical interface, bus protocol and optional device model along with a
command set.

A computer bus is built from three basic functional blocks: addressing, data trans-
fer and control. In the literature you will frequently see block diagrams depicting the

Main _ Serial Parallel
memory interface interface

| [| []

Universal bus

CPU

Disk drive Tape drive
controller controller

Figure 3.1 Universal bus.

3.1

Characteristics of buses 25

address, data, and control bus as separate paths. However, since all three of these
components depend on the others we will always refer to a computer bus in its
entirety.

Characteristics of buses

There are a number of characteristics that make a bus well suited for a particular
application. The most important of these are the throughput, the address space, the
real-time performance, the electrical and mechanical characteristics, and the pro-
duction costs. The following sections examine these in closer detail.

Data throughput

Data throughput, also known as bandwidth, is the amount of information the bus can
transport per unit of time. It is measured in Mbytes per second. Two parameters
come into play in order to calculate the net throughput: the clock speed and the data
width. The clock speed tells how many data words are transferred per second. The
data width is the number of bits in one data word and usually corresponds to the
width of the bus. The net throughput is the product of the clock speed and the data
width. It is reduced by an appreciable amount by the bus protocol, otherwise known
as the protocol overhead.

For example, SCSI-1 supports a synchronous clock speed of 5 MHz; the bus
width is 1 byte. The resulting throughput is 5 Mbytes per second. Under SCSI-2,
fast-SCSI allows 10 MHz clock speed; the Wide-SCSI option allows a
4 byte bus width. Together they contribute to a 40 Mbyte per second throughput.

Address space

In order to transfer data in a meaningful manner, a method is needed to uniquely
identify the source and destination of the transfer. The identification is made using
an address, and the scheme is called addressing. The address space of a bus is
dependent upon the width of the address; that is, the number of bits in the address.
A bus with an address width of 16 bits uniquely identifies 2'® or exactly 65 536
locations.

For example, the Q-22 bus of a PDP-11 has an address width of 22 bits. It can
therefore address 4 Mbytes of memory. The ISA bus of IBM PC compatibles has 24
address bits and is able to address 16 Mbytes. Modern systems with 32 bit data buses
also have 32 bit address buses, corresponding to an address space of 4 Gbytes.

Real-time capabilities

Real-time systems are distinguished from other systems by their ability to react to an
external event within a given amount of time. This external event may occur at any
time. In addition the system may not be able to anticipate the exact moment. A real-

26 Computer buses

time system does not necessarily have to be very fast; however, its reaction time
must be predictable and, of course, adequate for the application. This predictability
usually means that a mechanism has been implemented to interrupt running
processes. A real-time capable /O bus must allow, for example, interruption of a
lengthy data transfer from disk to tape for an event with higher priority. A bus
without this capability could also be used for real-time applications, but only when
used for a single device.

Electrical characteristics

Two important attributes result directly from the electrical characteristics of a bus:
the maximum length of the bus and the integrity of the data. While the bus inside a
PC is only a few inches long, I/O buses more than 30 feet in length are often used to
connect computers and peripherals. When many such cables are in close proximity
to each other, as is often the case, data integrity is a major issue. A bus in a cable
duct needs to be less sensitive to electromagnetic interference than a bus that resides
inside a metal enclosure.

Mechanical characteristics

There are two basic ways to implement a bus physically. Internally, the individual
signals are usually part of a printed circuit board. Insertable boards use edge con-
nectors to link to the main bus of a system. The mother board of a computer
sometimes has a number of slots that are nothing other than bus connections for such
boards. Another type of board, referred to as a backplane, has no other circuitry than
that to connect together bus slots. Backplanes are common for the VME and ECB
buses. Recently entire PC systems have come on the market that reside on an
insertable board. These are inserted along with other boards into a backplane to form
a system.

The other type of physical bus is the cable. A bus cable is defined with regard to
its maximum length, resistance, whether it is shielded or unshielded and other less
important details. The bus cable connector is also very precisely standardized.

Production costs

An important factor in the mass production of PCs, workstations, and mass storage
devices is the associated production costs of the bus. As a rule of thumb, the more
signals a bus has, the more costly it becomes; the more sophisticated the control
logic, the more costly; the fewer items produced, the more costly. The success of
SCSI and IDE can be attributed above all to the availability of economical bus inter-
face components and the fact that a simple ribbon cable can be used to interconnect
devices. Moreover, peripheral manufacturers need to equip devices with at most two
connector types. Cost is also the reason why SCSI and IDE can coexist in the mar-
ketplace: IDE costs slightly less to manufacture than SCSI. In fact, this is often
reflected in the price of the IDE and SCSI versions of a particular drive model.

3.2

Specialized buses 27

Specialized buses

The ideal bus, then, would have a large address space, a maximal throughput, and
excellent real-time capabilities. There would be no constraints on its length and it
would be simple and inexpensive to produce. Unfortunately, such a bus is not even
theoretically possible, as the following example shows. A real-time system is char-
acterized by its reaction time to a particular event. This time is independent of,
among other things, the length of system buses. Since electrical signals travel with
finite speed, as the length of a bus increases so does the reaction time to any signal
on the bus. Therefore, it is impossible to design a bus of unconstrained length, which
at the same time guarantees an arbitrary reaction time.

For this reason a wide range of buses with differing characteristics have come
into existence, each for a particular application.

Memory bus

A memory bus connects the CPU or memory controller to memory. The main
requirement of this bus is high bandwidth since every CPU instruction and all data
must travel over this path. To meet this constraint, most memory buses are very
short. The address space of a memory bus is the physical address space of the com-
puter system.

The CPU of a MicroVAX, for example, has an address width of 32 bits. While
this corresponds to an address space of 4 Gbytes, the system physically accommo-
dates only 16 Mbytes. Consequently, the memory bus could be implemented using
only 24 address lines.

A memory bus need not implement any real-time or interrupt capabilities. The
division of labor is well defined among system components: the CPU makes a
request, the memory reads or writes the information. By my definition of a bus at the
beginning of this chapter, the memory bus is not a bus at all since in this case the
devices do not have equal authority over one another.

/O bus

AnT/O bus connects the CPU with the I/O devices. Here the requirements are some-
what different. The I/O bus must be able to support a variety of devices. It must be
able to handle slow as well as fast devices. In addition, there must be a method for
determining which device may use the bus when more than one requests use of it.
This mechanism is called arbitration. Depending on the application, an I/O bus must
also be capable of near real-time performance. This can be extremely important in
the area of computer controlled systems. One need only look at the example of a
nuclear reactor: it is imperative that the CPU be informed the moment some partic-
ular event occurs. All other I/O processes must be suspendable. An /O bus that
allows this must employ interrupt and event priority mechanisms.

28 Computer buses

/O adapter

I/O bus

/0 adapter

Figure 3.2 Computer system with multiple buses.

Universal bus

Many less sophisticated computer systems use a universal bus to link together the
CPU, memory and I/O devices. The goal here is to find the best compromise
between bandwidth, real-time capability, and production cost. Examples of univer-
sal buses include the ECB bus, VME bus and the ISA bus of IBM AT compatibles.
The older PDP 11/73 with its Q-22 bus is another example. In this light, Figure 1.1
can be viewed as a simplified block diagram of an IBM AT. Figure 3.2 shows the
structure of a more complex system, the VAX 8800, with several specialized buses.

Part 1l

The IDE interface

Background

The physical IDE interface

IDE protocol

The model of an IDE disk drive
IDE commands

The ATAPI interface

O O N A

4.1

Background

Several common expressions for the IDE interface are currently in use. IDE stands
for Integrated Disk Electronics. Another popular name is the AT bus interface, which
refers to the fact that the integrated electronics within the drive emulate the hard disk
controller of an IBM AT computer. However, when used out of context, this name
can be confusing, since the term ‘AT bus’ is also used for the system bus of the IBM
AT. The official name for the IDE interface is AT-Attachment (ATA).

In this book, the name IDE will be used when discussing interfaces in general.
When the ANSI standard is meant, the term ATA will be used. The system bus of IBM
AT compatible computers will always be referred to as the ISA bus.

ATA is administered by the X3T9.2 ANSI working group, the same group that is
responsible for the SCSI standard.

The origin of IDE

The development of the IDE interface began in 1984, stimulated by the Texan com-
puter manufacturer, Compaq. The idea was to embed the hard disk controller of an
IBM AT compatible on the disk drive. Compaq contacted the controller manufac-
turer, Western Digital, in California. They were to produce an ST506 controller that
could be mounted directly on the disk drive and connected to the system bus via a
40 pin cable. In 1985, the disk manufacturer, Imprimis (CDC), integrated this con-
troller into its hard disk drives. Thus, the first IDE disk drive was built and installed
in a Compaq computer system.

Other hard disk and computer manufacturers recognized the advantage of IDE.
Not only was the increase in the cost of the disk drive negligible, but there was a
great saving on the hard disk controller. Gradually, more and more IDE implemen-
tations were developed, and with them, the various deviations of the industry
standard.

ATA

As a consequence, a committee of the X3T9.2 working group of ANSI began to deal
with the problem in October 1988. As its first project, the common access method

31

32 Background

4.2

(CAM) committee put forward a suggestion for the normalization of the IDE inter-
face. The new name for the IDE interface was ATA. This standard has now been
approved under the name of X3.221-1994.

ATA-2

However, development did not stand still. The ATA-2 standard was approved in
autumn 1995. It offers higher transfer rates and some new commands. This book is
based on the ATA-2 standard. Differences against the original ATA (which will be
called ATA-1 when differentiation is needed) are shown in the appropriate places.

ATAPI

Parallel to the development of ATA-2, a completely different development took
place: ATAPI. This was developed with the aim of operating devices other than hard
disks at the IDE interface. ATAPI uses IDE as a physical interface, but the com-
mands used are SCSI commands. Today, the ATAPI interface is mainly used with
CD-ROM drives.

ATAPI development is led by Western Digital. Meanwhile, two standardizing
institutions have made proposals for a standard: the Small Form Factor committee
has proposed SFF8020, and the ATA working group of ANSI is preparing a proposal
too.

ATA-3

The latest development in the domain of the IDE interface is the ATA-3 proposal of
ANSI. ATA-3 does not offer a further increase in speed, but offers new commands
and more precisely defined procedures. Integration of ATAPI into ATA-3 is under
discussion.

EIDE

At the time of writing (summer 1995), there is much confusion about EIDE (Enhanced
IDE). One cannot really talk about a standard; actually, it is a combination of various
features in different variations. Some manufacturers use EIDE to denote the faster
transfer modes which have, however, partly been already specified in ATA-1, and then
completely in ATA-2. Others call EIDE the capability of addressing more than 504
Mbytes with its own PC BIOS. This too is contained in ATA-1. Others again call their
ATAPI CD-ROMs EIDE drives. Finally, there are controllers with two IDE channels.
They can be used to attach a total of four drives and are also marketed under the EIDE
label. As you can see, when you are faced with EIDE, you had better look carefully at
what you are offered.

Overview

The essential functions of the IDE interface have already been described in Part I.
Nevertheless, much new ground will be covered in this part. Figure 2.7 shows the

Overview 33

Formatter, Data
® e data buffer separator
® @ controller
£ =
i -
< 2
]
a D
- (=]

I
Microprocessor Drive control electronics

Figure 4.1 IDE drive block diagram.

fundamental shift in the function of IDE, from serving the host to serving the periph-
erals. Also shown is how the IDE controller has been embedded physically into the
peripheral unit. The only components left from the IDE bus adaptor in the IBM AT
are a few driver and decoder components. It is this aspect where the IDE resembles a
system bus more than a peripheral interface. The similarity between the IDE and a
system bus will be described in more detail when the physical interface is discussed
(Figure 4.1).

Despite its similarity to a system bus, IDE is not referred to as an I/O bus, because
the universal addressing required to access various different units is lacking. IDE
can only serve one or two hard disks, and allows only one host access to the disks.

IDE adapter

In this section two possible configurations for the IDE bus are introduced. The first
(Figure 4.2) is the standard configuration of IDE, consisting of an interface board,
also called an IDE adapter, installed in a host with an ISA or EISA bus. Two IDE

‘ Host system
ISA bus
IDE adapter
IDE interface
Master Slave
drive drive
(Drive 0) (Drive 1)

Figure 4.2 IDE configuration for AT compatibles with ISA bus.

34 Background

4.3

disk drives connect directly to the IDE adapter. It should be noted that with such an
adapter, the IDE interface cannot be operated at a higher speed than that allowed by
the ISA bus, that is, 8.3 Mbytes per second.

IDE controller

The second configuration has been recently gaining success (Figure 4.3). A host
adapter is installed in a host with basically any system bus that serves the hard disk
through the IDE interface. Products for the PCI bus fall under this configuration.
However, in this configuration, the major advantage of the IDE bus, not needing an
expensive host adapter, is lost. For the same cost, an equally effective SCSI host
adapter can be used, supporting not only hard disks but also many other types of
devices. The hard disk IDE version remains an option only because of the price,
which at present is slightly less than the SCSI version.

Host system
Host bus
Host adapter
_ IDE interface
Master Slave
drive drive
(Drive 0) (Drive 1)

Figure 4.3 IDE configuration for AT compatibles without ISA bus.

The drive with address O is the master drive; the drive with address 1 is the slave
drive. In normal operation the two drives operate independently of each other. The
master/slave relation only comes into play, for example, at system start-up, or after
a reset. Since both connected drives contain a complete controller, commands arrive
simultaneously at both controllers which, on the basis of the drive addressing bit of
the drive register, decide which of them is actually addressed.

Documentation

The draft for the ANSI standard ATA is called X3.221-1994. It is available, like the
SCSI standard, either in printed form or electronically through the SCSI mailbox.

Documentation 35

The addresses and telephone numbers, including a short description of the mailbox,
can be found in Appendix D. A short summary of the contents and an example from
the proposed ANSI standard are given in Figures 4.4 and 4.5.

Scope
L1 Description =i ClLauses

1

2. References

3. General Description

3.2 Structure

4. Definitions and Conventions
4.3 Conventions

Interface Cabling ®egu vemsrnis
Configuration
Addressing Considerations
DC Cab.e and ilomnscior

w N

.4 I/0 Connector
I/0 Cable

Physical Interface
Signal Conventions

-~ o o O o L1 U U LU N
wm

2 Signa. Summnary
3 Signal Descriptions
Logical lnuariace
Generac-
.2 I/0 Register Descriptions

Programming Requirements
Reset Response
Trans_ate Mode
Power Conditions
Error Posting
Command Descriptions
L1 Acknowledge Media Change (Removable)

O WO 00 00 0 W 0 I
e O N

etc
9.32 HWrite Verif
10. Protocol Overview
0.2 PIO Da:s In Commands
10.2 PIO [aia Out Commands
10.3 won-Zals Commands
10.4 Miscellaneous Commands
10.5 DMA Data Transfer Commands (Optional)
R Timing
12,2 Deskewing
1.2 Symbols
1.3 Terms
tl.s oota Transfers
1.5 Power On and Hard Reset

Figure 4.4 Contents of the ANSI proposal for ATA.

36 Background

10.1 PIO Data In Commands
This class includes:

- Identify Drive
Read Buffer

Read Long

Read Sector(s)

Execution includes the transfer of one or more 512 byte
Long) sectors of data from the drive to the host.

a) The host writes any required parameters to the Features,
Sector Number, Cylinder and Drive/Head registers.

(512

bytes on Read

Sector Count,

b) The host writes the command code to the Command Register.

c) The drive sets BSY and prepares for data transfer.

d) When a sector of data iz available, the drive sets DRQ and clears BSY
prior to asserting INTRQ.

e) After detecting INTRQ, the host reads the Status kKeyistcr, then reads one
sector of data via the Data Register. In response to the Status Register
being read, the drive negates INTRQ.

f) The drive clears DRQ. If transfer of another sector is required, the drive
also sets BSY and the above sequence is repeated from 4d).

10.1.. PIO Read Command

i-a) -+- b) --+ - B + +- @) ma-------- +

|Setup | Issue | | Read ITransfer| | Read ITransferi

| | Command| IStatus!| Data |:::::::IStatusl Data |

4 r ' 3 ' - Ammm - . Rl

| ragvoa IBSY=1 I1BSY=0 | IBSY=1 IBSY=0 I IBSY=1
' IDRDY =1 I I [
IDRQ=1 1 IDRQ=0 IDRQ=1 IDRQ=0
|Assert |INegate | |Assert INegate
L Img; | INTRQ | IINTRQ | INTRQ
If Error Status is presented, the drive is prepared to transfer data, and it
is at the host’s discretion that the data is transferred.
10.1.2 PIO Read Aborted Command

+- a) -+- b) --+ v-oe) -+

ISetup | Issue | | Read |

| | Command | IStatus|

o= Bttt + o= +

IBSY=0 IBSY=1 IBSY=0 |

IDRDY =1 | |
IDRQ=1 IDRQ=0
|Assert|Negate
| INTRQ | INTRQ
Although DRQ=1, there is no data to be transferred under this condition.

10.2 PIO Data Out Commands
This class includes:

Format

Write Buffer

Write Long

Write Sector(s)

Execution includes the transfer of one or more 512 byte
Long) sectors of data from the drive to the host.

a) The host writes any required parameters to the Features,
Sector Number, Cylinder and Drive/Head registers.

The host writes the command code to the Command Register.
The drive sets DRQ when it is ready to accept the first se

(512

b)
c)

bytes on Write

Sector Count,

ctor of data.

Figure 4.5 Sample page from the ANSI proposal for ATA.

5 The physical IDE interface

5.1

The electrical interface

The ATA standard for the IDE interface encompasses both the signal cable and the
power supply leads.

Signal cable and connectors

The IDE interface uses a 40-pin ribbon cable. The length of the cable may not nor-
mally exceed 46 cm (18 inches). Cable connectors, which are crimped on, are used
both at the host end and at the disk drive end of the cable. Table 5.1 gives the most
important specifications for ATA-2. Almost all signal lines use TTL drivers and
receivers, except for the signals DASP, PDIAG, 10CS16 and SPSYNC:PSEL.

For 2.5-inch hard disks, a 44-pin cable is used which carries both the signals and
the power supply voltages. The disk drive end uses a 50-pin Dupont connector. Two
of the six additional pins are removed for coding; the remaining two can be used by
the manufacturer as jumpers for setting the drive number. In Table 5.3, the additional
pins are marked by an underlying dark gray shade. Please note that pins A-F are
present only on the connector, not on the cable.

Finally, since ATA-2, a 68-pin plug-in connection is defined which uses the same
connections as the PCMCIA interface. The signals are arranged in such a way that
they mostly correspond to the PCMCIA assignments. Although these two interfaces
are not identical, a PCMCIA device in an ATA slot must not be damaged and vice
versa. Up to now, I am not aware of any product that uses this pin assignment. But
since it is also contained in the ATA-3 proposal, the industry must believe that it will
make its way.

Table 5.1 Cable parameters for 0.5 m cable length.

Parameter Minimum Maximum
Drive sink current at +5 V 12 mA
Driver leakage current for logical 1 —400 uA
Capacitive load 25pF

37

38 The physical IDE interface

Table 5.2 Supply voltages for IDE drives (AMP connector).

Pin Signal
1 +12V
2 Ground
3 Ground
4 +5V
Supply voltages

The power supply to the disk drives is also covered by the ATA standard. Provision
is made for the 4-pin AMP connector familiar to users of 5.25-inch disk drives. The
ATA-1 standard also mentions a 3-pin Molex connector which is, however, no longer
present in ATA-2. Table 5.2 shows the specifications for the power supply.

Signals

The ATA standard specifies signals by their names as well as by their abbreviations.
Both the signal name and its abbreviation are written in capital letters. As elsewhere
in this book, I use small capital letters when referring to names and signals specified
by the standard. The signals are listed in Table 5.3. Signals that are low active are
indicated by a bar over the name of the signal. The direction of data flow is given
with respect to the disk drive: IN means to the drive, and OUT means from the drive.
Bidirectional data lines are designated I/O.

® Cso: This signal selects the command register block. It is generated from the ISA
bus addresses by the IDE bus adapter and is active when an I/O port address
between 1FOh and 1FFh is being accessed. In ATA-1, this signal is called CSTFX.

® CS1: This signal selects the control register block. It is generated from the ISA bus
addresses by the IDE bus adapter and is active when an I/O port address between
3FOh und 3FFh is being accessed. In ATA-1, this signal is called CS3FX.

These two signals are the reason why an IDE disk drive still requires an adapter to
interface with the ISA bus. Of course, it would also have been possible to reproduce
the address lines of the ISA bus on the IDE cable, but this would have caused it to
exceed the capacity of a 40-pin cable. The solution to this problem is thus a com-
promise between the desire to achieve full integration of the disk drive with the
controller and the desire to use the smallest and least expensive cable possible.

® DAo through DA2: These signals are taken directly from the ISA bus addresses.
They select one of the registers from the command or control register block.

® DASP: This signal fulfills two distinct functions. Immediately after the system is
powered up, or after a reset, disk drive 1 should assert this signal to indicate that
it is present. This process is described in more detail in Chapter 6. In normal
operation, this signal indicates that the selected disk drive is active, and is used
for the disk drive activity display.

The electrical interface 39

Table 5.3 IDE interface pin assignments.

Name Source Signal Pin Pin Signal Source Name

Vendor-specific A B Vendor-specitic

Vendor-specitic c D Vendor-specific

N.C. (Coding Pin) E F N.C. (Coding Pin)

RESET 1 RESET 1 2 Ground Ground

DATA BUS BIT 7 /0 DD7) 4 DDY 1/0 DATA BUS BIT §

DATA BUS BIT 6 1/0 DD6 a 6 DpDY /0 DATA BUS BIT 9

DATA BUS BIT 5 1/0 DDS 7 8 DDIO 1/0 DATA BUS BIT 10

DATA BUS BIT 4 1/0 DD+ 9 10 ppni 1/0 DATA BUS BIT 11

DATA BUS BIT 3 1/0 DD3 BISSSlES DDI2 1/0 DATA BUS BIT 12

DATA BUS BIT 2 1/0 DD2 ISR DDI3 /0 DATA BUS BIT 13

DATA BUS BIT | 1/0 DDI ISR DDI4 /0 DATA BUS BIT 14

DATA BUS BIT 0 I/0 DDO RGN DD 5 1/0 DATA BUS BIT 15

Ground Ground 19 20 N.c. (Coding Pin)

DMA REQUEST (6] DMARQ 21 22 Ground Ground

1/0 WRITE 1 DIOW 23 24 Ground Ground

1/O READ 1 DIOR 25 26 Ground Ground

1/0 CHANNEL READY O IORDY 27 28 SPSYNC: SPINDLE SYNC or
CSEL CABLE SELECT

DMA ACKNOWLEDGE | DMACK 29 30 Ground Ground

INTERRUPT REQUEST O INTRQ BURNSPR 10CS 16 (0] 16 BIT 1/0

ADDRESS BIT 1 | DAl 33 34 rppIAG PASSED DIAGNOSTIC

ADDRESS BIT 0 I DAO BSOSO DA2 I ADDRESS BIT 2

CHIP SELECT 0 I CS0 SISRY Csi I CHIP SELECT 1

(CSIFX) (CS3FX)

DRIVE ACTIVE/ (e} DASP 39 40 Ground Ground

DRIVE | PRESENT

+5V (Logic) 41 42 +5V (Motor)

Circuit Voltage Ground 43 44 TYPE TYPE

pDo through DDIs: These signals are taken directly from the ISA bus data lines.
They are used in the transfer of data to the register block and to the disk drive.

® DIOR and DIOW: Handshake request for read or write access to the disk drive reg-
ister.

DMARQ and DMACK: Handshake signals for the transfer of data between host and
disk drive. Since DMA is an optional feature, so are these signals. In ATA-2, the
electrical implementation of DMACK has changed with respect to ATA-1 (ATA-2:
5.2.9).

INTRQ: This signal triggers an interrupt in the host.

1ocsie: This signal tells the host that a 16-bit data transfer is occurring; otherwise
the transfer is 8-bit using the data lines DDo to DD7. However, it only applies to
register accesses to the data register, not to other registers and also not to DMA.
If 8-bit DMA is implemented, this is specified in the feature register.

10RDY: This signal is optional. When it is not implemented, it should be set to high
impedance. If it is implemented, a low level indicates that the controller is

40 The physical iDE interface

5.2

momentarily denying access to the registers, and that the host must delay its
access cycle.

® pDIAG: This signal is part of the power-up protocol. It indicates to the master drive
that the slave drive has completed its self-test.

® RESET: This signal from the host resets both disk drives. It forces an initialization
to occur identical to that after power-up.

The signal SPSYNC shares a line with the signal CSEL. The implementation of both
signals is optional, but only one of the two can be used. Both drives must be using
the signal for the same purpose, otherwise drive behavior is unpredictable. This is a
potential source of errors.

® spsyNC: This signal is vendor specific since drive synchronization only makes
sense if the two disk drives that are communicating are identical. The only spec-
ification for this signal is that the master drive is the signal source and the slave
is the receiver.

® cseL: This optional signal allows a disk drive to change its number. If it is
attached to the disk drive interface, the disk drive is the master drive and has the
number 0; otherwise it is the slave drive and has the number 1. In this way it is
possible for both drives to modify their numbers without anything needing to be
changed on the drives themselves.

Timing specifications

Data can be transferred over the IDE interface in one of two ways: via programmed
I/O (PIO) or via direct memory access (DMA). In this chapter on the physical inter-
face only the timing of these transfer methods is discussed. The higher level
description of the interface, for instance how the host sets up the transfer, is consid-
ered as part of the protocol level and is discussed in Chapter 6.

A preliminary remark about the timings listed: the ATA standard defines three
operating modes for PIO and DMA. Mode O is the normal mode, and is also the
slowest. The parameter list of the command IDENTIFY DRIVE tells which operating
mode the controller has implemented. The exact timings of all operating modes have
not been listed in this book. These are necessary only if you wish to build an IDE
controller, in which case the newest version of the ATA standard should be obtained.
Table 5.4 lists cycle times and achievable data rates of the different modes.

Two important facts can be seen from this table: firstly, DMA is not necessarily
faster than PIO. All depends on the currently selected mode. In multi-tasking
systems, however, the processor could perform other tasks during a multi-word
DMA. If the device driver is written in such a way, DMA is advantageous at least in
heavily loaded systems. Secondly — as shown by Detlef Grell in his article
‘Geschwindigkeitsrausch’ [Speed ecstasy] in c’t (August 1995 issue) — the
8.3 MB/sec that can be reached with PIO mode 2 is still sufficient to serve the fastest
disks currently available. These supply a sustained transfer rate of about 6 MB/sec.

Timing specifications 41

Table 5.4 Cycle times and data rates of different DMA modes.

Mode 0 I 2 3 4

PIO cycle time 600 ns 383 ns 240 ns 180 ns 120 ns
Data rate 3.3MB/sec 5.2 MB/sec 8.3 MB/sec 11.1 MB/sec 16.6 MB/sec
Single-DMA cycle 960 ns 480 ns 240 ns

Data rate 2 MB/sec 4.1 MB/scc 8.3 MB/sec

Multi-DMA cycle 480 ns 150 ns 120 ns

Data rate 4.1 MB/sec 13.3 MB/scc 16.6 MB/scc

The data rates are taken rom the article *Quellen und Senken™ {Sources and sinks] by Andreas Stiller, ¢ (August 1995).
The gray-shaded boxes are already defined in ATA-1.

You may be wondering about PIO modes 4 and 5. They transmit faster than the
ISA bus from which IDE is derived. Thus, these modes cannot be used with simple
ISA bus adapters. They are reserved for ISA controllers for faster host bus systems,
such as PCL.

P1O data transfer

All accesses to the controller register are executed via PIO. This includes the read-
ing of status and error information, the setting of parameters and the writing of com-
mands. However, even read and write operations can be carried out via the datareg-
ister using PIO or DMA. It is called PIO because, in contrast to DMA, every access
must be individually programmed. A simplified timing diagram for a PIO access is
given in Figure 5.1.

For a PIO data transfer, the host first puts the addresses on the address lines.
These are the signals CS1FX, CS3FX and DA0-DA2. After 70 nanoseconds (ns), it asserts
the signal DIOR for read access or the signal DIOW for write access. Simultaneously,
it indicates with the signal 10CSi6 whether it wants an 8-bit or a 16-bit transfer. For
a write access, the host places the data on the data lines; for a read access, the con-
troller supplies the data. This data must be valid by the time DIOR (in the case of a
read) or DIOW (in the case of a write) is negated. The data is then read in by the host

Cycle time 600 ns (mode 0)

Address

valid _// Re 2
DIOR

DIO yd /
Data 14

valid \

Figure 5.1 Timing diagram for PIO data transfer.

42 The physical IDE interface

Cycle time 960 ns (mode 0)

DMARQ / : \ /

pmack _ / | /

go

9
ps)

L

Data kY
valid / Y

Figure 5.2 Timing diagram for single-word DMA.

or the controller, depending on the direction of the transfer. Shortly thereafter, the
address, data and 10CS16 lines must be released, and the cycle is complete. This
entire cycle normally lasts 600 ns, but the specification also includes faster modes
with cycle tin.es as fast as 240 ns.

Single-word DMA

Apart from the initial request, DMA transfers take place without intervention by the
CPU. This is advantageous above all in multi-tasking systems; while one process
waits for its I/O access to be completed, the CPU is free to do computations for other
processes. Figure 5.2 shows the simplified timing diagram for a single-word DMA.

In what follows, the sequence of events involved in a read access is described; a
write access works in an analogous way. The host asserts the DMARQ signal to initi-
ate a DMA transfer. The IDE controller replies by asserting DMACK. Within 200 ns,
the host releases the DMARQ signal and asserts DIOR for 480 ns. The controller must
then immediately set the data signals because data is gated on the falling edge of
DIOR. At the same time, the controller may remove its DMACK signal. After 50 ns, the
data bus is released and the host can begin the next cycle. A cycle takes between 240
and 960 ns, depending on the operating mode used.

Multiple DMA transfers

DMA really begins to pay off only with multiple DMA. This is the case because the
CPU need issue only one transfer request to initiate a sequence of many data
accesses. Figure 5.3 shows the simplified timing diagram for multiple DMA. Once
again, a read access is used as an example. The cycle begins in exactly the same way
as with a single-word DMA, up to the point where the transfer of the first word is
complete and the data lines are once again free. Unlike in the single-word case,
however, the host does not stop asserting the DMARQ signal, and in response the
DMACK signal also remains high. About 200 ns after the host negates DIOR, it asserts
it again, and the next transfer begins. During the transfer of the last data word, while
DIOR is asserted, the host removes the DMARQ signal. The transfer request is over
when this last transfer is completed.

Timing specifications 43

© —— Cycle time 480 ns (mode 0)

DMARQ ;o J
DMACK N / ‘\;_f
DIOR ‘/—\ /—L
DIOW - v

Data /—\—/—\
valid .

Figure 5.3 Timing diagram for multiple DMA transfers.

44

6 IDE protocol

6.1

The register model of the IDE controller

The register model of the IDE controller describes how the controller appears to the
host system. The IDE interface mediates between the host and the controller. The
controller belongs to the description of the interface and the ATA standard. I have
included the register model in this chapter on protocol because the status bits play a
very important role in the protocol.

To the host system, the IDE controller essentially looks like the ST506 controller
of the original IBM AT. There are, however, a few additional features. The host sees
an IDE controller as two blocks of I/0 registers. They lie in the I/O space of the ISA
bus rather than in the memory address space. Here they could occupy addresses
between 0 and FFFFh but PC compatible computers restrict the I/O space to 0 to
3FFh. The command register block is used to send commands to the disk drive and
to exchange data. The control register block is used for disk control. The command
register block is often called the AT task file, although I avoid this terminology.

The two register blocks are differentiated by the lines €50 and cS1 (ATA-1: CS1FX
and CS3FX). CSO is derived from the ISA bus and, as its former name suggests, is
active when an address in the range 1FO-1FF is accessed. Analogously, CSiis active
when an address in the range 3F0-3FF is accessed. Whether the signals are actually
decoded in this way, however, is up to the IDE adapter card. It is often possible to
choose an alternative address range for the two register blocks using a jumper. In this
way, it is possible to have more than one IDE interface in a single computer.

In some cases the same address is used to access multiple registers in order to
save I/O address space; during a read the address refers to one register, during a
write to a different register. Table 6.1 gives an overview of both register blocks.

The data register (1FOh, read/write)

The data register is used to exchange 8- or 16-bit data words between the host and the
disk drive buffer. The signal 10cs16 indicates a 16-bit access. Transfer of data using
this register is called PIO because the computer must retrieve each word of data indi-
vidually. Data transfers may also be accomplished using DMA.

The register model of the IDE controller

45

Table 6.1 IDE command and control register.
Addresses Name and function
CSIFX DA2 DAO Read access Write access
Command register block
1 0 0 Data register Data register
1 0 1 Error register Feature register
1 0 0 Sector count register Sector count register
1 0 1 Sector number register Sector number register
Sector number or block Sector number or block
address 0-7 address 0-7
1 1 0 Cylinder register 0 Cylinder register 0
Cylinder 0-7 or Cylinder 0-7 or
Block address 8-15 Block address 8-15
1 1 1 Cylinder register | Cylinder register |
Cylinder 8-15 or Cylinder 8-15 or
Block address 16-23 Block address 16-23
1 1 0 Drive/head register Drive/head register
Drive/head number or Drive/head number or
block address 24-27 block address 14-31
1 1 1 Status register Command register
Control register block
0 I o 0 Not used Not used
0 -] 0 1 Not uscd Not used
0 0 0 Not used Not used
0 0 1 Not used Not used
0 1 0 Not used Not used
0 1 1 Not used Not used
0 1 0 Alternate status register Control register
0 1 1 Reserved Not used
0 1 1 (ATA-1: Address register)

The error register (1F1h, read)

After power-up, reset or the execution of the command EXECUTE DRIVE DIAGNOSTICS,
this register contains a diagnostic code. The diagnostic codes are listed in Chapter 8

together with the command EXECUTE DRIVE DIAGNOSTICS.

If the ERR bit in the status register is set, then this register contains the error code
of the last executed command. In this case, the contents of the register are as follows

(Table 6.2):

® ATA I: BBK (bad block detected): Set if an error mark is detected in the header of
the requested sector. In ATA-2, this bit is reserved.

Table 6.2 IDE error register.
7 6 5 4 3 2 | 0
BBK UNC MC IDNF MCR | ABRT | TKONF | AMNF

46

IDE protocol

® UNC (uncorrectable data error): Set if an error was detected in the data field of the
requested sector and this error could not be corrected by the ECC. The data is
unusable.

® MC (media change): A replaceable medium was changed since the last access.
This is not an error but a signal to the host to take appropriate measures (for
example, to reset the software cache) so that the new medium can be used.

© IDNF (ID not found): The controller could not find the address field of the requested
sector. Either it is damaged or a sector was requested that does not exist.

® MCR (media change requested): Signals to the host that the user has pressed the
button that initiates a change of medium. It is now up to the host to take the nec-
essary steps (such as completing any pending I/O requests) and then to issue a
MEDIA EJECT or DOOR UNLOCK command.

® ABRT (aborted command): The command was interrupted because it was illegal or
because of a disk drive error.

® TKONF (track O not found): Track O could not be found during the execution of a
RECALIBRATE command. This is usually a fatal error.

® AMNF (address mark not found): The data region of the requested sector could not
be found.

The feature register (1F1h, write)

This register is not used with all disk drives. In accordance with the ATA standard,
it is used to set certain features of the interface using the command SET FEATURES.

In the case of a normal ST506 controller for the IBM AT, this register contains
the cylinder number divided by four, indicating where the write precompensation
begins. A few older IDE controllers, which do not conform to the ATA standard,
expect to find this number here as well.

The sector count register (1F2h, read/write)

This register contains the number of sectors to be read or written. The value 0 is
interpreted as 256. If an error occurs, this register contains the number of sectors yet
to be transferred.

A few commands use this register for other purposes. Refer to the description of
commands INITIALIZE DRIVE PARAMETERS, FORMAT TRACK and WRITE SAME in
Chapter 8.

The media address registers

The following registers, sector number register, cylinder number register and drive
register, contain the media address of the block to be processed. In this book, I refer
to this group of registers collectively as the media address registers. Their impor-
tance varies depending on whether the system uses physical or logical addressing
(see Chapter 7).

The register model of the IDE controller 47

In ATA-1, the address registers contain the constantly updated media address. In
ATA-2, this is no longer the case. Only when an error has occurred do the media
address registers contain the address of the block where the error occurred.

The sector number register (1F3h, read/write)

This register contains the number of the first sector to be transferred. In logical block
address (LBA) mode it contains byte 0 of the logical block number.

The cylinder number register (cylinder low register, 1F4h,
cylinder high register, 1F5h, read/write)

This pair of registers contains the cylinder number. The ATA standard allows
65 536 cylinders to be addressed. Earlier IDE controllers use only bits 0 and 1 from
the high byte of the cylinder address (1F5h), which limits the number of addressable

cylinders to 1024. In LBA mode, the register holds bytes 1 and 2 of the logical block
number.

The drive/head register (1F6h, read/write)

This register contains the drive number, head number and addressing mode. It is
broken down as follows (Table 6.3):

Table 6.3 IDE drive/head register.

‘ 7 6 5 4 3 2 1 0
1 L 1 DEV | HS3 HS2 HSI HSO
(DRV)

® Hso-Hs3 (head select 0-3): Head number. In LBA mode these bits represent the low
four bits of byte 3 of the logical block address. The high four bits are always 0.

® DEV (device): Device number. Device 0 is always the master device. ATA-1: DRV
(drive): same meaning.

® [(LBA mode): When this bit is set LBA addressing is being used; otherwise the
usual cylinder/head/sector (CHS) method is being used (see Chapter 7).

The status register (1F7h, read)

The status register contains the status of the disk drive as of the last command. A
read access to this register clears pending interrupt requests (see protocol). To avoid
this, one can read the alternate status register (3F6h, read). Both status registers
consist of the following fields (Table 6.4):

® Bsy (busy): If BSY is set, no other bits in the status register are valid. BSY is always
set when the controller itself is accessing the command register block. During this

48

IDE protocol

Table 6.4 IDE status register.

7 6 S 4 3 2 1 0

BSY | DRDY DF DSC DRQ [CORR | IDX ERR

time the host may not access any of the other registers in the command register
block.

® DRDY (drive ready): Indicates that the drive is ready to accept a command. When
the drive is first switched on, DRDY remains clear until the drive is ready for oper-
ation.

® DF (drive fault): Indicates an error on the drive. (ATA-1: DWF (drive write fault):
write error.)

® DsC (drive seek complete): Indicates that the heads are positioned over the desired
cylinder.

After a command resulting in an error, BSY, DF and DSC remain unchanged until the
status register is read. Afterwards they will reflect the drive’s current status.

® DRQ (data request): This bit is set when the drive wants to exchange a byte with
the host via the data register.

® CORR (corrected data): This bit is set if a correctable read error has occurred. The
data transfer continues uninterrupted.

® DX (index): This bit is set once per rotation of the medium, when the index mark
passes under the read/write head.

® ERR (error): Indicates an error has occurred in the process of executing the previ-
ous command. The error register contains further information.

The command register (1F7h, write)

This register receives the commands that are sent to the controller. Execution of the
command is started immediately after writing the command register. The commands
and their parameters are part of the command level of the interface model and are
described in Chapter 8.

The alternate status register (3F6h, read)

This register contains the same information as the status register. However, a read
from this register has no effect on pending interrupt requests (see the IDE protocol).
Thus youcanread this register at any time without having to worry about side effects.

The device control register (3F6h, write)
Two bits are defined in this register (Table 6.5):

® SRST (software reset): As long as this bit is set, the attached disk drives are in the
RESET state. When this bit changes to 0, the drives are executing a start-up procedure.

6.2

Command execution 49

Table 6.5 IDE control register.

7 & 3 4 3 2 1 0

- - - 1 - t SRST | TEN 0

® 1EN (interrupt enable): This bit is negative true. A O signifies that interrupts are
allowed; a 1 blocks them.

The drive address register (3F7h, read)

This register is no longer defined in ATA-2; it should not answer when accessed. In
ATA-1, it contains constantly updated information about the execution of the current
command. The head-number information is not always correct for drives using
caching and mapping. All bits in this register are negative true (Table 6.6):

Table 6.6 IDE address register.
I7 6 5 4 3 2 1 0 |

- | WTG | Hs3 | Hs2z | HS1 | HS0 | DSl | DSo

® WTG (write gate): If this bit is clear then a write access is currently taking place
on the selected drive.

® HS3-HSo (head select 3-0): Inverted current head number of the selected disk
drive.

® DSi(drive 1 selected): When this bit is O the slave drive is selected.

@ DsSo (drive O selected): When this bit is O the master drive is selected.

Command execution

There are five protocols for the execution of IDE commands. In ATA-1, these were
called command classes 1-5.

Pl protocol (class 1): read commands with PIO

Read commands are commands that involve the reading of the sector buffer one or
more times. A PI (PIO In) protocol command is executed in the following way. The
host first writes any required parameters to the address and feature registers. It then
writes the opcode to the command register to begin execution (Figure 6.1).

The drive sets the BSY bit in the status register and puts data for the transfer into
the sector buffer (see Chapter 7). When the sector buffer is ready, the drive sets the
DRQ bit and clears the BSy bit. It simultaneously asserts the signal INTRQ.

The host then reads the status register, whereupon the drive negates INTRQ. The
DRQ bit tells the host that it may now read 512 bytes (or more in the case of the READ

50 IDE protocol

Haad
status

Set u . -
Host regis‘.gr Send Raad sactor Aead || Read sestor
block command buffer J status || buffer
Drive Read IRaad !
saclor sechcr

BSY

L
oRDY T L
oRQ | — —
INTRQ] [1

Figure 6.1 Timing of a PI protocol command.

LONG command) from the sector buffer. This read is then performed according to the
timing specifications described in Chapter 5.

As soon as all the data in the buffer has been read, the drive resets the DRQ bit.
After all of the requested sectors have been read the command is complete.
Otherwise, the drive again sets the BSY bit and prepares the next sector for transfer.

In the event of an error, the drive still attempts to prepare the sector buffer for a
read but also sets the corresponding error bit in the status register. It is then up to the
host to decide whether or not to read the sector buffer despite the error.

Things are different when a command is aborted. In this case, the drive resets the
DRQ bit immediately after the host has read the status register, and no data is transferred.

PO protocol (class 2): write commands with PIO

PO (PIO Out) commands are write commands. Thus the first thing that must happen
is that the sector buffer must be filled with 512 bytes of data (or more in the case of
WRITE LONG). Figure 6.2 shows the sequence of steps involved in executing this
command. In this example, two sectors are being written.

First, the host places the necessary parameters in the appropriate registers of the
command register block. It then waits until the DRDY bit is set and writes the opcode
to the command register.

At this point, the drive sets the DRQ bit in the status register and thereby signals
that it is waiting to receive data. The host writes the data via the dataregister to the
sector buffer. When the sector buffer is full the disk drive sets the BSY bit and clears
DRQ.

As soon as the data in the buffer has been processed (for example, been written
to the medium), the drive clears the BSY bit and sets INTRQ. This signals to the host
that it should read the status register. Once this has happened, the drive resets INTRQ.

If only one sector is to be written the command is now complete. Otherwise, if
the write involves multiple sectors, the drive again sets DRQ and the next sector is
processed.

Command execution 51

Host ?;;i;g, | Send Write seclor Read ”Write sector |Read
black command | buffer status - butter I status
e L -
Drive Wite Witta |
sector sectar
BSY J—
1
T
DRDY o | : :
DRQ - _]
\
INTRQ - _‘

Figure 6.2 Timing of a PO protocol command.

In the event of an illegal command the drive does not set DRQ after the command
has been written, but instead indicates that status is to be read by setting INTRQ. The
host can then examine the error bits of the status register.

ND protocol (class 3): commands without data transfer

Commands not involving data transfer (ND: No Data) do not use the sector buffer.
Nevertheless, such commands may involve an exchange of information between
drive and host. This exchange of information is accomplished by reading and writing
registers.

Here the sequence of steps is more simple. The host writes the necessary para-
meters to the controller registers and writes the opcode to the command register. The
drive sets BSY and executes the command. When it finishes it writes status to the
status register, resets BSY and sets INTRQ. The host then reads the status, the drive
clears INTRQ and the command is complete.

DM protocol (class 4): commands with DMA data transfer

This class is comprised of only two optional commands, one for reading and the
other for writing. Although DMA transfers involve more work for the processor
before and after each transfer, the processor is completely free during the transfer.
Also, during the transfer of multiple sectors, an interrupt occurs only at the end of
the entire transfer, not after each sector. This is especially advantageous in multi-
tasking systems where the processor can utilize the time it gains through DMA. The
execution of DMA commands can be broken down into three phases (Figure 6.3).

In the command phase the host first initializes a DMA channel. It then writes the
parameters and opcode to the controller registers, just as in the PIO case. The drive
sets BSY and executes the command.

In the data phase the DMA channel transfers the data using the DMARQ handshake
sequence. The contents of the controller’s registers are not valid during the data phase.

52

IDE protocol
Host Set up || S€t vp \ fose] Ny
DMA comrmand Carry out DMA ese 8
and registers DA | stalus
Drive Read + Read
| sector sector
L
BSY
Undefined
DRDY i | __Undefined I
iEN

6.3

Figure 6.3 Timing of a DM protocol command.

The drive then begins the status phase by triggering an interrupt. In response the
host resets the DMA channel and reads the status and (if necessary) the error register.

In case of error the status phase may occur before the data phase or interrupt it,
since the drive requests an interrupt the moment the error occurs.

VS protocol (class 5): vendor-specific protocol

There are a few commands that do not fit neatly into the above classifications
because their execution protocols differ slightly from those described above. These
differences are explained together with the commands in Chapter 8.

Power-up or hardware reset

The same sequence of steps is executed after both power-up and a hardware reset.
The procedure varies slightly depending on whether one or two disk drives are
present.

The timing diagrams require a few words of explanation. All signals are repre-
sented as active high even when they are marked as inverted by a bar above their
names. This makes the diagrams simpler to understand. In reality, that is, on an oscil-
loscope or a logic analyzer, these signals would appear inverted.

The timing diagrams are not drawn to scale. Thus, it is possible that an event
lasting 400 ns might appear to be as long as one lasting 450 ms. Important times are
also included in the diagram. For complete specifications consult the most recent
ATA standard.

Reset in a single-drive system

The host activates the signal RESET for at least 25 ps. It should be noted that the host
is responsible for a RESET after the system first powers on and all system voltages

Power-up or hardware reset 53

,r'f I
RESET N,
BSY _Drive 0 _/ Y
DASP —
N _,u'
BSY Drive 1 ’
PDIAG y /
DASP
b, /

Figure 6.4 Timing at power-up or RESET.

have stabilized. At most 400 ns after RESET goes low again the master drive sets the
BSY bit in the status register. At most 1 ms after that, the drive negates DASP and
carries out its self-test. Simultaneously, it observes DASP for 450 ms to see if a slave
drive is present. Since a slave will not be found the master is able to use DASP to indi-
cate drive activity. As soon as the master drive has completed its self-test and is
ready to accept commands it resets the BSy bit. All of this must occur within 31
seconds.

Reset in a two-drive system

Before the ATA standard there was no standard way of determining whether a slave
drive was present or not. Often the master drive was equipped with a special jumper
for this purpose. Such drives may be incompatible with drives using the ATA
protocol described here.

Both ATA compliant drives negate DASP at most 1 ms after RESET is negated. The
master drive detects the existence of a slave within 400 ms after RESET by examin-
ing DASP. Prior to this the slave negates PDIAG thereby indicating that it has begun its
self-test.

When the self-test is finished and the slave drive is ready to accept commands it
asserts PDIAG. This must occur no more than 30 seconds after the reset. If the master
drive does not recognize the slave within 31 seconds it concludes that an error has
occurred and sets bit 7 in the error register.

The slave drive should negate DASP within 30 seconds of receiving the first valid
command (Figure 6.4).

The Conner protocol

Many drive manufacturers use special protocols for detecting a slave drive, which
differ from the ATA protocol sketched above. One such protocol, that used by
Conner Peripherals, is discussed here.

54 IDE protocol

When the slave powers up it activates the signal PDIAG within 1 ms. (If the master
does not see PDIAG within 4 ms, it assumes that no slave drive is present.) PDIAG
remains active until the slave clears its BSY bit or until 14 seconds have elapsed. If
the slave is still not ready it stops asserting PDIAG but continues asserting BSY. Before
clearing its Bsy bit, the master waits until the slave clears PDIAG, but does not wait
longer than 14.5 seconds.

The same procedure is followed for a software reset; however, here the slave must
clear the PDIAG signal within 400 ms.

7/ The model of an IDE disk drive

7.1

When examined briefly, the model of an IDE disk drive corresponds to that of an
ST506 drive. This is not at all surprising given that IDE is a direct descendant of
ST506. However, the IDE model of the ATA standard contains a number of signifi-
cant improvements over its predecessor.

Organization of the medium

The medium of an IDE drive is organized by head (surface), cylinder and sector. An
IDE drive can have 16 heads, 1024 cylinders and 256 sectors. The ATA standard
even permits up to 65 636 cylinders. A sector normally contains 512 bytes of usable
data. These sectors are addressed in one of two ways.

What is a megabyte?

Before we go on, a brief remark on the definition of megabyte and gigabyte. In
principle, two different indications are used. A kilobyte is 1024 bytes; thus, a
megabyte should be 1024 kilobytes, that is, 1 048 576 bytes. Similarly, a gigabyte
should be 1024 megabytes. For the specification of disk capacities, however, it has
become common practice to use the ‘decimal’ mega and giga. A ‘decimal’ megabyte
is 1000 kilobytes, and a ‘decimal’ gigabyte 1000 megabytes. To comply with
majority rule, in this chapter we will use the ‘decimal’ notation and indicate the
correct values in parentheses.

Physical addressing (CHS mode)

In CHS mode the cylinder, head and sector number uniquely identify a given sector.
IDE comes from ST506, which always has 17 sectors of 512 bytes each per track.
For this reason many IDE drives with more than 17 sectors utilize either a native or
translated mode of addressing. In the native mode the drive geometry is presented as
it physically exists to the host. In the translated mode the physical geometry is
mapped to a logical one. The logical geometry has 17 sectors but with a greater
number of logical heads so that the total capacity is the same.

55

56 The model of an IDE disk drive

IDE drives use a linear mapping for physical addressing. This means that con-
secutive sectors begin at cylinder 0, head 0, sector 0. This track is used first, then
head 1 of the same cylinder and so on until the entire cylinder is used. This is then
repeated for the next cylinder number with head 0. This mapping must be known to
the host since the IDE interface has commands that transfer as many as 256 sectors
at one time.

Another aspect of IDE that perhaps belongs to the drive model is that average
access time within a given track is shorter than when a head switch must occur. A
head switch, on the other hand, takes less time than a change of cylinders. This is
not necessarily true in translation mode. Here a head switch may take place within
a logical track access.

In CHS mode, a disk can have a maximum of 65 535 cylinders, 16 heads and 256
sectors. With a sector size of 512 bytes, this corresponds to a capacity of 136 (127)
gigabytes.

Logical addressing (LBA mode)

In this mode the drive presents itself as a continuous sequence of blocks which are
addressed by their logical block number. In this case the drive’s physical geometry
need not be known to the host.

In LBA mode, 28 bits can be used for the logical block address. Thus, 228 blocks
can be addressed. As with CHS addressing, this results in a theoretical upper limit
of 136 (127) gigabytes per IDE medium.

The ATA standard specifies that the mapping from physical geometry to logical
block numbers should be accomplished in the following manner:

LBA := (CylinderNumber * HeadCount + HeadNumber) *
SectorCount + SectorNumber - 1

This mapping assures that the time needed to access from LBA nto LBA n + 1
is shorter than from LBA n to LBA n + 2. In other words, the logical blocks are also
in sequential order in terms of access time. This is important for the host because it
means that large blocks of data will be written and read in the shortest possible time
if the logical blocks are continuous.

Zone-bit recording

Using such a mapping, be it translated physical or logical addressing, it is now pos-
sible to employ drives that do not have the same number of sectors per cylinder for
the entire surface of the medium.

This leads to a recording technique that makes possible an increase of up to 50%
in capacity without special heads or medium. In order to describe this technique,
known as zone-bit recording, we need to talk a bit about disk recording in general.
The composition of the magnetic surface of the disk and the type of the heads used
determine the maximum recording density in flux changes per millimeter. For the

Organization of the medium 57

purpose of our discussion here, we can think of a flux change as corresponding to a
bit written to the disk. Using traditional recording methods, it is the innermost track
that determines the maximum number of flux changes per track, but since the cir-
cumferences of the tracks increase as one moves away from the center, the number
of flux changes that can be accommodated also increases. Zone-bit recording makes
it possible to take advantage of this by increasing the number of flux changes in
outer tracks. This is done by dividing the medium into several regions, in each of
which the number of sectors per track is constant. The innermost region has the least
number of sectors per track while the outermost region has the greatest. The regions
in between bridge the two extremes. In this way the ideal of maximal flux density is
approached and the capacity is significantly increased. A side effect of this is that the
data rate of the medium increases from the inner tracks to the outer tracks. This,
however, is an aspect that only the drive electronics has to deal with, not the IDE
interface. The ST506 cannot accommodate zone-bit recording since the data comes
directly from the heads and would therefore come at varying rates.

Capacity limits

It has already been mentioned twice that the IDE interface can physically handle
disk drives of up to 136 (127) gigabytes. However, in the PC and MS-DOS world,
there are several restrictions to this.

The 528-Mbyte limit

The first restriction comes from the PC BIOS and applies to disks that are to be used
without a special software driver. The BIOS allows 1024 cylinders, 16 heads and 63
sectors. With 512 bytes per sector, this results in a capacity of 528 (504) Mbytes. In
order to use a disk drive with more than 1024 cylinders, an adapter can map the
addresses and make the host see exactly 1024 cylinders, but more sectors.
Surmounting the 528-Mbyte limit with special drivers or an adapter-specific BIOS
is often perceived as a part of EIDE. In practice, however, this possibility has always
been there.

The 8-Gbyte limit

A second capacity limit is introduced by the disk interrupt INT 13h and the partition
tables of FAT-based operating systems. This also applies to disks which are not
addressed by the BIOS but by special drivers. INT 13h and the partition tables can
manage 1024 cylinders, 256 heads and 63 sectors. This results in a capacity of 8.4
(7.7) GBytes. The small number of only 1024 cylinders, together with the high
number of 265 heads will often need mapping. The 8-Gbyte limit applies not only
to IDE disks, but also to SCSI disks. It is, however, limited to operating systems such
as DOS, Windows 3.x and Windows 95. UNix, OS/2 and Windows NT use different
media structures and therefore have other (higher) capacity limits.

58 The model of an IDE disk drive

7.2 Defect management

The definition of the IDE interface and also the ATA standard specify no precise
rules for dealing with errors. There are, however, two basic approaches that may be
employed.

Defective sectors may be marked as such during formatting. Exactly how this is
to be done is left up to the manufacturer. When the sectors are read they are recog-
nized as defective and dealt with appropriately.

The second approach reallocates defective sectors. This is possible with trans-
lated physical addressing or logical addressing only. Here a specific area of the drive
is reserved for replacement sectors. When a sector is identified as defective, it is for-
matted in a particular way. Multiple copies of the replacement sector’s address are
written in that defective sector, so that it can be read in any case. In this way it is

_possible to present the host with an apparently defect free medium at all times.

Care must be taken in order to keep the access time of a reallocated sector to a
minimum. Bear in mind the relevant time relationships: a revolution takes 11 ms, a
track-to-track seek about 2 ms, the average seek time is 11 ms, and a head switch
takes approximately 1 ms. Since a seek is most costly, it makes sense for each cylin-
der to contain several replacement sectors for that cylinder. This approach avoids
seeks altogether.

Better still is the approach where each track has a sector for defect management.
However, if the defective sector is simply reallocated to the reserve sector this is still
not optimal. Figure 7.1 describes the situation. In order to read sectors O through 2,
one must first read sector O and then wait almost an entire revolution until the re-
placed sector 1 is reached. Afterwards one must wait until sector 2 finally revolves
underneath the heads to be read. The entire procedure takes 1/ revolutions although
only % of a revolution is needed for reading; in other words, an entire revolution is lost.

2 5

1 &

0O [Reserve

Before

1 4

2 5]
Dafect ’. 5 Detfact 5

Poor Better

Figure 7.1 Strategies for sector reallocation.

7.3

The sector buffer 59

The following is an approach that minimizes the access time to reallocated
sectors. A replacement sector is reserved for defect management for each track.
When a defective sector is found it is marked as such, and all subsequent sectors of
the track are shifted by one. In this way even after the reallocation access to a con-
tinuous sequence of sectors can take place without losing a revolution. In addition,
a number of replacement cylinders are also reserved for reallocation purposes. In the
event that a track is found to have more than a single defective sector then the entire
track can be reallocated.

The sector buffer

The sector buffer is used as a temporary storage for all read and write operations.
This decouples the rate at which data is exchanged with the host and the rate at
which data is written and read from the medium. This is necessary since a sector
must always be written or read as a whole.

In the simplest case the sector buffer is an area of RAM on the IDE controller. If
the buffer can only be used to exchange data with the medium or the host, one speaks
of a single ported buffer. A buffer that is able to receive data from the host and write
data to the disk simultaneously is referred to as a double ported buffer (Figure 7.2).

A double ported buffer must be able to hold more than a single sector. Only after
an entire sector has been received will the controller begin to write the data to the
medium. If during that time the buffer is able to receive additional data from the host
the throughput of the system is significantly improved.

As a further example, assume that we are reading a number of sequential sectors. A
drive with a single ported buffer is forced to use an interleave, otherwise a subsequent

3 4
2 5 2 5
1 6 Register Register
block blogk
O«__7
) Pracessed
Containg l Faints to !
I Sectar ‘ Sector
buffar buffer
L
l Processed l Processed
Host Host

Figure 7.2 Single and double ported sectors.

60 The model of an IDE disk drive

7.4

sector will be lost by the time the host reads the first sector. This approximately
halves the throughput of a double ported buffer, where the host can read the first
sector during the time the second sector is read from the medium.

A double ported buffer looks like a sector buffer to the host in that it contains the
data of the current sector. In a sense the sector buffer is a window through which the
host and medium exchange data. The window is constantly shifted so that the data
always corresponds to the current contents of the address register. Figure 7.2 makes
these relationships clear.

The communication between the sector buffer and the host takes place either
byte- or word-wise via the data register of the controller (PIO). Optionally, direct
memory transfers are possible using DMA.

Power conditions

The ATA model of an IDE disk drive includes various power conditions. An IDE
drive can be put into energy saving states of differing levels. This is an important
capability in view of the increasing number of notebook and portable computers.
Table 7.1 shows the possible states and the corresponding status bits. The status bits
have already been explained in Chapter 6. In ATA-1, there used to be an additional
REST state which no longer exists in ATA-2.

In the SLEEP state the drive is turned on, but uses as little power as possible. Only
through a RESET can the drive be brought into the active state again. Since in this
state the motor may be turned off, a medium access may take as long as 30 seconds.

In the STANDBY state the IDE interface is capable of accepting commands. Here
too the motor may be turned off, so a medium access may take up to 30 seconds.

In the IDLE state the motor is on and the drive is able to react to commands imme-
diately. However, certain portions of the drive electronics may be turned off for
power savings if this will cause only minimal delay for a medium access.

Finally, the ACTIVE mode is the normal state of the drive. Commands are executed
in the shortest possible time in this state.

Table 7.1 Power conditions for IDE drives.

Power condition BSY prRoY Interface Medium
SLEEP X X no no
STANDBY 0 | yes no
IDLE 0 | yes yes
ACTIVE X X yes yes

The standby timer

With the standby timer, the drive can decide atits own discretion to switch from the
IDLE state or the ACTIVE state to the STANDBY state. Using CHECK POWER MODE the host
can determine in which of the two states the drive currently resides.

8 IDE commands

8.1

In this chapter, all the key IDE commands defined in the ATA standard are intro-
duced briefly. The commands are listed in Table 8.1. Among these, ten are
mandatory. The others may be optionally implemented, but then only in accordance
with the ATA standard. There are a couple of differences between ATA-1 and ATA-2.
Some mandatory commands of ATA-1 are now optional, and some valid commands
of ATA-1 are now reserved as obsolete. These differences are shown in the ATA-1
and ATA-2 columns which use the codes R for reserved, O for optional, V for
vendor-specific and M for mandatory.

The table gives the command name, followed by the opcode. The mandatory
commands of ATA-2 are shown on a gray-shaded background, and the column
labeled Prot. designates the command protocol used. The last five columns show
which control register is used for parameters. Included are FR (feature register), SC
(sector count register), SN (sector number register), CN (cylinder number register),
and DH (drive/head register). D in the DH column means that only the disk drive
number is used; D* means that disk drive O is addressed, but both disk drives execute
the command.

Some commands have a second opcode in parentheses. These opcodes were
established by the industry prior to the ATA standard and are still in use. Conner
drives use these earlier opcodes.

In addition, some manufacturers implement optional commands that are often
very useful. A good example of this would be a command to read the defect list. In
any case, it is always a good idea to consult the drive handbook when planning a
large project.

Mandatory commands

EXECUTE DRIVE DIAGNOSTICS (90h)

This command is always issued to disk drive O, but initiates the internal diagnostics
of both disk drives. After the diagnostics have run, the BSy bit is cleared and an inter-
rupt given. The results can then be retrieved from the error register. However, the
contents must be interpreted with the aid of the special error codes listed in Table
8.2. Please note that under ATA-1, this command was executed in a different way.

61

62

IDE commands

Table 8.1 IDE commands of the ATA standard.

Command Registers

Command name Opcode ATA-1 ATA-2 Pro.. FR SC SN CN DH
ACKNOWLEDGE MEDIA CHANGE DBh (0] (0] VS D
BOOT POST-BOOT DCh (0] (0] VS D
BOOT PRE-BOOT DDh (0] (0] VS D
CHECK POWER MODE 98h (ESh) O (0] ND * D
DOOR LOCK DEh (0] (0] VS D
DOOR UNLOCK DFh (0] (0] VS D

R (0] P@ o * D

DOWNLOAD MICROCODE 92h

FORMAT TRACK

o 97h (E3h)
IDLE IMMEDIATE 95h (Elh)

ND &
ND

lvRw)

cooX

MEDIA EJECT EDh

R (0] ND D
NOP 00h R (0] ND e
READ BUFFER E4h (0] (0] Pl D
READ DMA (with and without retries) C8h, C9h (0] (6] DM * ¥ * ¥
(READ DRIVE STATE) E%h (0] R ND *
READ LONG (with and without retries) 22h,23h M O PI L

(0] 0] Pl * ok Ok

READ MULTIPLE Cdh

RECALIBRATE Ixh

(0] ND D
(REST) E7h (0] R VS *
R

(RESTORE DRIVE STATE) EAh (0] VS *

ND *

SET FEATURES EFh

WRITE SAME E%h (0] PO *

0 (0] D

SET MULTIPLE MODE C6h (0] (0] ND e D
SLEEP 99h (E6h) O (0] ND D
STANDBY 96h (E2h) O (0] ND * D
STANDBY IMMEDIATE 94h (EOh) O (0] ND D
WRITE BUFFER E8h (0] (0] PO D
WRITE DMA (with and without retries) CAh,CBh O (6] DM * ¥ * *
WRITE LONG (with and without retries) 32h, 33h “ (0] PO * * * e %
WRITE MULTIPLE C5h (0] (0] PO . L * = e
O B ES ES ES

WRITE VERFY 3Ch O (0] O & L -

Table 8.2 Error codes for EXECUTE DRIVE DIAGNOSTICS.

Code Device 0 Device |

Olh OK OK or not connected
00h, 02h—7Fh defective OK or not connected

81h OK defective

80h, 82h—FFh defective defective

Mandatory commands 63

IDENTIFY DEVICE (ECh)

The command IDENTIFY DEVICE is of special interest. After receiving this commmand,
the drive writes a parameter block with information about the drive in the sector
buffer. This parameter block is sometimes called configuration sector. It is read in
the normal way from the sector buffer by the host.

This command has changed in many regards from ATA-1 to ATA-2. First of all,
in ATA-1 it is still called iDENTIFY DRIVE. Then there are a number of parameters in
the parameter list which have a meaning in ATA-I, but are marked as obsolete in
ATA-2. However, since there are still large numbers of devices around that conform
to ATA-1. I have put both standards next to each other.

Table 8.3 shows the structure of the parameter block. It consists of 255 16-bit words.
The parameter words used in ATA-2 are shown on a gray background. Column 3 shows
the ATA-1 meaning and, in parentheses, the changes made in ATA-2. Reserved
parameter words must be filled with 00h. The parameter words that are marked as
obsolete in ATA-2 are considered vendor-specific. Thus, they may contain a value.

Table 8.3 Parameter list of the IDENTIFY command.

Word ATA-2 ATA-1 contents (changes in ATA-2)

2 Reserved Reserved

4 Obsolete Bytes per track unformatted
Obsolete Bytes per sector unformatted

7-9 Vendor-specific Vendor-specific

20 Obsolete Buffer type
2 Obsolete Buffer size in 512-byte segments

48 Reserved Bit 0: double word [/O possible

50 Reserved Reserved

64 IDE commands

Table 8.3 Parameter list of the IDENTIFY command (cont.).

Word ATA-2 ATA-] contents (chages in ATA-2)

69—] 27 Reserved Reservd
128-159 Vendor-specitic Vendor-specific
160-255 Reserved Reserved

Some of the fields require further explanation. First, word O is a bitwise-coded
word with configuration parameters. Table 8.4 illustrates the meaning of the
individual bits. In ATA-2, of all these specifications, only the distinction between
hard disk and changeable media in bits 6 and 7 has remained. All other specifications
are obsolete. They are a hangover from ST506: drive internals that an IDE driver
does not have to be concerned with.

The geometry values given in words 1 to 6 refer to the default mapping, which is
usually physical addressing without translation. The current geometry of the disk
drive is found in words 54 to 58.

A new item in ATA-2 is a configuration word which contains coded information
on different capabilities of the drive. This field is explained in Table 8.5.

The following values are defined for the buffer type only in ATA-1: 0001h stands
for a one-way buffer implemented for a single sector, 0002h stands for a two-way
buffer of several sectors, and 0003h indicates a read cache. In ATA-2, this word is
obsolete.

Table 8.4 Configuration bits for IDENTIFY data.

ATA-2 Bit Meaning
- 0 Reserved
- 1 Hard-sectored drive
- 2 Soft-sectored drive
- 3 Encoding other than MFM
- 4 Head switching time 15 ps
- 5

Spindle motor control implemented

G 8 " Datarate to 5 MHz

- 9 Data rate between 5 and 10 MHz
- 10 Data rate above 10 MHz

- 11 Motor speed tolerance above 0.5%
- 12 Data clock offset available

- 18 Track offset available

- 14 Speed tolerance gap necessary

- 15 Reserved

Mandatory commands 65

Table 8.5 Capability word for IDENTIFY data.

Bit Meaning
0-7 Vendor-specific
8 DMA commands supported
z) LBA mode supported
10 IORDY may be deactivated
1 IORDY is supported
12 Reserved
13 Standby timer available
14 Reserved
15 Reserved

INITIALIZE DEVICE PARAMETERS (91h)

Using this command, the disk drive geometry can be configured. This is accom-
plished by loading the number of sectors in the sector count register and the disk
drive number and number of heads in the drive/head register.

This command also allows a drive to be switched from native to translated phys-
ical addressing. According to the ATA-1 standard, the parameters do not have to be
checked. If they are incorrect, the next disk access will result in an error. However,
many drives use the default values when incorrect parameters are given for this
command. In ATA-2 an ABORTED COMMAND error must be reported.

READ SECTORS (20h with and 21h without retries)

This command reads the number of sectors given in the sector count register. A
value of 0 means 256 sectors. The address of the first sector is given in the address
register. An interrupt follows each sector that is read. If the heads are not over the
desired track, they are positioned automatically. After the command is executed, the
address register holds the address of the last sector read.

In case of error the action taken depends on whether the command was issued
with or without retries. Without retries the command will be aborted and the IDNF bit
set in the error register if the correct sector is not found in two revolutions.
Otherwise repeated attempts will be made to read the proper sector. The number of
repeated attempts is vendor-specific.

When the sector is found, the start of the data field is expected within a given
number of bits. If it is not found, the command is aborted with an AMNF bit in the
error register.

If a correctable ECC error occurs, the corresponding bit is set in the error regis-
ter, but the command is not aborted. Only uncorrectable ECC errors lead to a
command being aborted.

After a command is aborted, the address register contains the address of the sector
in which the error occurred. The sector buffer could contain damaged data.

READ VERIFY SECTORS (40h with and 41h without retries)

This command reads the requested sectors, but no data is transferred. It only verifies
(hence the name) whether or not the sectors are readable. The response to an error is
identical to that of the READ SECTORS command.

66

IDE commands

8.2

SEEK (7xh)

Under ATA-1 this command instructs the drive to position the heads over the cylin-
der given in the address register, and to switch to that head. Under ATA-2, it is
vendor-dependent whether any actions are triggered by this command and, if this is
the case, which ones. Since the READ and WRITE commands explicitly position the
head, the SEEK command is rarely needed.

WRITE SECTORS (30h with and 31h without retries)

This command behaves exactly like READ SECTORS, except that the data are written
instead of read.

Optional commands

ACKNOWLEDGE MEDIA CHANGE (DBh)

This command applies only to changeable media. In ATA-1 it clears the MC bitin the
error register. The operating system uses this to acknowledge that the media change
has been recognized. In ATA-2 the action triggered by the command is vendor-spe-
cific.

BOOT — POST-BOOT (DCh)

This command applies only to changeable media. In ATA-2 the action triggered by
the command is vendor-specific.

BOOT — PRE-BOOT (DDh)

This command applies only to changeable media. In ATA-2 the action triggered by
the command is vendor-specific.

CHECK POWER MODE (98h, E5h)

With this command, the host can determine whether the drive is in an IDLE or
STANDBY state. This is necessary since the drive can go to STANDBY on its own,
which, under certain circumstances, can cause a delay of up to 30 seconds for the
first command.

If the drive is in STANDBY or transitioning to this state, it replies with the value
00h in the sector count register. In the IDLE state, the drive replies with FFh in the
sector count register.

DOOR LOCK (DEh) and poor uNnLock (DFh)

These commands, which are for removable media drives, close and lock, and unlock
and open the door. New in ATA-2: when the door is closed, the DOOR LOCK command

Optional commands 67

returns a GOoD state if the button for manual door opening has not been operated.
Otherwise, an error with the MCR bit set must be reported.

DOWNLOAD MICROCODE (92h)

This command is new in ATA-2. It allows you to modify the firmware of the device.
The number of transferred bytes is a multiple of the sector length. The sector count
register contains the upper bits, the sector number register the lower bits of the 16-
bit data length counter. Thus, between 0 and 33 Mbytes (approximately) of firmware
can be transferred. The feature register specifies how the new firmware is to be used:
a value of 01h means that the firmware is to be used immediately and up to the next
reset. A value of 07h specifies that the new firmware is used immediately and
forever.

FORMAT TRACK (50h)

In ATA-2 this command is vendor-specific; no further assertions are made with
regard to its implementation. Therefore I describe how it is implemented in ATA-1.
Although in ATA-1 the command is mandatory it is left to the manufacturer
exactly what will be performed. Some drives format the track from scratch, others
initialize only the data area of the sectors, others do nothing at all. The ATA standard
recommends that drives should at least write the sector with a data pattern. In this
way formatting will always erase all data, which is desirable for security reasons.

The command formats an entire track. The sector count register, the cylinder
number register, and the drive/head register must be loaded with the address of the
track, then 256 16-bit words must be transferred to the sector buffer. Afterwards, the
drive sets BSY and executes the command.

The codes written to the sector buffer have the meaning shown in Table 8.3.
Whether or not the drive uses these or instead uses its default parameters is up to the
manufacturer.

A data word should be written to the sector buffer for each sector, with the
remainder filled with Os. Each data word contains the sector number in the upper
byte. If an interleave is called for, it is suppressed. The lower byte holds the code
that indicates how the sector should be formatted. Table 8.6 lists the possible codes.

Table 8.6 Codes for FORMAT TRACK.

Code Format

00h Format good scctor
20h Suspend reallocation
40h Reallocate sector

80h Mark sector defective

IDLE (97h, E3h)

This command is used to set the drive’s standby timer. A timeout value can be pro-
vided in the sector count register. Its meaning is shown in Table 8.7. In ATA-1 the
meaning was always value x 5 seconds.

68 IDE commands

Table 8.7 Values for the standby timer.

Sector count register Timeout value
00h Standby timer deactivated; pass directly into IDLE state
01h-FOh Value X 5 seconds
F1h-FBh (Value — FOh) x 30 minutes
FCh 21 minutes
FDh Vendor-specific value between 8 and 12 hours
FEh Reserved
FFh 2l minutes and 15 seconds

IDLE IMMEDIATE (95h, E1h)

This command puts the drive immediately into the IDLE state.

MEDIA EJECT (EDh)

This command is new in ATA-2. The drive terminates the current operation, spins
down the medium and opens the door to allow access to the medium.

Nop (00h)

This command is new in ATA-2. It is needed to allow hosts that perform only 16-bit
transfers to write the head register, since a 16-bit access automatically also writes the
command register. The device must react to the NOp command as to any other
unknown command, by aborting the command with an ABORTED COMMAND bit in the
error register.

READ BUFFER (E4h)

This command functions differently to the READ command. It reads 512 bytes from
the sector buffer without a disk access. The address register is therefore not used.
Whatever is in the sector buffer will be read.

READ DMA (C8h with and C9h without retries)

This command functions like the other READ commands, except that the contents of
the sector buffer will be read using DMA. It is therefore necessary for the host to set
up the proper DMA channel.

READ DRIVE STATE (E9h)

This command exists only under ATA-1; it has been eliminated in ATA-2. Using this
command the host can read the current status of the drive after a REST command.
This status can then be sent back to the drive using the RESTORE DRIVE STATE
command when the REST state is over.

Optional commands 69

READ LONG (22h with and 23h without retries)

Unlike the READ SECTORS command, READ LONG always reads only one sector. Not
only is the data transferred, but also the ECC bytes of the sector. The ECC is not
checked. In all other respects, including errors, the command executes identically to
the READ SECTORS command. The format of the ECC bytes is vendor-specific. Some
drives have difficulties with the transfer of ECC bytes. Therefore the slow PIO mode
0 must be used for this command.

READ MULTIPLE (C4h)

This command fuctions similarly to the READ SECTORS command. The difference is
that instead of a single sector, blocks of several sectors are transferred without an
interrupt occurring in between. The number of the sector must be given in the sector
count register. Just how many sectors are to be included in a block is determined by
the SET MULTIPLE MODE command. If the required sectors do not fit into the block
size, an additional block (not fully used) will be transferred containing the remain-
ing sectors.

RECALIBRATE (1xh)

All opcodes between 10h and 1Fh are interpreted as a RECALIBRATE command,
whereupon the disk drive seeks track 0. If it is not found, TKONF will be set in the
error register. In ATA-1 RECALIBRATE was still a mandatory command. With modern
drives, however, it has lost importance.

RECALIBRATE is often used when trying to recover from an error situation. For
example, when a sector cannot be found, a RECALIBRATE should be tried. If this works,
a sector access can be tried again. Otherwise, it is fatal disk error.

ResT (E7h)

This command only exists in ATA-1; in ATA-2 it has been eliminated. The disk drive
is put into the REST state which also no longer exists in ATA-2. It then waits for a
READ DRIVE STATE command to be informed of its state before the execution of the
last command. After this command is executed only the READ DRIVE STATE command
will be accepted; all others will be rejected. If two drives are installed, first the slave
drive then the master drive will be put into the REST state.

RESTORE DRIVE STATE (EAh)

This command only exists in ATA-1; in ATA-2 it has been eliminated. If a drive’s
status is collected and the drive is put into the REST state before being turned off this
prior state can be restored at power-up using this command, assuming that it is the
first command received after turning on. Bear in mind that the head position and the
status of the controller are restored but that the contents of the sector buffer and
cache are lost.

70

IDE commands

Table 8.8 Opcodes for SET FEATURES.

Opcode Meaning
Olh Enable 8-bit data transfers
02h Enable write cache
O Set ramsfer mode according to sector countregistr value (only ATA-

(22h Only ATA-1: WRITE SAME to write the specified area)

33h Disable retries

44h Vendor-specific ECC length for READ LONG and WRITE LONG
54h Place number of cache segments in sector number register
55h Disable read ahead

66h Maintain parameters after software reset

77h Disable ECC

8lh Disable 8-bit data transflers

82h Disable write cache

88h Enable ECC

99h Enable retries

AAh Enable read ahead

ABh Use the value in the sector count register as the number of sectors to be read ahead
(ACh Only ATA-1: allow REST mode)

BBh 4 bytes of ECC for READ LONG and WRITE LONG

CCh Software reset loads default features
(DDh Only ATA-1: WRITE SAME to write entire medium)

SET FEATURES (EFh)

This command enables the setting of various characteristics of the drive by writing
a specific opcode in the feature register. Opcodes higher than 80h represent the
default values after booting or a reset. Table 8.8 lists the opcodes. All unlisted
opcodes are considered reserved. In ATA-2 all opcodes except the ones shown on a
gray background are vendor-specific.

Opcode 03h which is new in ATA-2 is of particular interest. It is used to set the
transfer mode by providing the sector count register with a parameter. The upper five
bits specify the mode to be set and the lower three bits the value it assumes. The
transfer mode parameters are listed in Table 8.9.

SET MULTIPLE MODE (C6h)

The block sizes for the commands READ MULTIPLE and WRITE MULTIPLE are given to
the disk drive via the sector count register using this command. If the block size is
not supported, or if it is 0, the multiple commands will be turned off.

Table 8.9 Transfer mode parameters for the SET FEATURES command.

Mode Value

PIO default transfer mode 00000 000
PIO default transfer mode, without IORDY 00000 001
PIO transfer mode with flow control, mode nnn 00001 nnn
Single-word DMA. mode nnn 00010 nnn

Multiple DMA, mode nnn 00100 nnn

Optional commands 71

In ATA-1, disk drives that have at least 8 KByte buffer must support at least block
sizes 2, 4, 8, and 16. In ATA-2, disk drives must support the block size parameter
word 47 of the IDENTIFY DEVICE command.

sLeep (99h, E6h)

This command puts the drive in the SLEEP state. The motor will also be switched off.
Only a hardware or software reset will end the SLEEP state.

STANDBY (96h, E2h) and sTANDBY IMMEDIATE (94h, EOh)

This command puts the drive into STANDBY state. The STANDBY IMMEDIATE command
is executed immediately. If the sector count register has a value other than 0 when
the STANDBY command is issued, the standby timer is enabled.

WRITE BUFFER (E8h)

This command writes the sector buffer of the drive with a data pattern. No writing
to the medium will occur.

WRITE DMA (CAh with and CBh without retries)

This command functions like the other WRITE commands except that the contents of
the sector buffer are written using DMA. The host must initialize the proper DMA
channel beforehand.

WRITE LONG (32h with and 33h without retries)

This command behaves exactly like the READ LONG command, except that the data
are written instead of read. Here, the ECC must also be written to the sector buffer.

This is not trivial, since the ATA standard does not specify the sector format or
how the ECC polynomial is to be computed. This command may be used when
running system tests in order to produce an ECC error. A sector can be read using
READ LONG, the data and ECC modified so as to reflect an ECC error, and the falsi-
fied sector rewritten using WRITE LONG. In this way, the error handling can be tested.

WRITE MULTIPLE (C5h)

This command functions analogously to the READ MULTIPLE command.

WRITE SAME (E9h)

Depending upon the mode set in the feature register, this command will write all or
part of the medium with the same data. The feature register must previously be
loaded with either 22h (for part of the medium) or DDh (for the entire medium)
using the SET FEATURES command. Otherwise, the command will be rejected. The

72 IDE commands

ATA-2 standard discourages use of this command. (And it is no longer contained in
the current ATA-3 proposal.)

WRITE VERIFY (3Ch)

This command functions like the WRITE SECTORS command, with the exception that
the sectors are subsequently verified. During verification only the ECC is checked
without a transfer of data. Any read errors are reported.

O The ATAPI interface

You will probably be familiar with the ATAPI interface in connection with CD-ROM
drives. However, although this interface is mainly used with CD-ROM drives, it is
not limited to this application. Practically, ATAPI is a mixture of SCSI and IDE
(ATA). The IDE interface and its protocol are used for transmission of both ATA and
SCSI commands. Thus, in principle this extension allows you to control all devices
for which a SCSI command set exists. For this purpose, the SCSI commands are
wrapped into an ATA command; hence the name of the interface: ATA Packet
Interface (ATAPI).

SFF

The ATAPI document is not elaborated and maintained directly by ANSI, but by the
SFF (Small Form Factor) industry committee. The ATAPI document bears the
number SFF-8020 and consists of parts SFF-8021 to SFF-8029.

The SFF committee calls itself an ad hoc group. Its declared goal is to define and
document industry standards faster than the established organizations. However,
SFF will hand over its finished documents to established organizations such as ANSI
or EIA in order to have them published as separate standards or as parts of a superior
standard. Currently incorporation of ATAPI into the SCSI-3 standard is under
discussion.

About this chapter

The fact that ATAPI mainly employs the SCSI CD-ROM command set leads to a
slight problem in the structure of this book. On the one hand, the SCSI chapter on
device model, command set and parameters of SCSI CD-ROM drives appears later
on in the book; on the other hand, I would like to spare you a double description of
more or less the same issues. Therefore, in this chapter, I will put the emphasis on
how the ATA mechanisms are used to transmit SCSI data. At the same time, I would
like to ask you to refer to Chapters 12 on SCSI commands and 18 on multi-media
devices during your reading of this chapter. Even if you do not wish to go into SCSI
to the very last detail, you should read these chapters to gain an overview of those
aspects that are relevant for understanding ATAPI.

73

74 The ATAP! interface

9.1

ATAPI architecture

The ATAPI document quotes a number of goals underlying the ATAPI standard. The
two most important ones are that a CD-ROM with ATAPI connection must not affect
existing IDE disks and that it must be ensured that neither a PC BIOS nor any
operating system recognize an ATAPI CD-ROM as a hard disk. CD-ROM and IDE
disk must be able to coexist on one cable, and the IDE master/slave protocol must
be supported.

Architecture

Figure 9.1 shows a good overview of how ATAPI fits into the ATA standards. ATAPI
itself consists of the transport mechanism (TM), the transport protocol (TP) and the
CD-ROM commands (CP).

ATAPI and ATA

ATAPI uses the same signals and the same timing as ATA-2. However, the ATAPI
devices support a different command set; some commands are added and many ATA
commands are omitted.

The most important new command is the ATAPI PACKET command which is used to
transmit the SCSI-like command packets. These commands consist of the command
packet, the command parameters, the command response and the status information.
The command packet contains the command itself together with embedded flags
and parameters. The command parameters are additional parameters, such as data to

CD-ROM commands ATAcommands Other commands

Commands

ATA task file ATAPI transport

protocol (TP)
Protocols
ATA hardware ATAPI transport
mechanism (TM) PCMCIA
Connection

Figure 9.1 Block diagram of ATA and ATAPI standards.

9.2

ATAPI transport mechanism 75

be written. The command response consists of read user data or parameter informa-
tion. The status information indicates whether the command has been executed
successfully.

ATAPI and SCSI

Those of you who have already been concerned with SCSI will certainly find a
summary of similarities and differences between ATAPI and SCSI quite interesting.

First of all, ATAPI uses many SCSI commands, the device model of the SCSI
CD-ROM and its parameter pages. However, this is where the similarities end. The
ATAPI version of the SCSI command has no LUN field and no control byte.
Furthermore, the commands are always filled up to 12 bytes length, even if the
corresponding SCSI command is a 6-byte or 10-byte command.

There are no bus phases and no messages. The status is not transmitted as a SCSI
status byte, but is ATAPI specific. There is no arbitration, and the ATAPI device is
always the slave device. There are no disconnect/reselect mechanisms, no command
chains and no contingent allegiance status.

For some functions, both the ATA-2 and the SCSI command are allowed, because
they offer slightly different possibilities. This applies to the ATA-2 commands DOOR
LocK and DOOR UNLOCK and their SCSI counterparts PREVENT/ALLOW MEDIA
REMOVAL. The ATA-2 command IDENTIFY DRIVE supplies low level information,
whereas the SCSI command INQUIRY supplies information on a higher level. The
ATA-2 command SET FEATURES allows access to the ATA-specific properties. The
SCSI commands MODE SENSE and MODE SELECT allow access to the parameters at
device level.

ATAPI transport mechanism

The physical interface, that is signals, drivers and cable, are the same in ATAPI and
ATA-2. The essential difference lies in the way in which the command register block
(task file) is used in ATAPI commands.

Configuration

For the interplay of ATA-2 Enhanced IDE and ATAPI devices, the ATAPI standard
proposes some preferred configurations which are listed in Table 9.1.

Table 9.1 Preferred ATAPI configurations.

Primary cable Secondary cable
(with E-IDE)

Drive 0 Drive | Drive 0 Drive | Remark

ATA Standard
ATA ATAPI Disk and CD-ROM in E-IDE
ATA ATAPI Disk and CD-ROM in IDE

ATA ATAPI ATAPI Disk and 2 ATAPI devices in E-IDE

76 The ATAPI interface

Table 9.2 ATAPI task file.

Command register block

Addresses Name and function
CS0 €S/ DA2 DAl DAO Read access Write access
1 0 0 0 0 Data register
1 0 0 0 1 ' ster API fe
1 e 0 1 0
1 0 0 1 1
1 0 1 0 0
1 0 1 0 1
1 0 1 1 0
1 0 1 1 1
Control register block
Addresses Name and function
CSO B@SHE DA2 WA DAO Read access Write access
0 i 0 0 0 Not used Not used
0 1 0 0 I Not used Not used
0 1 0 1 0 Not used Not used
0 ok 0 1 1 Not used Not used
0 1 1 0 0 Not used Not used
0 i 1 0 1 Not used Not used
0 1 1 1 0 _ Control register
0 i} 1 1 1 Reserved Not used

ATAPI task file

Register usage in the command register block (ATAPI task file) differs quite
considerably between ATAPI and ATA. Table 9.2 shows the modified task file. The
modified registers are described below. Please note that for normal ATA-2
commands, ATAPI devices too use the command register block as ATA task file.

The ATAPI status register

Essentially, the ATAPI status register corresponds to the ATA-2 status register. Only
during overlapping ATAPI functions does the meaning of bit 5 and bit 6 change. Bit 5
becomes DMA READY and indicates that the device is ready to begin a DMA transfer. Bit
6 becomes SERVICE and indicates that the device is waiting for a SERVICE command.

The ATAPI error register

The ATAPI error register is shown in Table 9.3. The sense key field contains the
SCSI sense key. The MCR and ABRT bits are used in the same way as in the ATA
standard. EOM means that the end of the medium was detected. Finally, ILI indicates
an illegal length.

The ATAPI feature register

The ATAPI feature register serves two purposes. In the ATA set features command
it contains the feature code, whereas in the other commands it is used to set the

9.3

ATAPI transport protocol 77

Table 9.3 ATAPI error register.

Bit il 6 5 4 3

1o
=

Sense key MCR | ABRT| EOM | ILI

ATAPI command features. Currently two bits are defined. Bit O is the bmA bit and
means that the data for this command (not the command packet) is transmitted via
DMA. Bit | is the OVERLAP bit which says that the device can release the interface
before the command is terminated. Both ATAPI features are optional.

The cause of interrupt register

This register contains the cause of an interrupt, together with the DRQ bit of the status
register. If the DRQ bit is not set, the status register contains a status. Otherwise, bits
0 and | have the following meaning: bit O is the cop bit (command or data). If it is
set, a command is transmitted, otherwise data is transmitted. Bit | is the 10 bit. If it
is set, the information transfer goes to the host, otherwise it goes to the device. Bit
2 is the RELEASE bit which indicates that the device has released the IDE interface
before the command was terminated.

The drive select register

The drive select register is structured in ATAPI in the same way as in ATA-2, except
that bits 0—3 (ATA head select) are reserved. They might eventually be used in ATAPI
to indicate the SCSI LUN number.

The ATAPI byte count register
This 16-bit register is used to specify the data length of command packets.

ATAPI transport protocol

The ATAPI transport protocol is all about the ATAPI PACKET command. As a matter
of fact, this command functions in the same way as any other ATA-2 command
insofar as it initializes the command register block, sets the drive bit and writes the
command register. However, while in a normal ATA command data would be written
with the first DRQ, here the command packet is written instead.

This command packet contains a SCSI-like command. After this, the procedure
continues as with any other normal ATA command. The command packet is always
written in PIO mode. The way the command packet is structured will be described
further below in Section 9.4.

The AtAaPI PACKET command (AOh)

The exact timing is shown in Figure 9.2 for a sarnple command with PIO-IN transfer.
The other transfer modes function analogously.

e The host waits until BSY and DRQ are O and subsequently initializes the ATAPI
task file. Then it writes the ATAPI PACKET opcode (AOh) into the comimand register.

78 The ATAPI interface

Host Inlh.a_hz'e SendKE Write Read ‘ Data —‘ Read
LTE':':E’ Séqr{rfmal:lrd ;‘;r:”krgfnd stalus ' | transfer | | status

Drive Execute
command

CoD |

L
o I
— 1 T 1__
1 1 I

Figure 9.2 Timing of an ATAPI PACKET command.

The device sets BSY and prepares to accept the command packet proper. When it
is ready it sets coD and cancels 10. Then it sets DRQ and cancels BSY.

As soon as it sees DRQ, the host writes the 12 command bytes into the data regis-
ter. After having received the 12th byte, the device cancels DRQ, sets BSY and
reads the features and the byte count from the task file.

Let us now assume that we are dealing with a command packet which entails a
data transfer to the host. The device executes the command and prepares for the
data transfer.

The device loads the byte count register, sets 10 and cancels CoD, sets DRQ and
cancels BSY, and finally sets INTRQ.

As soon as the host sees DRQ, it reads the status register. As a reaction, the device
cancels INTRQ. The host reads the data register as many times as specified in the
by count register. When all data are read, the device negates DRQ.

The device writes the final status into the status register, sets coD, 10 and DRDY
and cancels BSY and DRQ. Then it sets INTRQ.

This is the signal for the host to read the final status and, if necessary, the error
register.

Immediate commands

Immediate commands return a status immediately after command transmission,
while the command is still being executed (hence their name). This kind of command,
for example, is used to play CD audio tracks.

If during execution of an immediate command a new ATA command arrives, the

immediate command is terminated and the new command is aborted with an ABRT
error message in the error register. If a new ATAPI packet arrives while the previous
one is still processed, both commands are aborted with a CHECK CONDITION status.

9.4

ATAPI commands 79

2 g 3
ATAPI |&| |8 - & 2
device IS % Now the overlapped command is executed QE) S (%
8 |2 ?
o °
ATA g |5 &
device £ El @
£ £ o
o S
(] (&)
Time

Figure 9.3 Example of overlapping ATAPI commands.

Overlapping commands

ATAPI can optionally support overlapping commands. A device that supports
overlapping commands can release the IDE interface and the command register
block after receiving an ATAPI command packet. While this device processes the
command, the second device on the IDE interface can execute a command. The
overlap mode is set via the feature register for each individual command packet. An
ATAPI device may or may not release the interface at its discretion. The exact
process is as follows (see Figure 9.3):

@ The ATAPI device releases the interface after receiving an ATAPI command
packet. It sets the RELEASE bit in the status and optionally triggers an interrupt.

@ While the ATAPI device processes its command, the controller issues commands
to the other connected drive.

e Since only the selected drive can generate interrupts, the controller must always
select the ATAPI drive, provided the other device is not currently executing an
overlapping command.

@ The ATAPI device uses the SERVICE status and triggers an interrupt when it needs
the interface again.

® Via a SERVICE command the driver returns control over interface and task file to
the ATAPI device.

ATAPI commands

ATAPI CD-ROM drives support only part of the ATA-2 commands. These
commands are listed in Table 9.4. Commands which do not exist in ATA-2 are
shaded gray.

80 The ATAPI interface

Table 9.4 ATA commands for ATAPL

Command name Opcode ATAPI ATA-2
ATAPI IDENTIFY DEVICE Alh M -
ATAPI PACKET AOh M -
ATAPI SOFT RESET 08h M -
CHECK POWER MODE ESh M (0]
EXECUTE DRIVE DIAGNOSTIC 90h M M
IDLE E3h (0] (0]
IDLE IMMEDIATE Elh M (0]
NOP 00h M (0]
SERVICE A2h ©) -
SET FEATURES EFh M (0]
SLEEP E6h M (0]
STANDBY E2h (0] (0]
STANDBY IMMEDIATE EOh M (0]

Table 9.5 ATAPI IDENTIFY parameters.

Word ATAPI ATAPI contents
0 M Configuration word (see Table 9.6)
1-9 No Reserved
10-19 (6] Serial number (ASCII)
20-22 No Reserved
23-26 M Firmware revision (ASCII)
27-46 M Model name (ASCII)
47-48 No Reserved
49 M Capabilities (see Table 9.7)
50 No Reserved
Sl M Bits 15-8: timing mode for PIO data translers
52 M Bits 15-8: timing mode for DMA data translers
33 M Bit 0: words 54-58: bit |: words 64~70 apply
54-61 No Reserved
62 M Bits 15-8: active mode for single DMA
Bits 7-0: supported modes for single DMA
63 M Bits 15-8: active mode for multiple DMA
Bits 7-0: supported modes for multiple DMA
64 M Bits 15-8: reserved
Bits 7-0: reserved (supported modes for advanced P10O)
65 M Minimum cycle time for multi-word DMA in ns
66 O Recommended cycle time ['or multi-word DMA in ns
67 (6] Minimum PIO cycle time without tlow control
68 (6] Minimum PIO cycle time with [ORDY flow control
69-70 No Reserved
71 (6] Typical time in ps tor interface release with an
overlapping command
42 (@) Typical time in us lor interface release with a
SERVICE command
11%) 0} Revision number
74 (6] Version number

75-255 No Reserved

ATAPI commands 81

ATAPI IDENTIFY DEVICE (ATh)

This command functions in the same way as identify device in ATA-2, with the
exception that only few parameter bytes are used from the parameter block and that
their meaning sometimes differs from that in ATA-2. These bytes are shaded gray in
Table 9.5.

The ATAPI configuration word is substantially different from the one of ATA-2.
Bit 15 therefore indicates the format. If it is set, the configuration word is in ATAPI
format, otherwise it is in ATA format.

Bits 0 and 1 specify the length of the command packet. A value of 00b means that
the command packets are 12 bytes long. This is the case with all ATAPI CD-ROMs.
A value of O1b stands for 16 byte long command packets. These packets are reserved
for other device types.

Bits 5 and 6 indicate the DRQ mode. A value of 00b means that the device should
set DRQ and fetch the command packet within 3 ms from receiving an ATAPI PACKET
command. If the value is 10b, the same must happen within 50 us. A value of O1b
allows for 10 ms, but in this case the device must trigger an interrupt.

Bits 8 to 12 contain the device type as defined for the SCSI command inquiry. For
a CD-ROM, this value must be Sh.

Table 9.6 ATAPI configuration word.

7 élj 4‘3‘2 / 0

0 Rem DRQ type Reserved Packet size

i Protocol ‘ Res. Device type

The capability word

The capability word differs only in one bit from the ATA-2 standard. Table 9.7
shows the capability word 49.

Table 9.7 ATAPI parameter word for device capabilities.

Bit Meaning
0-7 Vendor-specific
8 DMA commands supported
9 LBA mode supported
10 IORDY may be deactivated
11 IORDY is supported
1.2 Reserved
13 Overlapping operations are supported
14 Reserved for proxy interrupt

15 Reserved tor embedded DMA

82 The ATAPI interface

9.5

ATAPI PACKET (AQh)

The ATAPI PACKET command functions in the same way as any other ATA-2
command. It initializes the command register block, sets the drive bit and writes the
command register. However, whereas in a normal ATA command data would be
written with the first DRQ, now a command packet is written. After this, processing
continues as with any normal ATA command. The command packet is always
written in PIO mode. The structure of the command will be described in Section 9.5.

ATAPI SOFT RESET (08h)

For CD-ROM drives, a reset is occasionally used to force recalibration and find a
lost track. However, the ATA reset cannot be used for this purpose, since it would
equally affect a hard disk connected to the same adapter. For this reason, the ATAPI
SOFT RESET was introduced.

SERVICE (A2h)

The SERVICE command is used to restore the command register block of a device that
had released the ATA interface.

SET FEATURES (EFh)

The SET FEATURES command works in the same way as in ATA-2. Only the codes that
are used have a different meaning. They are listed in Table 9.8.

Table 9.8 Opcodes for ATAPI SET FEATURES.

Opcode Meaning
03h Set transfer mode according to sector count register value
SDh Allow interrupt after overlapping command
SEh Allow interrupt after SERVICE command
66h Maintain parameters after software reset
CCh Software reset loads default features
DDh Prohibit interrupt after overlapping command
DEh Prohibit interrupt after SERVICE command

CD-ROM command packets

This section should contain the description of the CD-ROM device model, all CD-
ROM command packets and the parameter pages. You will, however, find extensive
descriptions of these issues in Chapter 18 on multi-media devices.

At this point, we are only introducing a list of the commands (see Table 9.9) and
present an example of how a SCSI command is converted into an ATAPI command
packet.

CD-ROM command packets 83

Table 9.9 CD-ROM commands.

Opcode Name Type Page SCSI-2 ATAPI Description

00h TEST UNIT READY 131 7.2.16 10.8.26 Reflects whether or not the LUN is
ready to accept a command
132 7.2.14 10.8.20 Returns detailed error information
128 725 1081 Returns LUN specific information
8.2.17 10.8.25 Load/unload medium
2

10.8.11 Lock/unlock door

03h REQUEST SENSE

12h INQUIRY

1Bh START/STOP UNIT

1Eh PREVENT/ALLOW
MEDIUM REMOVAL

25h READ CD-ROM
CAPACITY

28h READ(10)

2Bh SEEK(10)

42h READ SUBCI-IANNEL

43h READ TOC

45h PLAY AUDIO(10)

47h PLAY AUDIO MSF

4Bh PAUSE/RESUME

239 13.2.8 10.8.14 Read number of logical blocks

159 826 10.8.12 Read
8.2.15 10.8.22 SeekLBN
13.2.10 10.8.18 Read subchannel data and status
13.2.11 10.8.19 Read contents table
241 1322 10.8.8 Audio playback
241 1324 10.89 Audio playback
13.2.1 10.8.7 ‘Pause’ button

4Eh STOP/PLAY SCAN - 10.8.24 Stop audio playback
55h MODE SELECT(I0) 729 10.84 Setdevice parameters
SAh MODE SENSE(10) 7210 10.8.5 Read device parameters

Abh LOAD/UNLOAD
A8h READ(12)

B8h SET CD-ROM SPEED
B9h READ CD MSF

10.8.2 Load/unload CD changer

1524 10.8.13 Readdata

- 10.8.23 Setdatarate

10.8.16 Read C D information (all formats,
MES addresses)

ool clo
1

BAh scan 10.8.23 Fastaudio playback

BCh pLAYCD 10.8.10 Play CD (universal)

BDh MECHANISM STATUS 10.8.3 CD changer status

BEh READ CD - 10.8.15 Read CD information (all formats,

LBN addresses)

Note: Commands included in this command set with SCSI-3 are shaded light gray; mandatory
commands are marked dark gray. O* marks a play command: either all or none of these commands
must be implemented.

The INQUIRY command

The INQUIRY command returns a complex data structure which supplies detailed infor-
mation about a device. This data structure is extensively described in Section 12.3.
Here we are only interested in the different command structures of the ATAPI
command packet and the SCSI INQUIRY command (see Tables 9.10 and 9.11). This
difference is characteristic of all commands.

The SCSI INQUIRY command is a 6-byte command. Since ATAPI command
packets are always 12 bytes long, bytes 6 to 11 are filled with the value ‘reserved’
which, in practice, is 00h.

In SCSI, byte 5 is the control byte. In ATAPI it is omitted and equally reserved.
The three higher order bits in byte 1 specify the LUN number in SCSI-1. They too
are reserved, because LUNs do not (yet) exist in ATAPL

The remainder of the command is the same for both ATAPI and SCSI.

84 The ATAPI interface

Table 9.10 SCSI version of the INQUIRY command.

7 | e | s | 4 | s BE | o
0 INQUIRY(12h)
1 (LUN) I Reserved 1 EVDP
2 Page code
3 Reserved
4 Data length
5 Control byte
Table 9.11 ATAPI version of the INQUIRY command.
7 l 6 ‘ 5 ‘ 4 ‘ EE | o
0 INQUIRY(12h)
1 Reserved ‘ EVDP
2 Page code
3 Reserved
4 Data length
5
6
7
8 Reserved
9
10

General rule

By following this rule — removing control byte and LUN number and filling the
command up to 12 bytes — you can roughly convert any supported SCSI command
into an ATAPI command. However, minor differences are possible. Some ATAPI
commands do not support all options offered by SCSI. Thus, if you need to be really

sure, you should consult the original document.

Part 1l
The SCSI bus

10 Introduction

11 SCSI architecture

12 SCSI primary commands
13 Block-oriented devices

14 Stream-oriented devices
15 Graphics devices

16 Medium-changer devices
17 Storage array controllers
18 Multi-media devices

19 The parallel SCSI interface
20 SCSl interlock protocol

21 The new SCSI-3 interfaces
22 The ASPI software interface
23 The SCSI monitor program
24 Measuring and testing

25 SCSI chips

10 Introduction

10.1

The evolution of SCSI

SCSI, which the entire industry affectionately pronounces as ‘scuzzy’, stands for
Small Computer Systems Interface. SCSI can trace its beginnings back to 1979,
when the disk drive manufacturer Shugart began work on a new interface. The goal
was to develop a drive interface that supported logical addressing of data blocks
instead of physical addressing of cylinders, heads and sectors. Moreover, the inter-
face would present data byte-wise instead of serially. Such an interface could end the
compatibility problems associated with bringing new drive technologies to market.
In the past it took a long time for computer companies to support the new drives. The
new interface would allow computer manufacturers to develop hard disk drivers that
were able to recognize the properties of the connected disk drives themselves. This
interface was originally called SASI (Shugart Associates Systems Interface), and the
specification totaled 20 pages.

SASI

SASI is the forerunner of the modern SCSI. The interface specification, which
included some 6-byte commands and defined single-ended drivers and receivers,
was made public to encourage companies to build SASI controllers. Companies such
as OMTI and DTC became involved in these early days. In 1980, Shugart’s first
attempt to make SASI an ANSI standard failed. At that time ANSI preferred the
more sophisticated IPI interface.

Progress began in 1981, but not before a failed agreement between NCR and
Shugart to work together on further development of SASI. NCR wanted 10-byte com-
mands and a differential interface, features Shugart considered unnecessary. Most
likely Shugart believed that these options would make the interface too complicated.
At this point the company Optimem came on the scene. A subsidiary of Shugart,
Optimem manufactured optical disks. They needed to be able to address more than 22!
logical blocks for their optical drives. Moreover, the 6 meter cables then in use were
too short. These were precisely the reasons why Shugart had declined to work with
NCR in the first place. In December 1981, Shugart, together with NCR, requested that
an ANSI committee be formed for SASI.

87

88

Introduction

SCSI-1

In April 1982 ANSI committee X3T9.2 met for the first time and began the work
that has evolved into SCSI. In the following years a draft proposal was prepared,
which was presented to ANSI for approval in 1984. However, even before final
approval had been given, manufacturers began producing SCSI host adapters and
device controllers. The first protocol chip, the NCR 5385, came on the market in
1983. The interface had become an industry standard long before it received
approval from ANSI. In June 1986, SCSI-1 became official as ANSI X3.131-1986.

The growing number of SCSI products exposed weak points in the definition. In
defining commands, too much room for variation was given for vendor unique
options. For example, format parameters for disk drives were not standardized. In
addition, although a SCSI drive should present a virtual defect free medium to the
host — by having medium defects managed transparently by the device — defect man-
agement was left undefined. Consequently, each manufacturer implemented these
things as they saw fit, which basically meant that a new device driver had to be
written for each new SCSI device. The goal of a device independent interface was
definitely lacking on the software side. At that time it was fair to say that SCSI was
not necessarily SCSI compatible.

CCS

Looking for a solution to this problem, the drive specialists in the committee began
defining a Common Command Set (CCS) for disk drives in 1985. The main purpose
of the command set was to nail down some of the many options for disk drives.
Among the features introduced in the CCS was the defect list format, and the intro-
duction of the mode parameter listing. The CCS was a big step forward and once
again the manufacturers began implementing it before it became official. However,
CCS was only a solution for disk drives; tape drive manufacturers had to make do
with SCSI-1 the way it was.

SCSI-2

In 1986, even before SCSI-1 had become an official standard, work on SCSI-2 began.
In addition to further development of the CCS and the other device classes, the com-
mittee worked on numerous modifications in protocol and hardware. Many features
were developed, only to be discarded in the end. The option to support more than
eight devices is an example of this. On the other hand, 10 MHz synchronous trans-
fers were incorporated along with a 32-bit wide data bus. Of course, the real challenge
in the implementation of these options lay in maintaining compatibility among the
different devices. As a protocol option, a device could inform a host ‘unsolicited’ of
change in device status. This is important, for example, when a cassette is removed
from a tape drive.

The formal approval procedure for SCSI-2 began in February 1989. As usual,
there were dozens of devices already equipped with SCSI-2 before it became a stan-
dard. These early releases, incidentally, were never a problem. During the final

The evolution of SCSI 89

phases of development the standard had become so stable that only minor changes
were being discussed. Above all, tape drive manufacturers were anxious to imple-
ment SCSI-2 for their devices. However, organizational changes in ANSI caused the
early 1992 delivery date to be postponed several times. In January 1994, SCSI-2
became official as ANSI X3.131-1994.

Presently (1997) SCSI-2 has reached its climax, with general support from both
peripherals and computer manufacturers. The only serious competitor is the IDE
interface for disk drives in PCs. Both for its functionality and its throughput, SCSI-
2 is suited to cover the demands of the next few years.

SCSI-3

However, for several years now, the ANSI SCSI committee has been working on
SCSI-3. Following the tradition, SCSI-3 will be compatible with SCSI-2. Amongst
others, SCSI-3 provides a more clearly structured documentation and a modular
structure. Figure 10.1 shows this new structure which is also reflected in the struc-
ture of this book. The shaded modules are already present in SCSI-2.

In the physical and protocol area, SCSI-3 defines in particular the new Fibre
Channel, SSA and IEEE P1394 interfaces. The idea to use the SCSI protocol to com-
municate across any regular serial interface has been removed from the standard
proposal. It is now documented in a technical report.

The present parallel interface has been further developed so that SCSI-3 now
allows transfer rates of up to 20 megatransfers per second and up to 32 SCSI devices
with 32-bit wide SCSI. The new P cable allows you to employ 16-bit wide SCSI
with only one cable. These changes have been impatiently expected by industry and
users alike. Thus, once again before a standard has become official, there are already
many devices on the market that support one or more of these new features.

The principal change with regard to the commands is the structuring of the doc-
umentation. In particular, the command sets for ‘exotic’ SCSI devices are becoming
more complete. Furthermore, at least one new device type is added: the controller
devices for RAID controllers.

graphics
commands

‘ SCSI-3

[SCSI-3 architecture model |

SGSI3 SCSI-3 sCst3 scsia
Interock: Fibre Channel Serial General
roos Protocol Protocol packet protocol
Almost all
Fibre IEEE o
sarial
Ghannel P13 interfaces

Figure 10.1 The SCSI-3 architecture.

90 Introduction

10.2

To summarize, SCSI-3 introduces a new view of SCSI. Emphasis is no longer put
on the physical connection via the parallel interface and its protocol, but on the
device type and its command set. Maybe the new serial interfaces will eventually
supersede today’s SCSI interface. This will, however, only have minimal effects on
operating system software and applications. The market penetration and functional-
ity presently reached by SCSI device types and command sets will ensure SCSI’s
survival for many years to come.

In 1991, Dal Allan, a SCSI industry specialist, wrote in an article for the magazine
Computer Technology Review:

No technical rationale can be offered as to why SCSI-1 ended and SCSI-2 began, or as
to why SCSI-2 ended and SCSI-3 began. The justification is much more simple — you
have to stop sometime and get a standard printed. Popular interfaces never stop evolv-
ing, adapting, and expanding to meet more uses than originally envisaged.

Overview

I begin with a broad overview of SCSI. Everything discussed here will be gone over
in greater detail later in the book. If you are only interested in particular aspects of
SCSI, read this section first, then use the index to find specific topics.

SCSl is a device-independent I/O subsystem

SCSI is a device-independent I/O subsystem, allowing a variety of devices to be
linked to a computer system. The electrical characteristics and protocol of the SCSI
bus were designed with the requirements of peripheral devices in mind. Device-
independent means that in order to connect such devices, no specific knowledge of
the properties of the devices is needed. SCSI makes available a number of com-
mands for querying a device about necessary parameters. This makes it possible to
write device drivers for a device without knowing device-specific details.

SCSI offers high-level functionality. The entire device-specific intelligence
resides in the SCSI peripheral device, especially in the case of disk drives. Firstly,
data is addressed via logical block numbers. The host need not concern itself with
the exact physical organization of the drive. Complex operations, such as formatting
the entire disk, are triggered by a single SCSI command. Moreover, a SCSI drive can
manage defects autonomously, making it possible to present a virtually defect-free
medium to the host.

SCSI devices

Up toeightdevices can be addressed using the parallel SCSI-2 bus. With SCSI-3 this
number can be greater depending on the physical interface. The SCSI bus address of
adevice is referred to as the SCSI ID. These devices play the role of either an initiator
or a target.

Overview 91

Initiator and target

An initiator is a device that triggers a task on the SCSI bus. A target is a device that
carries out the task. The SCSI host adapter of a computer is a typical initiator; a disk
drive is a typical target. The specification does not specify the number of initiators
and targets that can be installed in a SCSI configuration. Only the total number is
limited depending on the SCSI version. Obviously, a minimal sensible configuration
must contain at least one initiator and one target. It is worth noting that some devices
can play the role of both a target and an initiator. However, for each individual /O
process, it is clearly defined which is the initiator and which is the target.

Host adapter and SCSI controller

Figure 10.2 introduces two more terms that have a particular meaning in the SCSI
world. A computer system is connected to the SCSI bus through a host adapter. For
a peripheral device the corresponding role is played by a controller. This SCSI spe-
cific terminology can be confusing because in other computer domains — for example,
the IDE interface — a controller often connects a peripheral directly to a computer.
Both controllers and host adapters can be either implemented as a separate board or
integrated into the device or system. Host adapters often reside directly on the mother
board of workstations and modern personal computers, in which case they are
referred to as embedded host adapters. PC compatibles use the insertable card varia-
tion. SCSI controllers are usually embedded in the drive electronics of disk drives.

Bridge controller

When the controller is implemented on a separate board and the physical devices are
connected to it via a device-specific interface, it is referred to as a bridge controller.
Bridge controllers were often used with new peripheral devices which were not yet

Host
adapter | Initiator

SCSI ID 7

SCSI bus

SCSI command |

N
W - .
Target |SCSI ID 0 SCSI ID 1

scsl ‘ scsl
controller . controller
with with
disk | tape
drive | drive

Figure 10.2 A simple SCSI configuration.

92

Introduction

‘ scsi ‘
|

Bridge | Printer

controller i LUN O
R5-232 \—

Target
DO

Printer
LUN 1

Centronics m
LUN 2

Figure 10.3 Bridge controller with logical units.

available with SCSI. Today intelligent bridge controllers are used in applications
such as RAID arrays, which make several drives act as one powerful SCSI drive. In
this case, SCSI is often also used as the interface between the bridge controller and
the drives of the array.

LUNs

Figure 10.3 shows a bridge controller connecting a Centronics printer to the SCSI
bus. Yet another application of bridge controllers takes advantage of the eight logical
units (LUNs) that SCSI allows for each device. In this case each LUN can represent
a separate peripheral device. Such a controller must possess a number of device spe-
cific interfaces, one for each LUN.

The paralliel SCSI bus

Uptonow we have focused on SCSI devices, not on the bus itself. The parallel SCSI
bus is from 8 to 32 bits wide, depending on configuration. A simple 50-pin ribbon
cable can be used for the 8-bit bus, including all other necessary control signals. The
16- and 32-bit variations introduced with SCSI-2 are called Wide SCSI and call for
an additional cable. Naturally, any device that supports Wide SCSI must also have a
second connector. With SCSI-3 the 68-pin P cable was introduced which also allows
16-bit Wide SCSI on a single cable. Wide SCSI is optional and is ever more pre-
vailing with hard disk drives. The advantages are evident; using the same clock
frequency, the bandwidth of 16-bit SCSI is twice that of 8-bit SCSI.

Protocol

Commands, messages and data are sent across the parallel SCSI bus exclusively
using asynchronous transfers. This means that the sender and receiver exchange data
using a request/acknowledge handshake. This allows devices that process the SCSI
protocol at different speeds to use the same bus. Asynchronous transfers can reach a

Overview 93

A

6 meters maximum >
Device 0

Terminator

1 10cm
Terminator maximum

Device 2 Device 1

Figure 10.4 SCSI cable.

maximum of approximately 3 MHz. Additionally, there exists the option to transfer
data synchronously, which under SCSI-2 allows devices to exchange data at speeds
of up to 10 MHz. With SCSI-3 the Fast-20 mode with a 20 MHz clock frequency
was introduced. It is, however, subject to restrictions in cable length. Whether or not
and at which speed synchronous transfers will be used is negotiated by the two
devices beforehand. This allows SCSI-1, SCSI-2 and SCSI-3 devices to operate on
the same bus without compatibility problems.

Cabling

Currently, there are a large number of different cables for connecting SCSI devices.
The most widely used cable is still the 50-pinribbon cable. It is also called internal
SCSI cable because it is only designed for connections inside a computer cabinet. It
runs from device to device and must not have any derivations. This is important to
mention since in the schematic drawings, including those in this book, it always
looks as though the connections of the individual devices were branching off a main
SCSI cable. Since most SCSI devices have only a single SCSI connector, a cable is

used that has the appropriate number of connectors crimped along its length (see
Figure 10.4).

Termination

The devices on the extreme ends of the bus — and no other devices — must have ter-
minating resistors. On internal SCSI buses, these terminators are usually socketed
inside the devices in question.

Single-ended or differential

There are two fundamentally different variations on the type of electrical signals
used for the bus: single-ended and differential. These variations are not compatible
with each other. Devices with single-ended and differential interfaces cannot be used

94

Introduction

MBytes/sec
80 Wide Fast-20
40 - —|- Wide SCSI-2
20 — ——1 - Fast-20
10 — |—|- Fast SCSI-2
5 —— |+—|- Synchronous SCSI-1
I || Asynchronous SCSI-1
1 i
I
o o = I] D
o > N 2 P =
2 o § o ° Z
= 2 =3 o =
£ 5 & 2 3 2
S @
<
©

Figure 10.5 SCSI transfer rates.

on the same bus, although they can use the same type of cable. Before configuring a
system, the decision must be made as to what type of interface will be used. This
choice is made somewhat easier by the fact that most devices are only available with
single-ended SCSI.

Single-ended SCSI uses open-collector drivers to power the bus. One advantage
of this is that the drivers can usually withstand an improperly inserted connector.
There is no reason to panic if you accidentally insert a connector the wrong way: I've
done this a number of times and haven't damaged a device yet! The pin assignments
are such that a ground is opposite every signal. In addition to flat cable, twisted-pair
cables can also be used.

Differential drivers allow cable lengths beyond the 6 meters of the single-ended
drivers, up to 25 meters. Since so few devices come with a differential interface,
single-ended to differential converters have appeared on the market.

Summary of hardware options

Many terms have been introduced in the preceding section. Here they are brought
together in one place. These are the terms that you will find in SCSI product manuals
(Figure 10.5):

e Asynchronous SCSI: This method of data transfer is basic to all SCSI devices.
The transfer rate is normally around 1.5 MHz although modern chips are capable
of 3-4 MHz.

® Synchronous SCSI: This optional method of data transfer makes possible rates
of 5 MHz. Since commands and other protocol related information are sent asyn-
chronously, devices are able to negotiate which method will be used. Devices that
use this option and those that do not can function side by side on the same bus.
The synchronous option is found on most high performance devices.

Overview 95

® Fast SCSI: An improvement to synchronous transfers for SCSI-2 devices allow-
ing a data rate up to 10 MHz. Today, fast SCSI has become the standard for disk
drives.

® Wide SCSI: 16- or 32-bit transfers are made possible with an additional cable (B
cable) or with the new SCSI-3 P cable. The resulting data rate is double or
quadruple the previous rate. This SCSI-2 option also allows a mix of device types
on a single bus. 8-bit devices are simply not connected to the additional signal
lines. With the new P cable, 16-bit wide SCSI is becoming ever more popular par-
ticularly for disk drives.

o Single-ended/differential: These two variations on the implementation of the elec-
trical signals were already part of the original SCSI definition. The vast majority of
devices employ a single-ended interface. Here the maximum cable length is 6
meters. The differential option allows cable lengths up to 25 meters. Single-ended
and differential devices cannot be used together on the same bus.

Device types and commands

A well-defined command set is an important element of a device independent /O
subsystem. With respect to SCSI, device independence takes on two dimensions. On
the one hand, there are the ten SCSI device types, of which hard disks and tape drives
are two examples. Each type defines a specific model and command set for the
devices of that type. On the other hand, a number of different physical devices can be
supported by a single device type. One component of a device model is a set of
parameters that allows you to define or specify the exact features of the individual
device. For example, the maximum storage capacity of a disk drive is fixed, whereas
the length of a data block can be individually specified.

In principle, transactions take place on the SCSI bus in the following manner: an
initiator sends a command to a target, and the target carries out the command and
afterwards informs the initiator of the outcome. The nature of SCSI commands gives
a great deal of autonomy to the device carrying out the command. In this way an ini-
tiator can send a SCSI floppy drive a FORMAT UNIT command and relinquish complete
control to the drive. When the formatting is finished, the initiator is merely informed
of success or failure.

Another example of device autonomy is the READ command for disk drives. The
initiator instructs the target to fetch a certain number of blocks starting at a particu-
lar block number. The target calculates a physical address of cylinder, head, and
sector number from the logical block number and sends the data to the initiator. An
important difference with the SCSI interface is that this data is strictly usable infor-
mation — no headers, no ECC, no gaps. All of these ancillary fields are managed by
the target alone. This is important because different devices use completely different
formats to store information on the medium. This also explains how it is possible to
produce a very inexpensive host adapter capable of controlling up to seven different
devices. The intelligence is located in the devices, not in the host adapter.

SCSI makes available a number of commands for general interrogation of devices
on the SCSI bus. A possible scenario could begin with a host looking to see which

96 Introduction

10.3

SCSI IDs are occupied. Afterwards, the host can determine what types of devices are
located at those IDs. Finally, device specific commands can be used to gather
detailed information about each device. A device driver can be written in just this
way without knowing the specific details of the device.

Evolution of the command sets

® SCSI-1 The SCSI-1 standard originally contained many commands that have
remained unchanged in SCSI-2. SCSI-1 also left many parameters vendor unique
or unspecified, which sidestepped the original intent of the standard. The result
was that practically every device needed its own slightly different device driver.
This complicated the goal of device independent software. It was at this point that
many people felt that SCSI simply was not SCSI compatible, a feeling that today
has rightly disappeared.

® CCS The CCS supplement to SCSI-1, which became an official part of SCSI-2,
had the aim of further standardizing the hard disk command set. The CCS intro-
duced the concept of mode parameter pages for the MODE SELECT command and
defined a set of defect list formats. Tape drives and other device types, however,
were not included in the CCS. These had to make do with SCSI-1 as it was orig-
inally formulated.

® SCSI-2 Finally, a very significant step forward was made in the definition of
SCSI-2. In SCSI-2, a model is defined for every device type. Moreover, the same
level of detail used in the CCS for disk drives was used in defining the other
device types. It is worth noting that the first SCSI implementations were for
streamer tape devices. It is fair to say that the goal of a device independent /O
subsystem was reached with SCSI-2.

® SCSI-3 At command level, SCSI-3 will not provide too many novelties.
However, the documentation has been completely restructured. One important
new feature will probably be a command set for RAID controllers.

To conclude, SCSI-1 no longer plays a role with new devices; thus, you should watch
out for a SCSI-2 implementation in all devices. SCSI-3 is still under development and
is not supposed to bring dramatic changes in the command sets of most devices.

Documentation

One goal of this book, in addition to providing a thorough overview of SCSI, is to
give enough detailed information to make possible the undertaking of simple SCSI
projects without the need of additional documentation. Naturally, if you wish to take
advantage of the vendor specific features of a certain device, you will need that
device's SCSI manual. For example, the optional commands and parameter pages
can be found there.

Documentation 97

If you are interested in working with SCSI at a professional level, you cannot
avoid getting a copy of the original ANSI documentation in addition to this book. A
project involving writing firmware for a SCSI target or host adapter would be of this
magnitude, as would writing a software driver that used more than simply READ and
WRITE commands. Copies of the standard may be ordered from:

Global Engineering Documents,
2805 McGaw,

Irvine, CA 92714, USA
Telephone: 1-800-854-7179

The SCSI-2 document is called X3.131-1994. If you still need a copy of the SCSI-1
standard, the name is X3.131-1986.

You can also download the SCSI documentation from the SCSI Bulletin Board.
The telephone number and the procedure are described in detail in Appendix D.

The organization of the SCSI-2 standard

The SCSI-2 standard is a document of about 600 pages, which is organized in the
following way:

1 Scope
2 Reference standards and organizations
3 Glossary and conventions
4 Physical characteristics
4.1 Physical description
4.2 Cable requirements
43 Connector requirements
44 Electrical description
45 SCSI bus
46 SCSI bus signals
4.7 SCSI bus timing
4.8 Fast synchronous transfer option
5 Logical characteristics
5.1 SCSI bus phases
5.2 SCSI bus conditions
5.3 SCSI phase sequences
5.4 SCSI pointers
5.5 Message system description
5.6 SCSI messages
6 SCSI commands and status
6.1 Command implementation requirements
6.2 Command descriptor block
6.3 Status
6.4 Command examples
6.5 Command processing considerations and exception conditions
6.6 Contingent allegiance condition

98 Introduction

6.7 Extended contingent allegiance condition
6.8 Queued I/O processes
6.9 Unit attention condition

Sections 7 to 17 of the standard deal with the individual device types. They are all
organized in the same way: first comes a description of the device model of the type,
followed by a summary of commands, and finally the MODE parameters for the type.

7 All device types

8 Direct-access devices

9 Sequential-access devices
10 Printers
11 Processor devices
12 WORM
13 CD-ROM
14 Scanners
15 Optical memory devices
16 Medium-changer devices
17 Communication devices
A-] Appendices

Figure 10.6 shows a page from the actual SCSI documentation. Many drive manu-
facturers organize their own manuals in a similar manner, including, naturally, only
those chapters which are relevant for a given device. The result is that once you are
familiar with the ANSI specification, it is very easy to find your way around in SCSI
manuals in general. If you know one — you know them all. This makes it easy to con-
centrate on important things, namely, implementation details.

The organization of the SCSI-3 standard

As shown in Figure 10.1, the SCSI-3 standard is divided into many individual
documents, in particular:

® SCSI-3 Architecture Model SAM [X3T10/994-D]
® SCSI-3 Block Commands SBC [X3T10/996-D]
® SCSI-3 Stream Commands SSC [X3T10/997-D]
® SCSI-3 Graphics Commands SGC [X3T10/998-D]
® SCSI-3 Medium Changer Commands SMC [X3T10/999-D]
@ SCSI-3 Controller Commands SCC [X3T10/1047-D]
e SCSI-3 Multimedia Commands MMC [X3T10/1048-D]
® SCSI-3 Primary Commands SPC [X3T10/995-D]
@ SCSI-3 Parallel Interface SPI [X3T10/855-D]
® SCSI-3 Interlocked Protocol SIP [X3T10/856-D]
® SCSI-3 Serial Bus Protocol SBP [X3T10/992-D]
® SCSI-3 Fibre Channel Protocol FCP [X3T10/993-D]

Documentation 99

All Device Types 3/9/90
7.2.5 INQUIRY Command

Table 7-14: INQUIRY Command

| Bitl 7 6 [. 2 1 0 1

IBytel 1 i 1 1 !

o T Operation Code (120

11 I Logical Unit Number : Reserved |EVPDI

12 rage Code !

13 Feserved 1 :
14 ~llocation Length

15 Control !

The INQUIRY command (Table 7-14) requests that information re-
garding parameters of the target and its attached peripheral de-
vice(s) be sent to the initiator. An option allows the initiator
to request additional information about the target or logical unit
(see 7.2.5.2).

An enable wvital product data (EVPD) bit of one specifies that
the target shall return the optional wvital product data specified by
the page code field. 1If the target does not support vital product !
data and this bit is set to one, the target shall return
CHECX CONDITIO:l status with the sense key set to ILLEGAL REQUEST
and an additional sense code of ~LID FIELD IN CDB.

~n EVPD bit of zero specifies that the target shall return the
standard INQUIRY data. If the page code field is not zero, the tar-
get shall return CHECK CONDITION status with the sense key set to
ILLEGAL REQUEST and an additional! sense code of INVALID FIELD
IN CDB.

The page code field specifies which page of vital product data
information the target shall return (see 7.3.4).

The INQUIRY command shall return CHECK CONDITION status only
when the target cannot return the requested INQUIRY data.

Figure 10.6 Sample page from the SCSI-2 standard.

These documents are associated with three layers. The link layer describes the
physical interface, and the protocol layer describes the corresponding protocol.
There is a 1:1 correspondence between the interfaces defined up to now and their
protocols. The command layer describes the device models and the commands for
the different device types.

SAM

The SCSI-3 Architecture Model is the basis for all other SCSI documents. People
who already know the SCSI-2 standard may have some problems in getting used to
the SAM document because it is entirely written in an object-oriented notation. It
describes well-known SCSI terms such as initiator and target, but also new ones such

100

Introduction

as the SCSI domain. Many old terms have been generalized and extended. Also the
properties of certain elements have been dimensioned for the future: counters such
as SCSI ID and LUN are now 64 bits wide. Only the individual protocols then limit
these values in various ways.

SPC

The SCSI-3 primary commands (SPC) set defines the behavior and the commands
that are common to all SCSI-3 devices.

SBC, SSC, ...

Currently, the SCSI-3 standard has six different command sets. The most important
ones are the block-oriented commands (SBC) for hard disks and similar devices, and
the stream-oriented commands (SSC) for magnetic tapes and printers.

SIP and SPI

The parallel SCSI-3 interface is described by the interlock protocol (SIP) and the
parallel interface (SPI). It is both an improvement and an extension of the well-
known SCSI-2 interface. The Fast-20 standard which allows transfer rates of up to
20 Megatransfers per second is currently described in a separate document
(X3T10/1071-D).

FCP and FCP-PH

This pair of documents describes SCSI via Fibre Channel. The Fibre Channel
protocol (FCP) is a document of the X3T10 committee. The FCP-PH document
describes the physical level of Fibre Channel and is issued by the ANSI X3T11
committee.

SBP and 1394

IEEE 1394 is the official name of ‘Fire Wire’, a serial bus favored amongst others
by Apple. This standard is managed and maintained by the IEEE. Only the serial bus
protocol (SBP) belongs to the SCSI committee.

SSP and SSA

These two documents describe a further approach of a serial interface which is
favored mainly by IBM.

Until now, the parallel interface is the only tangible alternative. SCSI over Fibre
Channel, Fire Wire and SSA are all at project stage. Whether or not they will be
finalized and which of the three is going to succeed is a completely open question.

11 scsi architecture

11.1

The SCSI architecture model

The present chapter on SCSI architecture is new in the second edition of this book.
This may seem surprising since SCSI has always had something like an architecture.
True, but only since SCSI-3 is this architecture explicitly described.

On the other hand, you can currently buy practically no SCSI-3 products. This
may change very quickly, but this edition of the book is quite rightly still based on
the SCSI-2 standard. However, the changes SCSI-3 will bring are extensively
described in many places.

Thus, in this chapter I will try to be a contortionist, because I will be describing
the architecture of SCSI-2 in terms that are used in the SCSI-3 architecture. This will
facilitate the understanding of the following chapters, because the SCSI-3 architec-
ture is very clear. Furthermore, it will make the transition to SCSI-3 much easier.
SCSI-3 mostly presents issues already known from SCSI-2, but from a different
point of view; however, where new extensions are introduced, they too will be
extensively discussed in this chapter.

The SCSI-3 documentation contains a separate document which describes the
architecture of SCSI-3. The SCSI-3 Architecture Model (SAM) X3T9.2/994D is the
basis of all other SCSI-3 documents.

Why do we need an architecture model?

The SCSI architecture is an abstract model of a SCSII/O system. A real-life imple-
mentation will not necessarily look like this model. On the other hand, however,
each SCSI implementation must be realized in such a way that the rules of this
model are not violated.

The SAM document itself defines its task as follows: SAM defines the functional
groups and specifies a model of the behavior of SCSI-3 I/O systems and devices
which applies to all SCSI interfaces, protocols, access methods and devices.

101

102 SCSI architecture

(Fr=rm T
Client Server request Server

Server response

I

Figure 11.1 Client—server model.

Client-server model

The client—server model is a good way to represent a SCSI system. The client sends
a request to the server. The server answers with a response. Both use the Service
Delivery Subsystem (SDS) as a transport medium.

Thus, in the personal computer world, a PC is the client and its SCSI hard disk
the server. The PC sends a read request to the disk; the disk carries it out and returns
the data. As SDS, both use the parallel SCSI-2 bus.

For example, a PC might issue the request ‘Send me 10 blocks of data starting
with block number 312°.

The disk first converts the block number into a physical address of cylinder, head
and sector numbers. Then it checks whether this address is legal. Furthermore, it
checks whether the other requested blocks lie inside the capacity limits. Then it
starts moving the read/write head. When this is positioned over the correct cylinder,
it waits until the required sector passes. Then it starts the reading process, separat-
ing header information, CRC and ECC from the data proper. If needed, several
reading attempts are made. Only after the first block has been completely read, the
disk starts to transmit it to the client.

The client must only know how to communicate via the SCSI bus and which
commands are understood by a block-oriented device. These details are specified in
the SCSI standard.

All device-dependent information — where a logical block can be physically
found on the disk, how the data is coded on the medium, what has to be done in case
of error and so on — is known by the server, that is, the SCSI disk drive. This infor-
mation is manufacturer-dependent, frequently even model-dependent. Thus, SCSI
separates device-specific from general issues, offering the user the freedom to
employ his/her favorite peripheral devices. Device manufacturers, on the other hand,
can implement the functionality in the way they deem to be the best. This allows

The SCSI architecture model 103

—]

Domain ‘

p—

— I)

I' Service
; SC5l r

i delivery
bm subsystam

' ’—‘— T — .

Service ¢ i
Target Initiator delivery ! onnection
\ interface . | Subsystem

—— i

Application
Task manager ‘ LUN . client

—— —

Task set

Device server {queus]

]
]
{

Figure 11.2 SCSI object hierarchy.

easy introduction of technological progress, for example a new recording method for
magnetic disks, without causing changes for the end-user.

Structural model

The SCSI-3 structural model consists of a hierarchy of objects. At thetop stands the
domain which represents the I/O system. A SCSI domain structural model consists
of SCSI devices linked by an abstract service delivery subsystem. Figure 11.2 shows
the complete SCSI-3 object hierarchy. All components already exist in SCSI-2. The
following section will discuss the individual function groups in more detail.

You may find this structural model rather complicated, particularly if you already
know something about SCSI-2. But if you find yourself in the situation where you
are writing firmware for a SCSI target, this structural model relieves you from a lot
of planning work. You simply implement all objects of this structural model as
modules into your firmware. Task and task set are data structures; the task manager
manages these structures; and the device server executes the SCSI commands.

Obviously, you can also represent all elements of SCSI-2 in this model. Thus, if
you use this model now to implement a SCSI-2 target, the transition to SCSI-3 will
be relatively easy.

The SCSI domain

A SCSI domain is a self-contained SCSI I/O system, for example a SCSI-2 bus con-
nected to a host adapter and two hard disks. The correct definition of the SCSI
domain is: a SCSI domain is an I/O system consisting of several SCSI devices which
communicate with each other via a service delivery subsystem.

You will certainly have an intuitive idea of a SCSI device. It is a host or an I/O
device that uses SCSI commands.

104 SCSI architecture

=

l/O system

SCSI domain

Service delivery subsystem

o 501 801 804

scs scsl scs scsl
davica device device device

Figure 11.3 SCSI domain.

The service delivery subsystem

In the narrower sense of SCSI-2, the service delivery subsystem (SDS) is the SCSI
bus. The SAM generalizes this to a system that consists of a connection subsystem
and at least two service delivery interfaces (SDI). Its task is the error-free transmis-
sion of requests and responses between client and server. The connection subsystem
is the physical bus with its cables, connectors and electrical properties. The service
delivery interfaces represent the corresponding protocol.

The SCSI-2 bus

The SCSI-2 bus allows you to connect up to eight different SCSI devices. At any
point in time, only two of these devices can communicate with each other. Each
SCSI device is uniquely identified by its SCSI ID which thus represents its address.
At the same time, the SCSI ID also defines the priority of the associated device.
SCSI ID 0 has the lowest priority, SCSI ID 7 the highest priority.

These are the sober facts as set out in Chapter 4.5 of the SCSI-2 standard. Some
explanation may be useful. If at any time only two devices can communicate with
each other, this also means that messages cannot be sent to all connected devices. The
only method for influencing all connected devices at a time is a SCSI reset which has
its own dedicated signal line. Furthermore, no third device can interrupt a running
communication. No matter how high the priority, each device must wait until the two
communicating devices terminate their communication themselves.

Most SCSI devices will do this as often as possible. As soon as the command has
been transmitted, the device which is to execute the command releases the bus for
use by other devices. After the command has been executed, the device reconnects
to the device that issued the command. This disconnect/reconnect mechanism is
extensively described in Chapter 20 on the SCSIbus protocol.

On each SCSI device the SCSI ID must be set in such a way that it is unique for
the bus to which the device is connected. The priority plays a minor role. It is only

The SCSI architecture model 105

of importance when more than one SCSI device at a time requires the free bus. As
soon as the connection between two devices is established or when only a short
delay (2.4 ps) lies between the bus requests of two devices, priority plays no role.

The parallel SCSI-3 bus

Under certain hardware conditions, the parallel SCSI-3 bus can address up to 32
devices. Otherwise, with regard to the aspects relevant for this description, it corre-
sponds to the SCSI-2 bus.

SCSI devices

The definition of host adapter and SCSI controller is not part of the SAM. It is,
however, important and fits well into this position.

Host adapters

A host adapter is the connection of a computer to the SCSI bus. This host adapter
can be realized as a separate plug-in board, as is the case with most PC systems. It
can, however, also be integrated into the mother board, as is the case particularly
with home computers and workstations.

A computer can also have several SCSI host adapters. These are used to connect
more than one SCSI bus to a computer. Then, these different SCSI buses are sepa-
rate SCSI domains. Therefore, the same SCSI IDs can be used on both buses.

SCSI controllers

The connection of peripheral devices to the SCSI bus is called the SCSI controller. In
most cases, the SCSI controller is integrated into the peripheral device (embedded

Disk 1 Disk 2
DO ID1
Host adapter A I|
scsio7 | SCSI domain 1
SCSI d in2
Host adapter B goal!
SCsI D7 \
Host computer
= Disk 3 CD-ROM] |Streamer
DO ID1 ID 4

Figure 11.4 Computer with several SCSI domains.

106 SCSI architecture

SCSI ID

SCSI controller
LUNO

SCSI ID

SCSI controller

LUN O, LUN1

Device 1
Control electronics

P '_ImD

Device 1
Control electronics

Physical
Device 1

Physical
Device 1

Figure 11.5 Embedded SCSI and bridge controllers.

controller). Controllers housed on a separate board are called bridge controllers.
Figures 10.3 and 11.5 show SCSI controllers.

Although priority plays only a minor role in SCSI, the following convention has
been generally adopted: the first host adapter gets SCSI ID 7 and IDs for additional
host adapters are given in descending order. The first SCSI controller gets SCSI
ID 0, and additional SCSI controllers are given ascending IDs. This convention is,
however, neither written nor even mentioned anywhere in the SCSI standard. All
properly written software must be able to cope with any other assignments as well.

Initiator and target

SCSI devices can assume either the role of an initiator or that of a target. This is prin-
cipally independent of whether the device is a host adapter or a SCSI controller.
Originally, most devices were set up to be either an initiator or a target. In such a
constellation, the host adapters were initiators and the SCSI controllers were targets.
Today, an ever increasing number of devices is capable of assuming either role.
Nearly all hard disks and tape devices can become initiators in the context of the
copy command and copy data from other devices to themselves. Only many host
adapters find it difficult to adapt to the target role or can still only be initiators.

The initiator triggers an action on the SCSI bus by selecting a target and sending
acommand. But as soon as the command is transmitted, the target takes over control
of the bus protocol. It decides whether to release the bus and, after having released
the bus, when to reconnect to the initiator. My former colleague Michael Schultz,
who translated the first edition of this book into English, coined the phrase: ‘“The ini-
tiator is the master in function and the slave in protocol.’

The definition of the SAM is: An initiator is a SCSI device that can send out SCSI
commands and task management requests. A target is a SCSI device that can execute
SCSI commands and task management requests.

The SCSI architecture model 107

Target model Initiator model Combined model
A e TS
SCSI device SCS! device SCSI device

Target Initiator

Logical
unit

Logical
unit

Applica-
tion

Applica-

tion

client client

SDI

SDS

Figure 11.6 SCSI device model.

Initiator

An initiator is a fairly simple device. For most purposes it is sufficient to know that
it has an ID and generates SCSI requests.

According to the abstract SAM, it consists of an identifier and as many applica-
tion clients as it has outstanding tasks. The identifier is its address, which is 64 bits
long. Its contents depends on the employed SDS. Thus, in SCSI-2, it can only lie
between 0 and 7, in the parallel SCSI-3 protocol between 0 and 31. Other protocols
might allow larger addresses.

An application client is an abstract object which generates exactly one SCSI
command or one task management request. Thus, there is a separate application
client for each individual command.

Target

A SCSI target is significantly more complicated than an initiator. The easy definition
is: A target has an ID, accepts SCSI commands and forwards them to the corre-
sponding LUN for execution. A LUN represents the physical peripheral device and
the logics needed for the execution of SCSI commands.

According to the SAM, the SCSI target consists of an identifier, one or more
LUNSs and a task management.

For the target identifier, the same applies as for the initiator identifier. It is also 64
bits long, but its true value range is limited by the current SDS.

Task

The task management controls the execution of one or more tasks and reacts to task
management requests. A task is defined as the set of actions needed to carry out a
SCSI command or a sequence of linked SCSI commands.

108 SCSI architecture

LUN (logical unit)

A LUN is a rather complex thing. It consists of a LUN number, a device server and
a queue for tasks, the task set.

As the identifiers in the SAM, the LUN number is 64 bits long, but is limited in
its value range by the SDS.

The device server is the physical device together with the associated logics.

The task set, finally, is the queue containing the tasks for this LUN. The tasks are
managed by the device server and processed one after the other. The order of pro-
cessing can be specified by the task management. A task is generated in the LUN
with the arrival of the first command of a SCSI command chain and disappears after
execution of the last command of this chain has been terminated. A task set can be
ordered. This allows control of the order in which the tasks are processed.

Each SCSI target has at least one LUN. This so-called base device also processes
the SCSI commands that are addressed to the target as such. These are mainly com-
mands that supply information on the configuration of the target.

SCSI configurations for the parallel SCSI bus

A parallel SCSI bus supports every combination of initiators and targets, provided
that they contain at least one initiator and one target each. Practically all publications
on the subject of SCSI-2 present three basic configurations with different require-
ments for the implemented SCSI options. These configurations are not part of the
SAM. They are presented here because this is a point in the description into which
they fit.

Single initiator, single target

This is the simplest and maybe most frequent configuration. One initiator, the host
adapter, communicates with one target, the peripheral device. You will often read
that in this configuration bus release via disconnect/reconnect is superfluous. This is
not entirely correct. At least in multitasking operating systems, such as UNix, Novell
Netware or OS/2, the host can issue further write or read requests to the hard disk
when it is still busy processing the first one. This fills the task set and allows the
device server to sort the requests in such a way that the minimum number of head
movements is required. This can significantly improve the overall throughput.

Single initiator, multiple target

This configuration is more interesting. It fulfills one of SCSI’s promises, namely to
operate different types of peripheral devices on one I/O bus. Here, it is of enormous
importance that all SCSI devices release the bus when they do not need it.
Otherwise, slow devices block all other I/O activities. Bus release via connect/recon-
nect is optional in SCSI-1 and SCSI-2. In practice, however, all current devices
support this option. Should you have to employ an older device that does not yet

The SCSI architecture model

109

Compater
LY

single initiator

i

Tl abagn

Computar

n e

[

single initiator

n e

|Corn putar

Mol et piu

Computer

st agapen
wn

Computer

| Hias] adape
T

multiple initiator

Controller

e Lu ﬂw)

single target

i
|Contrnller
e . LM O 4.‘43‘

multiple target

multiple target

Figure 11.7 SCSI configurations.

support this option, you ought to plan a separate SCSI bus for that particular device,

if at all possible.

Mulitiple initiator, multiple target

In this configuration it is generally necessary that the initiators reserve the SCSI
devices they access. This obviously depends on the device type. Almost no operat-
ing system can cope with the fact that more than one host computer requires write
access to the same disk drive. Multiple access to CD-ROMs, which can only be read
anyway, might, however, be possible without problems. Personally, I would recom-
mend that devices are reserved also in configurations with only a single initiator. The
additional effort is not excessive, but when eventually a further initiator is added to
the system, you will not have to change your software drivers.

110 SCSI architecture

11.2

The SCS! command model

SCSI commands are sent by an initiator to a target. More precisely, they are
addressed to the LUN of a target. This LUN’s device server executes the command
and returns a status. This was true in SCSI-1 and still applies today to SCSI-3.

The SAM, however, has quite a formal way to express this simple matter. The
SAM sees a SCSI command as a call of a remote procedure. This procedure has the
task identifier, a command block and the status byte as mandatory parameters.
Optional parameters are input or output data buffer, command length, auto sense
request and sense data. The result of this procedure is the service response.

Service Response = Execute Command(Task Identifier, Command
Descriptor Block, [Task Attributel, [Data Output Bufferl, [Data
Input Buffer], [Command Lengthl, [Autosense Requestl], [Sense
Datal, Status)

Structure of a SCSI command
The following components must be realized in a SCSI command:

® Task identifier: The task identifier is constituted by a set of 64-bit numbers. It
consists of the initiator, target and LUN identifiers. Ordered tasks have an addi-
tional tag.

o Command descriptor block: The command descriptor block (CDB) contains
the SCSI command proper. It is described in more detail below.

e Status byte: After the end of a command, the status byte supplies information on
whether the command was executed successfully. Furthermore, it carries some
additional information about the command termination. The status byte too is
described in more detail in a dedicated section.

Command descriptor block and status byte exist in all SCSI versions; only the task
identifier is new in SCSI-3.

Optionally, a SCSI command can also contain a data area. This is either an input
or an output data buffer. The data direction is viewed from the initiator — the input
data buffer contains data directed from the LUN to the application client.

A single SCSI command can only either send or fetch data to or from the target.
For read—-modify—write operations in which the initiator reads data, modifies it and
then writes it back, linked commands are used to ensure that no-one else modifies
the data in the meantime.

e Data input buffer: The data input buffer contains command-specific data sup-
plied by the LUN before command termination. The data is only valid when the
status byte contains the status GOOD, INTERMEDIATE Or INTERMEDIATE CONDITION
MET.

® Data outputbuffer: The data output buffer contains command-specific data that
is sent to the LUN. It can be user data or, for example, parameter lists.

The SCSI command model

111

Target (device server)

Initiator
Application client A Application client B
Prepa- - £ Postpro- Prepa- , : Postpro-
ration > BsWaltingtime cessing ration ~ Waiting time cessing
Time
Send Command Send Command
command 1 complete command 2 complate
(status: (status:
GOOD) GOOD)
Task A Task B
Process Process
command 1 command 2
Time

Figure 11.8 SCSI command execution.

A further optional element in this formal model is the task attribute. In SCSI-2 and
in the parallel SCSI-3 protocol, it is realized by means of SCSI messages.

e Task attribute: The task attribute specifies how the task is to be handled by the
task management. A simple task bearing the SIMPLE attribute cannot be inserted
into a queue. This can only be done with an ordered task bearing the ORDERED or
HEAD OF QUEUE attribute. This is explained in more detail in Section 11.4.

® Command length: The command length specifies the maximum number of bytes
that can be transmitted by the command.

® Autosense request: New in SCSI-3 is the autosense mechanism which allows, in
case of error, detailed information on the error to be transmitted automatically to
the initiator. In SCSI-2 a REQUEST SENSE command must be explicitly specified for
this purpose. The sense data parameter contains the data supplied by the

autosense mechanism.

The command descriptor block

Table 11.1 shows the structure of a typical SCSI command descriptor block.

Table 11.1 SCSI command descriptor block.

7

S5

|

()
—
S

Opcode

n-1

Command-specific
parameters

Control byte

112 SCSI/ architecture

Opcode

Byte 0 of each command is the opcode which defines type and length of the
command. Its three higher order bits contain the command group, the five lower
order bits the command itself. Each command group is associated with a command
length. Thus, directly after decoding the first command byte, a target knows how
many bytes it still has to expect. Table 11.2 shows the opcode structure. Depending
on the device type, the same opcode can denote different commands which,
however, usually show at least some similarity. Thus, the opcode 0Ah means WRITE
for disk and tape devices, whereas it means SEND for processor devices. Also the
structure is different; therefore you cannot deduce the command from the opcode
alone — you must also know to which kind of device the command is addressed.

Table 11.2 Opcode structure.
s | 7 | 6 s 4‘3‘2{;{0

Group Command

Command group

The three bits of the command group allow for eight different groups. Reserved
groups must not be used. These commands are kept free by the SCSI committee for
future versions of the standard. In SCSI-2, group 4 was still reserved. In SCSI-3 this
is where the 16-byte commands are added. When manufacturers want to implement
proprietary standards, they must use group 6 or 7. In practice, however, this seldom
occurs.

Table 11.3 SCSI command groups.

Group Opcodes Description
0 00h - 1Fh Six-byte commands
| 20h - 3Fh Ten-byte commands
2 40h - 5Fh Ten-byte commands
3 60h — 7Fh Reserved
4 80h — 9Fh Sixteen-byte commands
5 AOh — BFh Twelve-byte commands
6 COh — DFh Vendor-specific
7 EOh — FFh Vendor-specific

Control byte

In SCSI-2, the control byte contains only two bits defined in the standard. Both are
optional.

The link bit allows you to chain a linked I/O process across several commands.
This is used to prevent a command of a further [/O process being inserted between
two commands of the linked I/O process, due to optimization in the target. This is, for
example, useful when a block is to be read, modified and written back. Furthermore,
linked commands allow the use of relative addressing of the logical blocks.

The SCSI command model 113

Table 11.4 The control byte.
Bit 7 6 5 [4 ’ 3 2 I 0

Manutacturer-specific Reserved ACA Flag Link

The flag bit must only be used with linked commands. This causes the service
response LINKED COMMAND COMPLETE (WITH FLAG) (OBh) to be sent after termination
of the linked command instead of the service response LINKED COMMAND COMPLETE
(OAh). Thus you can mark a determined command inside a command chain.

New in SCSI-3 is the ACA bit. ACA stands for auto contingent allegiance, a
status assumed by a LUN in case an error has occurred during command execution.
If the ACA bit is not set, the error status is canceled as soon as the next command
arrives from the same initiator. A set ACA bit prevents this and maintains the error
condition.

Linked commands

Figure 11.9 shows an example of the execution of two linked comimands. An appli-
cation client is generated in the initiator, and a task is generated in the task set of the
target LUN. This task is executed by the device server of the LUN.

First, the initiator generates an application client, sends the first command to the
target LUN and goes into a waiting state. This command has the link bit set. The
target LUN generates a task and inserts it into the task set. When this task’s turn
arrives, the device server of the target LUN executes this first command. When it is
ready, the target sends a service response LINKED COMMAND COMPLETE with an INTER-
MEDIATE status. The task remains in existence and goes into a waiting state. Now. the
application client in the initiator continues its work, preparing the second command
and sending it to the target. In our example, the second command has not set the link
bit; thus it is the last of the command chain. The application client goes again into a

Initiator
Application client
Prepa- o Prepa- | Paostpro-
ration Waiting time ration Waiting time cessing
Time
Send Linked Send Command
command 1 command command 2 complete
(link bit set) complete {without link bit) (status:
{status GOOD)
INTERMEDIATE)
Task
Process Waiting ti - Process
command 1 Gl LA command 2
0 Time
Target (device server)

Figure 11.9 Linked commands.

114 SCSI architecture

Table 11.5 Service response.

The task is terminated. The status paramcter
contains a valid value.

COMMAND
COMPLETE

LINKED COMMAND A linked command is terminated.

COMPLETE

A linked command is terminated with a sct flag bit
in the control byte.

LINKED COMMAND
COMPLETE (WITH FLAG)

SERVICE DELIVERY
OR TARGET FAILURE

The task was aborted through an error in the target
or in the SDS. All parameter values, including the status,
may be invalid.

waiting state. Now the task in the target LUN wakes up again and executes the
second command. This time, the target returns a service response COMMAND COM-
PLETE with a GooD status. The task is terminated and ceases to exist. With the
reception of the service response, the existence of the application client too comes
to an end.

Status

All SCSI commands are normally terminated with a status. The only exception is
when a command was aborted by unforeseen circumstances. Table 11.6 shows all
possible status codes.

In practice, mainly three status codes occur, GOoD (00h), BUSY (08h) and CHECK
CONDITION (02h). The first two are self-explanatory. You will meet the CHECK CON-
DITION status at the latest when you carry out your own tests with the SCSI monitor

Table 11.6 Status codes.

Status byte Status Meaning
00h GOOD The command was terminated successfully.
02h CHECK The command was not terminated successfully.
CONDITION Now the LUN is in the ACA state. You should now use a
REQUEST-SENSE command to find out the exact cause.
04h CONDITION This code is used instead of GOoD, for example with a
MET SEARCH-DATA command, to indicate the success of the search.
08h BUSY The LUN can currently not accept any further command.
Try again later.
10h INTERMEDIATE Used instead of Goop by commands inside a command chain.
14h INTERMEDIATE Used instead of CONDITION MET by commands inside a
CONDITION MET command chain.
18h RESERVATION The LUN is currently reserved foranother initiator.
CONFLICT Try again later.
22h COMMAND The target device has aborted the command because of
TERMINATED a TERMINATE 1/0 PROCESS message.
28h TASK SET FULL The command should be associated with a task set,

(QUEUE FULL)

but this cannot accept any further tasks.

The SCSI command model 115

program. This is the status used by a target to indicate, amongst others, all erroneous
commands, when either the command itself or the parameters are incorrect. When
this status has occurred, the target is ready to supply additional information on the
precise cause of the error. This information can be called up with a special
command, namely REQUEST SENSE. In SCSI-3 there is the additional possibility of
having the sense data automatically transmitted to the initiator.

Two changes have been made between SCSI-2 and SCSI-3. They are shaded gray
in the table. The first one is only editorial: code 28h is now called TASK SET FULL
instead of the former QUEUE FULL. Furthermore, code 30h has been added.

The service response

The service response contains the result of the execution of a SCSI command. For
those readers already familiar with SCSI-2 it should be mentioned that the service
response corresponds to the message phase during command termination. This will
be explained in more detail in Chapter 20. A list of all possible values a service
response can assume is given in Table 11.5.

After these highly theoretical arguments, we will get down to earth again with a
detailed presentation of the most significant elements.

Task and command

For each SCSI command that an initiator addresses to a target, the device server in
the addressed LUN generates a task. This task exists until the command or (in case
the first command had the link bit set) the entire command chain has been executed.
From the points of view of the target (device server) and the initiator (application
client) this life span looks different because they have different sources of
information.

The target sees the following: as soon as it receives a command, the device server
generates a task. This task normally exists until the device server sends the service
response COMMAND COMPLETE. Furthermore, a task dies with a power-on, when the
target performs a hard reset, or when the task management executes one of the func-
tions TARGET RESET, ABORT TASK Or ABORT TASK SET.

From the target’s point of view, a command is normally considered pending as
long as the task exists. Only a linked command is terminated with an additional
service response LINKED COMMAND COMPLETE Or LINKED COMMAND COMPLETE (WITH
FLAG).

The initiator cannot look inside the target. It must therefore rely on assumptions.

An application client assumes that a task exists as soon as it has sent the
command. It normally assumes the task’s existence until it receives the service
response COMMAND COMPLETE. Furthermore, a unit attention state with determined
causes or the service response SERVICE DELIVERY OR TARGET FAILURE convinces the
client that its task has died. If it has itself terminated the task by means of a task man-
agement request, it assumes that the task is terminated when it has received the
service response FUNCTION COMPLETE.

116 SCS/ architecture

11.3

Exceptions and error handling

Upto now we have discussed the normal execution of SCSI commands and tasks.
Things become slightly more complicated when for whatever reason a command
cannot be processed normally. Here too the structured model of SCSI-3 is of great
help because it divides errors and exceptions into groups which can usually be asso-
ciated with a determined function block of the SCSI subsystem.

Sense data

When a SCSI device, usually a LUN, finds itself in an exception state, it refuses exe-
cution of the next command and returns a CHECK CONDITION status. It also holds at
its disposal a data record at least 18 bytes long with coded information on the error,
the so-called sense data. This sense data can be transmitted to the initiator by means
of a REQUEST SENSE command, an asynchronous message or an autosense request. All
these mechanisms will be explained in more detail later in this book.

Meaning and format of the sense codes are not part of the SAM. They are
described in the primary command set. In this book, you will find the description
together with the REQUEST SENSE command and the sense code tables in Appendix C.

Auto contingent allegiance

Auto contingent allegiance (ACA) is a state assumed by a task set when the LUN
detects an error. It then sends a CHECK CONDITION or COMMAND TERMINATED status to
the initiator. In the ACA state, further execution of commands and insertion of new
commands into the task set are very restricted. This is necessary to preserve the
sense data, because there is only one sense data memory area per LUN which would
be overwritten if a further command were executed.

In SCSI-2 there is a contingent allegiance and an extended auto contingent alle-
giance state. In SCSI-3, these have been united into the ACA state. The differences
are not dramatic. A precise definition of the contingent allegiance states of SCSI-2
can be found in the Glossary.

As long as the ACA state exists, all tasks of the affected task set are in a waiting
state. States that a task can assume are described in Section 11.4. Tasks that come
from the initiator that caused the error are inserted into the task set. Tasks coming
from other initiators are refused with an ACA ACTIVE status.

When a task set passes into the ACA state, the initiator that caused it should fetch
the sense data with a REQUEST SENSE command. Otherwise they will get lost, because
the first command that is accepted in the ACA state deletes the sense data and ter-
minates the ACA state. This applies to all SCSI versions.

SCSI-3 offers the additional possibility of sending the sense data automatically to
the initiator that caused the unsuccessful command. However, this auto sense mech-
anism is not mandatory. Here, the command that causes the ACA state must have the
ACA bit set. Then the affected task set accepts only a command with ACA attribute
even from the causing initiator. With this command, the sense data are returned and
the ACA state for this task set is terminated.

Exceptions and error handling 117

Thus, an ACA state ends either with the next command or with the transmission
of the autosense data. Furthermore, it ends with a power-on or a hard reset. In addi-
tion, in SCSI-3 the ACA state can also be terminated by means of the task
management functions TARGET RESET and CLEAR ACA.

Unit attention state

A UNIT ATTENTION state occurs when a change happens on a LUN that the initiator
should know of, for example a media change on a removable disk or tape unit. In
such a case there are two possibilities for notifying the initiator. The most elegant
one is to send an asynchronous message (AEN, see below) to the initiator. This pos-
sibility is already present in SCSI-2, but it is supported only by few initiators and
targets.

Thus, as a standard solution for SCSI-2 only the second possibility remains. A
LUN in UNIT ATTENTION state passes into the ACA state and aborts the next
command with a CHECK CONDITION status. Then the initiator finds out what happened
by means of a REQUEST SENSE command.

After power-on or a reset, each target goes into the UNIT ATTENTION state as soon
as it has finished initialization. Thus, a CHECK CONDITION status will be present when
the first command is sent to the target. When you try this out with the SCSI monitor
program, however, you must consider that your host adapter might probably have
checked all targets after power-on and therefore reset the UNIT ATTENTION state.

In SCSI-3 the list of events that trigger a UNIT ATTENTION state has been enriched
with several interesting variations. Thus, for example, modification of device set-
tings (the mode parameters described in Chapter 12) by another initiator or
reloading of firmware too trigger a UNIT ATTENTION state. Furthermore, LUNs can
now store several UNIT ATTENTION states in a queue and assume them one after the
other.

The UNIT ATTENTION state ends with the sending of the asynchronous message or
the termination of the ACA state.

Overlapping commands

Overlapping commands can occur in SCSI-2 in tagged queues and generally in
SCSI-3. They occur when a command is to be inserted into a task set in which a
command with the same identifier already exists. Whether the LUN must consider
this state or not is specified in the corresponding SCSI-3 protocol.

incorrect LUN selection

A LUN may not be available for the most varied reasons. In particular, it may not be
accessible. The wide majority of SCSI devices support only LUN 0. When a bridge
controller is employed, it may happen that the LUN is supported, but not connected
or switched on. In all cases, each command to this LUN is aborted with a CHECK
CONDITION status, that is, an ACA status. The sense data will then give precise
information on the exact cause.

118 SCSI architecture

11.4

Task management

In the SCSI architecture model, task management is a formal description of func-
tions for aborting task sets and individual tasks. The functions are implemented in
each of the SCSI-3 protocols. In the parallel SCSI-3 protocol and in SCSI-2, they are
realized by means of the message system.

In the client—server model, the task management functions are represented as a
function call of the following form:

Service Response = Function(Object Identifier)

The service response can assume the values FUNCTION COMPLETE, FUNCTION
REJECTED Or SERVICE DELIVERY OR TARGET FAILURE.

Task management functions are generated by an application client in the initiator
and executed by the task manager as a function of the target. A list of task manage-
ment functions follows below.

Task management functions

ABORT TASK SET

Aborts all tasks in the task set that belong to the specified initiator. This function
must be implemented in SCSI-3 when ordered tasks are implemented in the LUN.
In SCSI-2, this corresponds to the ABORT TAG message.

ABORT TASK

Aborts the specified task. This function must be implemented in all SCSI-3 LUNS.
In SCSI-2 there is no exact correspondence because there are no task identifiers.
Here, the ABORT TAG message aborts the currently active task.

CLEAR ACA

Aborts all tasks in the task set. This function must be implemented in SCSI-3 when
ordered tasks are implemented in the LUN. In SCSI-2, this corresponds to the CLEAR
QUEUE message.

TARGET RESET

Resets the target and terminates all tasks in all task sets. This function must be
implemented in all SCSI-3 devices. In SCSI-2, this corresponds to the BUS DEVICE
RESET message.

TERMINATE TASK

Terminates the specified task as soon as possible. This ‘soft’ abortion of a task
allows, for example, the hard disk to finish writing the current sector. This function
is a SCSI-3 option. In SCSI-2, there is no exact correspondence because there are no
task identifiers. Here, the message TERMINATE 1/O PROCESS aborts the currently active
task in a similar way.

11.5

Task set management 119

Results

As a result of task management functions, the service responses FUNCTION COMPLETE,
FUNCTION REJECTED and SERVICE DELIVERY OR TARGET FAILURE can occur. FUNCTION
COMPLETE means that the function was executed correctly. FUNCTION REJECTED is
returned when the LUN does not support the task management function. SERVICE
DELIVERY OR TARGET FAILURE means that an error has occurred in the target or in the
transmission system. It is not clear whether the task management function has been
executed or not.

Task set management

The task set is the SCSI-3 equivalent of tagged queues in SCSI-2. Task set manage-
ment is carried out by means of the task management functions listed in the previous
section. You will meet these elements again in their actual implementation in
Chapter 20 in the sections on the SCSI-2 message system and the parallel SCSI-3
bus.

The task set management deals with task states, task attributes and events that
cause changes in task states. Task set management only refers to tasks previously
inserted into a task set. Task are not inserted into a task set only when they are imme-
diately aborted with a BUSY, RESERVATION CONFLICT, TASK SET FULL, ACA ACTIVE or
CHECK CONDITION status.

Task states

The current task is the task that currently has access to the resources of the target,
that is, the physical device or the bus interface. Whether a task of a task set can
become the current task depends on its state. A task can assume one of four states,
as shown in Table 11.7.

Figure 11.10 shows the possible transitions between task states.

SIMPLE or ORDERED task HEAD OF QUEUE or ACA task

All oider 13shs erfed

DORMANT ENABLED

TALK ABCAT Ttk ericded

ALA e~ dec

TASH ARDRT

BLOCKED

Figure 11.10 State transitions between tasks.

120 SCSI architecture

Table 11.7 Task states.

DORMANT

ENABLED
BLOCKED
ENDED

A task that cannot be terminated because other tasks in the task set occupy the
necessary resources.

A task that satisfies all requirements for becoming the current task.
A task that cannot become the current task because of an ACA state.

This task waits to be removed from the task set.

Task attributes

At the server request call the task is assigned an attribute. This attribute determines
the task state with which it is inserted into the task set.

Table 11.8 Task attributes.

SIMPLE

ORDERED

HEAD OF QUEUE

ACA

A task with the simple attribute is inserted into the task set as DORMANT. It is only
ENABLED when all older tasks with ORDERED or HEAD OF QUEUE attributes are
terminated.

A task with the ORDERED attribute is inserted into the task set as DORMANT. It is
only ENABLED when all older tasks are terminated.

This task is inserted into the task set as ENABLED.

An ACA task is inserted into the task set as ENABLED. There can only be one
ACA task in a task set at any one time.

12 scsi primary commands

12.1

You have seen the basic flow of phases of SCSI command execution in Chapter 11.
The initiator sends the command to the target as part of a service request. The device
server of the corresponding LUN processes the command. The command is termi-
nated with a COMMAND COMPLETE service response and returns at least the status as
a parameter.

This chapter describes the basic SCSI commands, that is, the commands which
can be found in the SCSI-3 primary command set. The description starts from the
SCSI-2 standard, explaining the minor changes brought by SCSI-3 in the individual
context.

The SCSI target model

A basic model for a SCSI-3 target was introduced in Section 11.1. At this point, we
slightly modify the model and take a look at the SCSI-2 target in greater detail
(Figure 12.1). A SCSI target is addressed using its SCSI ID. Within a single SCSI-2
target up to seven LUNs and seven target routines are accessible. A target must
implement at least one LUN. Target routines are optional. Each SCSI command is
executed by the particular LUN or target routine identified within the command.

SCSI ID
LUN LUN O ro-[iirr?gt()

M ramsirs | Target
N S S
| AN A AR IR U J SR

Figure 12.1 Model of a target.
121

122 SCSI primary commands

LUNSs

LUNs have already been introduced in the previous chapter on SCSI architecture. A
LUN is a part of the target accessible from outside that implements a SCSI device type.
Most commonly a target will consist of a single LUN; however, it is left to the target
whether it wants to combine more than one physical device to a LUN. This is the case,
for example, in RAID disk arrays. From a SCSI point of view, however, a LUN is seen
as one device. Thus, a LUN is associated with a device type and has a set of parame-
ters and states. The various LUNSs of a target may belong to different device types.

Target routines

Target routines are processes that run on the target itself. These were added with
SCSI-2, but are no longer present in SCSI-3. They were supposed to be used,
amongst other things, for diagnostic and test purposes. Target routines are always
vendor specific; there is no model or command set defined in SCSI-2. They are at
most of secondary importance and I know of no SCSI target that implements them.

Device types

SCSI supports a variety of device types, from disk drives to printers to scanners.
While disk drives are a source as well as a destination of information, printers only
receive and scanners only send data. Data is exchanged with disk drives in a block
format. Printers accept an unstructured stream of data. For these reasons SCSI
defines a number of device types. Table 12.1 shows an example of the codes returned
by an INQUIRY command.

For each device type SCSI defines a model, a command set and specific parame-
ter pages. The center column of the table indicates in which SCSI-3 document the
corresponding device type is described. This chapter covers the commands and para-
meter pages that are common to all device types, together with processor devices.
The following chapters cover each device type in detail, together with their specific
commands and mode parameter pages.

Parameter pages

Every LUN contains a set of parameters that configure its operation. These parame-
ters can be written with MODE SELECT and read with MODE SENSE. Collectively, they
are typically referred to as mode parameters. The parameters are sent across the bus
in blocks called pages. Here, as with commands, some pages pertain to all devices,
while some are only for specific types.

One thing that all device types have in common is the way in which the parame-
ters are organized and maintained by the LUN. A LUN has three copies or sets of its
parameters: the current, the default, and the saved parameters. The current parame-
ters are those with which the device is currently functioning. These reside in RAM
on the target and are lost when the device powers down. The saved values are kept
in some type of non-volatile memory. On a disk drive this might be the medium

12.2

Command structure 123

Table 12.1 List of device classes.

Code SCSI-3 document Device tvpes

00h SBC Disk drives

Olh SBC Tape drives

02h SSC Printers

03h SPC (here) Processor devices

04h SBC WORM drives

05h MMC CD-ROM drives

06h SGC Scanners

07h SBC Optical disks

08h SMC Media changers

0%h SSC Communication devices
0Ah-0Bh (Reserved in SCSI-2; SCSI-3: printer preprocessing devices)

0Ch SCC Reserved in SCSI-2; SCSI-3: array controllers (RAID)
0Dh-1Eh Reserved

1Fh Unknown device

itself, otherwise NOVRAM is frequently employed. At power-on time all devices
copy the saved values to the current parameters. The default values are set by the
manufacturer into PROM. The saved values reflect default settings when the device
is purchased. A SCSI command allows the default to be copied to the saved values.

There is actually a fourth set of parameters, though somewhat different from the
others, that the target can access. These changeable parameters are also hard-coded
into the firmware. This set tells an initiator which individual parameters may be
manipulated and to what extent. In this way a diagnostic program or device driver can
determine, for example, which sector sizes a disk drive will allow before blindly
attempting to set the value and running into a CHECK CONDITION status.

Parameter rounding

A new feature in SCSI-3 is that a target may round a parameter value that it does not
support precisely to a value that it does support. When a target rounds a parameter,
it must return a CHECK CONDITION status. The sense key (see the REQUEST SENSE
command) should be RECOVERED ERROR. The extended sense code finally reports
ROUNDED PARAMETER.

Command structure

All SCSI commands consist of at least a command descriptor block and a status
byte. Many commands also include additional parameter lists. Parameter lists are
transmitted by the SDS in the same way as pay data. SCSI commands process
logical blocks, that is, pay data, or they work with parameter lists. Parameter-
oriented commands can, for example, read and also modify the properties of devices.
There are also commands that deliver no information at all except in the status byte
that concludes all commands. SCSI-2 commands can be 6, 10, or 12 bytes long.
SCSI-3 defines an additional 16-byte command.

124 SCSI primary commands

Table 12.2 Template for 6-byte commands.

2SN R B BN B B
0 Opcode

b (LUN) {(MSB)

(9]

Logical block

(LSB)

Data length

w | | W

Control byte

6-byte commands

The fundamental structure of a SCSI command has already been introduced in
Chapter 11, where you will also find a list of all command groups and an explana-
tion of the structure of opcode and control byte. Table 12.2 shows the structure of a
typical 6-byte command. Depending on whether the command uses logical blocks,
parameter lists or status information, each field will have a different interpretation or
perhaps no function at all.

LUN

In SCSI-2 this field exists for reasons of compatibility with SCSI-1. In SCSI-3 it is
reserved. Byte 1 contains the number of the logical unit to be addressed in the three
most significant bits. All SCSI-2 devices I am familiar with use the IDENTIFY
message as well as the LUN field. The target routines in SCSI-2 are addressable only
using the IDENTIFY message.

Logical blocks

Six-byte commands that operate on logical blocks spread the logical block number
(LBN) over three bytes, as shown in Table 12.2. In total, 21 bits are available to
address the LBN, which corresponds to approximately 2 million logical blocks.
Since a logical block is usually 512 bytes long this represents about a gigabyte of
addressable storage. Therefore, 6-byte commands must not be used with devices
with more than a gigabyte of storage. Since the original SASI standard only had
6-byte commands, there exist both 6-byte and 10-byte versions of many commands.
New initiators, however, should only use the 10-byte versions.

Transfer length

This byte reflects the amount that should be transferred. Depending on the command
itself, this field is interpreted differently. Some commands transfer no data at all and
here the byte is meaningless. If the command uses a parameter list (which I will refer
to as a parameter oriented command) then the data length byte contains the parameter
list length in bytes. If there are fewer parameter bytes available than requested, a target
will simply send what is there without complaining. For commands that operate on

Command structure 125

logical blocks (what I call block oriented commands) transfer length represents the
number of logical blocks starting at the LBN to be transferred.

The 6-byte commands but also some 10- and 12-byte commands use a single byte
for the transfer length. For such commands that are block oriented a transfer length
of 0 means that 256 blocks should be sent. For parameter oriented commands O
means that no data should be transferred.

10-, 12- and 16-byte commands

The 10-, 12- and 16-byte commands are very much the same as the 6-byte com-
mands (Tables 12.3, 12.4 and 12.5). The only difference is the number of bytes
available for the LBN and the transfer length.

Table 12.3 Template for 10-byte commands.

7 e | s 4 | s |2 | K
0 Opcode
1 (LUN) | Reserved
2 (MSB)
3 Logical
4 block
5 (LSB)
6 Reserved
7 (MSB) Data length
8 (LSB)
9 Control byte

Table 12.4 Template for 12-byte commands.

7 s] s |+] 3] 2 | + | o
0 Opcode
1 (LUN) | Reserved
2 (MSB)
3 Logical
4 block
5 (LSB) i
6 (MSB)
7 Data length
8
9 (LSB)

10 Reserved

11 Control byte

126 SCSI primary commands

Table 12.5 Template for 16-byte commands.

2 I I N IR N T B
0 Opcode

1 Reserved

2 (MSB)

3 Logical

4 block

5 (LSB)
6 (MSB)

7 Additional

8 command data

9 (LSB)
10 (MSB)

11 Data length

12

13 (LSB)
14 Reserved

15 Control byte

A 10-byte command contains a 32-bit block address or an address space of
approximately 2 terabytes. The transfer length field is 16 bits long. In SCSI-2 the
12-byte command extends this field to 32 bits.

The 16-byte command has been added in SCSI-3. In bytes 6 to 9 it contains room
for additional data. Both logical block address and data length field are 32 bits long.

Command implementation

There are four different types of command implementation (Table 12.6). These
determine how and whether a command must be implemented.

Table 12.6 Command types.

Svmbol Meaning

M Mandatory: these commands must be implemented

(6] Optional: these commands may or may not be implemented. When implemented.
they must adhere to the standard

\Y% Only in SCSI-2: vendor specific: these opcodes are reserved for manulacturers
to implement their own commands

v New in SCSI-3: device type specilic: mandatory with some device types, optional
with others
R Reserved: these opcodes may not be used. The SCSI committee may assign commands

at a later date

Commands for all SCSI devices

12.3 Commands for all SCSI devices

127

There are a number of commands that are comimon to all device types (Table 12.7).
The most important of these will be introduced here. We begin with those commands
whose implementation is mandatory.

Compared with SCSI-2, six more commands have been added in SCSI-3 to the
list of commands for all devices. However, these commands are not new commands,
but were previously associated with other device types. On the other hand, the MODE
SELECT(6) and MODE SENSE(6) commands are no longer mandatory in SCSI-3. Thus,
there are only four commands left in SCSI-3 which every SCSI target must be able
to handle.

Table 12.7 Commands for all SCSI devices.

Opcode Name

Tvpe Page SCSI-2 SCSI-3

Description

(SPC)

0Oh TEST UNIT READY M 131 7.2.16 722 Reflects whether or not the LUN is
ready to accept a command

03h REQUEST SENSE M 128 7.2.14 7.18 Returns detailed error information

12h INQUIRY M 132 725 7.5 Returns LUN specific inlormation

15h MODE SELECT(6) Z 140 7.28(M) 7.8(2) Set device parameters

16h RESERVE(®6) Z 136 16.2.8 7.19 Make LUN accessible only to
certain initiators

17h RELEASE(6) Zo 136 "16:2:6 il Make LUN accessible to other
initiators

18h copy O 723 713 Autonomous copy from/to another
device

IAh MODE SENSE(6) Z 140 7.2.10(M) 7.10(Z) Read device parameters

1Ch RECEIVE DIAGNOSTIC O 7.2.13 7.15 Read sell-test results

RESULTS

IDh SEND DIAGNOSTIC M 138 7.2.1 7.21 Initiate self-test

39h COMPARE (6] 7.2.2 2 Compare data

3Ah COPY AND VERIFY O 2. Autonomous copy [tom/to another
device, verily success

3Bh WRITE BUFFER (6] 7.2.17 7.23 Write the data buffer

3Ch READ BUFFER O 7.2.12 7.13 Read the data buller

40h CHANGE DEFINITION O 139 7.2.1 7.1 Set SCSI version

4Ch LOG SELECT (0] 7.2.6 7.6 Read statistics

4Dh LOG SENSE (6] i 7.7 Read statistics

55h MODE SELECT(10) (6] A9 7.9 Sct device parameters

56h RESERVE(10) Z 7220 Make LUN accessible only to
certain initiators

57h RELEASE(I0) Z 7P Make LUN accessible to other
initiators

SAh MODE SENSE(10) (6] 7.2.11 7.11 Read device parameters

A7h MOVE MEDIUM VA 161223 SMC Move medium

B4h READ ELEMENT STATUS Z 16.2.5 SMC Read element status

Note: Commands that have been added to this command set in SCSI-3 are shaded light gray. Mandatory
commands are shaded dark gray. (M) means that the command is classified differently in SCSI-2 and
SCSI-3. The corresponding classification is indicated after the reference to the standard.

128 SCSI primary commands

Attached medium changer

It should be noted that two commands have been added for handling recording
media. SCSI-3 now supports devices with attached medium changer. This medium
changer is no LUN on its own, but the main device, for example a CD-ROM drive,
understands these two commands and controls the media changer.

INQUIRY (12h)

The INQUIRY command tells us about a LUN, giving us a list of specific details in a
concise format. This command can be used to learn, among other things, which
SCSI options have been implemented, the SCSI version number, the device type and
the name of the device. This command will function even if the LUN is not able to
accept other types of commands. In fact, INQUIRY will only return CHECK CONDITION
if the target is unable to return the requested inquiry data. INQUIRY is the only
command that does not reply with CHECK CONDITION when a non-existent LUN is
addressed. Instead, this fact is reflected in the data returned.

It is most common to see this command with a transfer length of FFh, with all
other bytes set to zero (Table 12.8). This represents a request for standard INQUIRY
data, where 255 bytes or less are expected.

Standard inquiry data can only be obtained when neither the EVDP nor the
CmdDt bit is set.

o EVDP (enable vital product data): When this bit is set the page code determines
the type of information returned by the target. Implementation of this bit is
optional. Additional information can be found in Chapter 7.3.4 of the SCSI-2
standard document.

® CmdDt (command support data): This feature is new in SCSI-3. When this bit is
set, byte 2 must contain an opcode. Then the LUN returns a data structure which
explains whether a command with this opcode is supported and how. Further
details can be found in Chapter 7.4.4 of the SCSI-3 SPC document.

e Page code/opcode: This byte is valid only when the EVDP or the CmdDt bit is
set. It specifies that more detailed information conceming the target be returned
as INQUIRY data.

Table 12.8 The INQUIRY command.

7 | e | s [+ | 3| 2 | 1 | o
0 INQUIRY (12h)
| (LUN)] Reserved | emapt | EvDP
2 Page code
3 Reserved
4 Data length
5 Control byte

Commands for all SCSI devices

Table 12.9 Standard INQUIRY data format.

7 | 6 | s + | s] 2 | 0
0 Peripheral qualifier Device class
1| rvs | Reserved (SCSI-1)
2 SO ECMA | ANSI
3 AEN TIO Reserved | Reserved Data format
(TrmTsk) | (NACA)
4 Additional length
5 Reserved
6 Reserved Reserved | Reserved | Reserved | Reserved | Reserved | Reserved
(Port) (DualP) |(MChngr)| (ARQ) | (Adr32) | (Adrl6)
7 Rel W32 W16 Sync Link Res. Que Sft
& {TrnDis)
8-15 Manufacturer (8 bytes)
16-31 Product (16 bytes)
32-35 Revision (4 bytes)
36-55 Vendor unique (20 bytes)
56-95 Reserved (40 bytes)
96-n Vendor unique

Note: The fields shaded in light gray have changed in SCSI-3. The fields shaded in dark gray only

apply to the SCSI-3 SIP, that is, the parallel interface.

129

® Allocation length: The number of bytes the initiator has reserved for the INQUIRY
data. Normally this byte will be set to FFh, thus allocating 256 bytes. In response
to this the target will send as much data as it has, up to FFh in total.

The standard INQuUIRY data

The standard INQUIRY data is structured in the following manner (Table 12.9):

® Peripheral qualifier (Table 12.10): These three bits reflect whether a physical
device can be supported under this LUN and whether or not it is connected, but

say nothing about whether the device is ready.

® Peripheral device type: These five bits indicate the peripheral device type, or
class, to which the logical unit belongs. A list of the device types can be found in

Table 12.1 on page 123.

Table 12.10 Peripheral qualifier.

Status Description
000b The device described is connected to the LUN
001b The target supports such a device. but none is connected

0llb The target does not support a physical device for this LUN

130 SCSI primary commands

Table 12.11 ANSI version.

Status Meaning
Oh The device supports the SCS!-1 standard
lh The device supports the CCS
2h The device supports SCSI-2
3h The device supports SCSI-3

RMB (removable bit): A 1 indicates that the medium is removable. For example,
this bit is always set for diskette drives and tape units.

ISO version, ECMA version: Indicates that the device supports the ISO IS-9316
or the ECMA-111 versions of the SCSI standard.

ANSI version: see Table 12.11.

AEN (asynchronous event notification capability): In SCSI-2 this bit is defined
only for processor devices and indicates that the device supports asynchronous
event notification. Thus, such a device will accept a SEND command from another
target. In SCSI-3 this bit is called AERC (asynchronous event reporting capabil-
ity) and means that the device supports asynchronous messages as defined in the
SAM architecture model.

TIO/TrmTsk: The device supports the message TERMINATE I/0O PROCESS. In SCSI-3
the bit is called TrmTsk (terminate task) and indicates that the device supports the
task management function TERMINATE TASK of the SAM architecture model.

Data format: Indicates the response format of the following standard INQUIRY
data. Interpreted in the same way as the ANSI version field.

Additional length: Indicates how many additional bytes of information follow.

Port: This bit is new in SCSI-3. It only applies if the DualP bit is set as well. It
is not set when the command was received on port A and set when the command
arrived on port B.

Dualport (DualP): This bit is new in SCSI-3. It indicates that the device supports
dual ports.

Media Changer (MChngr): This bit is new in SCSI-3. It indicates that the device
has an attached media changer and supports the MOVE MEDIUM and READ ELEMENT
STATUS comimands.

Rel: The device supports relative addressing. Relative addressing means that it is
not the absolute LBN to be specified, but the offset to the current LBN. This is
only supported when linked commands are supported as well.

W32: The device supports 32-bit wide SCSIL.
W16: The device supports16-bit wide SCSI.
Synec: The device supports synchronous transfers.
Link: The device supports linked commands.

Transfer Disable (TrnDis): This bit is new in SCSI-3. It indicates that the device
supports the SCSI messages CONTINUE 1/O PROCESS and TARGET TRANSFER DISABLE.

Que: The device supports tagged commands.

Commands for all SCSI devices 131

SCSI Monitor V1.0 rev 024 11.3.93 (fs)
Id Lu St LN nX
SCSI command 00: 12 00 00 00 FF 00 00 00 00 00 00 00 03 00 00 00 FF

SCSI data buffer No. 00:
0000: 01 80 02 02 26 00 00 18 48 50 20 20 20 20 20 20 CR&HP

0010: 48 50 33 35 34 38 30 41 20 20 20 20 20 20 20 20 HP35480A
0020: 41 20 20 20 30 30 30 2F 00 00 02 00 00 00 00 0O A 000/

Command: G

Figure 12.2 Example of an INQUIRY command.

® SftR: The device supports soft reset capability. Otherwise the device performs a
hard reset to a RESET condition.

® Manufacturer: Manufacturer’s name in ASCIL
Product: Product’s name in ASCII.

® Revision: Product’s version number in ASCII.

As you can see, the INQUIRY command is capable of delivering a wide variety of
useful information. An example of INQUIRY data as the SCSI monitor program pre-
sents it on the screen is shown in Figure 12.2. This particular command is inquiring
about LUN 0 of SCSIID 3. A total of 256 bytes (OFFh) have been requested.

In order to simplify interpretation of the INQUIRY data, in Table 12.12 I have
placed it in a frame corresponding to Table 12.9.

The peripheral qualifier is 000b, meaning that a physical device is addressable
under this LUN. The peripheral device type is 00001b, which according to the list
on page 123 specifies a tape device. The RMB bit is set in byte 1 indicating remov-
able medium. The ANSI field in byte 2 shows that the device is SCSI-2 compliant.
This is also reflected in the response data format of byte 3. Byte 4 tells us that 38
(26h) additional bytes of data follow. The link and sync options are set in byte 5,
meaning that the device supports synchronous transfers and linked commands but
not, however, tagged queues.

TEST UNIT READY (00h)

The command TEST UNIT READY determines whether the LUN in question will allow
access to the medium (Table 12.13). This means, for example, for a removable
medium drive that the medium is present and READY for access. Depending on the

1382 SCSI primary commands

Table 12.12 Evaluation of INQUIRY data.

7 6 5 4 3 2 1 0
0 0 0 0 ‘ 0 0 0 0 1
1 \ 0
2 0 0 0 0 0 | 0 I 0
3 0 | 0 0 0] 0 0 1 0
4 26h
5-6 00h 00h
7 o | o | o | o | o | o | o | o
815 HP
16-31 HP35480A
32-35 A
36-55
56-95
96-n

device, it can take tens of seconds before the READY condition is reached. If you are
only interested in finding out whether a certain LUN exists then the INQUIRY
command should be used instead.

TEST UNIT READY is an unusual command because no information transfer takes
place. No parameters are sent and no data is returned. When the physical device is
ready this command simply returns a GOOD status, otherwise CHECK CONDITION is
returned. The precise reason for the CHECK CONDITION status is stored in the LUN’s
sense data. In SPC section 7.22 the SCSI-3 standard contains a list of recommended
sense codes. You should adhere to this list when you implement a target.

REQUEST SENSE (03h)

The REQUEST SENSE command (Table 12.14) is always used in response to a status
CHECK CONDITION status in order to read the sense data. This data gives information
concerning the reason why the preceding command ended abnormally. The sense
data is also updated when a command ends with COMMAND TERMINATED status.

Table 12.13 The TEST UNIT READY command.

7 be | s e | s 2 1] o
0 TEST UNIT READY (00h)
1 (LUN) [Reserved
2
3
4 Reserved
S Control byte

Commands for all SCSI devices 133

Table 12.14 The REQUEST SENSE command.

7 s | s L« s T 2] 1] o
0 REQUEST SENSE (03h)
| (LUN) ’ Reserved
2
3 Reserved
4 Data length
5 Control byte

It is important to remember that sense data always reflects the state of the previ-
ous command. It is the initiator’s responsibility to follow up on a CHECK CONDITION
status immediately with REQUEST SENSE. An intervening command will cause sense
data to be overwritten.

The command itself looks similar to the INQUIRY command. Here too the alloca-
tion length is in general set to FFh in order to receive all of the data that the target
has available.

Sense data

Since interpreting sense data can be complicated, to say the least, we divide the task
into four steps:

(1) Determine validity of sense data
(2) Evaluation of the sense key
(3) Evaluation of sense key specific information

(4) Evaluation of the sense code

It is often the case that the sense key alone is enough information, making subse-
quent steps unnecessary.

I explain here only the most important fields, which are shaded gray in Table
12.15; the meaning of the less important fields can be found in the standard:

@ Error code: An error code of 70h is the normal case. This means that the sense
data refers to the current command. An error code of 71h, on the other hand,
means that the sense data refers to an earlier command.

Such a deferred error can occur, for example, with disk drives using write
cache. Here the disk drive will send a GOOD status immediately after receiving the
data of a WRITE command. To the host the write appears to be complete, but in
reality the data merely resides in the drive’s write cache waiting to be written to
the medium. We find ourselves in a critical situation if during the actual write to
the medium an unrecoverable data error occurs. We will discuss caching and its
ramifications in more detail in Chapter 13. Fortunately, such errors occur
extremely infrequently.

Error codes 00h to 6Fh are not assigned, codes 72h to 7Eh are reserved, and
code 7Fh can be used for manufacturer-specific sense data formats.

134 SCSI primary commands

Table 12.15 Structure of sense data.

7 s | s | « [3 [2] 1] o
0 Valid Error code (70h or 71h)
1 Segment number
2 | Filmrk | EOM ‘ L |Reserved | Sense key
3-6 Information
7 Additional data length
8-11 Command-specific information
12 : Sense code
13 [Extended sense code
14 FRU
15— SKSV ! Sense key
17 specific
18-n Additional sense bytes

e Sense key: The sense key is the principal information concerning the reason for
a CHECK CONDITION. Table 12.16 lists the keys with their corresponding meanings.

® Sense code: After deciphering the sense key, we may or may not need to look for
more information concerning the error (Table 12.17). For the sense key NOT
READY, for example, we look to the sense code for further explanation. This byte
tells of possible hardware and medium errors, among others.

ILLEGAL REQUEST is a sense key that occurs often while testing a device with the
SCSI monitor. The sense key specific field contains more detailed information.

Table 12.16 The most important sense keys.

Sense Description

Oh NO SENSE
1h RECOVERED ERROR

2h NOT READY

3h MEDIUM ERROR
4h HARDWARE ERROR
Sh ILLEGAL REQUEST
6h UNIT ATTENTION

7h DATA PROTECT

8h BLANK CHECK

9h

Ah COPY ABORTED

Bh ABORTED COMMAND
Ch EQUAL

Dh VOLUME OVERFLOW
Eh MISCOMPARE

There is no sense information

The last command completed successlully but used error correction in
the process

The addressed LUN is not ready to be accessed

The target detected a data error on the medium

The target detected a hardware error during a command or a self-test
Either the command or the parameter list contains an error

The LUN has been reset, for example through SCSI reset or a medium
change

Access to the data is blocked

Reached unexpected written or unwritten region ol the medium

Vendor specilic

COPY, COMPARE or COPY AND VERIFY was aborted

The target aborted the command

Comparison for SEARCH DATA successlul

The medium is (ull

Source data and data on the medium do not agree

Table 12.17 Sample sense codes.

Commands for all SCSI devices

Sense code Description
13 14
0400 LUN not ready, reason unknown
0401 LUN is in transition to become ready
04 02 LUN not ready, waiting for initialization command
0403 LUN not ready, operator action necessary
04 04 LUN not ready, medium being formatted
24 00 Error in command block

Table 12.18 The sense key specific information.

7 6 s 4 3 2 |1] oo
15 SKSV C/D Reserved BPV Bit position
16 (MSB) Error position
17 (LSB)

135

Table 12.18 lists the possibilities for this field for the sense key ILLEGAL REQUEST.
Look to the standard for the description of other sense keys. If the SKSV bit is set,
this shows that the sense key specific data is valid. Afterwards, the C/D bit should
be examined. When set the error lies in the command, otherwise the error lies in the
parameter list. The position of the first byte in error is contained in the error position
field. The field for bit position only has meaning for other sense keys.

It should be apparent that the REQUEST SENSE command provides a great deal of
useful information. The following example, which can easily be duplicated using the
SCSI monitor, will bring this point home (Figure 12.3). My first step was to send an

SCSI Monitor V1.0 rev 024 11.3.93 (fs)

SCSI command 01: 03 00 00 00 FF 00 00 00 00 00 00 00

SCSI data buffer No.

0000: 70
0010: 00
0020: 00
0030: 00
0040: 00
0050: 00
0060: 00
0070: 00
0080: 00
0090: 00
00AO: 00
0080: 00
00c0: 00
0000: 00
00E0: 00
00F0: 00

Command:

G

00:

Id Lu St LN nX
03 00 00 00 FF

p$

Figure 12.3 SCSI monitor with REQUEST SENSE command.

136 SCSI primary commands

Table 12.19 Interpretation of the sense data.

SKSV —|

C/D —]

7 6 5 4 3 2 I ‘ 0]
0 0 Error code
I 0 0 0 0 0 0 0
21 0 0 0 0 Sense key
3-6
71 0 0 0 0 I 0 I I
8-11
12 Sl 0 1 0 1 0 0 0 |=— Sense code
0 0 0 0
0 0 0 0
0

Byte 3

INQUIRY command, 12 00 00 FF 00 00, to which the target responded with CHECK
CONDITION. I then sent a REQUEST SENSE allocating 255 bytes for sense data. In the
status field for this command is 00h, meaning that the REQUEST SENSE was successful.
If you do not have much experience in interpreting hexadecimal numbers it helps to
write out each byte in binary on a piece of paper, then, using Table 12.19, draw in the
boundaries of the individual fields. Byte O of the sense data is error code 70h; that is,
this data refers to the previous command. In byte 2 is the sense key O5h: ILLEGAL
REQUEST. The sense code is 24h, meaning that a field in the previous command was
invalid. Looking at the sense key specific information, byte 15 is COh; the valid bit is
set, indicating that there is useful information here. The C/D bit is also set, meaning
that the error is in the command itself. Bytes 16 and 17 contain 00h and 03h; in other
words, the error is in the third byte of the INQUIRY command. A look at the definition
shows that byte 3 of an INQUIRY command must be zero. The FFh belonged not in byte
3 but in byte 4 as the allocation length. Thus, the correct command should have been
12 00 00 00 FF 00.

ReSERVE (16h) and ReLease (17h)

This pair of commands makes it possible to reserve a LUN for a particular initiator
and then to free it for use by others. These commands are common to all device
types. There are special versions of the commands for disk drives.

What happens when a LUN reserved for a certain initiator receives a command
from another initiator? This LUN will end each such command with a RESERVATION
CONFLICT status and ignore the command. This reservation mechanism provides a
degree of protection, albeit somewhat unsophisticated, in multi-initiator environ-
ments. Many operating systems do not allow, for example, two hosts to access a
single disk drive. In such situations, however, it is possible to use RESERVE and
RELEASE to share drives between two hosts. As soon as one system brings a drive

Commands for all SCSI devices 137

Table 12.20 The RESERVE command.

7 e | s |+ | 2+ | 2 | 1] o
0 RESERVE (16h)
1 (LUN) 3rdPty 3rdPty ID Reserved
(Xtnt)
2 Reserved (SCSI-3: Reservation ID)
3 Reserved
4 (SCSI-3: Extent list length)
5 Control byte

online it reserves that LUN. Should the system go down for any reason, a simple
SCSI reset is all that is needed to make the drive accessible for the other host.

The reserve command itself looks standard (Table 12.20). Only two fields call for
any explanation; these make it possible for an initiator to reserve a device for a third

party:

e 3rdPty: Third party reservation. When clear, this bit calls for the reservation to
be made for the initiator sending the command. When set, the reservation should
hold for the initiator whose ID is contained in the third-party device ID field.

e 3rdPty ID: When third party is set this field holds the ID of the device for which
the reservation holds.

The extent reservation mechanism is new in SCSI-3. An extent is part of a storage
device. The term is described in detail in the model of the SCSI hard disk. In short,
extent reservation means that an initiator does not always have to reserve a complete
LUN, but also individual extents. Furthermore it allows explicit reservation for deter-
mined access modes (read, write, and so on). Both the implementation of extents and
the extent reservation are optional.

e Xtnt (extent): When this bit is set, only the extents in the extent list are to be
reserved.

® Reservation ID: This is used to identify the initiator responsible for an extent
reservation.

o Extent list length: This must be valid when the Xtnt bit is set. The extent list is
passed as a command parameter during the data phase. The format of the extent
list can be found in Section 7.19 of the SCSI-3 SPC standard document.

It is possible for an initiator to modify its own reservation. It can, for example,
first reserve a device for itself, followed later by a reservation for a third device. In
this way a device always remains protected. One application for third-party reserva-
tion is the COPY command.

A reservation can be dissolved in a number of different ways: by SCSI reset, a
DEVICE RESET from any initiator, or by a RELEASE command from the initiator which
made the reservation. The RELEASE command looks almost identical to the RESERVE
command (Table 12.21).

138 SCSI primary commands

Table 12.21 The RELEASE command.

7 [6 [5 [« [5 [T 2 [1] o
0 RELEASE (17h)
1 (LUN) 3rdPty 3rdPty ID Reserved

(Xint)

2 Reserved (SCSI-3: Reservation ID)
3 Reserved
4
5 Control byte

SEND DIAGNOSTIC (1Dh)

The SEND DIAGNOSTIC command causes the target to run certain diagnostic programs
(Table 12.22). In the most simple case, when the ST bit is set, the device will run a
self-test. If the self-test discovers no problems then the status returned is 00h (GOOD).
If, on the other hand, a problem is detected a CHECK CONDITION status, 02h, is
returned. A follow-up REQUEST SENSE will reveal a sense key of 04h (HARDWARE
ERROR). Only this implementation of the command is mandatory. The optional bits
of byte | are:

® PF (page format): When this bit is set the page format conforms to SCSI-2 and
SCSI-3. In SCSI-1 the page format was vendor specific.

® DevO (device offline): When set, this bit allows the target to run diagnostics that
may affect all LUNs and possibly change their state. If clear no such operations
will take place.

® UniO (unit offline): This bit plays the same role as DevO but for protecting indi-
vidual LUN:S.

Optionally, various diagnostics can be run using diagnostic pages sent as parameter
lists. Diagnostic pages have been defined for each device type. Some pages may be
vendor specific. For example, a frequently implemented page is the TRANSLATE
ADDRESS page. This page makes it possible to find out the physical address of a
logical block. The results are collected from the target using the RECEIVE DIAGNOS-
TIC RESULTS command. Table 12.23 shows the basic structure of a diagnostic page.

Table 12.22 The SEND DIAGNOSTIC command.

7 e | s | o+ | s | 2 | 1] o
0 SEND DIAGNOSTIC (1Dh)
I (LUN) | PF [Reserved| st | pevo | wnio
2 Reserved
3 (MSB) Data length
4 (LSB)
5 Control byte

Commands for all SCSI devices 139

Table 12.23 Diagnostic page.

7 e s 1 «] 3 | 2 |] o
0 Page code
1 Reserved
2 {MS5B) Page length (n-3)
3 (LSB)
. 4 Diagnostic
ll n parameter

Several such pages can be sent together in a single parameter list. The page code and
basic structure of the pages are the same for SEND and RECEIVE DIAGNOSTIC. The
actual parameters, however, usually differ somewhat.

CHANGE DEFINITION (40h)

This command allows an initiator to configure a SCSI-2 target to behave like an
earlier SCSI version (Table 12.24). The following values are allowed in the version

field:

00h:
Olh:
02h:
03h:
04h:
3Fh:

No change

SCSI-1 (SCSI-3: Reserved)

SCSI-1 with CCS (SCSI-3: Reserved)
SCSI-2

(SCSI-3: SCSI-3)

(SCSI-3: Manufacturer default value)

The Save bit causes the target to save the change permanently. At the next power-
up cycle the change will be in force. The Data length indicates the size of the

Table 12.24 The CHANGE DEFINITION command.

7 e s |+ s 2 11] o
0 CHANGE DEFINITION (40h)
I (LUN) | Reserved
2 Reserved 1 Save
3 Reserved SCSI version
4
5
6
7
8 Data length
9 Control byte

140 SCSI primary commands

Table 12.25 The MODE SELECT command.

e s [+ Dol]o] [[les v <12]s
0 MODE SELECT(6) (15h) 0 MODE SELECT(14}) (55h)
1| wuNy [PF| Reserved | P I (LUN) | Reserved
2 Reserved 2
3 B
4 Data length _4 Reserved
5 Control byte _5
6|
7| (MSB) Data length
—8 (LSB)
9 Control byte

parameter list that the initiator intends to send to the target. Such lists, however, are
vendor unique and in general are seldom used.

MODE SELECT(6) (15h) and MODE Sense(6) (1Ah)

MODE SELECT and MODE SENSE are a pair of optional commands that use the same
parameter lists. These allow an initiator to configure a device and also to determine
its configuration. They are the same for all devices; however, the parameter lists used
can be very device type dependent. Relative to a typical SCSI command, MODE
SENSE and MODE SELECT are complex, with many parameters and fields. Both com-
mands are essential, implemented for virtually all devices. They are covered here in
great detail.

There are 6-byte and 10-byte versions of both MODE SELECT and MODE SENSE.
Only the 6-byte version is discussed here. The 10-byte version is identical except for
the parameter list length, which is two bytes instead of one.

MODE SELECT(6) allows an initiator to set the internal configuration of a LUN
(Table 12.25). The command itself is typical. Byte 4 contains the parameter list
length, which can be up to 255 bytes long. If this byte is zero no list is sent. In byte
1 there are two bits of interest:

® PF (page format): When this bit is set the parameter pages conform to SCSI-2;
that is, as they are described in this book. Otherwise the parameter pages are
SCSI-1 compliant.

® SP (save pages): When this bit is clear changes affect only the current parame-
ters. If the bit is set then changes will also be written to the saved parameters and
will be valid at the next power-up cycle.

The MODE SENSE command is used to read the mode parameter lists from a device
(Table 12.26). Like the MODE SELECT command, there is a 10-byte version for
working with lists longer than 255 bytes:

Commands for all SCSI devices 141

Table 12.26 The MODE SENSE command.

e[« e lele] [Pl le =T
0 MODE SENSE(6) (1Ah) 0 MODE SENSE(10) (5Ah)
1| @wuN) [Res|DBD| Reserved 1| (LUN) [Res[DBD| Reserved
2| PpcF ‘ Page 2| pCF } Page
3 Reserved 3
4 Data length _4 Reserved
5 Control byte _5
[6|
7 | (MSB) Data length
B (LSB)
9 Control byte

o DBD (disable block descriptors): When this bit is set no block descriptors are sent
before the pages.

® PCF (page control field):

— 00b: Current values

01b: Changeable values
— 10b: Default values
— 11b: Saved values
® Page code: The number of the desired parameter page.

The parameter lists for MODE SELECT and MODE SENSE are basically the same. This
is useful in that one can read the parameters from the device with MODE SENSE, edit
them in memory, and write them back with MODE SENSE. A parameter list consists of
three elements: the mode parameter header (Table 12.27), the block descriptors, and
the parameter pages. Each element has a pointer to the beginning of the subsequent
one. Figure 12.4 shows a typical mode parameter list. This one has a header, two
block descriptors, and two parameter pages. The arrows on the right-hand side rep-
resent the pointers within the elements. You will need to refer to this figure as we
discuss the individual elements.

Table 12.27 Mode parameter header.

6 juo | 7 | 6 [s [« 3 | 2 | 1] o
0 0-1 Data length

1 2 Media type

2 3 Device specific

~ 4-5 Reserved

3 6-7 Block descriptor length

142 SCSI primary commands

o

Mode data length

Block descriptor length (here: OFh)

Block descriptor |

00 NNV WD — O

Block descriptor 2

A

Peripheral page (09h)
Page length (here: 06h)

[SOTHN (S N 0 S SO T A B |
~N N W

(%]
oo

Disconnect/reconnect page (02h) i
Page length (here: OEh)

D
\=]

‘) —
S (o)}
WIR[— ([OfN]|[|[n|H W |—|O|N| [N |W [|— OR[N || W[[— |Of|Ww |t |—

W

42 14
43 15

{

Figure 12.4 Example of a mode parameter page.

Mode parameter header
The header of the 6-byte MODE commands is four bytes long:

® Mode data length: The length of the entire parameter list in bytes.

® Block descriptor length: The total length of the block descriptors. Since a block
descriptor is always eight bytes long this field is either zero or a multiple of eight.

Block descriptor

Zero or more block descriptors (Table 12.28) may follow a mode parameter header.
The block descriptor defines the logical block length of all or part of the medium.

Commands for all SCSI devices 143

Table 12.28 Block descriptor.

0 Write density

1 (MSB)

2 Number of blocks

3 (LSB)
4 Reserved

5 (MSB)

6 Block length

7 (LSB)

Theoretically, one could use this feature to divide a drive into several partitions of
differing logical block sizes. However, in the vast majority of cases a single block
descriptor is employed with a block size defined for the entire medium.

® Write density: This field is dependent on device type. For floppy drives there are
codes for the popular densities. For disk drives this field has no meaning.

® Number of blocks: The number of blocks that this descriptor defines.

® Block length: The number of bytes per logical block for the blocks defined by
this descriptor. For tape drives a block length of zero means that it is variable and
is determined by the WRITE command. The block descriptor does not contain a
pointer to the next element since the descriptor is of a fixed length (8 bytes).

Mode parameter pages

The third, final, and most important element is the parameter page itself (Table
12.29). A parameter page begins with the page code in the lowest 6 bits of byte 0. It
follows that the largest page code is 3Fh. The next byte contains the page length.
Parameter pages vary in length but are at most 255 bytes long.

The PS (parameter savable) bit of byte 0 is only defined for MODE SENSE. When
set it indicates that the target is able to save these parameters.

The page length specifies the number of parameter bytes of the page, that is, two
bytes less than the total length of the page.

There are three parameter pages, which are defined for all device types. These are
the control mode page (0Ah), the disconnect/reconnect page (02h), and the periph-
eral device page (09h).

Most parameter pages are device type specific. These pages are defined in the
SCSI literature included with the device. Table 12.30 gives an overview of parameter

Table 12.29 Mode parameter page.
7 6 s o« [s] 2 [0] o
0 PS Reserved Page code

1 Page length (n-1)

[§S)

Mode

. n parametcer

144 SCSI primary commands

12.4

Table 12.30 List of parameter pages.

Code Name Device

00h Vendor specilic DTPRSOMC
Olh Read/write error page DTRO

02h Disconnect/reconnect page DTPRSOMC
03h Format page D

03h Parallel interface page P

03h Measurement units page S

04h Rigid disk geometry page D

04h Serial interfacc page P

05h Flexible disk page D

05h Printer options page P

06h Optical memory page (0]

07h Verification error page DRO

08h Cache page DRO

0% Peripheral device page DTPRSOMC
0Ah Control mode page DTPRSOMC
0Bh Medium type page DRO

0Ch Notch partitions page D

0Dh CD-ROM page R

OEh CD-ROM audio page R

OFh Data compression page T

10h Device configuration page T

1Th Medium partitions page | T

12h Medium partitions page 2 T

13h Medium partitions page 3 T

14h Medium partitions page 4 T

1Ch Informal exception page DTPRSOMC
1Dh Element address assignment page M

1Eh Transport geometry page M

1 Fh Device capabilities page M

3Fh All available pages DTPRSOMC

pages defined in the SCSI standard. Of special interest is page code 3Fh, which allows
MODE SENSE to read all of the pages maintained by a device. The device column
indicates the device types for which a parameter page is defined. The abbreviations
are defined as follows: D, disk drives; T, tape drives; P, printers; R, CD-ROMs; S,
scanners; O, optical storage; M, medium changers; and C, communications devices.

Mode parameter pages for all device types
The following parameter pages are defined for all device types.

Table 12.31 Mode parameter pages for all device types.

Page code Name Page SCSI-2 SCSI-3 (SPC)
02h Disconnect/reconnect page 145 7332 8.3.2
0%h Peripheral device page 146 7.333 8.3.4
0Ah Control mode page 147 7.3.3.1 8.3.1

ICh Informal exception page - 8.3.3

Mode parameter pages for all device types 145

Disconnect/reconnect page (02h)

The parameters of this page (Table 12.32) determine the behavior of the target with
respect to freeing the bus. Whether or not the target is allowed to free the bus at all is
a function of the DiscPriv bit in the IDENTIFY message of every I/O process.

The parameter DTDC (data transfer disconnect) in byte 12 also determines the
general behavior of the target. It has the following effect:

e (0Db: Disconnection from the bus is allowed.

e (1b: No disconnection should take place once the data transfer has begun until
all data has been sent. The time parameters of this page are ignored in this case.

® 10b: Reserved.

® 11b: No disconnection should take place once the data transfer has begun until
the command is complete. Time parameters are also ignored in this case.

The maximum burst length cannot be specified when the DTDC is non-zero. The
following parameters affect the target’s disconnect/reconnect behavior when DTDC
is zero.

The EMDP and DImm bits are new in SCSI-3. The EMDP (enable modify data
pointers) bit is only meaningful in connection with the parallel protocol (SIP). When
it is set, the target is allowed to send a MODIFY DATA POINTERS message.

Table 12.32 The disconnect/reconnect page.

7 6 5l4l3i2i/i0

0 PS Reserved Disconnect/reconnect page (02h)

1 Page length (OEh)

(1]

Buffer full condition

3 Buffer empty condition
4 (MSB) Maximum bus
5 inactivity time (LSB)
6 (MSB) Maximum
7 bus free time (LSB)
8 (MSB) Maximum
9 connection time (LSB)
10 (MSB) Maximum
11 burst length (LSB)
12 SCSI-3: Reserved SCSI-3: DTDC

EMDP Dlmm

14 Reserved

146 SCSI primary commands

The DImm (disconnect immediate) bit tells the target to release the bus immedi-

ately after a command was received.

The buffer full ratio determines, for read operations, how full the data buffer
should be before the target attempts a reconnect to the initiator. The value is in
units of 1/256 times the number of buffers. The buffer empty ratio works the same
way for write operations. It determines how empty the buffer should be before
attempting to reconnect to the initiator.

The bus inactivity limit specifies the maximum amount of time in 100 ps incre-
ments that a target may occupy the bus without sending or receiving data. If the
limit is exceeded the target must free the bus.

The disconnect time limit specifies the minimum amount of time in 100 ps incre-
ments that a target must wait after freeing the bus before it attempts a reselection.

The connect time limit specifies in 100 ps increments the maximum amount of
time that a target may occupy the bus.

The maximum burst size specifies the maximum number of data bytes (in 512
byte increments) that the target may transfer before relinquishing the bus.

Peripheral device page (09h)

This parameter page does not allow many settings and is more or less vendor spe-
cific (Table 12.33). The interface identifier describes a physical interface. This is
meaningful for bridge controllers; otherwise a zero stands for SCSI. A few values
are defined in the standard:

0000h: SCSI
0001h: SMD
0002h: ESDI
0003h: IPI-2
0004h: IPI-3

Table 12.33 The peripheral device page.

765‘4\3\2\1\0

0 PS Reserved Peripheral device page (09h)

] Page length (n-1)

~

(MSB) Interface
(LSB)

Reserved

Reserved

Reserved

N ||l wvw| &~ W

Reserved

8.n Manufacturer specilic

12.5

The model of a SCSI processor device 147

Table 12.34 The control mode page.
7 6 s | o« |3] 2] o

0 PS Reserved Control mode page ‘(OAh)

1 Page length (06h)

2 Reserved GLTSD RLEC
3 Queue algorithm Reserved QErr DQue
4 EECA Reserved RAENP |UAAENP | EAENP
SCSI-3 Reserved| RAC |ByprtM [BybthS |Rescrvcd RAERP |UUAERP | EAERP

5 Reserved

6 (MSB) AEN waiting time

7 after initialization

8 (MSB) Busy timeout in 100 ms
9 SCSI-3 enly

Control mode page (0Ah)

The control mode page contains parameters for controlling various SCSI-2 charac-
teristics (Table 12.34). I mention here only a few of the more important ones and
refer the reader to the standard for more details.

The queue algorithm modifier pertains to SIMPLE QUEUE TAG commands. It takes
on two values: a value of O specifies that the target must order commands in such a
way that data integrity is guaranteed across the entire medium for all initiators. A
value of 1 allows the target to re-order commands without restrictions. A drive can
often achieve a substantial increase in throughput by optimizing the order in which
logical blocks are accessed.

The DQue bit allows tagged queuing to be disabled. When set all queue messages
are replied to with MESSAGE REJECT. The three bits RAENP, UAAENP and EAENP
allow AEN in certain situations. If none of these bits is set AEN is disabled.

RAENP (ready AEN permission) specifies that the target should use AEN to
notify initiators of an initialization instead of responding with UNIT ATTENTION for the
first command. UAAENP (unit attention AEN) allows AEN instead of UNIT ATTEN-
TION during normal operation. EAENP (error AEN permission) allows a target to use
AEN for deferred errors again instead of relying on a UNIT ATTENTION response to the
next command. In SCSI-3 the denomination AEN (asynchronous event notification)
is replaced by AER (asynchronous event reporting).

The model of a SCSI processor device

Processor devices are a very general device type. Although such devices only send
and receive data across the bus, they are capable of a wide variety of very useful
general tasks. Processors that offload a main processor or a data acquisition system
are two examples of such devices.

148 SCSI primary commands

User specific Command set
User specific Device model
Command set SEND/RECEIVE
Protocol

Device model Processor device

Protocol SCSsI _Physical
interface

Physical

interface scsi

Figure 12.5 User defined protocol.

SCSI processor devices are also indispensable for the asynchronous notification
mechanism. In order to be able to receive an asynchronous notification, the initiator
must also be capable of handling the target role. For this reason, the processor device
commands have been included in the kernel command set.

Asynchronous notification was introduced in SCSI-2 as AEN (asynchronous
event notification), but seldom used. In SCSI-3 asynchronous notification plays an
important role in different protocols as AER (asynchronous event reporting.

From the SCSI perspective, a processor device simply exchanges data over the
bus with the initiator (Figure 12.5). The kind of data sent is left completely unspec-
ified. Here SCSI simply acts as a physical interface between devices. The protocol
above that is left up to the designers.

A processor device, like all SCSI targets, can support up to eight logical units. If
a LUN is momentarily incapable of receiving or sending data it can either return a
CHECK CONDITION status or it can disconnect and reconnect at a later time.

In a way, a SCSI processor device resembles the SCSI communication device
(see Section 14.7), with the difference that the SCSI processor processes its data
locally whereas a communication device forwards its data to other devices.

Thus, the most important application in SCSI-3 is AER. Assume that an unex-
pected event occurs in a LUN, for example, a user removes a changeable medium.
Without AER, the LUN would abort the next command with a CHECK CONDITION
status, and the initiator would try to determine the cause of the problem with a
REQUEST SENSE. With AER, the LUN itself can send a SEND command with the sense
data to all known initiators. For this purpose, a special data format has been defined
which is described together with the SEND command.

What follows are descriptions of two applications for SCSI processor devices.
The first consists of two coupled processors, which together act as a redundant file
server. Both servers are identical and contain the same data. The servers use the

12.6

Commands for processor devices 149

User defined
data

RECEIVE
—_——

SCsl

—_— |A/D_converter

SEND
==
'i_HExperimen_t

User defined

PC (Target)

Workstation

(Initiator)

command

Figure 12.6 Example of a SCSI processor.

SCSI bus for communicating with each other and for insuring that they each contain
the same data. If one system should fail the other system remains fully functional.

The second application is a PC equipped with an A/D converter, which together
function as a data acquisition system. The PC collects all of the necessary data and
is even capable of preprocessing. It plays the role of a SCSI target and delivers the
preprocessed data to a workstation.

There are countless other possible applications for processor devices (Figure
12.6). It should also be noted that it suffices to implement the SEND command in
order to allow communication between two processor devices. SCSI is powerful in
this area because it allows customized hardware to be controlled using an industry
standard interface.

SCSI host adapters for PCs that also function as targets are, however, still hardly
available. Above all, adequate support is often lacking. This is a point that you
should carefully check before you decide which hardware you buy.

Commands for processor devices
Table 12.35 lists all of the commands defined for processor devices.

Table 12.35 Commands for processor devices.

Op- Name Tvpe Page SCSI-2 SCSI-3 Description

code (SPC)

0Oh TEST UNIT READY M 131 72116 7.22 Reflects whether or not the LUN is ready to
& acceept a command

03 REQUEST SENSE M 132 7214 7.8 Returns detailed error information

08h RECEIVE M 149 11210 9.1 Like read

OAh SEND M 149 1122 9.2 Like write

12h INQUIRY H' 128 7.255 7.5 Returns LUN specilic information

16h RESERVE(6) GRS E2 B 1Y Reserve LUN

17h RELEASE(6) O 1361 166 NTEl6 Release reservation

18h copy O 7.23 Autonomous copy from/to another device

1Ch RECEIVE DIAGNOSTIC O 7.2.13° Read self-test results

RESULTS

150 SCSI primary commands

Table 12.35 Commands for processor devices (continued).

Op- Name Type Page SCSI-2 SCSI-3 Description

code (SPC)

IDh SEnD DIAGNOSTIC [ML 138 7.2.1 Initiate self-test

39h COMPARE O 722 Compare data

3Ah COPY AND VERIFY (0] 7.2.4 Autonomous copy from/to another device,
verify success

3Bh WRITE BUFFER (6] 7.2.17 Write the data buffer

3Ch READ BUFFER (0] 7.2.12 Read the data buffer

40h CHANGE DEFINITION O 139 7.2.] Set SCSI version

4Ch LOG SELECT (6] 2 Read statistics

4Dh LOG SENSE O 7.2.7 Read statistics

56h RESERVE(10) (6] 7.20 Reserve LUN

57h RELEASE(10) (0] 7.17 Release reservation

Note: Commands added in SCSI-3 are shaded light gray. mandatory commands dark gray.

ReCEIVE (08h)

The RECEIVE command (relative to the initiator) instructs the target to send data to
the initiator (Table 12.36). The direction of the transfer can be confusing. Remember
that the direction is the same as that for READ, with which RECEIVE shares an opcode.

SeND (0Ah)

The SEND command instructs the target to receive data from the initiator (Table
12.37). The transfer length indicates the amount of data to be sent. The AEN bit indi-
cates that the data packet is in AEN format. This is used to send sense data to a
processor device.

AEN data format (SCSI-2)

The workings of AEN are explained in detail in Chapter 20. Byte O of an AEN data
packet contains in the lowest three bits the value LUNTRN. When the LUNTAR bit
is set then LUNTRN reflects the target routine to which the data pertain. Otherwise
the data pertain to the LUN specified in this field (Table 12.38).

Table 12.36 The RECEIVE command.

7 e | s | o« | 3 | 2 | 1 | o
0 RECEIVE (08h)
1 (LUN) l Reserved
2 (MSB)
3 Data length
4 (LSB)
5 Control byte

Commands for processor devices 151

Table 12.37 The SEND command.

7 | 6 ‘ 5 [4 ‘ 3 ‘ 2 ‘ ! ‘ 0
0 SEND (0Ah)
1 (LUN) ' ‘ Reserved | AEN
2 | (MSB)
3 Data length
4 (LSB)
5 Control byte

Table 12.38 Data format for asynchronous events (AEN/SCSI-2).

7 6 s N 2 |1] o
0 Reserved LUNTAR Reserved LUNTRN
1
2 Reserved
3
410 Sense data. byte 0
n+4 Sense data, byte n

AER data format (SCSIi-3)

The AER data format (Table 12.39) is slightly different from the AEN format of
SCSI-2. In particular, room has been made for the 64-bit LUN number as defined in
the SAM architecture model. On the other hand, there is no more support for target
routines. When set, the SCSI-3 bit indicates that the data is in AER format.

Table 12.39 Data format for asynchronous events (AER/SCSI-3).

|

7 6 R
0 SCSI-3
1
2 Reserved
3
4
LUN
11
12to Sense data, byte 0
n+12 Sense data, byte n

13

13.1

152

Block-oriented devices

The SCSI-3 standard unites the three device types, disk drives, WORM disks and
optical storage devices in the SBC (SCSI Block Devices) document. For each of
these device types, the device model is described first, followed by the command set
and finally by the parameters.

This classification is also reflected in the current edition of this book. However,
this book is based on the SCSI-2 standard. Changes introduced with SCSI-3 are
added where necessary. You will find that in SCSI-3 there is not much change in the
domain of block-oriented devices.

The model of a SCSI disk drive

I have chosen the term ‘disk drive’ for this device type because it is very widely
used. To be precise, this class does not only include magnetic disk drives, but it also
includes all devices that allow direct access to any logical block, such as disk drives,
magneto-optical drives, diskettes and RAM disks. The ANSI standard knows this
device type as ‘direct access devices’.

The basic physical design of disk drives and the organization of data on the
medium were described in Part I. Refer to Chapter 2 before continuing if any of the
following terms are unclear: read/write head, sector, cylinder, logical block, ECC,
CRC, mapping, interleave, track skew, and zone-bit recording

Logical blocks

A SCSI disk drive presents the user with a sequence of logical blocks for storing
information (Figure 13.1). These blocks can be written to and read any number of
times. They are uniquely identified by their logical block number (LBN). The first
logical block has the number 0, the last block has the number n—1. The value of n-1
can be determined by means of the READ CAPACITY command.

In contrast to tape drives, the logical blocks of a disk drive allow direct access to
any block. The actual fetching of the data is completely transparent to the host. In
general the host has no idea where on the medium a logical block is located.

The model of a SCSI disk drive 153

Logical blocks

!o 1 2 |3 - -r|—1

'____-F{eplacement sectors
and cylinders

"\ Saveqy
| data “HHHH | MODE parameters

y

/’Defect lists
PList

GList

— - ClList

Figure 13.1 Organization of the SCSI medium.

Normally, a logical block contains user information exclusively. However, there
are optional commands that allow limited access to format information such as ECC
or CRC.

The size of a logical block can vary between 1 byte and 64 Kbytes. The most
widely used size is 512 bytes, as is the case for the DOS operating system. In the
UNIX woild there are also blocks of 4 Kbytes. A SCSI drive can accommodate more
than one block size on a single medium. Theoretically, each block may be a differ-
ent size.

Mapping
The mapping of logical blocks to physical sectors is not specified in the SCSI stan-
dard (Table 13.1). However, it should be implemented in such a way that the time
needed to access adjacent blocks is minimized. Most drives use a linear mapping,
where adjacent logical blocks come from adjacent physical sectors.
Table 13.1 Mapping of logical blocks.

LBN Cylinder Head Sector

0 0 0 0

1 0 0 1

24 0 0 24
Head switch

25 0 1 0

49 0 1 24
Adjacent track seek and head switch

50 1 0 0

19999 399 1 24

154 Block-oriented devices

The following example will help to make this clear. Assume a drive with 400
cylinders (tracks), 2 heads, and 25 sectors. A state-of-the-art disk drive can switch
heads within the time it takes to rotate from one sector to another. A change of tracks
typically takes around 2 ms. A linear mapping minimizes delays by switching heads
before calling for a change of tracks.

Extents

A continuous sequence of blocks of the same size is called an extent. Extents are
defined using the parameter list of a MODE SELECT command (see page 140). However,
this optional feature is seldom employed. For most applications all blocks of a SCSI
drive will have the same block size; that is, they will belong to a single extent.

Notches

Modern disk drives use zone-bit recording (ZBR). Zone-bit recording has to do with
how the information is stored on the medium. Here the outer tracks contain more
sectors than the inner tracks (see Figure 13.2). This becomes possible because the
outer tracks are longer and therefore allow more sectors to be fitted on a track while
maintaining the same recording density (bits per cm). The resulting regions of the
drive that employ the same number of sectors per track are called notches. Notches
are defined via notch pages in the mode parameters. In real terms, the existence of
notches has almost no effect. However, in ZBR disks, the sustained data rate is
higher in the outer zone than in the inner zone.

Removable medium drives

The medium of a SCSI drive may or may not be removable. Diskette drives,
magneto-optical drives and removable cartridge drives are examples of removable
medium drives. The medium is said to be ‘mounted’ when it is loaded into the unit
and is ready to read or write. A SCSI drive in this state is said to be in condition
ready. Any attempt to access a drive that is not ready leads to a CHECK CONDITION
with the sense key NOT READY. You may use the TEST UNIT READY command to check
whether a changeable medium is mounted or not.

MODE-
parameter
header
Block Melch 2 \
descriptor 1:
512 b?/tes/ Notch 1
logical block | |
Geometry | i
Block . o ¥
descriptor 2: page
1024 bytes/
logical block 3 Sectors \
Y per track |- t 3
,'!”a%EsE Extent 1 Extent 2 Notch 2: Notch 1:
four sectors three sectors
per track per track

Figure 13.2 SCSI extents and notches.

The model of a SCSI disk drive 155

Attached media changers

New in SCSI-3 are the so-called attached media changers. Already in SCSI-2, but
also in SCSI-3, there is a separate device type for media changers. These devices,
which are often called juke boxes, allow remote-controlled transport of changeable
media from a storage magazine into a drive and are regarded by SCSI as self-con-
tained devices with their own SCSI ID. They have their own, quite substantial set of
commands.

Attached media changers, instead, are integrated into the disk drive and thus have
no SCSI ID of their own. Their command set is added to the command set of the
drive. Attached media changers have only two commands, MOVE MEDIUM and READ
ELEMENT STATUS. Whether a device has an attached media changer can be recognized
by a set MChngr bit in the standard inquiry data.

RAM disks

The model of a SCSI disk drive does not specify that information must be stored in
a nonvolatile manner. This allows for the implementation of a ‘disk drive’ out of
RAM (hence RAM disk). The result is lightning fast storage that loses information
when the power is removed.

Medium defects

A medium defect prevents information from being written and read correctly. Such
a defect renders an entire sector unusable. Defects are an unavoidable outcome of
the plating process of rigid disks but can also result from a fingerprint on a diskette.
Section 7.2 goes into more detail concerning medium defects as they actually occur.

SCSI makes it possible for a target to present a virtually defect-free medium to
the outside world. This is done by replacing defective logical blocks with replace-
ment blocks set aside solely for this purpose. It does not concern an initiator whether
or not a logical block has been replaced. The defect management is carried out by
the drive alone. Replaceable medium drives like diskettes, however, cannot accom-
modate such an approach because here the physical format of the medium plays an
important role. If SCSI defect management were employed then a diskette written
on a SCSI drive could not be read by a standard PC floppy drive.

There are a number of methods of defect management. A target using automatic
reallocation replaces a block automatically as soon as a defect is detected. This
sounds very attractive but brings with it certain disadvantages as well. If the data in
a logical block can no longer be read successfully the block will be replaced with a
good one. However, the data in this block is obviously not what was written to the
original defective block but rather the format pattern. For this reason the target
should inform the host of such an action; it can do this using the message system.
Automatic reallocation during writing, on the other hand, is not a problem. Here
either the data is still in the write buffer and the target can write it to the new block
or the target can respond to the host with a write error. Because of the inherent dif-
ferences SCSI allows these features to be enabled and disabled separately.

156 Block-oriented devices

In addition to the above method where the drive autonomously manages defects
is the more standard approach where the host is in charge. Here defective blocks are
replaced using the command REASSIGN BLOCK. This method is preferred because the
operating system has full control.

Defect lists

There are four different types of defect lists used with SCSI drives. The primary
defect list (PList) contains the defects discovered by the manufacturer using analog
testing equipment. Such equipment can find positions that might not cause errors
until the medium ages. The PList is permanent and never changes after the drive
leaves the factory. The grown defect list (GList) contains additional defects that
were discovered during the operation of the drive. These are defective blocks dis-
covered during formatting or reallocated either automatically or using REASSIGN
BLOCK. The certification list (CList) contains defects that were discovered during the
certification procedure of formatting. The defects of the CList belong to the GList as
well. Finally, there are the defects that an initiator sends to the target. Called the
DList, this list is sent to the target before formatting takes place, at which time it
becomes part of the GList. The PList and GList together contain all medium defects.

Data buffers and cache

Every SCSI disk controller has a built-in memory buffer with at least enough room
to store a sector’s worth of data. A physical sector is written or read in entirety at
one time, therefore the data must be processed in real time. Since SCSI cannot guar-
antee real-time performance a sector’s worth of data is first collected in the buffer
before writing it to the medium.

Pre-fetch

When the data buffer is large enough to accommodate an entire track it is possible to
implement speed enhancing options like read pre-fetch. Here a controller will assume
that whenever a logical block X is to be read, block X+1 will be requested next. The
validity of this assumption depends on the operating system of the host. Nevertheless,
when the controller reads a sector it reads the rest of the track into the buffer as well.
This extra work costs practically no time since it is merely a DMA transfer to the
buffer. In the event that the subsequentblocks are called for the transfer can take place
immediately. Otherwise, the data can simply be ignored with no penalty.

Another method of optimization is possible when a large enough buffer is available.
Assume that a large number of continuous blocks is requested from the drive. After
the seek to the proper track is complete it is probably the case that the head is located
somewhere in the middle of the set of requested blocks. Normally, the controller would
wait until the first block rotates underneath the heads before starting to read. However,
when the buffer is large enough the controller can begin to read the sectors into
memory immediately. Afterwards the controller simply rearranges the order in which
the data is sent to the host. This method can save many milliseconds of time.

The model of a SCSI disk drive 157

Writing optimization

Other methods of optimization are available when writing data to the drive. Consider
the point in time just after the data has been collected into the controller’s write
buffer. Normally, the seek takes place and the data is written to the medium before
COMMAND COMPLETE is sent to the initiator. However, if the controller responds
immediately with GOOD status and COMMAND COMPLETE the access time is effectively
eliminated. This approach brings with it an element of risk. If the actual write to the
medium should fail the host must be notified of the error. In SCSI-2 this is possible
using AEN. Here the target informs the host that the wRITE command that originally
terminated with GOOD status was, in fact, unsuccessful. More difficult is the situation
where power is lost. Drives are normally built so that once writing a sector has begun
it can be completed, thus maintaining the integrity of the medium even when power
is interrupted. However, implementing a feature whereby the entire data buffer could
be saved would be much too costly.

An operating system assumes that everything written to a drive is secure. If this
is not, in fact, the case the results can be catastrophic. More than just data is at stake
here: if configuration information or other operating system specific data is lost it
may necessitate reinstallation of the entire system. However, as with any mechani-
cal device, failures do occur no matter what precautions are taken. In this case the
increase in performance must be weighed against such risks.

For these reasons this write feature is configurable using the cache page of MODE
SELECT. When enabled, writes are extremely fast but data integrity is at risk; when
disabled data integrity is maintained but with a degradation in performance.

Caching

Caching goes one step further with the data buffer than the techniques described
above. Since SCSI-2 provides a mode parameter page especially for configuring the
cache we will look at caching here in greater detail. Certain aspects of drive perfor-
mance as well as the definition of average access time can be found in Section 2.3.

In general a cache is fast storage which contains copies of certain portions of
another slower storage medium. The cache can be accessed usually at least an order
of magnitude faster than the slower storage but is much smaller in capacity. A cache
directory is used to determine whether a specific piece of data is resident in the
cache. When the desired data is in the cache we speak of a cache hit; otherwise it is
called a cache miss.

Caches were first employed in the main memory of mainframe computers. Here
very expensive, very fast RAM is used to cache the slower, less expensive, but very
large main memory of the system. Even though such a cache is typically only a frac-
tion of the size of main memory it is not uncommon to reach a hit quota of over 90%.
Such success is due largely to the fact that much of computer programs are loops.

The situation for mass storage is completely different. The effectiveness of a
mass storage cache is very dependent on the operating system and application. At
least in multi-user systems, disk accesses are distributed over the entire medium.
There are, however, areas that are more frequently accessed, for example, directories

158 Block-oriented devices

13.2

and tables that the operating system manages. This makes designing an effective
disk cache very challenging.

The hit quota of a disk cache usually lies under 50%. Nevertheless, the increase
in performance can be quite high. A cache hit can turn a 17 ms disk access into a
500 ns cache read.

The effectiveness of a disk cache is strongly influenced by the way in which it is
configured. The cache fills as read data is copied there. This can happen in parallel
to the data transfer so that no loss in performance occurs. When write data is written
first into the cache and then onto the disk it is referred to as write-through cache.
Here the same potential problems can occur as earlier with the simple memory
buffer. If the device waits until the data is written to the medium before responding
with GOoD status there is no speed advantage. If GOOD status is returned upon receiv-
ing data into the cache, data may be lost. These two features — whether write-through
cache is used and when status should be returned — can be controlled using the cache
page parameters. A third option is read pre-fetch. Several parameters are used to set
how many more blocks than requested should be read into the cache.

The next issue relevant to cache management is determining which blocks should
be overwritten when the cache is full. The most simple and most commonly used
approach displaces the data that has not been accessed for the longest time. This
method can be enhanced by allowing certain areas in the cache to be exempt from
being displaced. Additionally, it can be specified that pre-fetch data should be
sacrificed first.

Hard disk commands

Table 13.2 shows a list of commands for disk drives. The most important of these
are discussed here.

Table 13.2 Hard disk commands.

Op- Name Type Page SCSI-2 SCSI-3 Description

code (SBC)

00h TEST UNIT READY Jﬁ, 131 7.2.16 SPC Reflects whether or not the LUN is ready to
- uccepl a command

Olh REZERO UNIT (0) - 6.1.13 Seek track 0

03h REQUEST SENSE BV 132 7.2.14 SPC Returns detailed error information

04h FORMAT UNIT IM 163 821 6..1 Format the medium

07h REASSIGN BLOCKS (6] 8.2.10 6.1.10 Defective blocks reassigned

08h READ() ‘M 159 825 6.1.5 Read. Limited addressing

0Ah WRITE®) (M) 159 82.5M 6.1.200 Write. Limited addressing

OBh SEEK(6) (6] 8.2.15 6.1.15 Seek to a logical block

12h INQUIRY
15h MODE SELECT(6)

Wit 128 725 SPC Returns LUN specific information
7.2.8 M SPCO Set device parameters

16h RESERVE UNIT M 136 8.2.12 6.1.12 Make LUN accessible only to certain

i initiators
17h RELEASE UNIT M 136 8.2.11 6.1.11 Make LUN accessible to other initiators
18h copy (0] 723 SPC Autonomous copy from/to another device

Table 13.2 Hard disk commands (continuecl).

Hard disk commands

159

Op- Name Type Page SCSI-2 SCSI-3 Description

code (SBC)

IAh MODE SENSE(6) m 140 7.2.I0M SPCO Read device specific parameters

IBh START/STOP UNIT (6] 8.2.17 6.1.17 Load/unload medium

ICh RECEIVE DIAGNOSTIC O 7.2.13 SPC Read self-test results

RESULTS
IDh SEND DIAGNOSTIC |, 72.1 SPC Initiate self-test
1Eh PREVENT/ALLOW (6] 8.2.4 6.1.4 Lock/unlock medium
MEDIUM REMOVAL

25h READ CAPACITY 162 827 6.1.7 Read number of logical blocks

28h READ(I0) 159 826 6.1.6 Read logical block

2Ah WRITE(0) 159 8.2.6M 6.1.210 Write logical block

2Bh SEEK(10) O 8.2.15 6.1.15 Scek to alogical block

2Eh WRITE AND VERIFY O 8.2.22 6.1.22 Write logical block, verify success

2Fh VERIFY o 15.2.11 6.1.19 Verify

30h SEARCH DATA HIGH O 8.2.14 6.1.14 Search logical blocks for data pattern

31h SEARCH DATA EQUAL O 8214 6.1.14 Search logical blocks for data pattern

32h SEARCH DATA LOW (6] 8.2.14 6.1.14 Search logical blocks for data pattern

33h SET LIMITS (6] 8.2.16 6.1.16 Deline logical block boundaries

34h PRE-FETCH (0] 823 6.1.3 Read data into buffer

35h SYNCHRONIZE CACHE O 8.2.8 6.1.18 Write cache to medium

36h LOCK/UNLOCK CACHE O 822 6.1.2 Holddata in cache

37h READ DEFECT DATA O 8.2.8 6.1.8 Read list of defective blocks

39h COMPARE O 722 SPC Compare data

3Ah COPY AND VERIFY O 724 SPC Autonomous copy from/to another device.
verify success

3Bh WRITE BUFFER (6] 7.2.17 SPC Write the data buffer

3Ch READ BUFFER (6] 7.2.12 SPC Read the data buffer

3Eh READ LONG O 161 829 6.1.9 Read data and ECC

3Fh WRITE LONG O 161 8223 6.1.23 Write data and ECC

40h CHANGE DEFINITION O 139 7.2.1 SPC Set SCSI version

41h WRITE SAME (6] 8.2.24 6.1.24 Write data pattern

4Ch LOG SELECT (6] 72.6 SPC Read statistics

4Dh LOG SENSE (6] 7.2.7 SPC Read statistics

55h MODE SELECT(10) O 140 729 SPC Set device parameters

5Ah MODE SENSE(10) O 140 7.2.10 SPC Read device parameters

AS5h MOVE MEDIUM O 218 1623 SMC Move medium

B8h READELEMENTSTATUS O 220 16.2.5 SMC Read clement status

Note: Commands added to this command set in SCSI-3 are shaded light gray: mandatory commands are
shaded dark gray. (M) means that the command is classified differently in SCSI-2 and SCSI-3. The
corresponding classification is indicated after the reference to the standard.

READ(6) (08h) and wriTE(6) (0Ah);
READ(10) (28h) and wriTE(10) (2Ah)

The READ command requests a certain number of logical blocks from a target. The
WRITE command provides a target with a number of logical blocks to be written to the
medium. The structure of these commands is identical (Table 13.3). Each contains the
start address and the transfer length expressed in logical blocks.

160 Block-oriented devices

Table 13.3 READ and WRITE commands.
?‘6‘5‘4'3‘2‘!‘0 7\6‘5\4\”2‘;“

0 READ(6) (08h) or WRITE(6) (0Ah) 0| READ(10) (28h) or WRITE(10) (2Ah)

1l wuNy) MsB) 1| aun [orofria| Res |Rel

2 Logical block 2| (MSB)

_3. (LSB) _3

4 Data length —4 Logical block

5 Control byte —5 (LSB)
6 Reserved
7 | (MSB) Data length

—8 (LSB)

9 Control byte

There is a 6-byte as well as a 10-byte version of both the READ and WRITE com-
mands. Implementation of the READ commands is mandatory in both SCSI-2 and
SCSI-3, whereas the WRITE command is only mandatory in SCSI-2.

The 6-byte version stems from SCSI’s predecessor SASI. It has the disadvantage
that only 21 bits are provided for the logical block address. Assuming a block length
of 512 bytes, this allows a little more than a gigabyte to be addressed. For many
modern drives this is simply not adequate.

The 6-byte demon

It is hard to believe but at one time there existed software drivers and firmware that
used the 6-byte READ and WRITE commands. At the same time these adapters were
capable of recognizing and using the full capacity of drives of more than a gigabyte.
When a block above the magical 21-bit boundary was addressed, the host adapter
would simply ignore the uppermost bits. Of course, this would address and write the
wrong logical block on the drive. You can imagine what happened. An operating
system would gradually fill a drive starting with the lowermost logical blocks. The
system would operate normally until the 21-bit address was reached, at which time
logical block 0 would be overwritten. This mistake would wipe out the boot block,
the internal medium tables, and the directories (in this order). The drive would mys-
teriously become unusable without even a hardware error having been detected. For
this reason it is highly recommended to avoid the 6-byte READ and WRITE commands,
and if you ever find yourself the victim of unexplainable data corruption be sure to
investigate whether or not the 6-byte demon is to blame.

Parameters

Other than the start address and transfer length, the 6-byte versions have no para-
meters. As with all block oriented 6-byte commands, a transfer length of zero
actually means that 256 are requested. In contrast, zero transfer length means just

Hard disk commands 161

that for the 10-byte commands and no data is sent. In the 10-byte version there are
a number of additional control bits:

® DPO (disable page output): This bit helps the target to manage the cache. If it is
set, it tells the target that the host does not intend to read the data again in the near
future. The target may decide not to keep this data in the cache.

® FUA (force unit access): When this bit is set the target is forced to read the data
from the medium even if it resides in the cache. If the cache contains a newer
version of the data then it must first be written to the medium and then re-read. In
the case of a WRITE command the target must wait until the data is on the medium
before responding with GooD status. This affects drives with cache as well as with
buffer memory.

® Rel (relative addressing): This bit, which is valid only in conjunction with linked
commands, causes the start address to be interpreted as an offset to the start
address of the last command.

READ LONG (3Eh) and wriTE LONG (3Fh)

The most important variants to the READ and WRITE commands are READ LONG and
WRITE LONG. Both are 10-byte commands, which operate not only on the user data
but also on the ECC. Moreover, these commands operate on strictly one block at a
time (Figure 13.3). The transfer length is interpreted as the number of bytes to trans-
fer. There are also some differences in byte 1. The DPO and FUA bits do not exist,
whereas bit 1 of a READ LONG command is the COOR control bit. Only if COOR is set
will data correction be attempted in the event of a read error. Otherwise the data will
be transferred just as it comes from the medium.

The type of encoding used to write data onto the medium as well as the ECC poly-
nomial is vendor specific. However, the ECC polynomial must be known if we wish
to write a valid ECC along with the data. Unfortunately, this makes it necessary to

Logical block 512 Bytes data

A LoNe, 512 Bytes data ECC
Gap Header Gzapz 512 Bytes data Ecc| %P
|Sync Cylinder | Head ‘ Sector | CRC \

Figure 13.3 Physical layout of a logical block.

162 Block-oriented devices

know device specific information when using READ LONG or WRITE LONG, which is at
odds with the vendor independent philosophy of SCSIL

A very practical application of these commands is in the testing of a system’s
response to a data error. To accomplish this the drive is first connected to a PC
running the SCSI monitor and a logical block is read using READ LONG. After modi-
fying a few bytes the data is written back to the drive using WRITE LONG. Now in the
system, the first access to this block will result in an ECC error. With a little prac-
tice it is possible to produce correctable as well as uncorrectable data errors.

Other variants of READ and WRITE

Two additional commands remain to be mentioned: WRITE AND VERIFY writes data to
the medium and then reads it back while comparing it to the original data. The data
is only transferred once across the SCSI bus. Another way to insure absolute data
integrity from host memory to the medium is to link together a standard READ and
WRITE command and then compare the data in host memory. Finally, the command
WRITE SAME allows one to write the same block several times to the medium.

READ CAPACITY (25h)

Also mandatory for disk drives is the command READ CAPACITY (Table 13.4). It has
the standard structure of 10-byte commands and returns eight bytes of information:
four bytes reflect the last LBN of the drive while the remaining four reflect the block
length. :

The PMI (partial medium indicator) control bit, byte 8, bit 0, plays an important
role. When clear, the command returns the LBN of the last logical block of the
medium as described above. In this case the block number in the command block
must be zero.

When PMI is set the command returns something completely different. Now the
LBN in the command is interpreted and the target returns the next LBN, after which

Table 13.4 The READ CAPACITY command.

7 e | s | 4«] s | 2 | 1 o
0 READ CAPACITY (25h)
1 (LUN) ‘ Reserved ; Rel
2 (MSB)
3 Logical
4 block
5 (LSB)
6 -
7 Reserved |
8 PMI
9 Control byte

Hard disk commands 163

Table 13.5 The FORMAT UNIT command.

7 e | s | ¢« | s | 2 | 1 | o
0 FORMAT UNIT (04h)
1 (LLIN} ‘ Fmt ‘ Cmpl ‘ Defect list format

~

Vendor specific

(MSB) Interleave

(LSB)

LU, I I S BN

Control byte

a noticeable delay in access will occur. Delays in access occur, for example, at cylin-
der boundaries. Using this command the operating system can determine whether a
certain area of frequently accessed storage is ideally located.

FORMAT UNIT (04h)

The FORMAT UNIT command instructs the target to format the medium of a specific
LUN (Table 13.5). In its simplest form no parameters are sent and the target formats
using default settings. The actual formatting procedure has two phases. First the phys-
ical medium is formatted, meaning that each sector is written with header, data, and
ECC information. Afterwards, the mapping from physical blocks to logical blocks
takes place. Finally, during a second pass over the medium defective blocks are re-
allocated; that is, replaced with reserve blocks. The target will also accept a list of
additional medium defects to be reallocated in a parameter block. Since format para-
meters are set using the MODE SELECT command it is imperative to first use MODE
SELECT, then the FORMAT command. Only in this way will the drive configuration
reflect the desired mode parameters (see Figure 13.4).

MODE Y
SELECT od
Extents, I(ij:tfgct
sectors, PList
offsets, :
CList
etc. ... GList
'\A /— —_
FORMAT UNIT
Interleave, DList
¥
" T
e
New
format
and
defect
lists

Figure 13.4 Influences on formatting.

164 Block-oriented devices

The following parameters are contained in the command itself:

o Fmt (format data): This bit must be set when a parameter list follows the FORMAT
UNIT command.

o Cmpl (complete): This bit may only be set when Fmt is set. It indicates that the
defect list in the parameter list is exhaustive. All defect lists except the PList are
deleted and newly constructed.

e Defect list format: This field indicates one of three defect list formats: block
format (000b), index format (100b), or sector format (101b). Only one format
type is allowed in a single parameter list. The formats are described in detail later
in this section under the heading ‘Defect descriptors’.

o Interleave: The term ‘interleave’ is explained in Chapter 2. This field indicates
the interleave that should be employed. A value of 00h means that the target
should use its default values. To assure a one-to-one interleave a value of Olh
must be used.

Parameter lists

Figure 13.5 describes by way of example the structure of the FORMAT UNIT parame-
ter list. Bytes O to 3 contain the header. Next comes the optional initialization pattern
descriptor. This has a variable length, which in this example spans from byte 4 to
byte 8. This is followed by optional defect descriptors. Thus, a parameter list is nec-
essary when sending either an initialization pattern or defect lists with the FORMAT
command. Any other pertinent format information is found in the MODE parameter
pages, especially the format page.

In addition to the control bits in byte 1, the header of the parameter list contains
the length of the defect lists in bytes 2 and 3. This length may be zero. The number
of defects can be inferred from the list length together with the list format in byte 1
of the command itself. A description of the control bits follows:

® FOV (format option valid): Only when this bitis set are the bits DPR, DCR, STP,
IP and DSP valid. Otherwise, these bits must be set to zero and the target will use
its default values.

o DPR (disable primary): When this bit is set a PList will not be transferred to the
target. The PList constructed by the manufacturer, however, remains intact.

® STP (stop format): This bit controls what should happen when the target does, in
fact, accept a PList or GList to use in formatting, but the list cannot be found or
read. In both cases the command terminates with CHECK CONDITION status. When
STP is set, the target will abort formatting and prepare the sense key MEDIUM
ERROR. Otherwise, the formatting will take place and the sense key RECOVERED
ERROR will be available.

e JP (initialization pattern): When set this bit indicates that the parameter list con-
tains a descriptor for the initialization pattern.

® DSP (disable saving parameters): Normally all mode parameters are saved during
the formatting process. This action is inhibited when DSP is set.

Hard disk commands 165

7 e | s [+ s] 2] 1o
0 Reserved
t [Fov | DPR | DCR | stP | P | DSP | mm | vs
2 | (MSB) Defect list length
3 here 0008h (LSB)
4 IP-Mod | Reserved -
5 Pattern type
6 | (MSB) Pattern length
7 here 0001h (LSB)
8 Initialization pattern -
9 Defect descriptor |
10
-
11
12
13 Defect descriptor 2
14
1S
16 B
7 e [s]« | s]2 1| oo

0 FORMAT UNIT (04h)
1 (LUN) ‘ Fmt |Cmpl| Defect list format
2 Vendor specific
3 (MSB) Interleave
4 (LSB)
5 Control byte

Code Defect list format

000b Block format, 4 bytes long

100b Index format, 8 bytes long

101b Sector format, 8 bytes long

Figure 13.5 FORMAT UNIT with parameter list.

o Imm (immediate): The setting of this bit causes status to be returned as soon as
the parameter list has been received. Otherwise the status is sent after completion
of the task as usual.

® VS: (vendor specific)

If IP is set then an initialization pattern descriptor follows the parameter list header.
This pattern is a sequence of bytes that are written as data to each block of the drive.

166 Block-oriented devices

e JP-Mod: These control bits allow the target to modify a portion of the initializa-
tion pattern for each block. 01b means that the first four bytes of every logical
block should contain the logical block number. 10b means that each physical
block should contain the logical block number. 00b leaves the initialization
pattern unchanged. 11b is reserved.

e Pattern type: Here 00h means that the target should use its default pattern. In this
case the pattern length must also be zero or a CHECK CONDITION will result. A
value of Olh causes the supplied pattern to be used. The remaining values are
reserved or vendor specific.

@ Pattern length: Indicates the length of the initialization pattern.

o Initialization pattern: This pattern is written to each logical block during the
formatting process. The pattern is repeated until the block is filled.

The rest of the parameter block is comprised of the defect descriptors. The defect
descriptors that are used with FORMAT UNIT as well as other commands receive
special attention in their own section.

In conclusion, consider again the example in Figure 13.5. An arrow points from the
IP bit to the beginning of the initialization pattern descriptor because only when this
bit is set will the descriptor follow. The pattern length contains the pointer, which
points to the end of the descriptor. The defect list length together with the pattern
length points to the end of the entire parameter list. In the defect list format field of the
FORMAT UNIT command is the value 000b, indicating 4-byte long defect descriptors.

Defect descriptors

Defect descriptors are used by the commands FORMAT UNIT, READ DEFECT DATA, SEND
DIAGNOSTIC and RECEIVE DIAGNOSTIC RESULTS. The various formats are selected using
a 3-bit code.

Block format (000b)

The four bytes of the descriptor contain the LBN of the block in which the defect is
located (Table 13.6). When using the block format the list must be constructed in
ascending order. An LBN may correspond to more than one sector.

Index format (100b)

The index pulse indicates the beginning of every track on the disk. The first four bytes
of the index format contain the cylinder and head number of the defect (Table 13.7).

Table 13.6 Defect descriptor in block format.
0 (MSB)

| Block number of

2 defective block

3 (LSB)

Hard disk commands 167

Table 13.7 Defect descriptor in index format.

0 (MSB) Cylinder number of

1 defective block

2 (LSB)
3 l-iea:;i number

4 (MSB)

5 Position of defect as

6 bytes after index

7 (LSB)

The remaining four bytes contain the defect position measured in bytes from the
index. If FFFFFFFFh is given here the entire track should be regarded as defective.
For drives that support variable sector lengths, only the index format may be used
for the manufacturer’s defect list (PList).

Note that numbers such as FFFFFFFFh are often referred to as —1, which corre-
sponds to their signed integer interpretation. Although this is easier to pronounce,
the width of the number is no longer apparent.

Sector format (101b)

The sector format is in structure exactly like the index format except that bytes 4
through 7 contain the sector number of the defect. Here too a sector number of
FFFFFFFFh indicates that the entire track is defective (Table 13.8).

Commands for cache management

In addition to the commands that implicitly modify the cache, there are a number of
SCSI-2 commands that configure the cache directly.

The command LOCK/UNLOCK CACHE allows certain regions in the cache to be
locked. Locked blocks will not be overwritten by other data. The command is struc-
tured like a READ(10) command. Byte 1, bit 1 is the lock bit. When set, a region is

Table 13.8 Defect descriptor in sector format.

0 (MSB) Cylinder number of

1 defective block

2 (LSB)

3 Head number

4 (MSB) !
5 Defective

6 sector

7 (LSB)

168 Block-oriented devices

13.3

locked; otherwise it is freed. Only those regions that are in the cache at the time of
the command are affected. The command PRE-FETCH is also structured like READ(10).
It instructs the target to read the specified blocks from the medium into the cache.
No transfer across the SCSI bus takes place.

Finally, SYNCHRONIZE CACHE causes the target to write the specified region of the
cache to the medium. This makes sense when a target has been allowed to respond
to WRITE commands immediately with GooD status before actually writing the
medium.

Mode parameter pages for disk drives

The following mode parameter pages are defined for disk drives (Table 13.9):

Format page (03h)

The format page contains the information necessary to format the medium (Table
13.10). In particular it contains information concerning replacement sectors and
tracks. The terms interleave, track skew and cylinder skew were already covered in
Chapter 2.

A new term is introduced here, however, which has special meaning in the SCSI
world. With respect to SCSI, a zone refers to a group of tracks to which a certain
number of replacement sectors or tracks are allocated.

Outside the world of SCSI the term zone is often used in the context of zone-bit
recording. Zone-bit recording refers to a recording technique whereby the outer
cylinders are written with a higher bit density, and therefore more sectors, than the
inner cylinders. In SCSI the regions with a constant number of sectors are called
notches. It is unfortunate that the terminology is inconsistent here.

A look at the format page reveals that many values vary with each notch. Itis pos-
sible for a target to define some or all mode parameter pages separately for each

Table 13.9 Mode parameter pages for disk drives.

Page Name Page SCSI-2 SCSI-3
code (SBC)
Olh Read/write error page 8.3.3.6 7.1.3.6
02h Disconnect/reconnect page 145 7.3.3.2 SPC

03h Format page 168 8.3.33 7.1.3.3
04h Disk drive geometry page 170 8.3.3.7 7.1.3.7
05h Floppy disk page 8.3.3.2 7.1.3.2
07h Verify error page ' 8.3.3.8 7.1.3.8
08h Cache page 172 8.3.3.1 7.1.3.1
0%h Peripheral device page 146 7.3.33 SPC

0Ah Control mode page 147 7.3.3.1 SPC

0Bh Medium type page 8.3.34 7.1.3.4
0Ch Notch page 174 8.3.3.5 7.1.3.5
0Dh Power condition page - 7.1.3.6

1Ch Informal exception page - SPC

Table 13.10 Format page.

Mode parameter pages for disk drives

7 6 + | 3] 2] 0

0 PS Res Format page (03h)
1 Page length (16h)

B 2 (MSB) Tracks per“zone
3 (LSB)
4 (MSB) Replacement sectors
b per zone (LSB)
6 (MSB) Replacement tracks
7 per zone (LSB)
8 (MSB) Replacement tracks
9 per LUN (LSB)
10 (MSB) Sectors
11 per track (LSB)
12 (MSB) Data bytes
13 per sector (LSB)
14 (MSB) Interleave
15 (LSB)
16 (MSB) Track skew
17 (LSB)
18 (MSB) Cylinder skew
19 (LSB)
20 | ssec | msec | rmm | sure | Reserved
21
22 Reserved
23

169

notch. A special notch page contains the number of active notches influenced by the

MODE commands:

@ Tracks per zone: The entire medium is divided into zones consisting of this
number of tracks per zone. The last zone may have fewer tracks. A value of zero
treats the entire medium as a single zone.

e Replacement sectors per zone: A zero instructs the target to use its default
value. However, a notch page, if implemented, can be used to achieve zero
sectors per zone.

® Replacement tracks per zone: Alternate tracks make it possible to replace an
entire track that contains many defects. A value of zero is interpreted as such in

this field.

170 Block-oriented devices

® Replacement tracks per LUN: Corresponds to the above fields with respect to
aLUN.

® Sectors per track: This is the number of physical sectors including alternates per
track.

@ Bytes per sector: This is the number of data bytes per physical sector. This is not
necessarily equal to the number of bytes per logical block.

® Interleave: This field is only valid for MODE SENSE. It reflects the value defined
by FORMAT UNIT.

® Track skew: Specifies the number of physical sectors between the last logical
block of one track and the next logical block of the next track (see also Chapter
2).

® Cylinder skew: Specifies the number of physical sectors between the last logical
block of one cylinder and the next logical block of the next cylinder (see also
Chapter 2).

® SSEC (soft sector): Specifies that the drive should use soft sectoring.
© HSEC (hard sector): Specifies that the drive should use hard sectoring.

The target must support either hard or soft sectoring or both.

© RMB (removable): The target uses removable medium. This must reflect the
information returned by the INQUIRY command.

® SURF (surface): When this bit is zero logical blocks are allocated progressively
to the sectors of a cylinder before those of the next cylinder. When SURF is set
logical blocks are allocated progressively to the sectors of a surface before those
of the next surface. Most hard disks have this bit clear; most diskette drives have
it set.

It is obvious that alternate sectors reduce the space available for user data. If too
many alternate sectors are allocated then storage is sacrificed unnecessarily. On the
other hand, the medium is unusable as soon as all alternate sectors have been
exhausted. The answer is to find a compromise somewhere in between these two
extremes.

In practice this is achieved in the following way: for simplicity, assume a medium
with constant geometry; that is, without notches. A zone is defined as being a single
track. For each zone one alternate sector is allocated. When necessary this alternate
sector can be read with almost no delay. If additional sectors of the track are defec-
tive the entire track is reallocated. An alternate cylinder should be set aside for every
200 cylinders. This rule of thumb allocates between 3% and 5% of the drive capacity
to replacement sectors.

Disk drive geometry page (04h)

Hard disks and diskettes use different geometry pages. In this book, however, only
the hard disk geometry page is discussed. This page pertains to hard drives with
removable medium as well. With the exception of spindle synchronization, the

Mode parameter pages for disk drives 171

Table 13.11 Mode commands: geometry page.

7 6 s 4 | s]2] o
0 PS Res Geometry page (04h)
1 Page length (16h)
2 (MSI_3))
3 Number of cylinders
4 (LSB)
5 Number of heads
6 (MSB) Start cylinder
7 for
8 write compensation (LSB)
9 (MSB) Start cylinder !
10 for '
11 reduced write current (LSB)
12 (MSB) Step rate
13 (LSB)
14 (MSB) Cylinder number
15 of
16 landing zone (LSB)
17 Reserved RPL
18 -Rolational of fset
19 Reserved
20 (MSB) Medium
21 - rotation rate (LSB)
22 Reserved
23 :

parameters deal strictly with fixed geometry information (Table 13.11). Changeable
parameters such as the number of sectors and sector length belong to the format
page. For most fields, the relevant background terminology is explained in Chapter 2.

The rotational position locking field is used to synchronize the spindles of two or
more individual disk drives. Synchronization makes it possible to read and write
blocks from different drives at precisely the same time without latency delays by
ensuring that these blocks rotate underneath the heads of their respective drives in
unison. The drives must not only have the same rotational speed but must also syn-
chronize the relative positions of the heads with respect to the medium. This is
accomplished by declaring one drive the master and the remaining drives slaves,
which govern their speed relative to the master. Here additional signals are needed
that are not provided by the SCSI bus. Spindle synchronization is employed in RAID

172 Block-oriented devices

arrays, which achieve very high throughput by accessing drives in parallel while
eliminating latency delays.

RPL (rotational position locking): 00b disables synchronization; 0lb instructs
the drive to act as a slave, and 10b as a master.

Rotational offset: This byte reflects the amount of rotational offset a slave will
have to its master measured in 1/256th of a rotation. This allows a staggering of
the individual disks.

Cache page (08h)

Table 13.12 shows the cache parameter page for the MODE commands. In SCSI-3, the
cache page is complemented with several parameters and bits which make its length
grow from 12 to 19 bytes. First, we will describe the elements which exist both in
SCSI-2 and in SCSI-3.

WCE (write cache enable): When set the target replies with a GOOD status as soon
as all of the data has been received into the cache. Otherwise this status may not
be returned until the data has been successfully written to the medium. Be aware
that when WCE is set the target decides when to write the data to the medium.
There may be a substantial delay here if a large number of /O processes must be
processed. The command SYNCHRONIZE CACHE forces all cache data yet to be
secured to be written to the medium.

MF (multiplication factor): Normally the values for pre-fetch maximum and
minimum reflect a certain number of blocks. However, when MF is set these
values represent scalars which are to be multiplied with the transfer length to
obtain their meaning.

RCD (read cache disable): Causes the medium to be read even if the data resides
in the cache.

Read retention priority and write retention priority: Specify with what prior-
ity the data either read or written into the cache is to be maintained. The priority
given is with respect to data resulting from pre-fetch operations. Oh means that all
data should be treated equally; 1h gives the data a lower priority than pre-fetch
data; Fh gives the data higher priority than pre-fetch data.

Disable pre-fetch transfer length: This field specifies the maximal transfer
length for which a pre-fetch should occur. Zero disables pre-fetch.

Pre-fetch minimum: This field specifies the minimum number of blocks that
should be pre-fetched regardless of whether other commands are impeded.

Pre-fetch maximum: This field specifies the maximum number of blocks that
should be pre-fetched.

The interpretation of the above two fields is independent of the MF bit. If both

values are equal pre-fetch will occur regardless of other pending commands. If there
is a difference between minimum and maximum, a pre-fetch will be broken off
inside this interval if otherwise another command would be delayed.

Mode parameter pages for disk drives 173

Table 13.12 Mode parameter cache page.

7 6 s |« a2] | o
0 PS Res Cache page (08h)
1 Page length (OAh, SCSI-3: 12h)
2 ic | aepF | cap | pisc [size | wee | mMF | RoD
3 Read retention priority Write retention priority
4 (MSB) Disable pre-fetch
5 transfer length (LSB)
6 (MSB) Pre-fetch minimum
7 (LSB)
8 (MSB) Pre-fetch maximum
9 (LSB)
10 (MSB) Absolute pre-fetch maximum
11 (LSB)
12 | rsw [rBcss | bRa | vs | vs | Reserved
13 Number of cache segments
14 (MSB) Cache segment size
15 (LSB)
16 Reserved
17 ... Size of segment
.19 not reserved for cache

® Absolute pre-fetch maximum: This field only has meaning when MF is set. It
limits the pre-fetch length resulting from the multiplication factor.

In SCSI-3, the following new parameters are introduced:

e IC (initiator control): When set, the device server must adjust its cache size
according to the parameters in bytes 13 to 19. Otherwise, it can use its own algo-
rithm to determine the size.

e ABPF (abort pre-fetch): The device server must abort pre-fetch processes when
it is selected.

® CAP (caching analysis permitted): The device server may perform an analysis of
the cache processes in order to optimize its strategy, even if the throughput may
momentarily suffer. When CAP is not set, this is prohibited.

e DISC (discontinuity): The device server should pre-fetch also across discontinu-
ities and track changes, until the buffer is full.

SIZE (size enable): The value in bytes 14 and 15 is valid and should be used.
® FSW (force sequential write): The device server should write logical blocks in

the cache in ascending sequential order. When FSW is not set, the device server
can determine the order itself.

174 Block-oriented devices

o LBCSS (logical block cache segment size): When set, the cache segment size is
specified in logical blocks, otherwise in bytes.

® DRA (disable read ahead): Read-ahead is prohibited.

® VS: Vendor specific.

Notch page (0Ch)

The notch page describes the regions of the disk with a constant number of sectors
per track (so-called notches). This optional page does not even have to be imple-
mented for drives that do, in fact, contain regions of varying number of sectors
(Table 13.13). If notch pages are implemented then each notch will have its own
page (Figure 13.6).

® ND (notched drive): Only when this bit is set is the notch page valid. Otherwise
the drive has no notches and the rest of the page is empty.

® LPN (logical or physical notch): When set this bit indicates that the boundaries
of the active notches are expressed as logical blocks. Otherwise they are

Table 13.13 Mode commands: notch page.

7 6 s o4 3 2 |] o

0 PS Res Notch page (0Ch)

1 Page length (16h)

2 ND | LPN | Reserved

3 Reserved

4 (MSB) Maximum number

5 of notches (LSB)
6 (MSB) Active notch

7 (LSB)
8 (MSB)

9 Beginning of

10 active notch

11 (LSB)
12 (MSB)

13 End of

14 active notch

15 (LSB)
t6 | 3m | 3n | an |

Mode pages
with notches

23 .~ | om | o 02h 0lh 00h

13.4

The SCSI model of optical storage and WORM drives 175

I 2
1 1
4 [4
3 3
Peripherals Disconnect/ Notch page Geometry ‘Cache page
page reconnect page :
page
Active
notch: 3

Figure 13.6 Mode parameter pages with notches.

expressed as physical addresses. Here the three most significant bytes hold the
cylinder number and the lowest byte the head number.

® Active notch: This field contains the number of the notch to which this page and
other MODE SELECT pages refer. This number is valid until it is changed by MODE
SELECT. A zero means that subsequent mode commands pertain to those parame-
ters that apply across all notches.

® Mode pages with notches: This field is 8 bytes long or a total of 64 bits. Each
bit represents one of the MODE pages from 00h to 3Fh. The most significant bit
corresponds to page 3Fh, the least significant to page O0h. A set bit means that
the corresponding MODE page contains parameters that may be different for dif-
ferent notches. A zero means that the page applies to all notches.

The SCSI model of optical storage and WORM drives

The SCSI model of optical storage is very similar to that of regular disk drives. We
will use magnetic disk drives as a basis for comparison and discuss the differences
as they become relevant.

One difference between the two is that optical storage has the potential for much
greater storage capacity. For this reason 12-byte commands have been defined for
medium access commands. These have a 32-bit logical number field, like the 10-
byte version, but also a 32-bit wide transfer length.

The device type for optical storage is very diverse. It includes read-only media
(like CD-ROM), media that can be written only once (WORM drives) and media
that can be rewritten indefinitely. CD-ROM and WORM drives, however, each have
their own device type. Except for the audio dimension of CDs, these device types
represent subclasses of the optical storage device type presented here.

Optical storage drives are often capable of working with all three types of
medium. For this reason an initiator must use a MODE SENSE to determine what type
of medium is involved when working with a device of this class. Naturally, this must
occur whenever the medium is replaced.

Optical storage has physical characteristics that are foreign to magnetic disk drives.
These differences are accounted for in the command set. For example, for WORM
drives, there is the MEDIUM SCAN command that allows the seeking to locations that

176 Block-oriented devices

13.5

have not been written. Many rewritable optical medium drives require that data be
erased before being written again. There is also a command for this purpose.

WORM drives have their own device type, which is a proper subclass of optical
storage. Both of these are covered here. We postpone the discussion of CD-ROM at
this point since its audio capabilities make it worthy of a separate chapter.

Generations of a logical block

Many optical storage devices are capable of emulating the rewriting of a block. The
UPDATE command writes the modified logical block to another location on the
medium and makes it available via a pointer to the new location. The original logical
block remains unchanged and represents an earlier generation of the data. Older gen-
erations are identified with a lower generation number, starting with zero. The older
generations of a logical block are accessible using the READ UPDATED BLOCK
command.

The model of a SCSI WORM drive

WORM drives are also a subclass of optical storage. Since the medium can only be
written once some commands are dispensable. For example, the ERASE command has
no meaning here. Also missing is the FORMAT command because a WORM medium
is already formatted.

Commands for optical storage and WORM drives

Table 13.14 lists the commands defined for optical storage and WORM drives. You
will notice that all mandatory commands are either disk drive commands or com-
mands for all SCSI classes. This allows us to concentrate on only those commands
that are unique to optical storage devices.

Table 13.14 Commands for optical storage devices.

Op- Name OSWD Page SCSI-2 SCSI-3 Description
code (SBC)

00h TEST UNIT READY SPC Reflects whether or not the LUN is ready to
accept a command
6.1.3 Seek track 0

SPC Returns detailed error information

Olh REZERO UNIT
03h REQUEST SENSE

04h FORMAT UNIT 6} 6.1.1 Formats medium

07h REASSIGNBLOCKS O O .10 6.1.10 Defective blocks reassigned

08h READ(6) O O 159 825 6.1.5 Read Limited addressing

OAh WRITE(©) O O 159 825 6.1.20 Write. Limited addressing

OBh SEEK(6) O O 8.2.15 6.1.15 Seek to a logical block

12h INQUIRY i SPC Returns LUN specific information
15h MODE SELECT(6) O O 140 7.2 SPC Set device parameters

.7.
8.2.12 6.1.12 Make LUN accessible only to certain
initiators

16h RESERVE UNIT

Commands for optical storage and WORM drives 177

Table 13.14 Commands for optical storage devices (continued).

Op- Name OSWD Page SCSI-2 SCSI-3 Description

code (SBC)

17h RELEASE UNIT M M- 136 8.2.11 6.1.11 Make LUN accessible to other initiators

18h copy [ON©) 723 SPC Autonomous copy from/to another device

1Ah MODE SENSE(6) O O 140 7.2.10 SPC Read device parameters

IBh START/STOP UNIT O O 8.2.17 6.1.17 Load/unload medium

1Ch RECEIVE DIAGNOSTIC O O 7.2.13 SPC Read self-test results
RESULTS

1Dh SEND DIAGNOSTIC ‘M M 138 7.2.1 SPC Initiate self-test

1Eh PREVENT/ALLOW O O 824 6.1.14 Lock/unlock medium
MEDIUM REMOVAL

25h READ CAPACITY M M 827 6.1.7 Read number of logical blocks

28h READ(10) ‘M M 159 826 6.1.6 Read logical block

29h READ GENERATION O O 179 15.2.6 6.2.6 Rcad maximum generation address of LBN

2Ah WRITE(10) M M. 159 826 6213 Write logical block

2Bh SEEK(10) OO0 8.2.15 6.1.15 Scck to a logical block

2Ch ERASE O O 181 15211 621 Erase

2Dh READ UPDATED O O 179 1527 6.2.7 Read specific version of changed block
BLOCK

2Eh WRITE AND VERIFY O O 15.2.15 6.2.15 Write logical block, verify success

2Fh VERIFY [ON©) 15.2.11 6.2.11 Verify data on medium

30h SEARCH DATA (O] 8.2.14 6.1.14 Scarch logical blocks for data pattern
HIGH(10)

31h SEARCH DATA O O 8.2.14 6.1.14 Scarch logical blocks for data pattern
EQUAL(10)

32h SEARCH DATA O O 8.2.14 6.1.14 Search logical blocks for data pattern
LOW(10)

33h SET LIMITS(10) O O 8.2.16 6.1.16 Detine logical block boundaries

34h PRE-FETCH O O 823 6.1.3 Read data into buffer

35h SYNCHRONIZE CACHE O O 8.2.8 6.1.18 Write cache to medium

36h LOCK/UNLOCK cCACHE O O 822 6.1.2 Hold data in cache

37h READ DEFECT DATA(10) O O 828 6138 Read list of defective blocks

38h MEDIUM SCAN O O 179 1523 6.23 Search for free area

39h COMPARE (O] 722 SPC Compare data

3Ah copy AND VERIFY O O 724 SPC Autonomous copy from/to another device.

verify success

3Bh WRITE BUFFER [OlNe) 7.2.17 SPC Write the data buffer

3Ch READ BUFFER O O 7.2.12 SPC Read the data buffer

3Dh UPDATE BLOCK (o} 178 15.2.10 6.2.10 Substitute block with an updated one

3Eh READ LONG O O 161 829 6.1.9 Read data and ECC

3Fh WRITE LONG O O 161 8223 6.1.23 Write data and ECC

40h CHANGE DEFINITION O O 139 7.2.1 SPC Set SCSI version

4Ch LOG SELECT O O 726 SPC Read statistics

4Dh LOG SENSE [O3Ne] 7.2.7 SPC Read statistics

S5Sh MODE SELECT(10) O O 140 729 SPC Set device parameters

SAh MODE SENSE(10) O O 140 7.2.10 SPC Read device parameters

A8h READ(2) O O 1524 6.2.4 Read logical block

AAh WRITE(12) O 0 1524 6.2.14 Write logical block

ACh ERASE(12) (6] 1522 624 Erase logical block

AEh WRITE AND VERIFY O O 15.2.16 6.2.16 Write logical block. verify success

AFh VERIFY(12) OO0 15.2.12 6.2.12 Verify data on medium

BOh SEARCH DATA o0 O 15.2.8 6.2.8 Scarch logical blocks for data pattern

HIGH(12)

178 Block-oriented devices

Table 13.14 Commands for optical storage devices (continued).

Op- Name OSWD Page SCSI-2 SCSI-3 Description

code (SBC)

Blh SEARCH DATA O O 15.28 6.2.8 Search logical blocks for datapattern
EQUAL(I2)

B2h SEARCH DATA (O] 152.8 6.2.8 Search logical blocks for datapattern
LOW(12)

B3h SETLIMITS(12) (O] 1529 629 Set logical block boundaries

B7h READ DEFECT O O TS 6%
DATA(12)

B8h READ ELEMENT O O 220 1625 SMC Readelement status
STATUS

Note: Commands added to this command set in SCSI-3 are shaded light gray: mandatory commands are
shaded dark gray.

At this point I would also like to skip the 12-byte versions of the READ and WRITE
commands. Here the parameters and control bits are identical to the 6- and 10-byte
versions.

UPDATE BLOCK (3Dh)

This command is used to substitute a logical block with an updated one (Table
13.15). The new logical block lies in an alternative area outside the normal user data.
Therefore, the command does not change the number of free blocks on the medium
as reported by READ CAPACITY. When the alternative blocks are used up, the
command aborts with a CHECK CONDITION status and the sense code NO DEFECT SPARE
LOCATION AVAILABLE.

The new datais written to a newlocation on the medium, leaving the old dataintact.
In fact, the older version can still be accessed using READ UPDATED BLOCK. READ will,
of course, always read the current version of the logical block. This command always
operates on one logical block at a time, thus there is no transfer length.

Table 13.15 The UPDATE BLOCK command.

e e S e) e
0 UPDATE BLOCK (3Dh)
1 (LUN) ‘ Reserved ‘ Rel
2 (MSB)
3 Logical
4 block number
5 (LSB)
6
7 Reserved
8
9 Control byte

Commands for optical storage and WORM drives 179

Table 13.16 The READ GENERATION command.

7 e s 1« 5 T 2 7 0] o
0 READ GENERATION (2%h)
1 LUN % Reserved [Rel
2 (M5B}
3 Logical
4 block number
5 (LSB)
6 Reserved
7
8 Transfer length (04h)
9 Control byte
Table 13.17 READ GENERATION parameter block.
7 e | s | 4 | 3]2 | 0] o
0 (MSB) Most recent
1 generation (LSB)
2 Reserved
3

READ GENERATION (29h)

The READ GENERATION command returns the current generation number of a logical
block (Table 13.16). The reply is contained in the first two bytes of a 4-byte long
parameter block (Table 13.17).

READ UPDATED BLOCK(10) (2Dh)

This command is very much like a normal READ command. Even the control bits in
byte 1 have the same meaning. However, there is no transfer length because the
command reads exactly one block (Table 13.18).

Bytes 6 and 7 hold the generation of the block to be read. When the Latest bit is
set then the most recent generation is numbered zero and the numbers incremented
for older generations. Otherwise it is the oldest version that is numbered zero and the
numbers incremented for newer generations. If the requested generation does not
exist the command will return a CHECK CONDITION status.

MEDIUM SCAN (38h)

This command searches for a continuous region of written or unwritten medium
after the start address. The command uses a parameter block containing the length
of the region and the length of area to be searched (Table 13.19).

180 Block-oriented devices

Table 13.18 The READ UPDATED BLOCK command.

I

7 e | s 1 e s 0
0 READ UPDATED BLOCK(10) (2Dh)
! (LUN) | oro | FUA | | Rel
2 (MSB)
3 Block address (LBN)
4
5 (LSB)
6 Latest (MSB) Generation
7 (LSB)
8 Reserved
9 Control byte

A number of parameter bits are used (Table 13.20). When the WBS (written
block search) bit is set then the target will search for a written region; when clear, an
unwritten region. The PRA (partial results acceptable) bit indicates that the largest
of those regions found should be returned in lieu of a qualifying region. The ASA
bit specifies that the written or unwritten region should be continuous. The RSD bit

Table 13.19 The MEDIUM SCAN command.

7 e | s | 4 | 3| 0
0 MEDIUM SCAN (38h)
I (LUN) | wBs | asa | RsD | PRA | Rel
2 (MSB)
3 Start
4 address
5 (LSB)
6 Reserved
7
8 Parameter list length (08h)
9 Control byte
Table 13.20 MEDIUM SCAN parameter block.
7 e | s | 4 | 3] 0
0.. (MSB) Number of
.3 blocks requested (LSB)
4. (MSB) Number of
w7 blocks to scan (LSB)

13.6

Mode parameters for optical storage and WORM drives 181

Table 13.21 The ERASE command for optical storage.

7 s 5] 4“: 3 | 2 | 1] o

0 ERASE (2Ch)

! (LLN) ' Reeved [ERA | Res | Rl
(MSB)

[ES]

Start

= | W

address (LBN)

‘N

(LSB)

Reserved

(MSB) Number

(LSB)

O [0 | 93| &

Control byte

instructs the target to search from the end of the medium backwards. The result of
the search process is a status. CONDITION MET indicates that a region meeting the
specifications was found. Then REQUEST SENSE will return the sense key EQUAL or NO
SENSE with the LBN of the region in the information bytes. If no qualifying region
is found then GOOD status is returned with the sense key set to NO SENSE.

ERASE(10) (2Ch)

The ERASE command instructs the target to erase a number of logical blocks begin-
ning with a start address (Table 13.21). This command is important for rewritable
optical drives which require erasure before writing. Although erasure is already
implemented within WRITE commands, for performance reasons it is more effective
to erase large regions with a single ERASE command.

When the ERA bit is set the Number field must contain a zero, and all of the
medium after the start address will be erased. Otherwise Number holds the number
of blocks to be erased.

Mode parameters for optical storage and WORM drives

Mode parameter header

The medium type (byte 1) and the device type specific parameter (byte 2) have the
interpretations shown in Table 13.22.

For a MODE SENSE command WP indicates that the medium is write protected. A
set Cache bit indicates that the target has a cache and that cache control is possible
using the DPO and FUA bits of the WRITE command.

The EBC (enable blank check) bit causes sectors to be verified as unwritten
before a write is executed. When the checking is enabled an attempt to write an
already written sector will result in a CHECK CONDITION.

182 Block-oriented devices

Table 13.22 Mode parameter header byte 1 and byte 2.

Code Medium tvpe
00h Default
Olh Read-only medium (R/O)
02h WORM medium (W-0)
03h Rewritable medium (R/W)
04h R/O or W-O
05h R/O or R/W
06h W-O or R/'W
Bir 7 6 [5 4 IR 0
WP Reserved Cache Reserved EBC

Mode parameter pages

The mode parameter pages are defined in Table 13.23.

The optical device page (06h)

The optical device page (Table 13.24) contains precisely one parameter: the RUBR
(report updated block read) bit. When set this bit causes the target to reply with
CHECK CONDITION to a read of a block updated with an UPDATE command. In this way
the host will know that the block being accessed does not represent the most recent

version of the data.

Table 13.23 Mode parameter pages for optical storage.

Page Name Page SCSI-2 SCSI-3
code (SBC)
Olh Read/write error page 8.3.3.6 7.1.3.6
02h Disconnect/reconnect page 145 7.3.3.2 SPC
06h Optical device page 182 15.3.3.1 7.2.3.1
07h Verification error page 8.3.3.8 7.1.3.8
08h Cache page 172 8.3.3.1 7.1.3.1
0%h Peripheral device page 146 7333 SPC
0Ah Control mode page 147 7.3.3.1 SPC
0Bh Medium type page 8.3.34 7.1.34
0Dh Power condition page - 7.1.3.6
1Ch Informal exception page - SPC

Table 13.24 Optical storage page.

765‘4‘352‘

PS Res Page code (06h)

Page length (02h)

5]

Reserved

14 stream-oriented devices

14.1

The SCSI-3 document SSC (SCSI Stream Commands) summarizes the device
models, commands and parameters for stream-oriented devices. It contains the device
types of tape drives (sequential access devices), printer devices and communication
devices.

The model of a SCSI tape drive

SCSI tape drives belong to the sequential access device type of the ANSI standard. I
am not aware of any devices other than tape drives belonging to this class.

The data in a sequential access device is organized on the medium as a linear
sequence of blocks. In order to access the data of a certain block the medium must
be moved from the current position through all intervening positions to the desired
block. It is easy to see that this is precisely the situation described by a tape drive.

At present, there have been almost no changes from SCSI-2 to SCSI-3. The READ
POSITION command has become mandatory and is therefore included in this book.
Furthermore, a new parameter page, the COMPRESSION page, has been added.
Strangely enough, it seems that the current SSC proposal does not contain attached
medium changers for tape drives.

The drive

The SCSI model of a tape drive differentiates between the drive itself and the exchange-
able medium. The drive is either in ready condition or not ready. The drive is in ready
condition when it is able to execute all possible commands. For example, the drive is
not ready when no medium is present or when an online switch is de-activated.

The drive can also find itself in the write protected state. Although the write pro-
tection mechanism is usually implemented on the removable medium, many drives
have a write protection switch as well.

The recording medium

The recording medium for sequential devices consists of a tape of various widths
and lengths coated with magnetic material. This tape may be wound onto single reels

183

184 Stream-oriented devices

or packaged in a cartridge or cassette format. When the medium is loaded in the
device and data access is possible the medium is said to be mounted. During loading
and unloading the medium is demounted. This terminology corresponds to that of
replaceable medium drives.

The usable length of a tape has a beginning and end, which are marked BOM
(beginning of medium) and EOM (end of medium), respectively. These do not nec-
essarily correspond to the physical ends of the tape. The length beyond these marks
is used to secure the tape to the reels.

Many recording formats include an additional EW (early warning) marking. This
mark is placed at a position prior to the EOM mark. It allows the target enough time
to warn the initiator of the end of the tape and write any data that may already be in
its buffer.

Recording formats

The range of recording formats for magnetic tape is almost endless (Figure 14.1).
Fortunately, it is of little consequence for the discussion of SCSI tape drives which
format is used on the medium itself. The format is strictly a matter of concernforthe
drive, not the SCSI controller. When a drive is compatible with a number of differ-
ent formats, the MODE SELECT command is used to choose among them.

Nevertheless, as background information three basic recording formats are men-
tioned here. The first of these is parallel storage format. Here multiple tracks are
recorded simultaneously in the same direction. This is the method traditional reel-to-
reel devices employ, using nine tracks, eight data and parity, on % inch wide tape.
The parallel recording technique leads to a relatively high throughput at moderate
tape speeds. Common specifications are 6250 bits per inch (BPI) at 125 inches per
second (IPS). These values multiplied together yield a data throughput of 780
Kbytes per second. The disadvantage of this method is the necessity of a relatively
complex and therefore expensive read/write head.

Serpentine format

Parallel format

IMmmmmmmmg

Diagonal format

Figure 14.1 Various tape recording formats.

The model of a SCSI tape drive 185

The second technique uses a simple read/write head and only a single track. The
data are written and read serially. When one end of the tape is reached the head is
moved slightly so that the track can be continued in the opposite direction. This is
repeated until the result is a serpentine track running back and forth across the tape.
This method is used mainly in cassette devices following the QIC standard.

The helical scan technique originally came from video cassette recording. Here a
rotating head is used to write short diagonal tracks across the width of a relatively
slow moving tape. This method is used by the EXABYTE drive and is also similar
to the technique used in 4 mm DAT drives.

Many recording formats use preformatted media. These methods make possible
the use of physical blocks in organizing data. The physical block structure, which is
largely hidden from the SCSI interface, can be accessed directly using the LOCATE
command.

Partitions

A tape can be divided into one or more partitions. Partition 0, which always exists,
is called the default partition. Every partition has its own identification for begin-
ning, end, and EW, and they are called BOPx, EOPx and EWXx, where x stands for
the number of the partition. Commands for tape devices always pertain to the active
partition. The active partition can be changed using either the device configuration
page of MODE SELECT or the LOCATE command.

Objects within a partition

Within a partition data blocks and tape marks are used to segment the medium.
These are organized hierarchically, with data blocks at the lowest level followed by
filemarks and at the highest level setmarks.

The EOD (end of data) mark is special in that its implementation is dependent on
the type of recording format. In general, this mark is generated when a certain length
of unwritten tape has gone past the read head.

Data blocks

To an initiator a tape, like a disk drive, looks like a sequence of logical blocks, and
as with a disk drive logical blocks may or may not correspond one-to-one with phys-
ical blocks on the tape. The blocks themselves are either fixed or of variable size up
to 16 Mbytes. This is more than adequate. Extremely long blocks should be avoided
since a block must be read and written as a single unit without interruption.

Tape marks

A tape drive may also employ the use of tape marks among the logical blocks
holding user data. Tape marks make it possible to locate specific places on the tape
without having to read the intervening data. Moreover, tape marks can be identified
on higher tape speeds than are used to read actual data. This further decreases the

186 Stream-oriented devices

14.2

access time. There are two types of tape mark: the filemark and the setmark.
Setmarks represent the higher level division of a partition, filemarks the lower level.

Buffered and unbuffered modes

The role of data buffers with respect to disk I/O was covered earlier in this book.
Such a buffer is realized as onboard RAM and its contents are volatile. The buffer is
used to store data temporarily before it is written to the medium or passed on to the
initiator, as the case may be.

SCSI tape devices support both buffered and unbuffered modes of operation. The
modes relate to the way in which write operations are performed; that is, all com-
mands that write either data blocks or tape marks. In addition, some commands
include an Immed (immediate) control bit which overrides the mode for a given
command.

Tape devices without a data buffer always operate in the unbuffered mode. In this
mode any write operation will conclude with a status phase only after a write to the
medium has occurred. However, when Immed is set, commands that do not write to
the medium (like, for instance, REWIND) are allowed to return GOOD status immedi-
ately after the command is received.

Tape devices with a data buffer can be configured to operate in either mode. This
configuration is accomplished using the appropriate parameter page of the MODE
SELECT command.

The data buffer of a SCSI tape device may hold tape marks as well as data. In the
buffered mode a tape device is allowed to return GOOD status as soon as write data
has been received into the buffer. Commands with the Immed bit set are allowed to
respond in the same manner. When Immed is clear this forces a command to be exe-
cuted in the unbuffered mode.

Commands for tape devices

Tape device commands (Table 14.1) differ greatly from those of disk drives in many
respects but this is especially so with regard to READ and WRITE commands and their
derivatives. These commands do not make use of logical block numbers but only a
transfer length. A command begins its reading or writing at the current position of
the tape.

REWIND (01h)

The REWIND command causes the target to position the medium to the beginning of
the active partition (Table 14.2). However, before doing so the target must write to
the medium all data, filemarks, and setmarks that may reside in the buffer.

The only parameter is the Immed bit in byte 1. When set the target will return
status after any buffered data has been written to the medium but before command
execution has begun. When clear status will be returned only after the medium has
been fully rewound.

Table 14.1 SCSI tape drive commands.

Commands for tape devices 187

Op- Name Type Page SCSI-2 SCSI-3 Description
code (SCC)
0Oh TEST UNIT READY 131 7.2.16 SPC Reflects whether or not the LUN is ready to
accept a command
Olh REWIND 186 9.2.11 5.2.10 Rewinds tape
03h REQUEST SENSE 132 7.2.14 SPC Returns detailed error information
04h FORMAT MEDIUM 189 9.2.11 52.2 Prepare medium for use
05h READ BLOCK LIMITS 192 925 526 Returns possible block lengths
08h READ 188 9.24 525 Read
0Ah WRITE 189 9.2.14 52.13 Write
OFh READ REVERSE 188 9.2.7 5.2.8 Read backwards
10h WRITE FILEMARKS 191 92,15 5.2.14 Write filemarks
11h SPACE 190 9212 52.01 Advance tape
12h INQUIRY 128 7.25 52.12 Returns LUN specific information
13h VERIFY 9.2.13 SPC Verify data
l4h RECOVER BUFFERED O 928 529 Recoverdata from buffer
DATA
15h MODE SELECT(6) 140 7.28 SPC Set device parameters
16h RESERVE UNIT 136 9.2.10 SPC Make LUN accessible only to certain
. initiators
17h RELEASE UNIT 136 929 SPC Make LUN accessible to other initiators
18h copy 723 SPC Autonomous copy from/to another device
19h ERASE 191 9.2.1 521 Erase tape
I Ah MODE SENSE(6) ‘M 140 7.2.10 SPC Read device parameters
1Bh LOAD/UNLOAD O 195 922 523 Load/unload medium
ICh RECEIVE DIAGNOSTIC O 7.2.13 SPC Read self-test results
RESULTS -
IDh senp piacnostic M 138 721 SPC Initiate sell-test
IEh PREVENT/ALLOW (6] 8.2.4 SBC Lock/unlock door
MEDIUM REMOVAL
2Bh LOCATE O 193 923 524 Seek LBN
34h READ POSITION 193 926 M 5.27P Read current tape position
3%h comPARE 6} 722 SPC Compare data
3Ah COPY AND VERIFY O 724 SPC Autonomous copy from/to another device,
verify success
3Bh WRITE BUFFER (6] 7.2.17 SPC Write the data buffer
3Ch READ BUFFER (6] 7.2.12 SPC Read the data buffer
40h CHANGE DEFINITION O 139 7.2 SPC Set SCSI version
4Ch LOG SELECT (6] 7.2. SPC Read statistics
4Dh LOG SENSE O so8 SPC Read statistics
55h MODE SELECT(10) O 140 7.2. SPC Set device parameters
5Ah MODE SENSE(10) O 140 7.2.10 SPC Read device parameters

Note: Commands added to this command set in SCSI-3 are shaded light gray: mandatory commands are
shaded dark gray. (M) means that the command is classified differently in SCSI-2 and SCSI-3. The
corresponding classification is indicated after the reference to the standard.

SCSI-1 compatible devices do not necessarily write buffered data to the medium
before the execution of this command. In order to make SCSI-2 and SCSI-1 devices
compatible one can make use of the WRITE FILEMARKS command with the Immed bit
set before issuing a REWIND command.

188 Stream-oriented devices

Table 14.2 The REWIND command.

7 | 6 | s | 4 | 3 | 2 | 1 | o
0 REWIND (01h)
| (LUN) ‘ Reserved ‘ Immed
2
3 Reserved
4
5 Control byte [

READ (08h) and ReAD REVERSE (OFh)

The READ command is structured differently to the disk drive version (Table 14.3).
There is no field for the logical block number since the tape READ command always
begins with the next logical block. The next block is the first block reached as the
tape moves toward the EOP mark. Lacking the LBN field, the 6-byte version has
ample room for the transfer length, making a 10- or 12-byte version of this command
unnecessary.

In addition to the LUN number byte 1 contains two further parameters. The Fixed
bit indicates whether fixed or variable length blocks are expected. This also defines
how the transfer length is to be interpreted.

The SILI (suppress incorrect length indicator) bit specifies how the target should
react when a logical block is read with an unexpected length. When the SILI bit is
clear the target will abort any command leading to length error with a CHECK CONDI-
TION status. Otherwise, such length errors will be more or less tolerated.

Bytes 2 to 4 contain the transfer length. When the Fixed bit is set then the transfer
length reflects the number of blocks of fixed length to be read. The fixed block length
can be read using MODE SELECT. If Fixed is clear then a block of variable length will
be read and the transfer length indicates how much space the initiator has reserved for
the data. The 24-bit transfer length is sufficient for block lengths up to 16 Mbytes,
which should be adequate for years to come. When the transfer length is zero the tape
will not be moved, nor will data be transferred.

The read reverse command functions in exactly the same way, except that the
reading process is carried out in the reverse direction. Thus, the logical blocks and the

Table 14.3 The READ command for tape drives.

7 ‘ 6 ‘ 5 ‘ 4 ‘ 3 ‘ 2 ‘ 0
0 READ (08h) or READ REVERSE (OFh)
1 (LUN) \ Reserved [SILI | Fixed
(MSB)

Transfer length

(LSB)

V| & W

Control byte

Commands for tape devices 189

bytes within the logical blocks are transferred to the initiator in reverse order. Not all
tape technologies support reverse reading which originates from ' inch reel devices.
This command is optional.

If a tape mark is found during the reading of a block a CHECK CONDITION status
will be returned. The precise behavior in such a case can be modified using the mode
parameters.

WRITE (0Ah)

The WRITE command is analogous to the READ command and functions analogously
as well (Table 14.4). Byte 1 contains the LUN number and Fixed bit with the same
interpretation they have with the READ command.

The WRITE command is executed in either the buffered or unbuffered mode
depending on how the MODE SELECT parameters have been set. In the buffered mode
the status phase takes place as soon as the target receives all data into its data buffer.
The advantage here is that the /O process completes more quickly. On the other
hand a nonrecoverable write error may occur after GOOD status has been returned.
SCSI accommodates such a deferred error using the mechanism already described
on page 133. The data not yet written to the medium can be recovered using the
optional command RECOVER BUFFER DATA. In the unbuffered mode the data must be
written to the medium before the status phase takes place. The latter approach is pre-
ferred by many system administrators because it avoids such problems.

If an EW mark is found during a WRITE command the device will attempt to finish
writing the data and will, in any case, return a CHECK CONDITION status to the initia-
tor. It can be determined whether the data was accommodated in the partition by
examining the sense key.

FORMAT MEDIUM (04h)

The FORMAT MEDIUM command (Table 14.5) prepares the magnetic tape for use, as
the SCC document states, albeit not too clearly. There are some recording formats
that use formatted or preformatted media which can be reformatted with this
command. Many common media do not need any formatting, such as /: inch tapes,
4 mm tapes and 8 mm Exabyte. The command is new in SCSI-3 and it is optional.

Table 14.4 The WRITE command for tape drives.
7 s [s] o« | s] 2] 1] o
0 WRITE (0Ah)

) (LUN) ‘ Reserved ‘ Fixed

(9]

(MSB)

Transfer length

(LSB)

| W

Control byte

190 Stream-oriented devices

Table 14.5 The FORMAT MEDIUM command.

7 e [s [«] 5 1 21 1 T o
0 FORMAT MEDIUM (04h)
1 Reserved IJ Verify [Immed
2 Reserved ‘ Format
3 (MSB) Transfer length
4 (LSB)
5 Control byte

The Format field can assume the following values: Oh denotes the default format,
1h to 7h are reserved, and 8h to Fh denote vendor-specific values. When the transfer
length is greater than 0, the command can be passed a parameter list whose meaning
is vendor specific.

SPACE (11h)

The SPACE command is used to advance or rewind the tape a certain number of data
blocks or tape marks (Table 14.6). The rewind capability is optional.

The parameter Count in bytes 2 through 4 indicates the number of objects to be
advanced. Negative numbers (in two’s complement) indicate rewinding.

In addition to the LUN number byte 1 contains the Code field which specifies
what is to be counted. The possible codes are given in Table 14.7. Two of these,
filemarks and setmarks, are worth explaining. When sequential filemarks are to be
counted then the tape is advanced until Count consecutive filemarks are found. This
means that for Count n, the tape will be positioned after the nth filemark when the
command completes. Sequential setmarks are handled in the same way.

The hierarchy of objects plays an important role in error and event handling for
the sPACE command. The details can be found in the ANSI specification in Section
9.2.12. However, a generalization can be made: if a higher level object is encoun-
tered during spacing than is being counted, then the command will be broken off at
that point with a CHECK CONDITION status. For example, if filemarks are being
counted a setmark will lead to command termination.

Table 14.6 The spacE command.

76 | s | e | s | 2 | 1 | o
0 SPACE (11h)
1 (LUN) ‘ Reserved ‘ Code
2 (MSB)
3 Count
4 (LSB)
5 Control byte

Table 14.7 Meaning of the Code field.

Code Description M/O
000b Blocks M
001b Filemarks M
010b Sequential filemarks (6]
011b End-of-data (6]
100b Setmarks (¢}
10lb Sequential setmarks (¢}

Commands for tape devices

In addition, reaching either the beginning or the end of a partition during a space
command will cause the command to be terminated with CHECK CONDITION status.

WRITE FILEMARKS (10h)

This command writes to the current position the number of tape marks given in the
transfer length field (Table 14.8). When the WSmk bit is 1 then setmarks are written;
when O filemarks are written. The Immed bit specifies that the target should reply with
GOOD status as soon as the command is recognized. Otherwise all buffered data and tape
marks must be written before the execution of the command begins. WRITE FILEMARKS
with transfer length zero can be used to cause the data buffer to be written to tape.

If an EW mark is encountered during or before the write filemarks command the
target will attempt to finish writing the requested number of tape marks. In either
case it concludes the command with CHECK CONDITION status. The sense data reveal
whether or not the tape marks were successfully written.

ERASE (19h)

This command erases the medium starting at the current position (Table 14.9). Just
how this is carried out is device dependent. However, afterwards a data pattern
should be in place where previously data blocks and tape marks were found.

When the Long bit is set, the remainder of the tape starting at the current position
will be erased. Otherwise a gap will be erased on the tape whose length is specified
in the device configuration parameter page as gap length. The Immed bit has its stan-
dard interpretation.

Table 14.8 The WRITE FILEMARKS command.

7 o [s [+] 3 2] o
0 WRITE FILEMARKS (10h)
1 (LUN) | Reserved [WSmk | tmmed
> | (MsB)

Transfer length

(LSB)

| &~ W

Control byte

192 Stream-oriented devices

Table 14.9 The ERASE command.

7 | s | s | 4 | 3 | 2 1 | o
0 ERASE (19h)
1 (LUN) ‘ Reserved l[mmed ‘ Long
2
3 Reserved
4
5 Control byte

READ BLOCK LIMITS (05h)

This command (Table 14.10) returns the maximum and minimum block size of the

device. There are no parameters.

The block size information is returned in a parameter block where bytes 1
through 3 contain the maximum block length, and bytes 4 through 5 the minimum

block length (Table 14.11).
A maximum block length of zero indicates that there is

no block length limit.
When the maximum and minimum lengths are equal the device supports only a fixed
block length. In this case the READ and WRITE commands must always have the Fixed

bit set and the block length must reflect the value returned by this command.

Table 14.10 The READ BLOCK LIMITS command.

7| e | s | 4 | 3 | 2 | 1 | o
0 READ BLOCK LIMITS (05h)
1 (LUN) ‘ Reserved
2
3 Reserved
4
5 Control byte
Table 14.11 Block limits parameter block.
7 6 | s | ¢« | 3 | 2 | 1 | o
0 Reserved
1 (MSB)
2 Maximum block length
3 (LSB)
4 (MSB) Minimum
5 block length (LSB)

Commands for tape devices 193

Table 14.12 The LOCATE command.

7 | s | s | o« |3 |2 | 1 | o
0 LOCATE (2Bh)
I (LUN) l Reserved L BT l CP llmmed
2 Reserved
3 (MSB)
4 Block
5 number
6 (LSB)
7 Reserved
8 Partition
9 Control byte

LOCATE (2Bh)

The LOCATE command is optional but is, nonetheless, a very useful command (Table
14.12). On the one hand, it makes it possible to search the tape for a specific logical
or physical block. Additionally, the command can be used to change the active
partition.

Since in general tape can hold an enormous number of blocks LOCATE is a 10-byte
command. The block number is contained in bytes 3 through 6, allowing 4 giga-
blocks to be addressed. When the BT bit is set the block address is interpreted as a
device specific physical address, otherwise as SCSI LBN.

Byte 8 contains the number of the Partition to become active before positioning to the
block number. This byte is ignored when the CP bit in byte 1 is not set.

READ POSITION (34h)

The READ POSITION command (Table 14.13) determines the current position of the
medium and possible blocks in the buffer. No access to the medium is made. This
command was optional in SCSI-2 and has become mandatory in SCSI-3.

Table 14.13 The READ POSITION command.

7 | e | s | 4 | 3 ‘ 2 ‘ ! ‘ 0
0 READ POSITION (34h)
1 (LUN) | Reseved | TCLP | LONG | BT
2.
Reserved
.8
9 Control byte

194 Stream-oriented devices

Table 14.14 READ POSITION short data format.

7 6 5 4 3 2 I 0
0 BOP E@P BCU BYCU |Reserved | BPU PERR |Reserved
1 Partition number
2-3 Reserved
4. (MSB) Position of first block
1 (LSB)
8. (MSB) Position of last block
L1l (LSB)
12 Reserved
13 ... (MSB) Number of blocks in bufter
.15 (LSB)
16 ... (MSB) Number of bytes in bufter
.19 (LSB)

In SCSI-2 and SCSI-3 the short data format (Table 14.14) applies whenthe TCLP
bit is not set. This format contains information about the data present in the buffer.
Positions are indicated in SCSI blocks when the BT bit is not set; otherwise they are
manufacturer specific. When the TCLP bit is not set, the LONG bit must not be set
either.

The BOP and EOP bits indicate that the tape has reached a BOP or EOP mark.

The BPU (block position unknown) bit indicates that the position of the first or
last block is unknown. If it is not set, the corresponding fields contain valid values.

New in SCSI-3 are the following bits. The BCU (block count unknown) bit indi-
cates that the value of number of blocks in the buffer is invalid. BYCU (byte count

Table 14.15 READ POSITION long data format (SCSI-3 only).

7 6 5 4 3 2 1| o

0 BOP EOP Reserved MPU BPU Reserved
.. Reserved

.3

4. (MSB) Partition number

7 (LSB)
8. (MSB) Block number
.15 (LSB)
16 ... (MSB) File mark number
.23 (LSB)
24 .. (MSB) Record mark number
.. 32 (LSB)

14.3

Mode parameters for tape devices 195

unknown) is the corresponding bit for the number of bytes in the buffer. The PERR
(position error) bit indicates that owing to a counter overflow one or all values may
be invalid.

When the TCLP (total current logical position) bit is set, the LONG bit must be
set too. Then the long data format (Table 14.15) applies, and the numbers of the
current partition, the block, the filemark and the setmark are returned as well. This
variation only exists since SCSI-3.

The BOP, EOP and BPU bits have the same meaning as in the short data format.
The MPU (mark position unknown) bit means that the values for filemark and
setmark numbers are invalid.

LOAD/UNLOAD (1Bh)

This command loads or unloads the medium (Table 14.16). In addition, the tape can
be re-tensioned by spooling the entire tape from one reel to the other.

The command has no parameters but a few control bits in bytes 1 and 4. The
Immed bit works as usual, allowing the target to return a status GOOD immediately
rather than after the command has been completed. When the Load bit is set the tape
is to be loaded and positioned to the BOT mark.

If the Load bit is clear the tape will be unloaded. All buffered data and tape marks
are written to the medium prior to unloading. If the EOT bit is set the tape will be posi-
tioned to the EOT mark, otherwise the BOT mark will be sought. In either case the
medium is dismounted and any subsequent command calling for medium access will
cause a CHECK CONDITION status with the sense key NOT READY.

Finally, the ReTen control bit causes the tape to be re-tensioned before the action
described by the Load bit is performed.

Table 14.16 The LOAD/UNLOAD command.

7 e | s | 4 3]2 |1] o
0 LOAD/UNLOAD [1Bh)
1 (LUN) ‘ Reserved ‘ Immed
5
3 Reserved
4 | EOT | ReTen | Load
5 Control byte

Mode parameters for tape devices

Mode parameter header

The device type specific byte of the mode parameter header (Table 14.17) returned
by the MODE SENSE command contains the following information:

196 Stream-oriented devices

Table 14.17 Device-specific parameter byte in header.
Bit 7 s | s | ¢ R
¢ WP Buffer mode Speed

® The WP bit indicates that the medium is write protected.

® Buffer mode is defined for three values. These pertain to commands that write
either data or tape marks to the medium, which together are referred to as write
operations.

® (00D is the unbuffered mode. For all write operations the target must wait until
the medium has actually been written before returning status.

® (01b: The target may return GOOD status as soon as all data has been received into
the data buffer.

® (10b: The target may return GOOD status as soon as all data has been received into
the data buffer and all buffered data from other initiators has been written to the
medium.

® In the Speed field a O represents the device’s default tape speed. The values 1h
through Fh reflect speeds from slowest to fastest.

Block descriptor

Byte O of the block descriptor contains a device type specific code for the write
density. The most important of these are given in Table 14.18.

Mode parameter pages

The mode parameter pages in Table 14.19 are defined for tape devices.
The data compression page (OFh)

The data compression page (Table 14.20) is new in SCSI-3. It contains information
on the data compression used.

Table 14.18 Write density for tape drives.

Code Width Tracks BPI Format Type
0lh /2 inch 9 800 NRZI Reel-to-reel
02h Y2 inch 9 1600 PE Reel-to-reel
03h 4 inch 9 6250 GCR Reel-to-reel
OFh /4 inch 15 10000 GCR QIC-120 cassette
10h /4 inch 18 10000 GCR QIC-150 cassette
11h s inch 26 16 000 GCR QIC-320 cassette
13h 4 mm 1 61000 DDS 4 mm DAT
14h 8 mm 1 54 000 EXABYTE

00h Default density

Mode parameters for tape devices 197

Table 14.19 Mode parameter pages for tape devices.

Page Name Page SCSI1-2 SCSI-3
code (SSC)
Olh Read/write error page 9334 5335
02h Disconnect/reconnect page 145 73.32 SPC
0%h Peripheral device page 146 7333 SPC
0Ah Control mode page 147 7.3.3.1 SPC
OFh Data compression page 196 - 3l
10h Device conliguration page 198 931301 SI383L2,
I1h Partitions page | 198 9.333 5333
12h Partitions page 2 198 9.333 5.3.34
13h Partitions page 3 198 9333 5334
14h Partitions page 4 198 9333 5334
ICh Informal exception page - SPC

The DCE (data compression enabled) bit activates data compression. The DDE
(data decompression enabled) bit activates data decompression. The DCC (data
compression capable) bit indicates that the device supports data compression.

The RED field specifies how the device behaves when it passes borders between
data of different compression. When data appears that has been compressed with an
unsupported compression algorithm, the drive must report a CHECK CONDITION status
with a MEDIUM ERROR sense code. When a change occurs between two supported
algorithms, a simple warning may be sufficient.

The fields for the compression and decompression algorithms contain a code. Up
to now, only 10h for IBM IDRC compression and 20h for DCLZ compression have
been established.

Table 14.20 Data compression page (SCSI-3 only).
7 6 s |« | s | 2 | 1] o

0 PS Res Data compression page (OFh)

1 Page length (OEh)

2 DCE | bpcc | Reserved
3 DDE RED |
4. | (MsB)

Data compression algorithm

1 (LSB)
8. (MSB)

Data decompression algorithm

.11 (LSB)

Reserved

198 Stream-oriented devices

Table 14.21 Device configuration page for tape devices.

7 6 | s ¢ | 3 2 | 1 | o
0 PS Reserved Page code (10h)
1 Page length (OEh)
2 Reserved | CAP ‘ CAR | Active format
3 Active partition
4 Write buffer empty ratio
5 Read buffer empty ratio
6 (MSB) Write
7 delay (LSB)
8 | DBR | BIs | Rsmk | Avc | SOFC | RBO | REW
9 Gap size
10 EOD | EEG ‘ SEW | Reserved
11 (MSB)
12 Buffer size at EW
13 (LSB)
14 Data compression
15 Reserved

The device configuration page (10h)

The device configuration page contains various configuration information for the
tape drive (Table 14.21). Only the more important details will be covered here. Refer
to Section 9.3.3 of the ANSI specification for further information.

Byte 3 contains the active partition. This can be modified using MODE SELECT
when the CAP (change active partition) bit of byte 2 is set.

Partition pages 1 through 4 (11h, 12h, 13h, 14h)

Partition page 1 has an 8-byte header followed by up to 64 partition size descriptors
of 2 bytes each. If more partitions are needed pages 2 through 4 can be used, each
of which accommodates 64 partitions. This allows SCSI-2 devices to support up to
256 partitions. Partition page 1 is shown in Table 14.22. Each descriptor contains the
length of its partition. The unit of measure for length is defined by the PSUM field.
Here the value 00h means bytes, 01h Kbytes, and 02h Mbytes.

In SCSI-3 the value 03h is defined. It indicates that the partition size unit field
specifies the exponent 10 to the power of n of the partition size.

Unlike page 1, partition pages 2 through 4 consist of only descriptors (Table
14.23).

The model of a SCSI printer 199

Table 14.22 Partition page 1 for tape devices.

7 6 s |+ [+ [2] 1] o
0 PS Reserved Page code (11h)
1 Page length
2 Maximum number ol partitions
3 Number of partitions (n+ 1)
4 Fop | sop | P | PsuM Reserved | CLEAR | ADDP
5 Format recognition
6 Reserved 1 Partition size unit
7 Reserved
8.n Partition descriptors
n+l (MSB) Partition
n+2 size (LSB)

Table 14.23 Partition page 2 for tape devices.
7 6 s |« 3 2 |1] o
0 PS Reserved Page code (12h — 14h)

1 Page length

2.n Partition descriptors
n+l (MSB) Partition
n+2 size (LSB)

14.4 The model of a SCSI printer

The degree to which the various device types are defined in SCSI-2 varies greatly.
Up until this point we have seen very detailed specifications for disk and tape drive
devices. This is not the case for printers, as will become apparent in the description
of the device model.

According to the current draft proposals, SCSI-3 too will not change anything
fundamental. However, the draft document is far from being finished, and there
might be some changes in the final standard.

The model of a SCSI printer represents to some extent an exception among SCSI
device models (Figure 14.2). Here the design is of a bridge controller connected to a
printer mechanism. Of course, there is nothing preventing the integration of the con-
troller into the printer itself. We will see that one advantage of this approach is that the
MODE SELECT comimand can be used to manipulate the physical printer interface.

The command set basically treats the printer as a black box that accepts data. No
page description language is defined here, rather the data format is left up to the
initiator. Nevertheless, this ‘black box’ does allow internal configuration to some

200 Stream-oriented devices

SCsl

|

SC3 1D A5-232)
' Printer O
LUK 0
(R,
Printer Centranics
contraller Printer 1
LUM ¥
Data Products| i
LUN 2 Printer 2 .

Device specific
interfaces

Figure 14.2 Model of a SCSI printer.

degree using SCSI commands. For instance, there is the optional control of printer
fonts and forms. The printer itself may be equipped with a data buffer, making a
buffered mode possible.

The standard does not specify what the printer must do when it receives a particu-
lar character. While a typical dot-matrix printer will simply print any printable
character, a PostScript compatible printer will use the page description language
PostScript to interpret the character. To make things even more complicated there are
also a number of printer manufacturers that have developed unique printer control lan-
guages. Some of these have become de facto standards, which are often emulated by
other printers. For example, many printers provide HP Laserjet emulation as well as
Epson or Diablo emulations. Unfortunately, none of these emulations is defined in the
SCSI-2 standard. If this were the case one could simply buy a SCSI printer and plug it
in (Figure 14.3). As a result the software must be informed of the printer’s emulation
in order to function properly.

In summary, one can say that the SCSI-2 command set for printers is limited to
data transfer and the control of certain parameters. With reference to the interface
model this leaves the top level not completely defined.

PostScript
Command set SCSI PostScript
Device model SCSI Page printer
Protocol SCsSI Centronics
5?3;?2; SCslI Centronics

Figure 14.3 SCSI printer interface.

Printer commands 201

14.5 Printer commands

Table 14.24 lists all of the commands defined for SCSI printers. Printers have a rel-
atively large number of commands that are completely vendor unique. These
opcodes are 01h, 02h, 05h, 06h, 07h, 08h, 09h, OCh, ODh, OEh, OFh, 11h, 13h, 19h
and COh to FFh. All other opcodes are reserved.

PRINT (0Ah)

The PRINT command sends the number of bytes contained in Transfer length to the
printer (Table 14.25). Depending on buffer mode the status phase will occur either
immediately after the data transfer or after the printing has actually taken place.

Table 14.24 SCSI commands for printers.

Op- Name Type Page SCSI-2 SCSI-3 Description

code (SCC)

00h TEST UNIT READY M 131 7216 SPC Reflects whether or not the LUN is ready to
accept a command

03h REQUEST SENSE M 132 7.2.14 SPC Returns detailed error information

04h FORMAT (M) 203 10.2.1M 6.2.10 Font or form control

OAh PRINT M 201 1022 622 Print data

OBh SLEW AND PRINT (M) 202 10.24M 6.2.40 Advance and print

10h SYNCHRONIZE (M) 203 10.2.6M 6.2.60 Print contents of buffer

BUFFER

12h INQUIRY M 128 725 SPC Returns LUN specific information
14h RECOVER BUFFERED O 10.2.3 6.23 Retrieve data from the data buffer
DATA

15h MODE SELECT(6) M 140 7.2.8 SPC Set device parameters

16h RESERVE UNIT M 136 9.2.10 SPC Make LUN accessible only to certain
initiators

17h RELEASE UNIT M 136 929 SPC Make LUN accessible to other initiators

18h copy 0 723 SPC Autonomous copy from/to another device

1 Ah MODE SENSE(6) M 140 7.2.10 SPC Read device parameters

IBh STOP PRINT O 202 1025 6.25 Interrupt printing

ICh RECEIVE DIAGNOSTIC O 7.2.13 SPC Read self-test results

RESULTS

IDh SEND DIAGNOSTIC M 138 7.2.1 SPC Initiate self-test

39h COMPARE O 7.2 SPC Compare data

3Ah COPY AND VERIFY (6] 7.2.4 SPC Autonomous copy from/to another device,
verify success

3Bh WRITE BUFFER O 7.2.17 SPC Write the data buffer

3Ch READ BUFFER (6] 7.2.12 SPC Read the data buffer

40h CHANGE DEFINITION O 139 7.2.1 SPC Set SCSI version

4Ch LOG SELECT O 726 SPC Read statistics

4Dh LOG SENSE (0) 727 SPC Read statistics

55h MODE SELECT(10) O 140 729 SPC Set device parameters

5Ah MODE SENSE(10) O 140 7.2.10 SPC Read device parameters

Note: Mandatory commands are shaded dark gray. (M) means that the command is classified differently
in SCSI-2 and SCSI-3. The corresponding classification is indicated after the reference to the standard.

202 Stream-oriented devices

Table 14.25 The PRINT command.

7 e | s {4 |5 iz |1] o
0 PRINT (0Ah)
I (LUN) | Reserved
2 (MSB)
3 Transfer length
4 (LSB)
5 Control byte

Table 14.26 The SLEW AND PRINT command.

7 s | s]« | s | 2 [1] o
0 SLEW AND PRINT (0Bh)
1 (LUN) ‘ Reserved ‘ Channel
2 Slew value
3 (MSB) Transfer length
4 (LSB)
5 Control byte

SLEW AND PRINT (OBh)

This command works just like the PRINT command except that it allows a certain
number of lines to be skipped before printing, as well as a choice of forms channel
(Table 14.26). When the Channel bit is set the number of the forms channel is given
in Slew value. Otherwise, this byte is interpreted as the number of lines to be skipped

before printing.

sTOP PRINT (1Bh)

This command halts printing (Table 14.27). If the Retain bit is clear then the data
remaining in the buffer is discarded. Otherwise, it is held and a subsequent PRINT
command or a SYNCHRONIZE BUFFER will allow printing to continue.

Table 14.27 The STOP PRINT command.

7‘6‘5‘4‘3‘2

0 STOP PRINT (1Bh)

1 (LUN) ‘ Reserved

J Retain

o

Manufacturer specific

Reserved

W &~ W

Control byte

14.6

Mode parameters for printers

Table 14.28 The FORMAT command.

203

7 e | s] 4] s]2] 1] o
0 FORMAT (04h)
1 (LUN) L Reserved ‘ Type
2 (MSB) o
3 Transfer length
4 (LSB)
5 Control byte
Table 14.29 The SYNCHRONIZE BUFFER command.

7 e s b w | s |2 |1 o
0 SYNCHRONIZE BUFFER (10h)
1 (LUN)
; S

Reserved

wn | &~ | W

Control byte

FORMAT (04h)

This command makes it possible to send form or font data to the printer (Table 14.28).
The value 00b in the Type field chooses form control, the value 01b font control.

SYNCHRONIZE BUFFER (10h)

This command causes the printer to print the contents of the data buffer (Table
14.29). This is used to make sure that all data has been printed. Page printers some-
times need a form feed in this case. This command waits until after printing to return
status. If for any reason printing cannot take place a CHECK CONDITION is returned.

Mode parameters for printers

Mode parameter header

The device type specific byte in the mode parameter header has the following form

(Table 14.30):

o Buffer mode is defined for two values and is relevant for PRINT and SLEW AND

PRINT commands. All other values are reserved.

Table 14.30 Device-specific parameter byte in MODE header.

Bir76‘5‘4 3‘2]

1}0

0 Reserved Buffer mode Reserved

204 Stream-oriented devices

Table 14.31 Mode parameter pages for printers.

Page Name Page SCSI-2 SCSI-3
code (SSC)
02h Disconnect/reconnect page 145 7.3.3.2 SPC
03h Parallel interface page 204 10.3.3.1 6.3.3.1
04h Serial interface page 205 10.3.3.3 6.3.3.3
05h Printer options page 10.3.3.2 6.3.3.2
0%h Peripheral device page 146 7.3.33 SPC
0Ah Control mode page 147 7.3.3.1 SPC

@ (000b is for unbuffered mode. The printer controller will not return status until the
data has actually been printed.

® (01b is the buffered mode. Here the controller is allowed to return GOOD status as
soon as all data has been received into the buffer.

Mode parameter pages

Table 14.31 shows the mode parameter pages defined for printers.

Parallel interface page (03h)

This parameter page controls the characteristics of a parallel printer interface (Table
14.32). The parameter Parity assumes the values 00b for no parity, O1b for even
parity and 10b for odd parity. The meaning of byte 2 is explained in detail in section
10.3.3.1 of the ANSI standard.

Table 14.32 Parallel interface page.

7 6 s |« | 3] 2 | 1] o
0 PS Reserved Page code (03h)
1 Page length (02h)
2 Parity | PIPC ‘Reserved VCBP ‘ VCBS ‘ VES ‘Aulofeed
3 Reserved

Table 14.33 Serial interface page.
7 | e | s [o« s] 2] 0 | o

0 PS Reserved

Page code (04h)

Page length (06h)

2 Reserved | Stop bit length

3 Parity ‘ Reserved Bits per character
4 RTS | CTS | Reserved Protocol

S (MSB)

6 Baud rate

7

(LSB)

14.7

The model of a SCSI communications device 205

Table 14.34 Parameters of the serial interface.

Code Pariry Code Protocol
000b No parity 0000b No protocol
001b Mark 0001b XON / XOFF
010b Space 0010b ETX/ACK
011b Odd 0011b DTR

100b Even

Serial interface page (04h)

This parameter page controls the characteristics of a serial RS-232C interface. The
fields are more or less self explanatory (Table 14.33). Section 2.1 is a good source
of background information on the serial interface (Table 14.34). The RTS bit speci-
fies that the printer controller should activate the RTS signal of the interface. If the
CTS bit is clear the controller will ignore the RTS signal altogether. Otherwise
output is stopped as long as RTS is inactive.

The model of a SCSI communications device

SCSI communications devices closely resemble processor devices. Here too data is
received and sent across the bus. While processor devices may locally process the
data, communications devices send it further. An important distinction is that com-
munications make possible an additional level of addressing. The channel number
allows the addressing of different logical channels. These might be connected to
various physical communications ports within the device. On the other hand, these
might be used to address different LAN protocols. The channel number is 16 bits
long, making 64 000 logical channels available. As always, a communications
device may have up to eight LUNs, which explodes this number to half a million.
Examples of SCSI communications devices are shown in Figure 14.4.

— Urwge 4
b 1
Channel0
i — — - Davice 1
Communications Channel 1
Host scsl
Cantrclier Channel2 {-~—___ — |
Channel3 | "_ Dcf\u.ce 2i
\(Device 3
0: TCP/_I? . ° H
20
Communications | 1:_IPX I I I
- £2
Host SCsl Controller 2. DECnet Eg }
a: sl i

Figure 14.4 Examples of SCSI communications devices.

206 Stream-oriented devices

14.8

As with processor devices, the SCSI bus is used strictly as a physical interface
since the SCSI-2 standard does not specify the contents of data packets. For this
reason communications devices lack device-specific parameter pages.

At the current editorial state of the SSC document there seem to be hardly any
differences between SCSI-2 and SCSI-3.

Commands for SCSI communications devices

Table 14.35 lists the commands defined for SCSI communications devices. For SCSI
communications devices there are two additional commands defined, each with a 6-,
10-, and 12-byte version. Since the GET MESSAGE and SEND MESSAGE commands are
identical except for the opcode they are discussed here in pairs.

GET MESSAGE(6) (08h) and SeND MESSAGE(6) (0Ah)

These versions of the commands are the only ones that are mandatory. In SCSI-3
only the send message command is mandatory. Neither of the two commands offers
support for logical channels (Table 14.36).

Table 14.35 Commands for SCSI communications devices.

Op- Name Type Page SCSI-2 SCSI-3 Description
code (SCC)
0Oh TEST UNIT READY M 131 7216 SPC Reflects whether or not the LUN is ready to
accept a command
03h REQUEST SENSE M 132 7.2.14 SPC Returns detailed error information
08h GET MESSAGE(6) (M) 206 17.2.1IM 7.2.10 Recceive
OAh SEND MESSAGE(6) M 206 1724 724 Send
12h INQUIRY M 128 725 SPC Returns LUN specific information
I5h MODE SELECT(6) O 140 7.28 SPC Set device parameters
IAh MODE SENSE(6) O 140 7210 SPC Read device parameters
ICh RECEIVE DIAGNOSTIC O 7.2.13 SPC Read sell-test results
RESULTS
IDh SEND DIAGNOSTIC M 138 7.2.1 SPC Initiate self-test
28h GET MESSAGE(I10) O 207 17.22 7.22 Receive
2Ah SEND MESSAGE(10) O 207 1725 17.25 Send
3Bh WRITE BUFFER (0] 7.2.17 SPC Write the data buller
3Ch READ BUFFER (6] 7.2.12 SPC Read the data bulfer
40h CHANGE DEFINITION O 139 7.2.1 SPC Set SCSI version
4Ch LOG SELECT (0] 7.2.6 SPC Select statistics
4Dh LOG SENSE (6] 7.2.7 SPC Read statistics
55h MODE SELECT(10) O 140 729 SPC Set device parameters
SAh MODE SENSE(10) O 140 7.2.10 SPC Read device parameters
A8h GET MESSAGE(I2) O 207 1723 723 Receive
AAh SEND MESSAGE(12) O 207 17.25 7.23 Send

Note: Mandatory commands are shaded dark gray. (M) means that the command is classified differently
in SCSI-2 and SCSI-3. The corresponding classification is indicated alter the rel'erence to the standard.

14.9

Mode parameter pages for communications devices 207

Table 14.36 The GET MESSAGE(6) and SEND MESSAGE(6) commands.

7‘6‘5‘4‘3‘|2‘I‘0

0 GET MESSAGE(6) (08h) or
SEND MESSAGE(6) (0Ah)

1 (LUN) ‘ Reserved

[§5)

(MSB)

Transfer length

(LSB)

wn | &~ | W

Control byte

GET MESSAGE(10) (28h) and SEND MESSAGE(10) (2Ah)

The 10-byte version has no support for logical channels but does have a 16-bit wide
transfer length field. The maximum length of a data packet is limited to
64 Kbytes (Table 14.37).

GET MESSAGE(12) (A8h) and SEND MESSAGE(12) (AAh)

Finally, the 12-byte version supports logical channels and a transfer length field of
32 bits wide (Table 14.38).

Mode parameter pages for communications devices

There are no device type specific mode parameter pages for communications devices.
Table 14.39 shows the parameter pages relevant to this class.

Table 14.37 The GET MESSAGE(10) and SEND MESSAGE(10) commands.

7‘6‘5‘4‘3!2}10
0 GET MESSAGE(10) (28h) or

SEND MESSAGE(10) (2Ah)
1 (LUN) |

[§5)

Reserved

(MSB) Channel
number (LSB)

Reserved

(MSB) Transfer
length (LSB)

O ||| || & | w

Control byte

208 Stream-oriented devices

Table 14.38 The GET MESSAGE(12) and SEND MESSAGE(12) commands.

7 e | s | o« | s |2 |1 | o
0 GET MESSAGE(12) (A8h) or
SEND MESSAGE(12) (AAh)
1 (LUN) |
2 Reserved
3
4 (MSB) Channel
5 number (LSB)
6 (MSB)
7 Transfer
8 length
9 (LSB)
10 Reserved
11 Control byte

Table 14.39 Mode parameter pages for communications devices.

Page Name Page SCSI-2 SCSI-3
code (§5C)
02h Disconnect/reconnect page 145 7.3.3.2 SPC
0%h Peripheral device page 146 7.33.3 SPC
0Ah Control mode page 147 7.3.3.1 SPC

15 Graphics devices

15.1

In SCSI-3, scanners have got their own document. At the moment, they are the only
device type in the SGC (SCSI Graphical Commands) document. Otherwise, nothing
has really changed. As far as we currently know, commands and parameters are the
same in SCSI-2 and SCSI-3.

The model of a SCSi scanner

A scanner is a device capable of converting pictures and text to an electronic repre-
sentation made up of rows of pixels. Pixels can be black and white, color, or gray
scale. The number of bits needed to represent a pixel is dependent on which of these
three possibilities is chosen. As a result there are different data formats for storing
scanned images. These formats are not specified in the SCSI standard; many are
vendor unique. Similar to the printer definition, the SCSI standard is limited to the
exchange of data and the control of the scanner.

A SCSI scanner uses the coordinate system shown in Figure 15.1. The units of
the coordinate system can be specified using the measuring units page of the MODE

y
Scan
window Scan
direction
i
Origin
0 X

Figure 15.1 Coordinate system and scan window.

209

210 Graphics devices

Table 15.1 Window descriptor.

7 e | s | 4 3 | 2) 1 | o
0 Window identifier
1 Reserved ‘ Auto

3 | X-axis resolution

4-5 Y-axis resolution

6-9 X-axis upper left
10-13 Y-axis upper left
14-17 r Window width !
18-21 ! Window length

22 Brightness

23 Threshold

24 Contrast

25 !E Image composition

26 Bits per pixel
27-28 Halftone pattern

29 RIF Reserved Padding type
30-31 Bit ordering

32 Compression type

33 Compression argument
34-39 Reserved
40-n Vendor specific

SELECT command. The available units are inches, millimeters or points (1/72 inch)
or fractions thereof. The unit of measure chosen does not affect the resolution of the
scanner.

A SCSI scanner can be configured such that the scanning surface is broken up
into one or many windows. These windows may differ in size and location as well
as scanning method. Each window is described by a separate window descriptor, an
example of which is shown in Table 15.1.

The window descriptor

In order to save space, parameters that occupy more than one byte are represented in
a single line in the table. As is usually the case for SCSI the length of the parameter
block is contained within the parameter block itself.

Most fields here are self-explanatory. The Auto bit specifies that the scanner may
create subwindows automatically. When reading the window parameter data this bit
reflects whether the window was automatically created. The RIF bit indicates that
the image is a negative. The image composition, halftone pattern and compression
fields are essentially vendor specific.

15.2

SCSI scanner commands 211

SCSI scanner commands

Table 15.2 lists all of the commands defined for SCSI scanners. Out of these, there
are only six commands that are specific for SCSI scanners. Two of these, namely
READ and SEND, are quite similar to the READ(10) and WRITE(10) commands. They
share the same opcode, but are structured in a slightly different way.

SET WINDOW (24h)

The SET WINDOW command creates one or more scanning windows (Table 15.3).
Here the data phase contains a window list made up of a list header and one or more
window descriptors, as in Table 15.1. The header contains only the total length of
the window descriptors (Table 15.4). Individual descriptors must all be the same
length.

Table 15.2 Commands for scanners.

Op- Name Type Page SCSI-2 SCSI-3 Description

code (SGC)

00h TEST UNIT READY 131 7.2.16 SPC Reflects whether or not the LUN is ready to
accept a command

03h REQUEST SENSE 132 7.2.14 SPC Returns detailed error information

12h INQUIRY 128 7.2.5 SPC Returns LUN specific information

15Sh MODE SELECTI(6) 140 7.2.8 SPC Set device parameters

16h RESERVE UNIT 136 2.10 SPC Make LUN accessible only to certain
initiators

17h RELEASE UNIT 136 9. SpC Make LUN accessible to other initiators

18h copy 7.2. SPC Autonomous copy from/to another device

IAh MODE SENSE(6) E 140 7.2.10 SPC Read device specific parameters

IBh scaN O 213 1425 6.15 Scan

1Ch RECEIVE DIAGNOSTIC O 7.2.13 SPC Read sclf-test results

RESULTS

I1Dh SEND DIAGNOSTIC E 138 7.2.1 SPC Initiate self-test

24h SET WINDOW 211 1426 6.1.7 Set scan window

25h GET WINDOW O 1422 6.1.2 Read window properties

28h READ E 212 1424 6.14 Read

2Ah SEND O 212 1427 6.1.6 Write

31h OBJECT POSITION (6] 1423 6.1.3 Set object position

34h GET DATA BUFFER o 142.1 6.1.1 Read data buffer subdivision and filling

STATUS rate

39h COMPARE O 722 SPC Compare data

3Ah COPY AND VERIFY o 7.2. SPC Autonomous copy from/to another device.
verily success

3Bh WRITE BUFFER o} 7.2.17 SPC Write the data buffer

3Ch READ BUFFER (6] 7.2.12 SPC Read the data buffer

40h CHANGE DEFINITION O 139 7.2.] SPC Set SCSI version

4Ch LOG SELECT (6] 726 SPC Select statistics

4Dh LOG SENSE (6] 727 SPC Read statistics

55h MODE SELECT(10) O 140 729 SPC Set device parameters

S5Ah MODE SENSE(i0) O 140 7.2.10 SPC Read device parameters

Note: Mandatory commands are shaded dark gray.

212 Graphics devices

Table 15.3 The SET WINDOW command.

7 6 | s | 4 3 |2 |1 | o
0 SET WINDOW (24h)
I (LUN) |
2. Reserved
.5
6 (MSB)
7 Transfer length
8 (LSB)
9 Control byte
Table 15.4 Window header data.
R
0
Reserved
5 [
6 (MSB) Window descriptor
7 length (LSB)

READ (28h) and senp (2Ah)

The READ and SEND commands have the same opcodes as the normal READ(10) and
WRITE(10) commands, but they have a slightly different structure.

The READ command reads data from the scanner (Table 15.5). Here different types
of data are possible. Data type code 0Oh stands for image data, 02h for half tone

Table 15.5 The READ command for scanners.

7‘6‘5‘4|3

READ (28h)

(LUN) ‘

Reserved

Data type code

Reserved

(MSB) Data type

qualifier

(LSB)

(MSB)

Data length

(LSB)

OCixw|N|aa|lwn]| & L[

Control byte

15.3

Mode parameters for scanners 213

Table 15.6 The SCAN command.

7 [e s T+ |3 210 o
0 SCAN (1Bh)
1 (LUN) ‘
2 Reserved
3
4 Data length
5 Control byte

masks and 03h for gamma curves. The data type qualifier is a vendor specific
parameter, which is required for some data types. The data length is measured in
blocks whose size has been specified using the mode parameter block descriptor.

In the same way, you can use the SEND command to send half tone masks and
gamma curves to the scanner.

SCAN (1Bh)

The scan command initiates the scanning process (Table 15.6). This command is
optional because this is done manually for many scanners. The data length specifies
the length of the window list supplied in the data phase of the command. The
window list is composed of one or many window numbers previously defined.

Mode parameters for scanners

Mode parameter pages

Table 15.7 shows the Mode parameter pages defined for SCSI scanners.

Measurement units page (03h)

This page is very straightforward (Table 15.8). Byte 2 specifies the basic unit of
measure, where 00h stands for inches, O1h for millimeters, and 02h for points (1/72
inch). Bytes 4 and 5 contain the number of units that should make up a basic mea-
surement unit. This means that when byte 2 contains O1h and byte 5 contains 64h the
measurement unit is 1/100 of a millimeter.

Table 15.7 Mode parameter pages for scanners.

Page Name Page SCSI-2 SCSI-3
code (SGC)
02h Disconnect/reconnect page 145 7.3.3.2 SPC
03h Measurement units page 213 14.3.3.1 7.1.3.1
0% Peripheral device page 146 7333 SPC

0Ah Control mode page 147 7.3.3.1 SPC

214 Graphics devices

Table 15.8 Measurement units page.

7 e | s |4 | 03 0
0 Page code (03h)
1 Page length (06h)
2 Measurement unit
3 Reserved
4 (MSB) Divisor
5 (LSB)
6 Reserved
7

16 Medium-changer devices

16.1

The model of a SCSI medium-changer device

A SCSI medium-changer device is like a juke-box, allowing many individual media to
be stored, loaded, unloaded, and accessed just like single media drives (Figure 16.1).
There are four basic components or elements of this juke-box: the medium transport
element (MTE), the storage element (SE), the import/export element (IOE), and the data
transfer element (DTE). A device may, however, contain more than one of any of these
elements. Each element is capable of being empty or holding a single medium. All ele-
ments are identified using a 16-bit address. The addresses of the various elements are
consecutive and do not overlap, so that elements can be implicitly accessed by their
address. In SCSI-2 all media must be of the same type. The SCSI-3 model of a medium
changer, however, also allows a device that distributes different media such as cassette
tape and optical disks across different drives.

Independent and attached medium changers

The medium changer as an independent device as it is defined in SCSI-2 is comple-
mented in SCSI-3 with the variation of the attached medium changer. The independent
medium changer is a separate SCSI device or a separate LUN and understands the entire
SMC command set. The attached medium changer is part of the LUN of the principal
device. It understands only two commands, namely MOVE MEDIUM and READ ELEMENT
STATUS. The attached medium changer belongs to the model of all SCSI devices and is
described in the SPC document.

Elements of the medium-changer device

The medium transport element

The MTE is the mechanism that moves media from one location to another. When a
double-sided medium is being used the element contains the machinery necessary to
tum the medium over. Since the transport element may contain a medium, it has an
element address. Large devices contain more than one MTE.

215

216 Medium-changer devices

Drive Input/Output
Element 53

It

Element 54

Elements 1-50

Tran

meg Storage

Controller (50 Elements)

Figure 16.1 Model of a SCSI medium-changer device.

The storage element

Media is held in the SE until it is needed for access. From here individual media are
moved by the MT element to other elements of the device.

The import/export element

The IOE allows an operator to load media into and remove media from the device.
Therefore, when a medium unit is to be removed from the device the MTE moves it
from its current position into the IOE. The IOE does not necessarily have to be
implemented since many devices allow direct hand access to storage. Large
medium-changers, on the other hand, may have several IOEs.

The data transfer element

Obviously, media can be accommodated within the DTE, the place where data is
ultimately accessed. For this reason it also is addressed in the element address space.
Large medium-changers may employ a number of these DTEs.

From the SCSI perspective the DTE and the medium-changer are completely sepa-
rate entities. No data transfer commands are contained in the medium-changer
command set. In fact, the DTE may not even be SCSI compatible. One possibility is
that the DTE is connected to the host using an interface other than SCSI. Another pos-
sibility is for it to be connected to the very same SCSI bus but at a different SCSI ID;
in other words, the DTE is a separate target. The latter is the standard case (Figure 16.2).
Finally, the two might be implemented as individual LUNSs of the same SCSI target.
This configuration is the least likely since the LUNs belong to different device types.

Volume tags

Volume tags are used to identify a particular piece of medium. These tags, which are
optional, are written on the medium itself and remain with it from element to
element. Double-sided media have a primary volume tag for the default side and an
alternate volume tag for the reverse side.

16.2

Commands for medium-changers 217

i

LUN | ot
o 1 11
a | Storage Host
9] | |
&) [|
@ | Lun | Transport

0 mech'lanism
| SCSI ID 7

SCSI bus

Figure 16.2 SCSI medium-changer configuration.

Tags are assigned either using a bar code reader or with the aid of a special
command. Table 16.1 shows the format of a volume tag just as it is used by the com-
mands READ ELEMENT STATUS and SEND VOLUME TAG.

The volume identification field contains ASCII characters. In order to be com-
patible with most operating systems you should use only numbers, capital letters and
the underscore character. In particular, question marks and asterisks, which are wild-
cards in many systems, should be avoided.

The volume sequence number is 16 bits long and is used, for example, to keep
track of the individual pieces of medium that belong to a single volume.

Table 16.1 Format of a medium volume tag.

7 e | s |+ | s | 2 | 1 | o
0
Volume identification field
31
32 Reserved
33
34 (MSB) Volume sequence number
35 (LSB)

Commands for medium-changers

The major change from SCSI-2 to SCSI-3 is that the READ ELEMENT STATUS
command has become mandatory. Since it must also be supported by attached
medium-changers, it has been included in this edition of the book. Table 16.2 lists
the commands defined for medium-changers.

218 Medium-changer devices

Table 16.2 Commands for medium-changer devices.

Op- Name Type Page SCSI-2 SCSI-3 Description
code (SBC)
00h TEST UNIT READY M 131 7.2.16 SPC Reflects whether or not the LUN is ready to

accept a command

Olh REZERO UNIT (0] 8.2.13 SPC Seek track 0
03h REQUEST SENSE M 132 7214 SPC Returns detailed error information
07h INITIALIZE ELEMENT O 16.2.2 6.2 Initialize element

STATUS
12h INQUIRY M 128 725 SPC Returns LUN specific information
15h MODE SELECT(6) O 140 728 SPC Set device parameters
16h RESERVE M 136 1628 638 Make LUN accessible only to certain

initiators

17h RELEASE M 136 1626 6.6 Make LUN accessible to other initiators
1 Ah MODE SENSE(6) O 140 7.2.10 SPC Read device parameters
1Ch RECEIVE DIAGNOSTIC O 72.13 SPC Read self-test results

RESULTS
IDh SEND DIAGNOSTIC M 138 7.2.1 SPC Initiate self-test
IEh PREVENT/ALLOW (6] 8.2.4 SPC Lock/unlock door
MEDIUM REMOVAL

2Bh POSITION TO (0] 1624 6.4 Position to element
ELEMENT

3Bh WRITE BUFFER (6] 7.2.17 SPC Write data buffer

3Ch READ BUFFER (0] 7.2.12 SPC Read data buffer

40h CHANGE DEFINITION O 139 7.2.1 SPC Set SCSI version

4Ch LOG SELECT (6] 7.2.6 SPC Select statistics

4Dh LOG SENSE (0] 7.2.7 SPC Read statistics

55h MODE SELECT(10) O 140 729 SPC Setdevice parameters

S5Ah MODE SENSE(10) O 140 7.2.10 SPC Read device parameters

ASh MOVE MEDIUM M 218 1623 63 Move medium

A6h EXCHANGE MEDIUM O 219 16.2.1 6.1 Exchange medium

BS5h REQUEST VOLUME (6] 16.2.7 6.7 Request volume element address
ELEMENT ADDRESS

B6h SEND VOLUME TAG o 1629 69 Assign volume name

B8h READELEMENT (0) 220 16.250 6.5M Read element status

STATUS

Note: Mandatory commands are shaded gray. (M) means that the command is classified differently in
SCSI-2 and SCSI-3. The corresponding classification is indicated after the reference to the standard.

MOVE MEDIUM (A5h)

In SCSI-2 this is the only mandatory command that is device specific. It causes the
target to move a piece of medium from one element to another (Table 16.3). The
element addresses of the MTE, the source and the destination are parameters of the
command. The Invert bit indicates that the medium should be flipped.

If the source element is empty or the destination element is full the command will
abort with a CHECK CONDITION status. This is also the case when an MTE is called
for that is not supported in the mode parameter pages.

Commands for medium-changers 219

Table 16.3 The MOVE MEDIUM command.

7 e | s |4 | 3 | 2 L o
0 MOVE MEDIUM (A5h)
1 (LUN) | Reserved
2 (MSB) ‘ Element address of
3 transport device (LSB)
4 (MSB) Source address
5 (LSB)
6 (MSB) Destination address
7 (LSB)
8
9 Reserved
10 Invert
11 Control byte

EXCHANGE MEDIUM (A6h)

This command goes one step further than the MOVE MEDIUM command. The medium
in the source element is moved to the destination 1 element and the medium previ-
ously in the destination 1 element is moved to the destination 2 element. The source
element and the destination 2 element may or may not be the same. When they are
the two media are exchanged (Table 16.4).

Table 16.4 The EXCHANGE MEDIUM command.

7 s | s | e | s |2]] o
0 EXCHANGE MEDIUM (A6h)
I (LUN) ! Reserved
2 (MSB) Element address of
3 transport device (LSB)
4 (MSB) Source address
5 (LSB)
6 (MSB) First destination address
7 (LSB)
8 (MSB) Second destination address
9 (LSB)
10 ‘ Invl ‘ Inv2
1 Control byte

220 Medium-changer devices

READ ELEMENT STATUS (B8h)

This command allows you a detailed overview of the configuration of the entire
medium-changer (Table 16.5). It supplies the data of all elements or of individual
elements of the device, on demand. As described further above, these are the
medium transport element, the storage element, the import/export element and the
data transfer elements. The function unit code (see Table 16.6) specifies which ele-
ments are to be listed. The first element and the number of elements describe the
range on which the command works. Thus, in order to get all elements, you specify
Oh as function unit code, Oh as the first element address, and FFFFh as number of

elements, together with a data length of FFFFFFh.

The element status data (Figure 16.3) consists of an eight byte header
(Table 16.7) which is followed by the element pages. The element pages themselves
contain an eight byte header (Table 16.8) and one or more element descriptors. The
element descriptors are structured differently for the four function group types.

Table 16.5 The READ ELEMENT STATUS command.

7 e | s 4 | s] 2
0 READ ELEMENT STATUS (B8h)
1 (LUN) ‘ VTag ‘ Function unit type
2 (MSB) First element address
3 (LSB)
4 (MSB) Number of elements
5 (LSB)
6 Reserved
7 (MSB)
8 Data length
9 (LSB)
10 Reserved
11 Control byte

Table 16.6 Function unit types.

Code Name
Oh All elements
lh Medium transport element
2h Storage element
3h Import/export element
4h Data transfer clements
5h-Fh Reserved

Commands for medium-changers 221

Element status data
Header (8 bytes)

Element status page 1
| Header(8 bytes)

| Element descriptor 1 |

Data length
n
| page header

| Etement descriptor 2

Element status page 2

| HeaderiBbytes) | Data length
{ Element descriptor 1 I n
element status
: data header

| Element descnptor n |

Further element status pages

Figure 16.3 Structure of element status data.

Table 16.7 Element status data header.

7 e | s |+ | 3 | 2 | 1 | o
0 (MSB) First element
1 in the following list (LSB)
2 (MSB) Number of elements
3 in the list (LSB)
4 Reserved
5 (MSB)
6 Length of list in bytes
7 (LSB)
Table 16.8 Element status page header.
7 e | s | 4« | 5 | 2 | 1 | o
0 Function unit type
I PVT ‘ AVT | Reserved
2 (MSB) Length of the individual
3 element descriptors (LSB)
4 Reserved
5 (MSB)
6 Length of descriptor data in bytes
7 (LSB)

222 Medium-changer devices

Table 16.9 The medium transport element descriptor.

7 | s [+ Vs]2 1] o
0 (MSB) Element address
1 (LSB)
2 Reserved l Excpt ‘Reserved ‘ Full
3 Reserved
4 Sense code
5 Extended sense code
6..8 | Reserved
9 SVIid Invert Reserved
10 (MSB) Last storage address
11 of the medium in this element (LSB)
12...47) Primary title (n/a if PVT=0)
48 .83 Secondary title (n/a if AVT=0)
84 .. 87 Reserved (shifts upwards when a field is not applicable)
88 .. z-1 Manufacturer specific (shifts upwards when a field is not applicable)

The medium transport element (MTE) descriptor

The element address is the address of the medium-changer function unit whose status
is described in Table 16.9.

The Excpt bit indicates that the unit is in an exceptional state. In this case, the
Sense code and the Extended sense code apply and supply further information on the
unit. Both sense data values are interpreted in the usual way.

The Full bit indicates that the function unit contains a medium. SVId indicates
that the data field that holds the last storage address of the medium contains a valid
value. The Invert bit indicates that the medium has been flipped since it was
removed from the last storage position.

The storage element descriptor

The storage element descriptor looks exactly like the MTE descriptor, except for the
additional Access bit in byte 2 (Table 16.10). It indicates whether the transport
element can access the storage element.

The import/export element descriptor

With the exception of byte 2, the import/export element descriptor looks exactly like
the MTE descriptor (Table 16.11). The ImEna and ExEna indicate whether this

16.3

Mode parameter pages for medium-changers 223

Table 16.10 Storage element descriptor, byte 2.

‘ 2 ’ Reserved l Access ‘ Excpt |Reserved Full \
Table 16.11 Import/export element descriptor, byte 2.
| 2 ‘ Reserved | ImEna | ExEna | Access N Exept | ImEx i Full |

Table 16.12 Data transfer element descriptor, bytes 6 and 7.

6 | NoBus]Resewedl IDvId ‘ LUvld |Reserved| LUN

7 SCSI ID

element supports import or export processes. When the ImEx bit is set, the medium
in the element comes from a user, otherwise it comes from the MTE.

The data transfer element descriptor

This drive descriptor looks exactly like the storage descriptor, with the exception
that bytes 6 and 7 supply information on the SCSI bus of the drive (Table 16.12).
When the NoBus bit is set, the drive is not on the same bus as the medium-changer.
When IDvId is set, the SCSI ID contains a valid value. LUvId indicates that the LUN
contains a valid value.

Mode parameter pages for medium-changers

No device-independent mode parameter pages are defined for medium-changers.
Not even the disconnect/reconnect page exists. There are, however, three device-
specific pages, listed in Table 16.13.

The device capabilities page (1Fh)

Bits O through 3 in byte 2 specify whether the corresponding element is capable of
independently storing a piece of medium. Bytes 4-7 contain a matrix of possible
sources and destinations for the MOVE MEpIUM command (Table 16.14). A | indicates
that a transfer between source and destination is supported. Often a direct transfer is
not possible between the import/export element and the transfer element. This transfer

Table 16.13 Mode parameter pages for medium-changer devices.

Page code Name Page ANSI
1Dh Element address page 225 16.3.3.2
1Eh Drive group page 224 16.3.3.3
1Fh Device capabilities page 293 16.3.3.1

224 Medium-changer devices

Table 16.14 The device capabilities page.

7 6 s | o« s 2] 1] o

0 PS Reserved Device capabilities page (1Fh)

1 Page length (OEh)

2 Reserved ST | Sl | SwrST | swormT

3 Reserved

4 Reserved MT-DT |[MT-I/E [MT-ST |MT-MT

5 Reserved ST—-DT | STHI/E | STHST [ST->MT

6 Reserved I/E-DT | I/ESI/E | /E-ST [I/E-SMT

7 Reserved DT-DT | DT-I/E | DT-SST |[DT-HMT
8..11 Reserved

12 Reserved MToDT (MTOUVE |MTST (MTEMT

13 Reserved ST&DT | STOUE | STOST |STOMT

14 Reserved I/E&DT | I/E©VE | VE6GST |/EGMT

15 Reserved DT&DT | DTOI/E | DT&ST |DToMT

is accomplished by first moving through the storage element. Bytes 12—15 contain a

similar matrix for the command EXCHANGE MEDIUM.

The drive group page (1Eh)

Often a number of DTEs are grouped together in order to take advantage of a single
MTE. If there are several MTEs each one is assigned a single DTE. The drive group
(transport geometry) page contains information about the assignment of DTEs to

MTEs and whether the latter has the capability to flip a medium (Table 16.15).

Table 16.15 The drive group page.

7

6

5

‘4[3‘2]1‘0

0 PS

Reserved

Drive group page (1Eh)

Page length

Drive group descriptors

Reserved Rot

Number in group

Mode parameter pages for medium-changers 225

The element address page (1Dh)

The element address assignment page contains the mapping of the various functional
elements to their respective element addresses (Table 16.16).

Table 16.16 The element address page.

7 6 s o4 | s |2 | 1] o

0 PS Reserved Element address page (1Dh)
| Page length (12h) .
2 (MSB) Medium transport I
3 element address (LSB)
4 (MSB) Number of medium
5 transport elements (LSB)
6 (MSB) First storage
7 clement address (LSB)
8 (MSB) Number of
9 storage elements (LSB)
10 (MSB) First import/export
11 element address (LSB)
12 (MSB) Number of import/
13 export elements (LSB)
14 (MSB) First data transfer
15 element address (LSB)
16 (MSB) Number of data
17 transfer elements (LSB)
18 Reserved

i
19]

17 Storage array controllers

17.1

226

The command set for storage array controllers (SCSI Controller Commands SCC) is
new in SCSI-3. When you think of storage arrays, names like RAID arrays
(Redundant Array of Independent Disks) come to mind. Indeed, RAID arrays can be
implemented in many ways as SCSI storage arrays. There is obviously quite a large
number of array controllers already on the market, in particular for RAID arrays.
Mostly, they also use the SCSI bus for internal and external communication.
However, most of them present themselves externally as a normal, maybe rather big
SCSI-2 disk. Currently, I know of no implementation of a SCSI-3 array controller.
For the remainder of this chapter, we will therefore be talking about future devices.

The model of the SCSI storage array

Generally speaking, SCSI storage arrays are several disk drives and other devices
that can be accessed under a common SCSI address. The model of the SCSI storage
array defines different objects, how they are configured, and how they interact to
form the storage array.

This model encompasses such easy constructions as the combination of two phys-
ical drives into one logical drive up to complicated RAID-5 storage arrays. A linear
volume set is defined as a combination of several drives in such a way that they form
a single address space of logical block numbers. RAID arrays are various complex
constructions which in addition offer some form of redundancy. However, they too
map the logical block numbers of the different drives in the array into one single
address space.

The SACL

Thus, all SCSI storage arrays share a mechanism that maps the physical block
addresses of the individual drives into the address space of the array. This mechanism
is called Storage Array Conversion Layer (SACL). A typical I/O subsystem consists
of the operating system, the software driver, the host adapter, a device controller and
a drive. The operating system requests a service, and the drive provides it. Each of
the three levels between operating system and drive can represent the SACL.

The model of the SCSI storage array 227

Input device number
+ input block address

SACL

Output device number A Output device number B L etc. ...
+ output block address A + output block address B

Figure 17.1 Functional diagram of a SACL.

A SACL is a formal function group (Figure 17.1) and as such is present in every
storage array, even before SCSI-3. An example of a SACL at driver level is the
Micropolis Raidion. SACLs at host adapter level are represented by the Vortex
(ICP) SCSI array controllers. At SCSI bridge controller level we find, for example,
devices produced by Mylex and CMD.

Software SACL

Each of these solutions has its advantages and disadvantages. An important point in
favor of software drivers is that no additional hardware is needed, which can lead
to a lower cost. On the other hand, such a storage array is tied to a particular oper-
ating system, in most cases even to a particular version. It also needs system
resources on the host, which can be a negative factor for the overall performance of
the system.

Host adapter SACL

Here, the SACL is located in a dedicated host adapter. This host adapter has its own
processor, buffer and usually several SCSI buses for the drives to be connected. The
separate processor uses less resources of the host operating system. However, such
a device is normally tied to a determined host bus, and usually special software
drivers are needed.

Controller SACL

A SACL constructed as a bridge controller is a board or an external device which
has a SCSI bus as a connection to the host and one or more SCSI buses to connect
the drives (Fingure 17.2). Externally, in SCSI-2 it presents itself as one single
normal SCSI hard disk. Therefore, the subsystem functions with any SCSI host
adapter and with any operating system. You can take such a system with you from
one computer platform to another. You will only have to consider that the data struc-
ture obviously varies with the operating system and therefore reformatting may be
indicated. The only real disadvantage of such systems is their relatively high cost.

228 Storage array controllers

Operatirllg system

Device number (A) + block address (A)
1

Software driver

Device number(A) + block address (A)

Host adapter

Device number (A) + block address (A)

Bridge controller (SACL)

Device number (E) + block address (B)

SCSI device SCSI device [SCSI device

Figure 17.2 SACL controller model.

Please note, however, that the restrictions on the biggest possible disk which vary
with the different operating systems also apply to storage arrays. Otherwise it can
happen that even with a SACL controller you depend on driver software that is dif-
ficult to obtain. Please consult Chapter 7 for the 528-Mbyte limit of DOS and the
8-Gbyte limit of PC INT13.

Objects

A storage array is constructed by configuring objects. This configuration must not
necessarily happen online. It can also be permanently set by the manufacturer, but in
any case it must be reported correctly. Therefore, in the SCSI storage array specific
commands, the report commands are mandatory, whereas the configuration com-
mands are optional.

Objects can be added to a storage array. Then they are available to the applica-
tion client and can be addressed. Objects combined into redundancy groups or
volume sets are called associated. Objects can be attached to a component or
covered by identical objects. Thus, for example, a hard disk can be available as a
spare in a storage array and thus cover the other hard disks. Objects can be protected.
Protected objects can handle the failure of one or more objects without loss of user
data or a failure of the storage array as a whole.

The model of the SCSI storage array 229

Table 17.1 Component device types.

Code Description

00h Controller representing a SACL

Olh Non-volatile cache

02h Power supply

03h UPS power supply

04h Display

05h Keyboard

06h Cooling fan
Components

The objects that constitute SCSI storage arrays are combined out of two fundamen-
tal categories. A component device is a physically addressable object which is not
identified as a SCSI-3 device type, such as a power supply or a cooling fan. Table
17.1 shows a list of defined component devices. Application clients can only access
component devices by means of commands addressed to the basis address (LUN 0)
of the storage array.

Devices

Devices are the physically addressable objects that can be identified by a SCSI-3
device type, such as disk or tape drives or CD-ROMs. Application clients can physi-
cally address devices directly. Please note, however, that user data may be distributed
arbitrarily across different devices combined into a volume set.

The remaining objects are constructed out of these two categories or they are part
of an object of one of these categories.

P_Extent

A P_Extent is the entire area addressable by the host in a device or a continuous part
of it. P_Extents are used by the application client to create redundancy groups and
spares. P_Extents configured into a redundancy group are called assigned P_Extents.

Redundancy group

A redundancy group is the combination of protected user data and their check data
into a single LUN. The P_Extents that form the redundancy group can be located on
different devices. The check data can also be empty, that is, they can effectively be
omitted.

PS_Extent

A PS_Extent is the entire protected data area in a redundancy group of a device or
a continuous part of it. PS_Extents are used by the application client to create
volume sets.

230 Storage array controllers

17.2

Redundancy group A Redundancy group B

Chetk d&ia A Thork 3212 B
Assigned Assigned Unassigned
rotected area A protected protected
P area B area

Volume set

Figure 17.3 Volume set with several redundancy groups.

Volume set

A volume set is a group of one or more P_Extents combined into a LUN_V
(Figure 17.3). Volume sets are created by the application client in order to create a
continuous area of logical blocks of user data in a storage array. Volume sets must
not overlap.

Spare

A spare is a replacement part. Spares exist for P_Extents, devices or components.
Spares are associated with redundancy groups or devices. How the replacement of a
faulty P_Extent, device or component is to be carried out is, however, left to the
manufacturer’s discretion.

Commands for storage array controllers

Besides several of the primary commands, the SCSI array commands contain a
group of four command pairs, one each for the input and the output direction.

All these commands share one peculiarity: they use the least significant five bits
of byte 1 to specify a service action. Depending on the service action, command
structures and parameter lists are different, so that one might really talk about dif-
ferent commands with a common opcode. This technique is not (yet) used anywhere
else in the SCSI standards.

Each of these commands has substantial parameter lists. I will, however, omit
these and simply present some commands with their service actions and a brief
explanation. This command set is too recent for the presentation of further details,
and it still remains to be seen whether it succeeds and gets accepted.

MAINTENANCE(IN) (A3h)

The fundamental structure of the MAINTENANCE(IN) command is shown in
Table 17.3.
Table 17.4 lists the corresponding service actions.

Commands for storage array controllers 231

Table 17.2 Commands for storage array controllers.

Op- Name Type Puge SCSI-3 Description

code (SCC)

00h TEST UNIT READY ﬁ 131 SPC Reflects whether or not the LUN is ready to
accept a command

03h REQUEST SENSE 132 SPC Returns detailed error information

12h INQUIRY 128 SPC Returns LUN specific information

ofe]

15h MODE SELECTI6) 140 SPC Set device parameters
16h RESERVE(6) 136 6.8 Make LUN accessible only to certain
initiators
17h RELEASE(®©6) (0] 136 6.6 Make LUN accessible to other initiators
1Ah MODE SENSE(6) O 140 SPC Read device parameters
IBh START/STOP UNIT O SPC Load/unload medium
1Ch RECEIVE DIAGNOSTIC (6] SPC Read self-test results
RESULTS
IDh SEND DIAGNOSTIC O 138 SPC Initiate self-test
3Bh WRITE BUFFER O SPC Write data buffer
3Ch READ BUFFER (0] SPC Read data buffer
4Ch LOG SELECT O SPC Select statistics
4Dh LOG SENSE (6] SPC Read statistics
55h MODE SELECT(10) O 140 SPC Set device parameters
56h RESERVE(10) O SPC Make LUN accessible only to certain

initiators

57h RELEASE(10) (0] SPC Make LUN accessible to other initiators
S5Ah MODE SENSE(10) O 140 SPC Read device parameters

A3h MAINTENANCE(IN) B 20 6l

Adh MAINTENANCE(OUT) (0] 6.2

BAh REDUNDANCY GROUP(IN) ‘M 232 6.3

BBh REDUNDANCY GROUP(OUT) O 6.4

BCh SPARE(IN) M 232 6.7

BDh SPARE(OUT) (6} 6.8

BEh VOLUME SET(IN) B 032 6.5

BFh VOLUME SET(OUT) O 6.6

Note: Commands added to this command set in SCSI-3 are shaded light gray: mandatory commands are
shaded dark gray.

Table 17.3 The MAINTENANCE(IN) command.

7 e | s |+ | s | 2 | 1 | o

0 MAINTENANCE(IN) (A3h)

1 Reserved ‘ Service action
) Reserved

4 (MSB) LUN_x

5 (LSB)
6 .. (MSB) Transter

.9 length (LSB)

10 Varies with service action

11 Control byte

232 Storage array controllers

Table 17.4 Service actions for MAINTENANCE(IN).

Action Type Service name
00h M REPORT ASSIGNED/UNASSIGNED P_EXTEND
Olh M REPORT COMPONENT DEVICE
02h M REPORT COMPONENT DEVICE ATTACHMENTS
03h M REPORT PERIPHERAL DEVICE
04h M REPORT PERIPHERAL DEVICE ASSOCIATIONS
05h M REPORT PERIPHERAL DEVICE/CONMPONENT DEVICE IDENTIFIER
06h M REPORT STATES

REDUNDANCY GROUP(IN) (BAh)

This command reports on the properties of the redundancy groups of the target. Its
fundamental structure is shown in Table 17.5.
Table 17.6 shows the corresponding service actions.

VOLUME SET(IN) (BEh)

This command reports on volume sets. It has the same structure as REDUNDANCY
GROUP(IN), except for the value LUN_V in bytes 4-5. The command has only one
service action, namely REPORT VOLUME SETS, which has the code 00h.

SPARE(IN) (BCh)

This command too is structured similarly to REDUNDANCY GROUP(IN), except that
bytes 4-5 now contain the value LUN_S. Table 17.7 shows the possible service actions.

Table 17.5 The REDUNDANCY GROUP(IN) command.

7 e s |« s [21 | o
0 REDUNDANCY GROUP(IN) (BAh)
1 Reserved l Service action
2.3 Reserved

4 (MSB) LUN_R
5 (LSB)

6 .. (MSB) Transfer

.9 length (LSB)
10 Reserved RPTS
11 Control byte

Table 17.6 Service actions for REDUNDANCY GROUP(IN).

Action Type Service name

00h M REPORT REDUNDANCY GROUPS
Olh M REPORT UNASSIGNED REDUNDANCY GROUP SPARE

17.3

Mode parameter pages for storage array controllers 233

Table 17.7 Service actions for SPARE(IN).

Action Type Service name
00h M REPORT P_EXTENT SPARE
Olh M REPORT PERIPHERAL DEVICE/COMPONENT DEVICE SPARE

Mode parameter pages for storage array controllers

For storage array controllers, four parameter generic pages are defined, together with
one device type specific parameter page. Table 17.8 lists these parameter pages.

LUN mapping page (1Bh)

The LUN mapping page (Table 17.9) specifies to which physical device a command
is addressed. When the Active bit is set, the mapping is used that is associated with
the LUN in the IDENTIFY message. Otherwise, mapping is disabled.

Table 17.8 Mode parameter pages for storage array controllers.

Page Name Page SCSI-2 SCSI-3
code (SCC)
02h Disconnect/reconnect page 145 7.33.2 SPC
0%h Peripheral device page 146 7.3.33 SPC
0Ah Control mode page 147 7.33.1 SPC
0Dh Power condition page - SBC
1Bh LUN mapping page 233 - 6.9.1.1

Table 17.9 The LUN mapping page.

765‘4‘3‘2‘1‘0

0 PS Reserved LUN mapping page (1Bh)

1 Page length (FAh)

2 Reserved

3 Reserved Active
4 .. (MSB) Mapping for
L1 LUN | (LSB)

Mappings for

LUN2toLUN 30

244 ... Mapping for

.. 251 LUN 31

234 Storage array controllers

Table 17.10 DENTIFY message for SCC devices.
7 6 5 « |2] 2 [i ‘ 0
I Disc-Priv |VOLSET LUN

The IDENTIFY message has a special format which substantially corresponds to the
SCSI-3 format (Table 17.10). Besides the 5-bit LUN number, there is also the
VOLSET bit. When this bit is set, the LUN number specifies a volume set and the LUN
mapping page should not be used.

18 Multi-media devices

18.1

Currently, the SCSI-3 multi-media command set document (MMC) contains only
one device type, namely the CD-ROM. In the near future, CD recorders will be
added. Some commands for these devices are already contained in the latest MMC
proposal.

The MMC is still very much under development. Thus, the indications given in
this chapter are to be taken as highly provisional and subject to changes.

CD-ROM

CD-ROM is a wide and varied topic, worthy of an entire book. A number of books
have, in fact, been written on the subject. For the purposes of this discussion,
however, we will concentrate on those aspects of CD-ROM that are relevant to the
SCSI bus. Because of this I will only be able to touch on topics like the recording
format and the organization of the medium.

The model of a SCSi CD-ROM drive

SCSI CD-ROM drives can read data that conforms to the standards laid down in the
yellow book and the red book (IEC 908). These CDs may hold audio information in
addition to other forms of digital data. One major aspect of CD-ROM is that data can
only be written with a device dedicated to the function; typical CD-ROM drives do
not write (Figure 18.1).

The recording format demands that the data be written at a constant linear velocity
(CLV). This means that the transfer rate is the same over the entire medium; in other
words, there is no zone-bit recording. Nevertheless, the bit density is kept constant by
rotating the disk more quickly for outer tracks and more slowly for inner tracks.

Normally the read head of a CD-ROM drive is parked as long as no data access is
taking place. However, a CD-ROM drive can assume a HOLD state, in which the head
remains in the area of the last read. A timeout is defined among the mode parameters,
which specifies how long after an access the head should be kept in the HOLD state.

With respect to data access a CD-ROM drive does not differ significantly from
other types of drives. Of course, as mentioned, no write commands have been

235

236 Multi-media devices

Tupul © ik J Ampiiher 4'1
T ’— Canverer
L
- CD-HOQ !
Output 1 A : i
T | corvener &
Audio iowput 2 T T
information
Comrjiands Data
Output 3
‘ Audio commands
SCSI bus

Figure 18.1 Model of a CD-ROM drive.

implemented. On the other hand, in addition to logical blocks CD-ROM drives also
employ other forms of data addressing.

Many SCSI CD-ROM drives can also read the audio format. This is accom-
plished using a separate channel that is not defined within the SCSI standard.
However, audio commands and mode parameters are included. Therefore a SCSI
CD-ROM drive with audio capabilities can be used as a CD player and be controlled
across the SCSI bus.

The CD medium (Red Book)

In terms of the organization of the medium, the CD is fundamentally different from
the other types of disks discussed thus far. Data is recorded sequentially in the form
of a spiral; this spiral is read with constant linear velocity (CLV). This is the only
way to play back audio information without expensive intermediate storage. The
CLV method requires that the rotating speed of the CD drive changes constantly
during the reading process. On the outer tracks, it is about 210 rpm, on the inner ones
about 539 rpm. The recording format for audio CDs is defined in the so-called Red
Book which was published by Sony and Philips way back in 1980.

The smallest addressable unit is a physical sector (block, large frame), which in
turn consists of 98 frames (small frames) of 24 bytes each. A sector is 1/75 of a
second long and contains 2352 bytes of data.

The address of a sector is specified in terms of minutes, seconds, and sectors (or
large frames) in the form MM:SS:FF. This is referred to as the MSF format. When
an MSF address is used in a SCSI command it is given as shown in Table 18.1. The
individual fields are encoded as a binary coded decimal. A CD can contain up to 99
titles (tracks).

Table 18.1 CD-ROM address in MSF format.

0 Reserved
| M field
2 S field
3 F field

18.2

Commands for CD-ROMs 237

CD-ROM (Yellow Book)

The Yellow Book, published in 1983, defines the CD-ROM as an extension of the
CD standard for data applications. Here, embedded into the large frames of 2352
bytes, sector lengths of 2048 (Mode 1) or 2336 (Mode 2) user data bytes are possi-
ble. Usually, Mode 1 is chosen for computer applications, because it contains
enough space for an excellent error correction with 272 ECC bytes and because 2048
is a multiple of 512.

Mixed mode CDs

A mixed mode CD is divided into up to 99 CD-ROM titles. A CD-ROM title (track)
is a continuous sequence of sectors of the same type. Thus, a mixed mode CD-ROM
can contain a mixture of both data and audio tracks. A transition area must lie
between tracks of differing types, but these areas too must be formatted. CD-ROM
tracks can contain up to 99 indexes.

The mapping from physical sectors to logical blocks is done linearly. This also
takes into account the transition areas in between tracks. This results in the situation
where not all logical blocks are accessible by all commands. For instance, the logical
blocks containing audio information can only be read with the audio commands, not
with the regular read commands. The logical blocks that map to transition areas
cannot be read at all.

CD-ROM/XA (Extended Yellow Book)

The CD-ROM/XA (extended architecture) allows you to mix computer data and
audio sectors within one track. This is important for multi-media applications. In
order to read these CD-ROMs, the drive must be XA capable.

Multi-session (Orange Book)

A session is a continuous sequence of tracks enclosed by a lead-in and a lead-out
area. Traditional CDs and CD-ROMs contain a single session. With the arrival of
CD recorders, the need arose for the possibility of writing CD-ROMs in several
steps. In order for such a CD to be read, each session must be written completely,
together with its lead-in and lead-out area. Thus, every time new data is to be added,
a new session must be written.

Commands for CD-ROMs

For the most part the mandatory CD-ROM commands have already been introduced
in previous chapters. An exception is READ CD-ROM CAPACITY which is a variation of
the disk drive version. The commands unique to CD-ROMs are all optional (Table
18.2). Examples would include the command to read the disk table of contents and
the audio commands. Of the latter, if any are implemented, then they must all be
implemented.

238 Multi-media devices

Table 18.2 CD-ROM commands.

Op- Name Type Page SCSI-2 SCSI-3 Description

code (SBC)

0Oh TEST UNIT READY @ 131 7.2.16 SPC Reflects whether or not the LUN is ready to
'gﬁl accept a command

Olh REZERO UNIT (0) 8.2.130 SBCM Seek track ()

03h REQUEST SENSE Em 132 7.2.14 SPC Returns detailed error information

08h READ(6) (0) 159 8250 SBCM Read. Limited addressing

8.2.150 SBCM Seek to LBN

128 725 SPC Returns LUN specific information

140 7.2.80 SPCM Set device parameters

136 8.2.12 SPC Make LUN accessible only to certain
initiators

0Bh SEEK(6)

12h INQUIRY

I1Sh MODE SELECT(6)
16h RESERVE

17h RELEASE 136 8.2.11 SPC Make LUN accessible to other initiators
18h copy 7.2.3 SPC Autonomous copy {rom/to another device
IAh MODE SENSE(6) 140 7.2.100 SPCM Read device parameters
1Bh START/STOP UNIT (0) 8.2.170 SBCM Load/unload medium
ICh RECEIVE DIAGNOSTIC O 7.2.13 SPC Read self-test results
RESULTS
IDh SEND DIAGNOSTIC M| 138 7.2.1 SPC itiate sell-test
|Eh PREVENT/ALLOW (0) 8.2.40 SBCM Lock/unlock door

MEDIUM REMOVAL

25h READ CD-ROM
CAPACITY

28h READ(10)

2Bh SEEK(10)

2Fh VERIFY(10)

30h SEARCH DATA

[239 1328 42.12 Read numberof logical blocks

159 826 SBC Read
8.2.15 4.2.16 Seek LBN
15.2.11 SBC Verily
8.2.14 SBC Search data pattern

HIGH(10)
31h SEARCH DATA (6] 8.2.14 SBC Search data pattern
EQUALC(10)
32h SEARCH DATA (6] 8.2.14 SBC Search data pattern
LOW(10)
33h SET LIMITS(10) (6] 8.2.16 SBC Define logical block boundaries
34h PRE-FETCH (6] 8.2.3 SBC Read data into buffer
35h SYNCHRONIZE CACHE O 8.2.8 SBC Re-read data into cache
36h LOCK/UNLOCK CACHE O 8.2.2 SBC Lock/unlock data in cache
39h COMPARE (6] 722 SPC Compare data
3Ah COPY AND VERIFY (0] 724 SPC Autonomous copy from/to another device,

verily success

3Bh WRITE BUFFER (0] 7.2.17 SPC Write data buffer

3Ch READ BUFFER (6] 7.2.12 SPC Read data buffer

3Eh READ LONG O 161 829 SBC Read data and ECC

40h CHANGE DEFINITION O 139 7.2.1 SPC Set SCSI version

42h READ SUBCHANNEL (6] 13.2.10 4.2.14 Read subchannel data and status
43h READ TOC O 240 13.12.11 4.2.15 Read contents table

44h READ HEADER (0] 1329 4213 Read LBN header

45h PLAY AUDIO(I0) O* 241 13.2.2 423 Audio playback

47h PLAY AUDIO MSF O* 241 1324 425 Audio playback

48h PLAY AUDIO O* 243 13.25 4.2.6 Audio playback

TRACK/INDEX

49h PLAY AUDIO TRACK O* 13.2.6 4.2.8 Audio playback
RELATIVE(10)
4Bh PAUSE/RESUME O 241 13211 422 ‘Pause’ key of the drive

Commands for CD-ROMs 239

Table 18.2 CD-ROM commands (continued).

Op- Name Type Page SCSI-2 SCSI-3 Description

code (SBC)

4Ch LOG SELECT (0] 7.2.6 SPC Sclect statistics

4Dh LOG SENSE (6] .27 SPC Read statistics

4Eh STOP PLAY/SCAN (0) - 4.12.18 Terminate audio playback

55h MODE SELECT(10) O 140 729 SPC Set device parameters

S5Ah MODE SENSE(10) O 140 7.2.10 SPC Read device parameters

ASh PLAY AUDIO(12) O* 241 1323 424 Audio playback

A8h READ(12) (6] 1524 SBC Read

A9h PLAY TRACK O* 1327 429 Audio playback
RELATIVE(12)

AFh VERIFY(12) O 15.2.12 SBC Verily data

BOh SEARCH DATA (6] 1528 SBC Search data pattern
HIGH(12)

Blh SEARCH DATA (6] 1528 SBC Search data pattern
EQUAL(12)

B2h SEARCH DATA LOW(12) O 15.2.8 SBC Search data pattern

B3h SET LIMITS(12) (6] 1529 SBC Set block limits

B8h SELECT cD-ROM SPEED O - 4.2.17 Set data rate

B9h READ CD MSF (6} - 42.11 Read CD information (all formats,

MSF addresses)

BAh AUDIO SCAN O - 4.2.1 Fast audio playback

BCh SENDCD-ROM o - ?
XA ADDCM DATA

BDh PLAY CD-ROM XA(12) O -

BEh READCD (6] - 4.2.10 Read CD information (all formats.

MSF addresses)

Note: Commands added to this command set in SCSI-3 are shaded light gray: mandatory commands are
shaded dark gray. (M) means that the command is classified differently in SCSI-2 and SCSI-3. The
corresponding classification is indicated after the reference to the standard.

READ CD-ROM CAPACITY (25h)
This command works just like the corresponding command for disk drives (Table 18.3).

Table 18.3 The READ CD-ROM CAPACITY command.

7 | e | s |+ | 3 2 [0 | o
0 READ CD-ROM CAPACITY (25h)
1 (LUN) | Reserved ‘ Rel
2 (MSB)
3 Logical
4 block number
5 (LSB)
6
7 Reserved
8 PMI
9 Control byte

240 Multi-media devices

When the PMI bit is clear the logical block number must be zero. In this case the
logical block address and the length of the last valid block will be returned. For
CD-ROMs, this value can vary by +£75 sectors because it is taken from the TOC.

If, on the other hand, the PMI bit is set then the command will return the address
and the length of the logical block, after which a substantial delay in access time
occurs relative to the block provided in the command. For CD-ROMs this means
that the command returns the address of the last logical block of the track contain-

ing the logical block provided in the command.

The command returns an 8-byte long parameter block. The first 4 bytes contain

the logical block number, the last 4 bytes the block length.

READ TOC (43h)

This command reads the table of contents of the medium (Table 18.4). Track zero is
where the table of contents begins. The MSF bit indicates that the CD-ROM address
should be returned in MSF format, otherwise a logical block number is returned.
The command returns a data block containing the table of contents with the struc-
ture shown in Table 18.5. It consists of a header and a track descriptor for each track.

Table 18.4 The READ TOC commmand.

7 | e | s [« | 3| 2 | 1] o
0 READ TOC (43h)
! (LUN) | Reserved | MSF | Rel
2 l Format
3
4 Reserved
5
6 Track or session number
7 (MSB) Transfer
8 length (LSB)
9 Control byte
Table 18.5 REeaD ToC data format (SCSI-2 format).
7 e | s |« | 3 | 2 | 1 | o
0 (MSB) Transfer length
1 (LSB)

[§S]

First track number

3 Last track number

The following bytes

contain the track descriptors

18.3

Audio commands for CD-ROMs 241

Table 18.5 READ TOC data format (SCSI-2 format) (continued).

7 e s 4 b s 2 | | o
0 Reserved
1 ADR | Attribute
2 Track number
3 Reserved
4 .. (MSB) Logical block number
.7 of the first block of this track (LSB)

In SCSI-3 further data formats have been added. The new Format field indicates
which of these is going to be used. A value of Oh means SCSI-2 format. 4h stands
for the new session format, and 8h indicates the new Q subcode format.

In byte 6 of the command, it is now possible to specify the track or session
number from which the TOC is to be read.

Audio commands for CD-ROMs

The audio commands make it possible to control a SCSI CD-ROM drive across the
SCSI bus like a remote-controlled CD player. Audio information is transmitted via
the audio output ports.

PAUSE/RESUME (4Bh)

This 10-byte command simulates the pause button of a CD player. No parameters are
involved except the Resume bit (byte 8, bit 0). When this bit is clear, playing should
stop; otherwise it should continue.

PLAY AUDIO(10) (45h) and pPLAY AuDIO(12) (A5h)

The PLAY AUDIO commands cause the playing of audio data. The data to be played is
specified by the Start address and Transfer length fields. In addition, the SOTC bit
of the CD-ROM audio page has influence on these commands.

The 10-byte version of the command is shown in Table 18.6. The 12-byte version
uses no additional parameters and follows the usual format.

If the start address is not found or the data specified is not audio information, or
if the data type changes during playing, the command will abort with a CHECK CON-
DITION status.

PLAY AUDIO MSF (47h)

This command also initiates playback of audio data but uses the MSF addressing
format (Table 18.7). The data to be played is specified using the starting and ending
address.

242 Multi-media

devices

Table 18.6 The PLAY AUDIO(10) command.

7 s s e s | 2

PLAY AUDIO(10) (45h)

(LUN) ‘ Reserved

(8]

. (MSB)

Start address

(logical block)

(LSB)

Reserved

i (MSB) Transfer

length

(LSB)

O || N ||| & | w

Control byte

Table 1

8.7 ThePLAY AUDIO MSF command.

7|6‘5|4i3|2

PLAY AUDIO MSF (47h)

(LUN) I Reserved

[§5)

Reserved

Start address, M field

£ | W

Start address, S field

Start address, F field

End address, M field

End address, S field

End address, F field

O |l ||| W,

Control byte

Table 1

8.8 The PLAY AUDIO TRACK/INDEX command.

7‘6|5]4‘3}2

PLAY AUDIO TRACK/INDEX (48h)

1o (LUN) ‘ Reserved

[§]

Reserved

Start address, track

Start address, index

Reserved

End address, track

End address, index

Ol ||| n| &~ | W

J Control byte

18.4

Mode parameters for CD-ROMs 243

PLAY AUDIO TRACK/INDEX (48h)

This variant of PLAY AUDIO uses tracks and indexes to specify the data to be played
(Table 18.8). Both of these parameters assume values between 0 and 99.

Mode parameters for CD-ROMs

Mode parameter header

The mode parameter header contains two parameters for CD-ROM. The field with
the medium type assumes the values shown in Table 18.9.

The device-specific byte contains only a single parameter. Bit 4 is the Cache bit
and is only defined for MODE SENSE. When set it indicates that the target is equipped
with a cache and that the DPO and FUA bits of the WRITE command are supported.

Mode parameter block descriptor

The write density parameter in the mode parameter block descriptor takes on the
values shown in Table 18.10.

Mode parameter pages

The mode parameter pages in Table 18.11 have been defined for CD-ROM devices.

Table 18.9 CD-ROM medium types.

Code Medium type Code Medium type

00h Default 04h Reserved

0lh 120 mm CD-ROM, data only 05h 80 mm CD-ROM, data only

02h 120 mm CD-ROM, audio only 06h 80 mm CD-ROM, audio only
03h 120 mm CD-ROM, audio and data 07h 80 mm CD-ROM, audio and data

Table 18.10 CD-ROM write density.

Code Write density Code Write density
00h Default 03h 2340 bytes/sector
Olh 2048 bytes/sector 04h Audio information

02h 2336 bytes/sector

Table 18.11 Mode parameter pages for CD-ROM devices.

Page Name Page SCS1-2 SCSI-3
code (MMC)
Olh Read/write error page 13.3.33 4333
02h Disconnect/reconnect page 145 7.3.3.2 SPC
07h Verify error handling page - 4334
08h Cache page 172 SBC

0%h Peripheral device page 146 7.3.33 SPC

244 Multi-media devices

Table 18.11 Mode parameter pages for CD-ROM devices (continued).

Page Name Page SCSI-2 SCSI-3
code (MMC)
0Ah Control mode page 147 7.3.3.1 SPC
0Bh Medium type page 8.3.34 SBC
ODh CD-ROM page 244 13.3.3.2 4332
OEh CD-ROM audio page 244 13.3.3.1 4.33.1

The CD-ROM page (0Dh)

The CD-ROM page is valid for all medium types (Table 18.12). The inactivity
timeout (Inactive) specifies how long the head should remain in the hold state before

being parked. A key to timeout values is shown in Table 18.13.

The parameter MSF seconds per MSF minute is self-explanatory. The default

value here is 60; the default value for MSF frames per MSF second is 75.

The CD-ROM audio page (OEh)

The Immed bit has the usual meaning. When set a status is returned immediately.
When the SOTB (stop on track boundaries) bit is set the target will stop the playback
at a track boundary. Otherwise playback will continue until the transfer length has
been exhausted, even if it extends across several CD-ROM tracks (Table 18.14).

Table 18.12 The CD-ROM page.

7 6 s ‘ 4 ‘ 3 ‘ 2 o ‘

0 PS Reserved CD-ROM page (0Dh)

1 Page length (06h)

2 Reserved

3 Reserved Inactive

4 (MSB) " Number of

5 MSF seconds per MSF minute

6 (MSB) Number of

7 MSEF frames per MSF second

Table 18.13 Timeout values.

Code Timeout Code Timeout
00h Vendor specific 08h 16 seconds
0lh 125 ms 0%h 32 seconds
02h 250 ms 0Ah | minute
03h 500 ms 0Bh 2 minutes
04h 1 second 0Ch 4 minutes
05h 2 seconds 0Dh 8 minutes
06h 4 seconds OEh 16 minutes
07h 8 seconds OFh 32 minutes

18.5

CD recorders 245

Table 18.14 The CD-ROM audio page.
7 e | s T T s 2 o

0 PS Reserved CD-ROM audio page (OEh)

1 Page length (OEh)

2] Immed J SOTB JReserved
3 Reserved
4
5 APRV Reserved . LBA factor
6 (MSB) Number of
7 LBAs per second (LSB)
8 Reserved ! Output port O select
9 Port 0 volume
10 Reserved) Output port 1 select
—_—

11 Port 1 volume

12 Reserved Output port 2 select
13 S lz’orl 2 volu;ne-

14 Reserved J Output port 3 select
15 Port 3 volume

A set APRV (audio playback rate valid) bit indicates that the LBA factor and the
number of LBAs per second is valid.

The Number of LBAs per second field specifies the rate at which data is to be
played back. The LBA factor is a multiplier that allows greater resolution for the
setting of the LBAs per second. A Oh in this field causes Number of LBAs per
second to be multiplied by 1 and a value of 8h multiplies by 1/256.

The end of the parameter page consists of settings for the four output channels.
The Output port n select enables channels to port n. For instance, 0000b will mute
the port, 0001b will connect channel 1, 0010b will connect channel 2, and so on. The
value for Port n volume can range from 00h for very quiet to FFh for very loud.

CD recorders

The CD recorder is a new device in SCSI-3. Only 22 pages are dedicated to it in the
3.0 proposal for the MMC document of 27.9.1995. They mostly contain a descrip-
tion of the specific commands and some diagrams supposed to document the writing
of a CD-ROM. The diagrams show that a CD recorder is a rather complex device.
This, however, is not yet reflected in the text of the MMC proposal.

Thus, I will only briefly outline this still ongoing development. You should also
be aware that the following information will be subject to changes.

246 Multi-media devices

18.6 Commands for CD recorders

Besides the commands for all SCSI devices, CD recorders must be able to handle
some specific commands which are listed in Table 18.15.

WRITE SESSION (51h)

This command (Table 18.16) sends the data for writing a whole CD or a whole track.
The structure of this command is completely different from the normal WRITE
command. Although it is only a 10-byte command, it has a transfer length field of
32 bits in bytes 2 to 5. Except for the control byte, the command has no further
parameters.

FORMAT/RESERVE TRACK (53h)

This command (Table 18.17) reserves the space for a data track on the CD, that is,
it writes start and end address into the program memory area (PMA). No space can
be reserved for audio tracks.

Table 18.15 Specific commands for CD recorders.

Op- Name Type Page SCSI-3 Description

code (SCC)

2Ah WRITE(10) SBC Write

35h SYNCHRONIZE CACHE SBC Write cache to medium

SIh WRITE SESSION S.1.1.I Writing of a whole CD or a whole track

53h FORMAT/RESERVE TRACK 5.1.1.2 Reserve a data track

59h READ MASTER CUE 5.1.2.1 Read master information from a master CD

5Bh CLOSE SESSION/TRACK 5.1.1.3 Write the lead-in and lead-out areas of a
e session

5Ch READ BUFFER STATUS (0] 5.1.2.2 Read buffer status

SFh RECOVER TRACK (6] 5.1.2 Repair damaged track

Table 18.16 The WRITE SESSION command.

7 | e | s |+ | 3 | 2 | 1 | o
0 WRITE SESSION (51h)
1 Reserved
2 (MSB)
3 Transfer length
4 in bytes
5 (LSB)
6
7 Rescrved
8
9 Control byte

Commands for CD recorders

Table 18.17 The FORMAT/RESERVE TRACK command.

Control byte

7 | s | s ¢ |3 | 2 {0
0 FORMAT/RESERVE TRACK (53h)
1. Reserved
5 (MSB)
6 Number of logical blocks
7 to be reserved
8 (LSB)
9

247

The next free track automatically becomes the new track number. Bytes 5 to 8
contain the length in blocks of the data track to be reserved. The track must at least
be 4 seconds long, and there must obviously be enough space left on the medium to
accommodate the required length.

CLOSE SESSION/TRACK (FINALIZE) (5Bh)

It does not seem clear as yet how the command (Table 18.18) will be finally called.
In any case, the command finishes all unfinished titles and writes the lead-in and
lead-out areas of the session. With audio or single-session CDs, or with multi-
session CDs where no further session is permitted, byte 8 contains the value 00h. A
value of 01h allows you to append further sessions to multi-session CDs.

Table 18.18 The CLOSE SESSION/TRACK command.

7 [e |

5‘4[3‘2

CLOSE SESSION/TRACK (5Bh)

Reserved

Padding

Next session

Control byte

19 The parallel SCSI interface

19.1

248

Up to SCSI-2, the only SCSI interface was the parallel interface. Only with SCSI-3
are other interface alternatives being introduced. Each of these new interfaces —
SSA, Fibre Channel and Fire Wire — has some good arguments in its favor. How and
whether any of these new interfaces will succeed is difficult to say.

But the parallel SCSI interface has seen some innovations with SCSI-3. Thus, the
P cable was introduced, which allows 16-bit wide SCSI with only one cable. This
cable is already widely used with devices that otherwise adhere to the SCSI-2 stan-
dard. Furthermore, SCSI-3 allows devices on the wide SCSI bus to have IDs up to
15 or even 31. Finally, a separate document defines Fast-20 (also known as Ultra-
SCSI), a transfer mode with a speed of 20 Megatransfers per second.

Overview

The parallel SCSI interface exists in many variations. Each new generation of the
SCSI standard has brought more or less drastic additions which have, however,
always maintained backward compatibility with the previous standards.

Single-ended/differential

Since SCSI-1 and up to today there are two basic variations of the parallel SCSI
interface which are electrically incompatible with each other: the single-ended and
the differential interface. These two interface variations cannot be used together on
the same SCSI bus. There are, however, some reliable converters on the market
which allow the transition from single-ended SCSI to differential SCSI.

The single-ended interface is the most widely used. It is usually fully sufficient
for connections inside a cabinet. In the best case, it allows a cable length of up to
6 m. With higher data rates and long external connections, the single-ended interface
becomes extremely critical. SCSI-3 states that a single-ended SCSI bus should not
be longer than 3 m. Only if no use is made of fast SCSI, are up to 6 m allowed. Ultra-
SCSI (Fast-20) limits this to a further degree: when up to four devices are connected,
3 m of cable may be used, otherwise the length of the bus must be limited to 1.5 m.

Overview 249

e ﬁ" Y ”ﬁ ‘ Ultra-SCS! a0 MHz
o ﬁ T ! Ultra-SCS! at |0 MHz (with max. 4 evices)

T ’% : Single-ended JiCS! at 10 MHz (racafmmended)

ﬁ e ﬁ, y Single-ended {iCS! at 5 MHz
1

—— }
Ef: L i Lvoscsi Eﬂ
. - . atallspeeds

T T
: 1 . PN L.) DnFerernial S35, at all speecs

o 1.5 3 G 4 15 25 m

Figure 19.1 SCSI cable lengths.

These problems are not shared by the differential interface. It is far more resistant
against external interferences and allows cable lengths of up to 25 m. Because of the
high power consumption, however, the differential drivers cannot be integrated into
the SCSI protocol chip. For this reason, they are more expensive and not widely
available. Figure 19.1 summarizes the allowable cable lengths.

Low voltage differential (LVD)

The new low voltage differential interface is supposed to bring the advantage of
single-ended and differential interfaces, namely low cost and high stability com-
bined with long cable length. Its power consumption is so low that it can be
integrated into the SCSI chip; on the other hand, it is so immune to interferences that
cable lengths of up to 12 m will be possible. Standardization is practically finished,
so that the first devices will be on the market before the end of 1997.

Narrow and Wide SCSI

Originally, the SCSI bus was 8 bits wide. With SCSI-2, 16-bit and 32-bit wide SCSI
buses were introduced. The additional B cable for bits 8 to 31 has never been a
success. Wide SCSI uses the 68-pin P and Q cables now standardized in SCSI-3. The
P cable carries the data bits O to 15 and the control signals, the Q cable carries the
data bits 16 to 31.

There is, however, an important difference between wide SCSI-2 and wide SCSI-3:
while a wide SCSI-2 bus can principally handle only eight devices, a wide SCSI-3
bus can serve up to 16 or 32 devices, depending on the bus width.

Narrow and Wide SCSI can be mixed on the same bus. More details follow later
in this chapter.

250 The parallel SCSI interface

19.2

Speed

SCSI-1 had two transfer options: asynchronous transfer with about 1.5 to 3
Mbytes/sec and synchronous transfer with up to 5 Mbytes/sec. SCSI-2 introduced
fast synchronous transfer with up to 10 megatransfers/sec (for 8-bit width). Finally,
as an addition to the SPI document, SCSI-3 defines the Fast-20 (Ultra-SCSI)
standard with a transfer rate of 20 megatransfers/sec.

Since SCSI devices negotiate their transfer rates as a function of their capabilities,
devices of different speeds can be used together on one bus.

SCSI signals

The standard 8-bit wide SCSI-2 bus has 18 signals, nine data signals and nine control
signals. In Wide SCSI, additional data signals are added, plus two further control signals
for a second cable.

In this book all timing diagrams show signals as active-high; in other words, a logic
1 is represented by a high signal. In reality, however, signals are either active-low or dif-
ferential for SCSI. In either case they must be driven into the active state. Termination
resistors negate the signals, holding them nonactive until bus drivers drive the signal
active. This makes it possible to leave devices on the bus whose power has been turned
off. With the introduction of Ultra-SCSI, more and more devices use active negation
with time-critical signals, that is, the devices even actively drive the signals to non-
active level.

Three of the SCSI signals, BSY, SEL, and RST, must be implemented as wired-or.
This allows more than one driver to activate the signal at a given time. Of course,
only one driver is necessary to make it active. All other signals need not be wired-
or and are usually implemented with tri-state drivers.

Figure 19.2 shows a wired-or signal implemented with open collector transistors.
As long as the transistor is inactive, the terminator assures the high, inactive state.

FO +5V

220
ohm
Bus

-, - Ry L3 — . & o -

| ! signal
330
ohm

| . I @ Ground

o 4

Signal S|gnal Signal Terminator

Device 1 Device 2 Device 3

Figure 19.2 Wired-or bus signals.

SCSI signals 251

8-bit 16-bit 32-bit
Data A cable P cable Q cable P cable
phase
1 Byte 0 Byte 1 | Byte O | Byte 3 j Byte 2 lByle 1 | Byte 0]
2 Byte 1 Byte 3 | Byte 2
3 Byte 2
4 Byte 3

Figure 19.3 Byte ordering for Wide SCSIL

When the transistor turns on it pulls the voltage down to the active state. Even if
more than one transistor becomes active simultaneously the result is the same.

Wide SCSI

Wide SCSI is a SCSI-2 option, which makes possible 16- or 32-bit wide data
transfers. In order to handle the extra width an additional 29 signals are necessary.
16-bit wide SCSI fits on the P cable defined in SCSI-3 for the primary SCSI bus. For
32-bit wide SCSI a second cable, the Q cable, is needed, which accommodates the
secondary SCSI bus. Physically, the P cable and the Q cable are identical: both have
68 pins. Figure 19.3 shows the ordering of bytes for 8-, 16- and 32-bit wide transfers.

The devices involved negotiate whether or not to use Wide SCSI. This is possible
because commands and messages always take place across the 8-bit bus. It is even
possible to mix devices using different data widths on the same bus. Figure 19.4
shows such a configuration.

Table 19.1 lists all SCSI signals along with their function. A look at the SCSI bus
phase descriptions in Section 19.8 will make it easier to understand the role of each
signal.

32-bit SCSI
host adapter

Terminator
L -] 7

P cable
Qcable

Adapter

Terminator

16-bit SCSI
disk drive

8-bit SCSI 32-bit SCSI
tape drive disk drive

Figure 19.4 Mixed configuration with Wide SCSI.

252 The parallel SCSI interface

Table 19.1 The SCSI signals.

Abbreviation Name Function
BSY BUSY Wired-or signal indicating that the bus is in use.
SEL SELECT Wired-or signal used during selection and reselection.
c/p COMMAND/DATA Used by the target to indicate the type of data transfer. When
active, control information (commands or messages) is transferred.
/o INPUT/OUTPUT Used by the target to indicate the direction of the data transfer

(with respect to the initiator). When active the initiator receives
data. Also differentiates selection from reselection.

MSG MESSAGE Used by the target during the MESSAGE phase.
REQ REQUEST Used by the target during the handshake sequence. This signal
REQQ exists twice: REQ on the A and P cables, and REQQ on the Q cable.
ACK ACKNOWLEDGE Used by the initiator during the handshake sequence. This signal
ACKQ also exists on the A and P cables and on the Q cable.
ATN ATTENTION Used by the initiator to indicate the ATTENTION condition.
RST RESET Wired-or signal that indicates the RESET condition.
DB(7) ... DATA BUS 8 data bits and parity bit that comprise the data bus.
DB(0) The data bits are also used during the arbitration
DB(P) phase. Parity is odd.
DB@31) ... DATA BUS 24 data bits and 3 parity bits that expand the data bus.
DB(8)
DB(P3) ...
DB(P1)
Termination

Each end of the physical SCSI bus must be terminated with the appropriate resistors.
These set the signals to inactive level and prevent reflections at the cable ends which
would overlay the signal. Most SCSI devices have sockets for the terminating resis-
tors or, even better, they have active terminator chips that can be switched on and off
with a jumper or via software. The terminators in the two devices located at the ends
of the bus should be left installed; the other devices should have their terminators
removed or disabled. If a cable does not happen to end at a device then this loose
end must be terminated with an external terminator.

A SCSI terminator must be supplied with +5 V. Leads in the SCSI cable are
reserved for this purpose. These terminator power leads can be connected to the
+5 V of any device by means of a jumper. Usually, only the host adapter supplies the
terminator power. Thus, the terminators are powered as soon as the host is switched
on. With very long cables (differential up to 25 m) the line drop of terminator power
can become too high. In such cases, also the last device on the SCSI bus should
supply terminator power. A diode in the supply lead ensures that switched-off
devices do net get their supply voltage from the terminator power lead. Single-ended
and differential SCSI need different terminators.

The data parity bit

The only way to detect a corrupted data byte sent over the SCSI bus is through the
parity bit. Parity works as follows: the sender of a data byte sets the parity bit in such
a way that the sum of all bits becomes odd. This is called odd parity. The receiver

19.3

Cables and connectors 253

Bit 7 6 5 4 3 2 1 0 P

Original ‘1!1#0!1 ‘0]0‘0‘0'0} Parity 0K

7T T]
1 Error \L}wo‘o‘o!o‘o‘olo‘ Parity error

2 Errors ‘1i1|1‘0‘0|}0‘010|0‘ Parity OK

Figure 19.5 Shortcomings of SCSI parity.

then checks to see if the total number of 1s in the data and parity bits is odd. When
this is the case the receiver assumes that the data is intact. The implementation of a
parity bit went from optional in SCSI-1 to mandatory in SCSI-2. There is one parity
bit for every eight data bits (that is, four for 32-bit Wide SCSI). If a SCSI device
detects a parity error it will ask that the data be sent again. A detailed example of
this can be found on page 301.

One deficiency in the parity bit approach is that only an odd number of ‘bad’ bits
can be detected. This means that it is possible for corrupted data to go unnoticed
(Figure 19.5). If an initiator sends a byte where two bits change their value on the
bus, the parity bit will still be good. The target receives the byte and has no way of
detecting the corrupted byte. When the target writes this data to the drive the error
remains but the data is recorded as good. Although this is an obvious shortcoming,
in practice it is extremely rare for an even number of bits to change their value.

Using a single parity bit as the sole method of error detection is not uncommon.
Almost all memory buses, from PC to mainframe, share this design. Although I/O
buses are generally exposed to noisier environments than internal buses, this simple
method of ensuring data integrity proves to be effective here as well.

Cables and connectors

SCSi cables

As opposed to the ATA standard for the IDE interface, the SCSI standard primarily
defines the SCSI bus cable, but not the power supply of the devices. An exception is
the integrated SCA connection for hard disks which has been added to the SPI-2
document in the context of SCSI-3.

The single-ended and the differential pin assignments for SCSI are designed to
make it possible to use the same cables. The A cable is a 50-pin cable while the P
and Q cables are 68-pin. Either implementation may use either ribbon cable or
twisted-pair, the latter being also allowed as shielded or unshielded round cable. For
differential buses only twisted pair cable is recommended. Cables should have an
impedance between 90 and 140 ohms.

When Fast SCSI is being used — that is, transfer rates above 5 MHz - the cable
requirements are somewhat stricter. The cable should be shielded with an impedance
between 90 and 132 ohms and a signal attenuation of less than 0.095 dB at 5 MHz.

254 The parallel SCSI interface

SCSI-3 requires even stricterimpedance values. At the same time, SCSI-3 defines
a single-ended and a differential impedance measuring method. Especially for Ultra-
SCSI (Fast-20), high-quality cables with Teflon isolation are recommended because
their impedance comes nearest to the ideal value of 90 ohms.

For use of round cables with the single-ended SCSI bus, the SCSI-3 standard
defines the following rules for the arrangement of lead pairs:

® [ead pairs 47/48 (ACK) and 57/58 (REQ) must be located in the cable core. If
there are more than three lead pairs in the core, these two must not lie opposite to
each other.

® The lead pairs for data signals must form the outer layer of the cable.
® Each lead pair must consist of the signal lead and the corresponding ground.

Since no lead pair assignment is defined for the differential bus, cables that meet
the above requirements can be used for both interface variations.

Beware of pitfalls!

SCSI cables, in particular incorrectly wired round cables, are a frequent cause of
malfunctioning SCSI configurations. The least critical is still ye goode olde ribbon
cable. Thus, if you run into inexplicable problems, try to swap the external cables
with a ribbon cable directly connected to the devices. And do not forget to check
correct termination!

Internal cables and connectors

The most common choice for device internal SCSI connections are 50-pin ribbon
cables with 1.27 mm (0.05 inch) conductor spacing. Ribbon cable connectors are
directly crimped on. The device electronics typically use a 50-pin male header which
fits the female ribbon cable connector. The contact numbers of connectors and cables
match 1:1; see connector scheme 1 in Table 19.2 (page 259).

Wide SCSI too internally employs ribbon cable, but in a 68-pin high density
version with a conductor spacing of 0.54 mm (0.025 inch). Thus an internal Wide
SCSI cable is physically narrower than an internal narrow SCSI cable. Here the
normal SCSI scheme is used: cables have male headers while devices have female
connectors. The connectors used are unshielded high density connectors (Mini-Sub-D)
with a contact distance of 1.27 mm (0.05 inch).

SCSI backplanes

RAID subsystems in particular employ SCSI backplanes which us the 80-pin SCA
connector. The SCA-2 connection has been additionally incorporated into the SCSI-3
SPI-2 document.

SCA-2 contains not only all signals for Wide SCSI, but also the supply voltages
and some additional signals, such as spindle synchronization of disk drives. In
SCA-2 the contacts are of different length so that when plugging and unplugging the
devices, power supply voltages and signals are connected in a specified sequence.
This is a very simple way of exchanging devices during operation (hot swapping).

Cables and connectors 255

SCSI-2 and SCSI-3 high density connectors Pin 68

0 R A Y

- 32,39 mm -

- 68,07 mm _
Fin 1
Ty Pin 49 q

i Pin 2 Pin 50
SCSI-1 and SCSI-2 ribbon cable connector

B4.2% mm

H56.26 mm

- — o
- Rin
Fn2s -

T===D

Pin 50~

\
 Pin 26

Centronics connector

Figure 19.6 SCSI connectors.

External SCSI connections

For external connections shielded round cables are recommended, for which the
SCSI-2 standard defines two basic connector variations. On the one hand, the 50-pin
‘Centronics’ connectors can be used which are already known from SCSI-1. Cables
with such connectors are often, though not completely correctly, called SCSI-1
cables. On the other hand, the standard specifies shielded 50-pin high density con-
nectors (Mini-Sub-D). These are commonly called SCSI-2 connectors, but they are
also officially allowed in the SCSI-3 standard. For types, connector scheme 2 of
Table 19.2 applies. Figure 19.6 gives detailed specifications.

Wide SCSI nearly exclusively uses the 68-pin high density connector (Mini-Sub-D)
with the pin assignments defined in SCSI-3. This Wide SCSI cable is commonly called
SCSI-3 cable, although Wide SCSI and SCSI-3 do not necessarily belong together.

256 The parallel SCSI interface

19.4

New in the SPI-2 standard of SCSI-3 is the VHDCI connector (Very High
Density Cable Interconnect). This Wide SCSI connector is so small that two of them
will fit onto one PC slot cover.

Finally, there are some pin assignments that are not described in the SCSI speci-
fication. One of these comes from Apple and is also used in a number of inexpensive
PC host adapters and devices. Here, the external connector is a DB-25 female con-
nector. This solution is rather unsatisfactory and completely unusable for Fast-20
(Ultra-SCSI), because there is no separate ground lead for each signal. Obviously,
differential and LVD will not work with this either. The pin assignment is shown
under connector scheme 3 in Table 19.2 (page 259).

Single-ended SCSI

The vast majority of devices sold today are equipped with single-ended SCSI. The
main reason for this is the extra cost in implementing differential and the cost of
twisted-pair cabling. Most SCSI chips have single-ended drivers already built in.

Bus length

Single-ended SCSI allows a bus of up to 6 meters. When higher transfer rates than
5 Megatransfers per second are to be used, SCSI-2 limits the lengths to 3 m. The
SCSI-3 Fast-20 option requires a further restriction: when more than four devices are
connected, the bus must be only up to 1.5 m long. This is adequate for most appli-
cations within a single enclosure. Also allowed are short extensions from the bus,
so-called stubs, of 10 cm or less. These must be kept at least 30 cm apart. Bear in
mind that the distance from the protocol chip to the connector must be attributed to
the stub length.

Signal levels and termination

Figure 19.7 shows the implementation of a typical single-ended SCSI signal. The
output driver is a NAND gate. One input is for the signal and the other for enabling
the output. The driver must meet the following specifications: 2.5-5.25 V (inactive);
0.0-0.5 V (active). It must be capable of sinking 48 mA at 0.5 V, of which 44 mA
come from the termination. The input must recognize 0.0-0.8 V as active and
2.5-5.25 V as inactive. The input current for an active signal of 0.5 V must lie
between 0.0 and —0.4 mA. For an inactive signal the current must lie between 0.0
and 0.1 mA at 5.25 V. The input hysteresis must be at least 0.2 V and the input
capacitance at most 25 pF. These values must also hold for devices without power.

Passive termination

Also shown in the figure is the passive signal termination which in SCSI fulfills two
tasks: it defines the inactive level of the signals and damps the signals at the bus end
in order to prevent reflections. In SCSI-1 and SCSI-2 it consists of a pair of resistors

Single-ended SCSI 257

—2 45V

Signal eut T ' Bus

Enable o-4 _/ . N signal

Signal in * —<__ P ohm

_[

Terminator

Figure 19.7 Typical single-ended SCSI.

for each signal of the SCSI bus. The 220 ohm resistor connects to +5 V while the
330 ohm connects to ground. Together the resistors bring the signal level to 3 V
when no drivers are active. The resistors are allowed a tolerance of + 5% although
+ 1% is recommended. This passive termination scheme was introduced in SCSI-1.

Active termination

SCSI-2 introduces an alternative for terminating a single-ended bus which has
meanwhile widely succeeded as the better one. The most important condition here
is that the signal impedance lie between 100 and 132 ohms. This active termination
circuit, which is shown in Figure 19.8, is less sensitive to noise than the passive
termination. Active terminator chips also allow the termination to be switched on

+5 V
= terminator

— —= DB(0)
—_+———= DB(1)

—_— t—[_—— DB(4)

Voltage regulat : K _DB(S)
oltage regulator —

| ; 520 A : DB(6)
max > m —

Vout = 205 V — = DB(7)

= 4T v

18 x 110 ohm

Figure 19.8 Alternative SCSI-2 termination.

258 The parallel SCSI interface

and off via software. SCSI-3 defines a set of rules for correct termination which
practically forces active termination.

Forced perfect termination

Forced perfect termination is a variation of active termination which works with an
array of diodes and Zener diodes. It has often been praised as a possibility to run an
overlong SCSI bus safely. However, since modern devices with fast SCSI interfaces
use the active negation technique, use of forced perfect terminators should be
strongly discouraged. In the worst case, it can lead to the destruction of SCSI driver
chips through excessively high currents.

Active negation

In more recent SCSI chips, the active negation technique is employed in order to
improve signal quality independently of terminators and, consequently, TERMPWR. In
active negation, an active signal is not simply set to high resistance, but the driver
actively sets it to a level of about 3 V. This is obviously possible only for signals for
which the or-wiring is not needed. Usually, REQ and ACK and the data signals are
operated with active negation. While the SCAM protocol is active, active negation
must be disabled.

Improper termination

What happens when a single-ended bus is incorrectly terminated? I can give the fol-
lowing account from my own experience. If the bus has no termination at either end,
there is no reference level for the signals and nothing will work. This rarely happens,
however, because usually the host adapter has its termination installed. In general a
SCSI bus with termination at only one end will work without problems over short
lengths. However, if the bus is very long or is in a noisy environment then it will be
susceptible to intermittent hanging. This is also true for other forms of improper ter-
mination. When the termination is not located at the physical end of the bus the
problem will usually go unnoticed for quite some time. A bus with three terminators
also tends to function without difficulties, in my experience.

This tolerant behavior is attractive but can lead to insidious problems. It is true that
an incorrectly terminated bus will often work quite well. However, if the system is then
moved or an additional device is added to the bus it may suddenly hang or show inter-
mittent problems. When problems like this occur it always makes sense to begin
looking for the problem bottom up by asking whether the bus is properly terminated.

Pin assignments

The various connectors defined in the SCSI standard were described in Section 19.3.
There are atleast three different pin layouts for the different connectors. The same con-
nectors always use the same assignment. There are three schemes for this assignment:

Single-ended SCSI 259

® The A cable with 25 lead pairs for ‘narrow’ SCSI.
® The P cable with 34 lead pairs for 16-bit wide SCSIL

® The Q cable, again with 34 lead pairs, contains the higher 16 data bits and, in
combination with the P cable, allows 32-bit wide SCSI.

Table 19.2 lists the pin assignments for the single-ended SCSI-2 A cable.

Wide SCSI

For Wide SCSI the SCSI-2 standard had defined an additional 68-pin B cable. It was,
however, seldom employed in practice. Even the first Wide SCSI implementations
used the P cable which is now defined as part of SCSI-3. It contains the control
signals and the data bits O to 15 together with the two associated parity bits. These
constitute the primary SCSI-3 bus.

For 32-bit wide SCSI, the SCSI-3 standard defines the additional Q cable for the
secondary SCSI bus (Table 19.3). The Q cable contains data bits 16 to 31 together
with the handshake signals REQQ/ACKQ. This doubling of handshake signals on the
secondary bus is necessary because the primary and the secondary bus can be of
different lengths and this leads to different signal transit times on the two cables.

Table 19.2 The A cable for single-ended SCSIL.

Signal Connector Cable and Connector Connector Signal

assignment connector assigmnent — assignment

2 assignment | 2 3

Ground 1 | o 26 14 DB(0)
Ground 2 3 4 27 2 DB(D)
Ground 3 5 6 28 15 DB(2)
Ground 4) 8 29 3 DB(3)
Ground 5 9 10 30 16 DBA)
Ground 6 11 12 31 4 DB(3)
Ground 7 13 14 32 17 DB(6)
Ground 8 15 16 33 5 DB(7)
Ground 9 17 18 34 18 DB(P)
Ground 10 19 20 35 19 Ground
Ground 11 21| 22 36 13 Ground
Reserved 12 23 24 37 9 Reserved
Not connected 13 29 26 38 - +5 V terminator
Reserved 14 27 28 39 Reserved
Ground 15 29 30 40 8 Ground
Ground 16 31 8o 4] 20 ATN
Ground 17 33 34 42 6 Ground
Ground 18 35 36 43 23 BSY
Ground 19 By 38 44 22 ACK
Ground 20 39 40 45 10 RST
Ground 21 41 42 46 21 MSG
Ground 22 43 dd 47 7 SEL
Ground 23 45 46 48 11 c/D
Ground 24 47 48 49 24 REQ

Ground 25 49 50 50 12 170

260 The parallel SCS! interface

Table 19.3 The P cable for single-ended SCSI-3.

Signal Connector Connector Signal
Ground 1 35 DB(12)
Ground 2 36 DB(I3)
Ground 3 37 DB(14)
Ground 4 38 DB(15)
Ground 5 39 DB(PI)
Ground 6 40 DB(0)
Ground 7 41 DB(1)
Ground 8 42 DB(2)
Ground 9 43 DB(3)
Ground 10 44 DB(4)
Ground 11 45 DB(5)
Ground 12 46 DB(6)
Ground 13 47 DB(7)
Ground 14 48 DB(P)
Ground 15 49 Ground
Ground 16 50 Ground
+5 V terminator 17 51 +5 V terminator
+5 V terminator 18 52 +5 V terminator
Reserved 19 53 Reserved
Ground 20 54 Ground
Ground 21 55 ATN
Ground 22 56 Ground
Ground 23 57 BSY
Ground 24 58 ACK
Ground 25 59 RST
Ground 26 60 MSG
Ground 27 61 SEL
Ground 28 62 C/D
Ground 29 63 REQ
Ground 30 64 70
Ground 31 65 DB(®)
Ground 32 66 DB(9)
Ground 33 67 DB(10)
Ground 34 68 DB(I1)

Mixing narrow and wide SCSI

It has already been mentioned that you can mix narrow and wide SCSI on one bus.
How does this look in practice? The simplest case is when you wish to connect a
device with a narrow interface to a 68-pin internal bus. Then you simply need an
adapter that connects the pins of an A cable socket with those of a corresponding P
cable connector. You can, however, not use this adapter at the end of the bus because
it does not terminate the superfluous data signals. By the way, the P cable uses the
same assignments on leads 11 to 60 as the A cable on its 50 leads.

If you want to connect an external P cable with an external A cable, you need an
adapter which not only connects the correct signals, but also terminates the super-
fluous signals. Figures 19.9 and 19.10 show typical mixed configurations, while a
circuit diagram of the cable adapter is shown in Figure 19.11. When mixing devices
please note that an 8-bit SCSI device cannot see any IDs higher than 7!

Single-ended SCSI 261

16-bit SCSI
l hard disk

Wids 5C51
Scheme

l taeminator

16-bit SCSI
hard disk

8-bit SCSI
scanner

16-bit SCSI

B-bit SCSI
CD racorder

Tesminaloe
—

S~
Cable adapter

\Only 1 16-bit device!

olll®e 5o

Figure 19.10 Various mixed configurations.

P cable
Ground 2!
BB(12) 2
Ground 3
DB(13) 4
Ground '
DB(14) 6
Ground i3
DB(15) 8 A cable
Ground 9
DB(PY) | 10 |]
Ground " 1A Ground
Ground y 42 22 Ground
3 33 23 Res.
Termi 24 24 Res
nator 35 25 Ope

36 26 +5V Term.

Res. 37 27 Res.
Res. 38 2R Res.
70 50 50 70
Ground 61 l_l
DB(8) 62
Ground 63
DB(9) 64
Ground 65
DB(10) | 66
Ground 67
DB(11) | 68

Figure 19.11 Circuit diagram of an A to P cable adapter for single-ended SCSI.

262 The parallel SCSI interface

19.5

Differential SCSI

Differential SCSI is used mostly in applications that require cable lengths greater
than 6 meters. The maximum length allowed here is 25 meters, independently of the
speed. Stub lengths must be less than 20 cm. It is highly recommended that only
twisted-pair cables be used for an external differential bus. Tables 19.4, 19.5 and
19.6 show the A, P and Q cables for differential SCSI, respectively.

Signal levels and termination

Each differential signal on the SCSI bus uses two wires, named +signal and —signal.
The signal is recognized as active when the voltage of +signal is greater than that of
—signal and inactive when the converse is true.

The sensor signal makes it possible to implement a circuit for protecting the dif-
ferential drivers. The corresponding pin on the single-ended cable is connected to
ground. In this way if a cable with a single-ended device attached is connected to a
differential device the sensor signal becomes grounded, disabling the differential
drivers.

Table 19.4 The A cable for differential SCSI.

Signal Connector Cable and Connector Signal

assignment connector assignment

2 assignment 1 2

Ground 1 1 4 26 Ground
+DB(0) 2 g 4 27 -DB(0)
+DB(1) 3 X 6 28 -DB(I)
+DB(2) 4 7 8 29 -DB(2)
+DB(3) 5 9 10 30 -DB(3)
+DB(4) 6 11 12 31 -DB(4)
+DB(5) 7 13 14 32 -DB(5)
+DB(6) 8 18 16 33 -DB(6)
+DB(7) 9 17 18 34 -DB(7)
+DB(P) 10 19 20 35 ~DB(P)
Sensor line 11 21 20. 36 Ground
Reserved 12 23 24 37 Reserved
+5 V terminator 13 25 26 38 +5 V terminator
Reserved 14 2. 28 39 Reserved
+ATN 15 2R 30 40 -ATN
Ground 16 31 32 41 Ground
+BSY 17 33 34 42 -BSY
+ACK 18 B S 36 43 -ACK
+RST 19 37 38 44 ~RST
+MSG 20 39 40 45 -MSG
+SEL 21 Al e 46 —SEL
+C/D 22 43: 44 47 -C/D
+REQ 23 s 46 48 -REQ
+1/0 24 47 43 49 -1/0
Ground 25 49 SO 50 Ground

Table 19.5 The P cable for differential Wide SCSI.

Differential SCSI 263

Signal Connector Cable Connector Signal
+DB(12) 1 1 P 35 -DB(12)
+DB(13) 2 3 4 36 -DB(13)
+DB (14) 3 5 6 37 -DB(14)
+DB(15) 4 i 8 38 -DB(15)
+DB(PI) 5 9 10 39 -DB(P1)
Ground 6 11 12 40 Ground
+DB(0) 7 13 14 41 -DB(0)
+DB(1) 8 15 16 42 ~DB(1)
+DB(2) 9 17 18 43 -DB(2)
+DB(3) 10 19 20 44 -DB(3)
+DB(4) 11 21 22 45 ~DB(4)
+DB(5) 12 23 24 46 -DB(5)
+DB(6) 13 25 26 47 -DB(6)
+DB(7) 14 2¢/: 28 48 -DB(7)
+DB(P) 15 29 30 49 -DB(P)
Sensor line 16 31 32 50 Ground
+5 V terminator 17 33 34 51 +5 V terminator
+5 V terminator 18 25 36 52 +5 V terminator
Reserved 19 &7 38 53 Reserved
+ATN 20 39 40 54 -ATN
Ground 21 41 42 55 Ground
+BSY 22 43 44 56 -BSY
+ACK 23 45 46 57 -ACK
+RST 24 47 48 58 -RST
+MSG 25 49 50 59 -MSG
+SEL 26 51 52 60 -SEL
+C/D 27 8 54 61 -C/D
+REQ 28 59 56 62 -REQ
+I/0 29 S S8 63 -1/0
Ground 30 59 60 64 Ground
+DB(8) 31 61 62 65 -DB(8)
+DB(9) 32 63 64 66 -DB(9)
+DB(10) 33 65 66 67 -DB(10)
+DB(11) 34 67 68 68 -DB(11)

Differential termination

The differential SCSI bus needs different terminators than the single-ended bus.
Differential terminators are always passive terminators. Figure 19.12 shows the dif-
ferential interface for a signal along with its termination.

Beware of pitfalls!

While single-ended SCSI can also work with cables in which not all leads are wired,
for differential SCSI you need practically all of the lead pairs. Cable adapters. for
example from Mini-Sub-D to Centronics connectors, are often sloppily designed
too. Developers often think only of single-ended SCSI and wire pins to ground
which in differential (and LVD) SCSI carry signals. In case of doubt, please test the
assignments with an ohmmeter.

264 The parallel SCSI interface

Table 19.6 The Q cable for differential Wide SCSI.

Signal Connector
+DB(28) 1
+DB(29) 2
+DB(30) 3
+DB(31) 4
+DB(P3) 5
Ground 6
+DB(16) 7
+DB(17) 8
+DB(18) 9
+DB(19) 10
+DB(20) 11
+DB(21) 12
+DB(22) 13
+DB(23) 14
+DB(P2) 15
Sensor line 16
+5 V terminator 17
+5 V terminator 18
Reserved 19
Terminated 20
Ground 21
Terminated 22
+ACKQ 23
Terminated 24
Terminated 25
Terminated 26
Terminated 27
+REQQ 28
Terminated 29
Ground 30
+DB(24) 31
+DB(25) 32
+DB(26) 33
+DB(27) 34

Connector Signal
35 -DB(28)
36 ~DB(29)
37 -DB(30)
38 -DB(31)
39 -DB(PI)
40 Ground
41 -DB(16)
42 -DB(17)
43 -DB(18)
44 -DB(19)
45 -DB(20)
46 -DB(21)
47 -DB(22)
48 -DB(23)
49 -DB(P2)
50 Ground
51 +5 V terminator
52 +5 V terminator
53 Reserved
54 Terminated
55 Ground
56 Terminated
57 -ACKQ
58 Terminated
59 Terminated
60 Terminated
61 Terminated
62 -REQQ
63 Terminated
64 Ground
65 -DB(24)
66 -DB(25)
67 -DB(26)
68 -DB(27)

Output enable o

Signal out

Signal in

Input enable

1/8 SN75176

© +5 V Terminator

330
ohm

- Bus signal

o + Bus signal

330
ohm

Terminator

Figure 19.12 Differential SCSI driver.

19.6

Low voltage diferential (LVD) 265

Low voltage differential (LVD)

The disadvantages of traditional parallel SCSI interfaces have more and more devel-
oped into a serious obstacle for the further development of SCSI. Single-ended SCSI
is interference-prone, the cable length is too short with fast speeds and Fast-20
(Ultra-SCSI) is how far this interface can go. Differential SCSI, on the other hand,
is too expensive because of its high power consumption, so the drivers cannot be
integrated into the protocol chip.

One way out of this dilemma is promised by the low voltage differential (LVD)
interface. It is defined in the recent SCSI-3 SPI-2 document and a few of them will
probably become available by the end of 1997. LVD is a differential interface with
substantially reduced power requirements which allows it to be integrated into the
SCSI protocol chip. This will place it more or less on the same price level as the
single-ended interface, although it is slightly more expensive to manufacture: the
chips need more contacts because each SCSI signal needs two leads.

Further - faster

Final specifications for operation of LDV are still outstanding, but it looks as though
a cable length of 12 m will be supported for all speeds. At the same time there are

Table 19.7 The A cable for low voltage differential SCSI.

Signal External Cable and External Signal
connectors internal connectors connectors
+DB(0) 1 1 2 26 -DB(0)
+DB(1) 2 3 4 27 -DB(1)
+DB(2) 3 5 6 28 -DB(2)
+DB(3) 4 7 8 29 -DB(3)
+DB(4) 5 9 10 30 ~DB(4)
+DB(5) 6 11 I 31 -DB(5)
+DB(6) 7 13 14 32 -DB(6)
+DB(7) 8 15 16 33 -DB(7)
+DB(P) 9 17 18 34 -DB(P)
Ground 10 19 20 35 Ground
DIFFSENSE 11 21 22 36 Ground
Reserved 12 23 24 37 Reserved
+5 V terminator 13 29 26 38 +5 V terminator
Reserved 14 27 28 39 Reserved
Ground 15 29 30 40 Ground
+ATN 16 31 32 41 -ATN
Ground 17 %) 34 42 Ground
+BSY 18 25 36 43 -BSY
+ACK 19 33 38 44 -ACK
+RST 20 39 40 45 -RST
+MSG 21 41 42 46 ~MSG
+SEL 22 43 44 47 -SEL
+C/D 23 45 46 48 -C/D
+REQ 24 47 48 49 -REQ

+1/0 25 49 50 50 -1/0

266 The parallel SCSI interface

Table 19.8 The P cable for low voltage differential Wide SCSI.

Signal Connector Connector Signal
+DB(12) 1 35 -DB(12)
+DB(13) 2 36 -DB(13)
+DB(14) 3 37 -DB(14)
+DB(15) 4 38 -DB(15)
+DB(PI) 5 39 -DB(PI)
+DB(0) 6 40 -DB(0)
+DB(1) 7 41 -DB(1)
+DB(2) 8 42 -DB(2)
+DB(3) 9 43 -DB(3)
+DB(4) 10 44 ~DB(4)
+DB(5) 11 45 -DB(5)
+DB(6) 12 46 -DB(6)
+DB(7) 13 47 -DB(7)
+DB(P) 14 48 -DB(P)
Ground 15 49 Ground
DIFFSENSE 16 50 Ground
+5 V terminator 17 51 +5 V terminator
+5 V terminator 18 52 +5 V terminator
Reserved 19 53 Reserved
Ground 20 54 Ground
+ATN 21 55 -ATN
Ground 22 56 Ground
+BSY 23 57 -BSY
+ACK 24 58 -ACK
+RST 25 59 -RST
+MSG 26 60 -MSG
+SEL 27 61 -SEL
+C/D 28 62 -C/D
+REQ 29 63 -REQ
+1/0 30 64 -1/0
+DB(8) 31 65 -DB(8)
+DB(9) 32 66 -DB(9)
+DB(10) 33 67 -DB(10)
+DB(11) 34 68 -DB(!1)

already discussions about Fast-40, Fast-80 and more in connection with LVD. Thus,
the parallel interface has definitely not yet reached its peak.

Universal drivers

The specific problem of the transition phase from single-ended to LVD has been
solved quite cleverly: devices will be equipped with universal drivers (and termina-
tors) which allow single-ended and LVD devices to work on the same bus. As long
as any single-ended device is connected, the LVD devices switch into single-ended
mode. At that moment the advantages of LVD are lost, but this strategy allows a
smooth introduction of LVD without having to exchange all devices at one go.

You too can already make your provisions: from now on, only use cables in which
all 25 or 34 lead pairs are wired through.

SCSI expanders 267
19.7 SCSI expanders

For quite some time various manufacturers have offered devices such as single-
ended to differential SCSI converters or SCSI repeaters. These devices are, however,
not covered by the SCSI standard. Presently, ANSI is working on a technical report
under the title EPI (Enhanced Parallel Interface) which amongst others deals with
these devices. A technical report is less than a standard. It describes marginal areas
not covered by the standard itself, but it is not binding. On the other hand, it does
not have to go through the complicated approval process.

The area covered by the EPI is defined as follows: ‘This document is an ANSI
technical report that provides guidance to experienced implementors and users of
parallel SCSI beyond that contained in the formal standards.’

Segment

First, the EPI defines the term segment. A segment is a parallel SCSI connection ter-
minated at both physical ends with a terminator. So far, this is more or less the
common definition of the SCSI bus. The novelty is that several segments can be
joined with expanders.

Each SCSI segment is electrically independent of the others. Thus, limits such as
maximum length and bus load apply to each individual segment. Expanders can also
connect segments with different interfaces, for example single-ended with differential.

Domain

All segments joined by expanders constitute a SCSI domain. This term is already
known from the SAM (SCSI Architectural Model). All devices of a domain appear
as logically connected. Thus, all devices of a domain share the available IDs and the
bandwidth.

Expanders

An expander transparently connects two parallel SCSI segments. This means that it
is invisible to the SCSI protocol and consequently has no SCSI ID. It cannot arbi-
trate by itself and it cannot send out its own messages. The signal delay must be as
short as possible.

In reality, an expander will obviously cause signal delays. These limit the number
of expanders that can be used in one SCSI domain. PARALAN, for example,
specifies that at most two of their expanders may lie between any two devices.

Applications

A simple application is the connection of a single-ended SCSI segment with a dif-
ferential one. Thus, you can connect a subsystem with differential devices via a
25-m cable and a single-ended/differential expander to a single-ended host adapter
(see Figure 19.13).

268 The parallel SCSI interface

- scsl ;
]ﬂmemll SCSI domain

oo |. ¥ e -2 ‘
- SCSI segment 2 :
Host adapter I SE/DIF LESea _ Streamer|

(single-ended) |

SCSI D 7 1B

25 m differential

. External
Host™computer T T subsystem

Figure 19.13 Single-ended/differential expander.

Another important application is the extension of a SCSI bus. Especially with
Ultra-SCSI, the limit of 1.5 m for more than four devices is quickly reached. Here
one can often not only reach an overall length of 2 x 1.5 m, but with a smart appli-
cation of an expander, the bus can be divided into two segments in such a way that

Ultra-SCSI
hard disk

Ultra-SCSI
hard disk

Ultra-SCSI
host adapter

Without expander: total cable length: 1.5 m

Scanner

CD recordar

Ultra-SCSI
hard disk

Ultra-SCSI
hard disk

Ultra-SCSI
host adapler

With expander: Total cable length: 2 x 3 m

SCSI segment 2

Figure 19.14 SCSI bus extension with expanders.

SCSI expanders 269

Host

SEDIE
eapander

Differential
Wide SCSI
host adapter

D7

SEDI-
axpander

up to 25 m differential SCSI

Figure 19.15 SCSI ‘backbone’.

neither of the two segments contains more than four devices, which allows the total
length to be increased to 6 m (see Figure 19.14).

Some manufacturers of SCSI expanders go even further. In a point-to-point con-
nection of the expanders, that is, without any further devices in between, they allow
much longer connections between the expanders than specified by the standard.
Thus, with two differential expanders connected ‘back to back’ it is possible to cover
a distance of 50 m.

Expanders cannot only be employed at the end of a SCSI segment; they can also
branch off in the middle of a segment. This allows you to build configurations in
which single-ended segments branch off a differential backbone segment (Table
19.15). Thus, all kinds of chain or tree structures are legal as long as the maximum
number of expanders between two elements is not exceeded. Obviously, there are
also illegal configurations with expanders. All kinds of loops are prohibited, which
also excludes all configurations that contain alternative access paths to SCSI
elements.

Serial expanders

Serial expanders consist of two expander parts that are connected via a serial cable
(see Figure 19.16). The cables can be twisted pair, coax or fiber optical cables. Serial
expanders can connect much longer distances than parallel expanders. There are
devices available on the market that cover distances between 100 m and several kilo-
meters. Owing to the high signal transit times with long distances, it is not sufficient
to serialize and deserialize the parallel signals. Instead, data and commands must be
buffered; this makes such devices extremely expensive and also causes them not to
work properly in highly complex applications. Here, we can only recommend proper
consultancy and a trial installation under real-life operating conditions.

270 The parallel SCSI interface

19.8

SCSI segment 1
SCsI

host adapter

Serial
v axpandar
D7 Liart A}

SCSI segment 2

Host

101

100 m up to about 1800 m \
fiber optic cable > D0

Senal
wxpindo
part By

Figure 19.16 Serial expanders.

SCSH bus phases

All transactions on the SCSI bus are composed from eight distinct bus phases.
SCSI-3 even defines one more bus phase. However, the emphasis of the SCSI-3
documentation is no longer on the bus phases, but on the description of service
requests and service responses, in correspondence with the SAM architecture model.
Therefore, you will also find no more timing diagrams in the SPI document. In spite
of this fundamental change in the documentation it must still be said that from
SCSI-2 to SCSI-3 nothing substantial has changed in the transactions, mainly
because downward compatibility must be ensured.

Therefore, in our present description of SCSI-2, we shall stay with bus phases and
timing diagrams. Only towards the end of the section will the new representation in
SCSI-3 briefly be sketched.

Phase sequences

Everything begins and ends with the BUS FREE phase. BUS FREE describes the situa-
tion where no device is in control of the SCSI bus.

Three phases deal exclusively with bus protocol. During the ARBITRATION phase
one or more initiators will indicate their wish to use the bus. If more than a single

BLS ARBITHATIOI\ zﬂ'ﬂol\l ME ‘%A("E COMMAND,
HEE ll ' 8 MESSAGE,
K / STATUS

. _ _

Figure 19.17 Simplified SCSI phase diagram.

SCSI bus phases 271

SCSI reset '
or protocol error [’E’ MESSAGE
B OUuT
[
Y T | BELECTION —ime—- COMMAND
Y ¥
— _ﬂ_
BUS FREE || ARBITRATION gﬁm gu$’
o }
A ¥ ¥
!
RESELECTION STATUS
<a- |
TAY |
| - .-
L—— MESSAGE IN %—
]
A

Figure 19.18 Complete SCSI phase diagram.

initiator arbitrates, the one with the highest SCSI ID wins. The successful initiator
then uses the SELECTION phase to choose a target with which to communicate. The
RESELECTION phase fulfills a similar function: after successfully arbitrating, a target
that released the bus to execute a command re-establishes the connection to its
initiator.

Finally, there are four phases for exchanging data. The COMMAND phase is used
for transferring command opcodes, the DATA phase for data bytes. During a MESSAGE
phase a target sends or receives information concerning the protocol itself. Finally,
using the STATUS phase the target concludes a SCSI command and informs the ini-
tiator of its success or failure.

At any given time the SCSI bus can be in only one specific bus phase. The suc-
cession of phases is restricted; it is not possible for any phase to follow any other
phase. Figure 19.17 shows a simplified phase diagram of the normal progression of
a command. After BUS FREE follows ARBITRATION, SELECTION and a MESSAGE OUT
phase. After these come the COMMAND and DATA phases, followed by a STATUS phase.
The rules governing phase changes have evolved between SCSI-1 and SCSI-2.
While ARBITRATION and the MESSAGE OUT phase were optional after a selection in
SCSI-1, these have become mandatory in SCSI-2.

Figure 19.18 shows the complete SCSI phase diagram for SCSI-2. The arrows
between the phases indicate that a transition from one phase to another is allowed.
Thus, for example, in SCSI-2, COMMAND and DATA phases can only occur after a
MESSAGE phase has taken place. Likewise, a MESSAGE phase must also conclude these
phases.

At first glance this phase diagram can be very confusing; much more so than the
average SCSI command. Figure 19.19 depicts an actual TEST UNIT READY command

272 The parallel SCSl interface

Seq. Phase Data Text

no. symbol hex comment

0 BUS FREL

! ARBITRATION co ID 7 and ID 5, ID 7 wins
ks SELECT 81 Target ID 0

2 MESSACE OUT 80 IDENTIFY

h COrt D 00 TEST UNIT READY
= COMMAIID 00

i COFMAND 00

COMMAND 00

2 COMMAND 00

COMMAND 00

10 STATUS 00 GOOD

11 MESSAGE 1IN 00 COMMAND COMPLETE
12 BUS FREE 00

Figure 19.19 Phase sequence for TEST UNIT READY.

as captured by a SCSI analyzer. It begins with BUS FREE. After the typical sequence
ARBITRATION, SELECTION, MESSAGE (IDENTIFY) comes a COMMAND phase of six bytes.
Since no data is transferred with this command, the succession concludes immedi-
ately with the STATUS phase and the MESSAGE (COMMAND COMPLETE).

SCSI bus timing

When electrical signals change their value, they never do so as cleanly and abruptly
as is shown in a timing diagram. In reality edges are much rounder, and — as is the
case with the SCSI bus, where relatively long cables are used — reflections lead to
‘ringing’ and other distortions. In order to prevent these phenomena from causing
ill effects, a number of delays have been built into the protocol. These delays allow
the signal enough time to settle on the new value. Tables 19.9 and 19.10 list and
briefly explain all of the timing values defined in the SCSI protocol. More detailed
explanations follow in the sections on the individual bus phases.

Table 19.9 SCSI-3 timing values for Fast SCSL

Name Fast-20 Fast Description

Fast assertion period Il ns 22 ns Minimum time that REQ (REQB) and ACK (ACKB) must
be active for fast synchronous transfers

Fast cable skew delay 3 ns 4 ns Maximum time for skew between any two signals on a
SCSI cable for fast transfers

Fast deskew delay 15 ns 20 ns Minimum time required for deskew of certain signals
for fast synchronous transfers

Fast hold time 16.5 ns 33 ns Minimum time required for fast synchronous transfers

for data to remain on the bus after REQ (REQB) or ACK
(ACKB) so that the receiver can safely store them

Fast negation period 15 ns 30 ns Minimum time for fast transfers between the two REQ
(REQB) pulses of a target. The same holds for the Ack
(ACKB) pulses of an initiator

SCSI bus phases 273

Table 19.10 SCSI-2 timing values (SCSI-3 values in parentheses).

Name Time Description
Arbitration delay 2.4 us During arbitration
Assertion period 90 ns REQ (REQB) and ACK (ACKB) must be active at least this amount
(80 ns) of time
Bus clear delay 800 ns A device must release all signals within this amount of time
after it has detected a BUS FREE phase
Bus free delay 800 ns After detecting a BUS FREE phase a device must wait at least
this long before arbitrating for the bus
Bus set delay 1.8 ps Maximum time a device may activate BSY and its ID during
arbitration
Bus settle delay 400 ns Minimum time a device must wait in order that all bus signals
settle to their new values
Cable skew delay 10 ns Maximum difference in propagation time for any two signals
(4 ns) of the SCSI cable
Data release delay 400 ns Maximum time for an initiator to release DB(X) active after 1/0
goes false
Deskew delay 45 ns Minimum time necessary to deskew certain signals
Disconnection delay 200 ps When a target has freed the bus due to a DISCONNECT message
it should wait at least this long before taking part in arbitration
Hold time 45 ns For synchronous transfers the data must be set at least this
(53 ns) long after the activation of REQ (REQB) or ACK (ACKB)
Negation period 90 ns Minimum time that target must negate REQ (REQB) for

(80 ns) synchronous transfers. The same holds for ACK (ACKB) for
the initiator

Power on to selection 10s Recommended maximum time that a target should need after
power-up to reply to commands like TEST UNIT READY

Reset to selection 250 ms Recommended maximum time that a target should need after
a SCSI reset to reply to commands like TEST UNIT READY

Reset hold time 25 ps Minimum time that RST must be active

Selection abort time 200 ms Maximum time for a device to activate BSY after being selected

Selection timeout delay 250 ms Recommended minimum time that device should wait for a
busy response during a SELECTION

Transfer period progr. Minimum time between two REQ or ACK pulses for

synchronous transfers

The Bus FRee phase

When the SCSI bus is not being used by a device it remains in the BUS FREE phase.
The bus is defined to be in this phase when the signals BSY and SEL have been inactive
for longer than a bus settle delay of 400 ns. After power has been turned on or a
SCSI reset has occurred the bus enters the BUS FREE phase.

In normal operation there are two standard cases in which the BUS FREE phase is
entered. The first occurs after a command has been executed and the message
COMMAND COMPLETE has been sent. The other normal case occurs when a target
releases the bus after first sending a DISCONNECT message.

In addition to those just mentioned, there are exceptional cases, which the initiator
can bring about by sending a message to the target. In response to these messages the
target releases the bus. These messages are ABORT, BUS DEVICE RESET, RELEASE RECOV-
ERY, ABORT TAG and CLEAR QUEUE. If an initiator detects a BUS FREE during the execution
of a command that did not follow from one of these messages, it treats this as an error.

274 The parallel SCSI interface

This error is called unexpected disconnect. The initiator then attempts to deter-
mine the reason for the error by sending a REQUEST SENSE command to the target.
Another error situation that results in a BUS FREE occurs when a device does not
respond after selection or reselection.

The ARBITRATION phase

The ARBITRATION phase is used to determine which device obtains control of the bus
after a BUS FREE. If a device wishes to arbitrate for the bus it simultaneously acti-
vates the BSY signal along with the data bit that corresponds to its SCSI ID. All other
signals must be left alone. Figure 19.19 shows the data bus with COh during an ARBI-
TRATION phase. Since DB(7) and DB(5) are set this means that the devices with SCSI
IDs 7 and 5 are competing for the bus.

At this point each device arbitrating for the bus must wait for at least an arbitra-
tion delay of 2.4 us. The device then looks at the data bus to see if a SCSI ID greater
than its own has been asserted. The device with the higher ID, in this example ID 7,
wins the arbitration and in response asserts the SEL signal. This indicates to all other
devices that they should release BSy and remove their ID bit from the data bus within
a bus clear delay of 800 ns. The delay concludes the ARBITRATION phase. The suc-
cessful device now commences with either a SELECTION or RESELECTION phase.

Wide SCSI in SCSI-3 allows 16 or 32 devices to be present. For the lower eight
IDs the old scheme remains: ID 7 has the highest priority (1) and ID 0 the lowest
priority (8). This scheme is now transferred to the higher order bytes: ID 15 has pri-
ority 9 and ID 8 has priority 16; ID 23 has priority 17 and ID 16 has priority 24; and,
finally, ID 31 has priority 25 and ID 24 the lowest of all priorities, namely 32.

When you connect buses of different width, you can only use IDs that are allowed
by the narrowest bus segment. Otherwise, the devices on the narrow bus cannot rec-
ognize devices with higher IDs and arbitration will not work.

As opposed to SCSI-1, arbitration is mandatory in SCSI-2 even when the config-
uration includes only one initiator. In fact, targets also must arbitrate for the bus.
This occurs after disconnecting from an initiator to execute a command. When the
target is ready it arbitrates for the bus and reselects the initiator. This means that even
in a configuration with a single initiator and a single target true competition for the
bus can take place, for example when a target wants to reconnect to the initiator at
the same time as the initiator wants to send the target another command.

The seLecTiON phase

A selection phase takes place after an initiator wins the arbitration phase. If a target
wins arbitration then the reselection phase follows. Selection and reselection differ
in the state of the I/O signal. For reselection I/O is asserted; for selection it is not. A
device can therefore identify itself as an initiator by not asserting I/O during the
selection phase.

During the selection phase a connection is established with the desired target. BSY,
SEL, and the initiator ID are all still active from arbitration. Now the initiator asserts
the data signal corresponding to the ID of the desired target along with the ATN

SCSI bus phases 275

signal. The attention signal indicates that a MESSAGE OUT phase will follow selection.
In the example in Figure 19.19, the value 81h is on the data bus during selection.
This means that the initiator with ID 7 wishes to establish a connection with the
target with ID 0. After at least two deskew delays the initiator releases BSY.

At this point all devices look to see whether their SCSI ID bit is asserted on the
data bus. The selected device identifies the initiator by the other set data bit on the
bus. Before a select abort time of 200 ms has elapsed the selected device must assert
BSY and take over control of the SCSI bus. This is an important moment. From this
point on the target has complete control over the sequencing of SCSI bus phases. It
decides when to receive messages, command bytes or data from the initiator and
when to send status. The target also decides whether or not to disconnect during a
command and when to reconnect. Although the initiator controls what commands
the target executes, the target alone is in charge of the bus protocol.

No more than two deskew delays after the target’s assertion of BSY, the initiator
must release the SEL signal. With this the selection phase is completed. SCSI-2 now
calls for a MESSAGE OUT phase.

A selection phase is unsuccessful if the target device never responds to the ini-
tiator. In this case the initiator waits at least a selection abort time, after which it has
two options. The initiator can either assert the RST signal, causing a transition to the
BUS FREE phase, or it can release first the data signals then SEL and ATN in order to
get back to BUS FREE.

An additional word on the effect of SCSI timing on throughput: the selection
abort time of 200 ms is very long. In 200 ms a disk drive can perform around 10 /O
operations. For this reason it is very important for a target to react as quickly as pos-
sible to selection. A slow target that requires, for example, 5 ms to react to a
selection not only reduces its own throughput, but also blocks the bus for all other
devices during this time and degrades the overall throughput of the SCSI bus.

Figure 19.20 shows a schematic timing diagram of an ARBITRATION and SELECTION
phase. Delay times have been omitted in the interest of simplicity. Actual timing dia-
grams that reflect precisely what has taken place on a bus can look very different.
Figure 19.21 shows such a sequence recorded by a logic analyzer.

SEL ~
c/D
/0
MSG

ATN |]
DO-7 tatditediion 1D | iMdor and Target 10

BSY ihnnia:or m

Figure 19.20 ARBITRATION and SELECTION.

276 The parallel SCSI interface

SC5I TINIG) - Timing Maveforms
Markers

Accumulate orr

Time/Div Delay Sample period = 10 ns

T T T T ¥ T T + T
i 1 i
al 1 Il
& H 1 Il
3 H I i
D : I 1
1] H ! hid
K : | i
0 —
il L
_—1 1
i |
|
=
[#] . |
[i]

Figure 19.21 ARBITRATION and SELECTION as seen on a logic analyzer.

Some explanations of the figures showing logic analyzer output is called for. In
the line directly above the timing diagram, you see ‘Time/Div 5.000 ps’. This is the
length of time (in ps) per division shown on the upper and lower edges of the
diagram. ‘Sample period = 10 ns’ tells you that measurements are made every 10 ns.
On the left-hand side you see the names of all of the signals.

In this example it is easy to see that during the SELECTION phase the BSY signal is
inactive for about 1 ps; this moment represents the transfer of control from the ini-
tiator to the target. A glitch can be seen on the data lines during the SELECTION phase.
This is caused by the toggling of the target’s SCSI ID on the data bus. Such glitches
are the reason why delays are built into the protocol.

The ReSELECTION phase

The RESELECTION phase allows a target to reconnect to the initiator after having dis-
connected to complete a command. Following a successful arbitration the target
reselects the initiator that sent it a SCSI command. This phase is differentiated from
selection by the active I/O signal. Otherwise, these phases are identical.

The MESSAGE phase

The phase following a successful selection is always a MESSAGE OUT phase. A
message phase is used by the target to either send or receive a message byte.
Message bytes contain information concerning the SCSI bus protocol, where IN and
ouT are interpreted with respect to the initiator. A list of messages and their mean-
ings is given in Chapter 20. A message can consist of one, two or a variable number
of bytes. The first byte tells which of these three types of messages is being sent. A
variable length message is referred to as an extended message, in which case the
length of the message is contained in the second byte. What follows is a description
of the timing and protocol of the message phase.

SCSI bus phases 277

v o LG
SEL . . i~ '
C/D '
w | |
ATN | B

REQ . __]

ACK | L

: . . ST
DO-7 Arkitraton 1D Iriliaier ard larget D | . Message

BUS) :
FREE ARBITRATION RESELECTION MESSAGE IN

Figure 19.22 RESELECTION and MESSAGE IN.

A look at the phase diagram in Figure 19.22 shows that a MESSAGE IN phase can
take place after each information transfer phase as well as after a RESELECTION.
Following the flow of the message phase in Figure 19.22 we see that the BSY signal
is still set from the SELECTION phase. The target then activates MsSG, 1/0 and C/D in
order to proceed to the MESSAGE IN phase.

Now the message byte is put on the data bus. After deskew and cable deskew
delays the target sets the REQ signal. In response the initiator reads in the message
byte and sets ACK. The target can now remove the byte from the bus and release REQ.
Finally, the initiator responds by releasing ACK. Such an exchange is known as an
asynchronous request/acknowledge handshake or REQ/ACK sequence. This method of
transfer is used for the command, data, and status phases as well.

At this point the bus is still in the MESSAGE IN phase. If additional bytes are to be
sent, that number of REQ/ACK sequences take place to transfer them. To end the
message phase the target releases the MSG signal.

The target receives a message from the initiator during a MESSAGE OUT phase. An
extra step is needed here since the initiator must inform the target of its intention to
send a message. To do this the initiator activates the ATN signal, which is permitted
during any phase except BUS FREE or ARBITRATION. During data and command phases
it is up to the target whether to receive the message byte immediately or wait until
the end of the phase. ATN during a selection, message or status phase calls for imme-
diate transfer of the message byte after the current REQ/ACK sequence.

This transfer unfolds almost identically to the REQ/ACK sequence described above.
The target activates REQ. In response to this the initiator places the message byte onto
the data bus and after the proper delays activates ACK. The target then reads the byte
and releases REQ. Finally, the initiator releases ACK and the transfer is complete. The
target knows whether additional bytes will follow by examining the first message byte.
Theinitiator releases ATN when it has sent all of its message bytes. The target ends the
MESSAGE phase by releasing the MSG signal.

278 The parallel SCSI interface

BSY
SEL

co _|

I’0

msa L __

ATN .

REQ mo| |] 1 B
-

ACK) Iniiia;tor_J_I . J_|

MESSAGE OUT COMMAND

DO0O-7 .'ML[. [In;lcr Wk}'

Figure 19.23 MESSAGE OUT and COMMAND.

Afterwards, if a command phase takes place the signals 1/0 and /D are already in

the proper state, as Figure 19.23 shows.

The coMmAND phase

The COMMAND phase is used by the target to receive the actual SCSI commands from the
initiator. It is important to remember that the target has taken control of the bus since the
end of the SELECTION phase. First it finishes the MESSAGE OUT phase, which the initiator
brought about using ATN. Immediately thereafter is the beginning of the COMMAND phase.

SC5I TINIG | - Timing Waveforms
Markers

Accumulate off

Time/Div Delay | _790.9 us Sample period = 10 ns

i) 1
[1 I 1
. 4
i —1
B T | — 1
B —
[¥] | —
- | L
S¥ U |'
fd Y
Fi
fil
.0
U L 7| 5] 9]
CX il l 1 Il 1 I I H

Figure 19.24 COMMAND phase as seen on a logic analyzer.

SCSI bus phases 279

BSY
SEL
Cc/D
Vo

MSG
ATN o

REQ e | [| [1 [
ACK Moiebr | [[l]
D0-7 J Taget | JTager | [wwedy Jivad

DATA IN DATA OUT

Figure 19.25 DATA IN and DATA OUT.

A command phase is characterized by the ¢/D line being active while 1/0 and MSG
are inactive. The command phase proceeds with REQ/ACK sequences in the same
manner as a MESSAGE OUT phase until all command bytes have been transferred.

On the leftmost side of the timing diagram (Figure 19.24) you can see the target
already waiting with active REQ signal. After the first Ack little time is needed for the
target to read the first byte and release REQ. Almost immediately after the initiator
releases ACK the target is requesting the second byte. The initiator needs a relatively
long time to prepare the bytes, as indicated by the distance between REQ/ACK
sequences. This command happens to be an INQUIRY command (12 00 00 00 FF 00),
which is covered in greater detail in Chapter 12.

By examining the first command byte the target can tell how many additional
bytes will follow. It collects all bytes from the initiator and releases C/D, thus ending
the COMMAND phase.

The DATA IN and DATA out phases

Almost all command sequences contain a data phase. This is how control informa-
tion and user data are exchanged between target and initiator. The target begins a
data phase by de-asserting /D and MSG. At this point either asynchronous or syn-
chronous transfers may take place, depending on a previous agreement between the
two devices. The asynchronous method will be described here, while synchronous
transfer is covered in Section 19.10.

If the target wishes to send data to the initiator it asserts the 1/0 signal, indicating
a DATA IN phase. On the other hand, when the target wishes to receive data it de-
asserts 1/0 for a DATA OUT phase. Figure 19.25 depicts a single DATA IN and DATA OUT
transfer, and Figure 19.26 shows the DATA phase as seen on a logic analyzer. The
REQ/ACK sequences proceed as described in the message phases.

280 The parallel SCSI interface

Markers

Accumulate Gff

d Time/Div Delay Sample period = 10 ns

T LU T)
R [SCSI TINIG] - Timing Waveforms J

I ;_|‘ 1
—
i p— — -
: l
f
— lfi
|
i
0 T T Y — |i
T m n n n 1
I_ A A L A : L A L lIJ

Figure 19.26 DATA phase as seen on a logic analyzer.

The stATUS phase

A target uses the status phase to send status information to an initiator. In contrast to
a message, which can be sent at any time during a command sequence, a status phase
only takes place when a command has completed, been interrupted or been refused
by the target. In this phase ¢/D and /0 are asserted while MSG remains de-asserted.
Status information, always one byte in length, is transferred in a single REQ/ACK
sequence. A list of status bytes and their meanings can be found in Section 11.2.
Figure 19.27 shows the status phase and subsequent MESSAGE IN phase of an average
SCSI command. The COMMAND COMPLETE message tells the initiator that this command
is finished. Afterwards the target releases the bus completely and BUS FREE results.

BSY
SEL
co _|
o |
MSG
ATN
REQ Tase [[1

ACK o | [I
DO-7 [Target | o Tamer

STATUS MESSAGE IN

r—r i

Figure 19.27 sTATUS and MESSAGE IN.

19.9

The service model 281

The service model

The SAM (SCSI Architectural Model) of SCSI-3 introduces the client—server model.
This is also followed by the SPI insofar as it defines the services that the parallel
interface supplies as connection system to the upper level protocols.

Confirmed and unconfirmed services

There are confirmed and unconfirmed services. A confirmed service consists of
request, indication, response and confirmation. An unconfirmed service consists
only of a request and an indication. Figure 19.28 shows the model of a confirmed
service. Thus, an SPI service has the following steps. First, the service is started by
the client with a request of the upper level protocol (ULP) to the parallel interface
agent (PIA). The transport system forwards it to the server PIA. At the server’s side,
the PIA triggers an indication to the ULP. The ULP answers with a response to the
PIA. This response is forwarded via the transport system to the client PIA which ter-
minates the service with a confirmation to the client ULP.

There are ten different services which in part directly correspond to the bus
phases. They are listed in Table 19.11.

Example: command service

The command service is a confirmed service which transports a command byte from
the initiator to the target. If you compare the following description with the SCSI-2
command phase and the timing diagram you will soon notice the correspondence.

® Command request: The command request does not contain parameters. When
the target PIA receives a command request, it must set the ¢/D signal, negate the
MsG and 1/0 signals and start a REQ/ACK cycle by setting REQ.

Upper level Upper level
protocols protocols
4
7 =] 1
(V] [g =
= E) a 8
2 = SPI service] T
S interface = =
B et B . LT LI Ts PR
L
1 --- <z -
1 PIA SPI transport - PIA ?
N e e s - Systen > S -’
Client Server

Figure 19.28 Confirmed services.

282 The parallel SCS! interface

Table 19.11 SCSI protocol services.

Service Type

Bus free service Unconfirmed
Reset service Unconfirmed
Selection service Confirmed
Reselection service Confirmed
Command service Confirmed
Data out service Confirmed
Data in service Confirmed
Status service Confirmed
Message out service Confirmed
Message in service Confirmed

® Command indication: The command indication contains no parameters. When
the initiator PIA detects the /D signal, sees that the MSG and 1/0 signals are negated
and that a REQ/ACK cycle has begun, then it must generate a command indication.

o Command response: The command response contains the command byte and
the attention flag as parameters. When the initiator PIA receives a command
response, it must put the command byte on the data lines, set the ATN signal in
accordance with the attention flag and terminate the REQ/ACK cycle.

o Command confirmation: The command confirmation contains the command
byte together with the attention flag and parity flag as parameters. When the target
PIA detects the termination of the REQ/ACK cycle, it must read the command byte
from the data lines, and set the parity flag in accordance with the parity check and
the attention flag in accordance with the ATN signal. With these parameters, it then
generates the command response.

19.10 Synchronous transfers and Fast SCSI

The normal SCSI transfer mode is asynchronous. Commands, status and messages
are always transmitted asynchronously. Only for data transfer can an alternative syn-
chronous transfer mode be negotiated.

In SCSI, asynchronous data transfer is by definition slower than synchronous
transfer. Furthermore, because of the signal transit time through the SCSI cable,
asynchronous transfer depends on the distance between the individual devices.
Figure 19.29 shows this correlation.

Synchronous transfer is a SCSI data transfer mode which in its original definition
allows data rates of up to 5 Mbytes per second, independently from the distance.
Already in SCSI-1, synchronous transfer was specified as optional. SCSI-2 increases
the data rates to 10 MHz by offering what is known as Fast SCSI. Measuring the
speed in MHz makes sense here because SCSI-2 also provides for bus widths of up
to 4 bytes. The datarate is simply the bus width in bytes times the rate in MHz. Table
19.12 lists various SCSI throughputs.

Both the original and the Fast synchronous transfers use the same bus protocol.
For Fast SCSI, however, the built-in delays are shorter and the overall times are

Synchronous transfers and Fast SCSI 283

Mbytes/
second

c 4

41

Figure 19.29 Asynchronous data rates relative to the distance.

faster. The method with which a target and initiator negotiate transfer parameters has
also remained the same for Fast SCSI. Because of their similarity, the general term
‘synchronous transfers’ will be used for both methods.

The use of synchronous transfers is negotiated between the initiator and the target
using messages. Chapter 20 covers this aspect in greater detail.

Synchronous DATA IN and DATA ouT phases

When a target uses the synchronous method of data transfer it is allowed to send a
certain maximum number of REQ pulses without waiting for ACK pulses. The pulses
occur at a fixed period, called the synchronous transfer period. The maximum number
of REQ pulses without receiving an ACK is called the REQ/ACK offset. Another way to
look at the offset is this: given that at the end of a transfer an equal number of REQ
and ACK pulses must occur, the offset is the maximum number of outstanding ACkK
pulses. If the offset is reached then the target must waituntil the initiator sends an ACK
before it sends further REQs. The result of this approach is that cable delays — the time
it takes signals to traverse the length of the SCSI cable — are effectively eliminated
from the transfer speed. For asynchronous transfers the transfer rate is directly depen-
dent on the cable length. For each byte sent there is a delay equal to the following:
the time it takes the leading edge of the REQ to travel from target to initiator, plus the
time it takes the leading edge of the ACK to travel back to the host, plus the time it
takes for the trailing edge of the REQ to reach the initiator, plus the time it takes for
the trailing edge of the ACK to make it back to the host. The synchronous method
eliminates the interlocking handshaking and with it the cable delays.

Table 19.12 Various SCSI throughputs.

Transfer rate Bandwidth

Transfer width 8-bit 16-bit 32-bit
Asynchronous (approximately 3 MHz) 3 Mbytes/sec 6 Mbytes/sec 12Mbytes/sec
Synchronous S Mbytes/sec 10 Mbytes/sec 20Mbytes/sec
Fast 10 Mbytes/sec 20 Mbytes/sec 40Mbytes/sec

Fast-20 20 Mbytes/sec 40 Mbytes/sec 80Mbytes/sec

284 The parallel SCSI interface

|—— Transfer period

_.i
e ||]] FEETTTI
ACK Offset-=5 | I | | I I I_
Data [e

Synchronous DATA OUT phase

a | 1111 [P ErTT

ACK HEEERER
Data ~ T T 07

Synchronous DATA IN phase

Figure 19.30 Synchronous data phases.

Figure 19.30 shows synchronous DATA IN and DATA OUT phases. Here a REQ/ACK
offset of five is being used. Let us look first at the DATA OUT phase. The target sends
five REQ pulses at a fixed frequency determined by the synchronous transfer period.
It must then wait since the offset of five outstanding Ack pulses has been reached.
Finally, the ACK pulses come along with the data from the initiator at the same fre-
quency. With the arrival of the first ACK pulse the number of outstanding pulses has
dropped below the offset and the target responds by sending data continually at the
defined frequency. In this way the transfer proceeds with maximum efficiency.

The synchronous DATA IN phase looks very much the same. Here, however, the
target places a byte on the data bus before the first REQ pulse. The byte is held there

rarkers [0ff]
I Accumulate
M Time/Div | 1.000 us Delay Sample period = 10 ns §

=l
[i=]
1
o
]

Figure 19.31 Synchronous data phase as seen on a logic analyzer (part 1).

19.11

19.12

Ultra-2 SCSI or Fast-40 and more? 285

| [SCSI TInicG| - Timing Weveforms
b rorcers
B Accumulate
| TimesDiv ! 1.000 us Delay Semple period = 10 ns
i ﬂ_‘___JT I
T
_ T
——
SEL O
J
8
— T
E

Figure 19.32 Synchronous data phase as seen on a logic analyzer (part 2).

until the first ACK signal has been read. Afterwards the transfer takes place at the rate
determined by the transfer period.

Figures 19.31 and 19.32 show this phase once again, this time as seen by a logic
analyzer. These are DATA IN phases as they occur in the real world. The target sends
15 REQ pulses and the accompanying data bytes, then all is still because no ACKs are
returned. It is safe to assume that the transfer offset is 15. In the second diagram,
which occurs approximately 130 ps later, the ACK pulses are returned by the initia-
tor. After the second REQ the target proceeds to send the remaining five data bytes.
The ACK pulses continue until a total of 20 have been sent.

Ultra-SCSI or Fast-20

Fast-20 is an extension of the SCSI-3 SPI document frequently called Ultra-SCSI by
the industry. Depending on the bandwidth used, it allows a data rate of 20, 40 or 80
Mbytes/second. Fast-20 works in the same way as Fast SCSI, with the exception that
some timing values are slightly tighter (see Table 19.9). The bus length of the single-
ended bus is limited too: when up to four devices are connected, the bus length can
be up to 3 m. From four devices up to the maximum of eight devices, the bus can
only be 1.5 m long. For differential buses and LVD there is no length restriction:
here the usual 25 or 12 m are allowed.

Ultra-2 SCSI or Fast-40 and more?

At least on the marketing side, the competition of the serial interface alternatives has
put supporters of the parallel SCSI interface under severe pressure. As a reaction

286 The parallel SCSI interface

19.13

19.14

they organized themselves in the SCSI Trade Association (STA) which has the aim
of pushing the development of ever faster parallel transfer modes.

As a first result, the standardization of the Fast-40 (Ultra-2) transfer mode is
expected, and there are already speculations about Fast-80. Fast-40 works with 40
Megatransfers per second, that is 40 Mbytes/sec with narrow and 80 Mbytes/sec
with 16-bit wide transfer. However, it must be noted that all transfer rates higher than
20 Megatransfers per second can only be realized with the differential interface or
with the new LVD interface.

Neither the differential nor the LVD interface is compatible with the wide-spread
single-ended interface. In order to facilitate the transition from traditional SCSI to
LVD, LVD devices will supposedly be equipped with dual-mode drivers. These bus
drivers use the DIFFSENSE signal to detect whether they are connected to a single-
ended bus or a LVD bus and set themselves accordingly.

Wide SCSi

Wide SCSI uses the same hardware protocol as the 8-bit transfers. The most widely
spread is the 16-bit wide transfer because the additional nine signals needed for this
fit on the 68-pin P cable of SCSI-3 (see Section 19.2). The SCSI-2 B cable is prac-
tically never used. Often Wide SCSI is thought to be equivalent to 16-bit wide
transfer; however, the SCSI-3 SPI document defines 32-bit wide transfer as well.

In 32-bit wide SCSI, the data signals are distributed across two cables. In order
to prevent signal skewing problems resulting from different cable lengths, an addi-
tional REQ and ACK are included on the second cable. This allows an independent
REQ/ACK sequence for each cable. During all but the DATA IN and DATA OUT phases the
second cable is unused.

Just as is the case with Fast SCSI, the use of Wide SCSI is negotiated between
devices using the message system.

SCAM

SCAM stands for SCSI configured automatically or, as marketing buffs prefer to
read, ‘automagically’. This term hides a relatively complicated protocol which
allows SCSI devices to have their SCSI ID dynamically assigned during initializa-
tion of the SCSI bus. The idea behind this concept is to make the SCSI bus
plug-and-play capable, so that the user must no longer carry out any manual config-
uration when he/she adds or removes devices to or from the bus. There is even a
specification for plug-and-play SCSI which will be presented in Section 19.15. It
builds on SCAM but contains additional specifications, for example for cables and
connectors.

SCAM is mere child’s play

Maybe one could best compare the phases of the SCAM protocol with the prepara-
tions for a fictitious children’s game. The game only works when each participant

SCAM 287

(device) has a unique number (ID). These numbers are distributed after the follow-
ing scheme.

First it is determined who of the participants is a suitable leader (dominant initia-
tor). If there is more than one candidate, the best one is selected following certain
rules. Under the leader’s direction, the preparation proper begins. First, the leader
assigns participants that can only work with a determined number (SCAM tolerant
devices) exactly that number. All other participants (SCAM devices) have a name
(ID string). In each round, the participants put the letters of their names one after the
other on the table. Whose letter is lower in the alphabet than that of any other par-
ticipant stops playing. Thus, after each round only those remain whose names are the
same up to that point and whose names are ‘high’. (When names are identical, it is
dad’s car registration plate that counts.) When only one player is left, he/she/it is
assigned a number and no longer participates in the game. Then, the next game
starts, and so on, until all players have got their number (ID). Now the SCSI game
can begin. By the way, each morning (after powering up) and after accidents (SCSI
resets) the numbers are distributed anew.

The SCAM protocol is described in Appendix B of the SCSI-3 SPI document. Its
implementation is optional, but when it is implemented it must comply with the
specifications. The author knows lots of children’s games. Maybe they will be the
subject of another book.

Conformity levels

There are three levels of conformity with SCAM. Devices which completely refuse
to function under SCAM are SCAM intolerant.

The first level is constituted by SCAM tolerant devices. They do not support the
SCAM protocol, but their functioning is not affected by SCAM and they do not
affect the SCAM protocol. This conformity level is only defined for targets.

The second level is constituted by devices that support SCAM level 1. They can
participate in the SCAM protocol but do not support some further-reaching capabil-
ities of level 2, such as more than one initiator and the hot-plug capability. For home
and office use this will play practically no role, for which reason I regard SCAM
level 1 as absolutely sufficient. Furthermore, SCAM level 1 can be realized with tra-
ditional SCSI chips provided they satisfy two conditions: first, the SCSI signals must
be software controllable independently from each other. Oldtimers such as the NCR
53C80 obviously support this feature, but even more recent chips mostly have at
least a maintenance mode in which the individual signals can be controlled sepa-
rately. The second condition is that either the chip does not use active negation or
that it can be disabled.

The complete implementation of SCAM is SCAM level 2. Level 2 devices can
carry out a SCAM configuration even when the bus is operating. Furthermore, level
2 supports more than one host adapter on the bus. However, SCAM level 2 cannot
be implemented without hardware support, that is, the capability must already exist
in the chip.

288 The parallel SCSI interface

SCAM IDs

The SCAM protocol distinguishes between different states of SCSI IDs.

The SCSIID with which a SCSI port is working at the moment is called current
ID. This can be an ID set via firmware, switches of jumpers, or an ID assigned via
SCAM. The currentdD reflects the view of the device.

From the point of view of the SCAM protocol there exist assigned and unas-
signed IDs. An assigned ID is the ID assigned to a device by the SCAM protocol.
As soon as the assignment has been carried out, the assigned ID is also the current
ID. SCAM tolerant devices are always assigned their current ID. An unassigned ID
is the current ID of a SCAM device which has not yet been assigned an ID in the
course of the SCAM protocol.

SCAM initiators

Evenin a configuration with several SCAM initiators, only one of them has the task
to assign IDs to the devices on the bus. This initiator is called the dominant SCAM
initiator. Initiators that are not dominant are called subordinate SCAM initiators. If
there is more than one initiator on the bus, they first have to negotiate which of them
will become the dominant initiator. This capability is, however, reserved to level 2
initiators. When level 1 initiators find another initiator on the bus, they assume that
they are subordinate initiators. Therefore there must be only one level 1 initiator on
any one SCSI bus.

After power-on or a reset, a dominant initiator first builds a table of the SCSI IDs
and marks all entries as unassigned. During a selection, SCAM tolerant devices must
report after 2 ms, whereas SCAM devices are implicitly assigned their current ID
when they are selected for more than 4 ms. Therefore the dominant initiator selects
each device, for more than 2 ms but less than 4 ms. When a device answers, the
initiator has found a SCAM tolerant device and enters it into the table. In order to
return in an orderly way to a bus free phase, the initiator should follow the selection
with an INQUIRY command. In this way, the initiator goes through all IDs and finds
the SCAM tolerant devices.

Afterwards it initiates the SCAM protocol, isolating all SCAM devices one after
the other and assigning them their IDs. Once this process is finished, the initiator
sends a function sequence CONFIGURATION PROCESS COMPLETE and terminates the
SCAM protocol.

The SCAM target state diagram

After power-on or a reset, SCAM level 1 targets (Figure 19.33) first go into the
SCAM monitor state, where they wait either for a normal or for a SCAM selection.

The simplest case occurs when a SCAM target already has a current ID which is,
for example, set via firmware or jumpers. When the device is selected under this ID
for at least 4 ms, the ID becomes an assigned ID. This simplified procedure without
the complicated SCAM protocol is called implicit assignment.

Until the next power-on or bus reset, a target with assigned ID behaves like a
SCAM tolerant device. In particular, it no longer participates in the SCAM protocol.

SCAM 289

Power-on SCSI bus reset

Power-on
delay

Wait for SCAM
protoco! Implicit assignment
via selection

of current ID
SCAM protocol
detected

SCAM protocol |D assignable

detected

Assignment of ID
via action code

SCAM
aborted

ID assigned

Figure 19.33 SCAM target state diagram (level 1).

When a target in the monitor state detects a SCAM initiation, it passes into an ID
assignable state in which the ID can be assigned via the SCAM protocol. Now the
device participates in the SCAM protocol until it has been assigned an ID or the pro-
tocol is terminated. When the target is assigned its ID via a SCAM action, it behaves
like a SCAM tolerant device and no longer participates in the SCAM protocol.

Once all IDs are assigned, the SCAM protocol is terminated with the SCAM
function CONFIGURATION PROCESS COMPLETE and the dominant initiator releases the
¢/D signal. However, the SCAM protocol can also end before the device is assigned
an ID, for example when the protocol is aborted because the ¢/D signal changes to
false in the middle of the process. In this case the device passes into a state without
ID and does not answer any SCSI selection. However, it continues to monitor the
bus and when it detects another SCAM protocol, the device passes again into the
assignable state.

The state diagram of a level 2 SCAM target differs only by the fact that it initi-
ates the SCAM protocol after power-on. Depending on whether a SCAM initiator
answers or not, it passes into the monitor state or the assignable state. Owing to this
capability, SCAM level 2 devices can also be added to an operating bus (hot plug).

SCAM initiation

The SCAM protocol makes extensive use of the wired-or of the SCSI signals.
Remember that a single-ended SCSI signal is active when it is low. In the inactive
state, the signals are set to high by the terminator. A signal is activated by shorting
a device to ground. When several devices activate different signals, the bus carries
the wired-or of all signals. In order to make this function, devices that use single-
ended drivers with active negation must disable their active negation while the
SCAM protocol is running.

290 The parallel SCSI interface

Only those devices participate in the SCAM protocol that still have no assigned
ID. Thus, neither SCAM tolerant devices participate because their fixed ID is always
immediately their assigned ID, nor do the SCAM targets that had their current ID
implicitly assigned by way of a selection. One after the other, the remaining devices
receive their IDs via the SCAM protocol and do not participate in it until the next
power-on or bus reset.

A device initiates the SCAM protocol by first arbitrating and then executing a
SCAM selection. One peculiarity is that in this case a device without ID is allowed
to arbitrate. This leads to the requirement for SCAM tolerant devices that they must
not be affected in their functioning by arbitration without ID.

When the device has won the arbitration, the BSY and SEL signals are set. Then it
must free all data lines and set MSG. Shortly after, it must release BSY. Thus the
device waits at least one SCAM response delay and then also releases MSG. Then it
waits until all other devices have released MSG.

Devices that are still participating in the SCAM protocol recognize a SCAM
selection by the fact that SEL and MSG are set, but not BSY. After a certain delay they
release the MSG signal and wait until all other devices have done the same. Then each
participating SCAM device sets BSY and waits for a moment until it sets several
other signals.

Now a SCAM target sets the signals 1/0, DB(6) and DB(7); a SCAM initiator also
sets ¢/D. Then the devices release the SEL signal. When the SEL signal is inactive on
the bus, then because of the wired-or it means that the signal has been released by
all devices. Now all SCAM devices release the signal DB(6) and monitor the bus.

When ¢/D is not set, no SCAM initiator is participating and all devices release the
bus. In such a case, the SCAM protocol has not been initiated successfully. When,
however, C/D is set, the participating devices set SEL and the SCAM protocol is
initiated.

SCAM configuration rules

From what has been said up to now, it follows that the following conditions must be
satisfied in order for a SCAM configuration to work:

® No SCAM intolerant devices must be installed on the bus. In particular, older
targets may be SCAM intolerant, and this is obviously not mentioned in the
owner’s manual when the device was built before SCAM was developed.

® Each initiator on the bus must be a SCAM initiator. Only one initiator may be of
SCAM level 1; all other initiators that might be present must support level 2.

® SCAM tolerant targets and those with level 1 must be powered on before or
together with the SCAM initiator. The same holds for all targets when the initia-
tor only supports level 1.

SCAM transfer cycles

All SCAM devices participate in the SCAM protocol that have not yetbeen assigned
an ID. During this process, some devices send data to all other devices. One peculiar

SCAM 291

DB(0-4) (Data) }Z" Data quirtet vat f’}\
/

DB(7) (Cycle) »

DB(5) (Request)

>

DB(8) (Acknowledge)

Figure 19.34 SCAM transfer cycles.

feature is that more than one device is allowed to send and that the data on the bus
results in a wired-or of all data sent. In most cases the participating devices must not
only send their data but also at the same time evaluate the data on the bus. Thus,
there are no read and write cycles, but as in some networks data is read by all devices
and written by one or more of them.

Data is sent over asynchronous transfer cycles (Figure 19.34). Only the data lines
are used. DB(0) to DB(4) are user data, DB(7) is used for cycle control, DB(5) as request
signal and DB(6) as acknowledge signal.

@ A transfer cycle begins when DB(7) is active, but DB(5) and DB(6) are inactive.

® All devices that have to send data put this on signals DB(0) to DB(4) and all devices
set DB(3) as request signal.

® All devices release DB(7) and wait until all other devices have done the same.
@ All devices read the data from DB() to DB(4) and set DB(6) as acknowledge signal.

@ All devices release the request signal DB(5) and wait until all other devices have
done the same.

® Sending devices now release data lines DB(0) to DB(4). All devices set DB(7).

® All devices release the acknowledge signal DB(6) and wait until all other devices
have done the same. This ends the transfer cycle.

SCAM function sequences

The stream of SCAM transfer cycles consists of one or more SCAM function
sequences. A function sequence always starts with a synchronization transfer cycle
in which the data lines DB(0) to DB4) are all set. Also when this data pattern occurs
in the middle of a current function sequence, a new function sequence starts imme-
diately after this pattern.

The second transfer cycle contains the function code (Table 19.13). The
CONFIGURATION PROCESS COMPLETE function which terminates the SCAM protocol
has no further parameters.

The two I1SOLATE functions are followed by an isolation stage in which one after
the other all targets but one are eliminated from the function sequence. Eliminated
devices wait for the next synchronization cycle.

292 The parallel SCSI interface

Table 19.13 SCAM function codes.

Function code Description

DB(4) to DB(0)

00000b ISOLATE
Isolation of a device

00001b ISOLATE AND SET PRIORITY FLAG
Isolate with priority

00011b CONFIGURATION PROCESS COMPLETE
Configuration terminated

01111b DOMINANT INITIATOR CONTENTION
Determination of the dominant initiator

11111b SYNCHRONIZATION

Synchronization

In the following transfer cycles, all targets that participate in the isolation process
send values on data lines DB(0) to DB(4) which derive bitwise from their identification
string (Table 19.14). At the same time they read from the same data lines the value
that results from the wired-or of all values sent. A target that reads a higher value
than it has sent itself or whose identification string is terminated is eliminated and
waits for the next synchronization cycle. Thus, in the end the target remains whose
identification string was the highest in bitwise comparison.

The identification string is composed of a type code, the SCSI manufacturer iden-
tification (as in the INQUIRY command) and a manufacturer specific code. This last
code is needed to distinguish between identical devices of the same manufacturer
and will therefore contain something like a serial number. The priority code consists
of the priority mark of the device, followed by a zero. This priority mark is imme-
diately set after switching the device on. The code of the maximum ID is 10b for
‘narrow’ SCSI devices (ID 0-7), 01b for 16-bit wide SCSI (ID 0-F) and 00b for 32-
bit wide SCSI (ID 0-1F). The ‘ID valid’ field contains 00b when the field is not
valid. Code 01b means that the ID field contains the current ID of the device, but that
it is not yet assigned. Code 11b, finally, means that the ID field contains the assigned
ID. The SNA (serial number available) field indicates whether the entire ID string is
currently available. Some devices have their serial number recorded on the medium
and can only read it when they are READY.

Table 19.14 The SCAM identification string.

7 6 5| 4 3 2 I 0
0 Priority code Max ID code Reserved ID valid SNA
1 Reserved ‘ ID

Manufacturer identification

Manufacturer specific code

.. 30

19.15

Plug-and-Play SCSI 293

Table 19.15 SCAM action codes.

First quintet Second quintet Description
11000b ccnnnb Assign ID 00nnnb
10001b ccnnnb Assign ID Olnnnb
10010b ccnnnb Assign ID 10nnnb
01011b ccnnnb Assign ID I Innnb
11000b Delete priority mark
10100b 10010b Localize off
01011b Localize on

After the isolation process, the initiator sends an action code (Table 19.15) which
consists of two consecutive transfer cycles. The action code is always addressed to
all devices that are still participating in the current function sequence.

Most action codes assign the device its ID. One action code deletes the priority
mark of a device, which automatically gives its identification string a rather low
value so that the device is isolated only late. Localizing is an action with which a
device attracts attention, for example with a blinking LED. In certain situations this
action is meant to help the operating personnel find a determined device.

Termination of the SCAM protocol

After initiation the SCAM protocol consists of a sequence of transfer cycles during
which the ¢/D signal is always kept set by the dominant initiator. Release of the /D
signal terminates the SCAM protocol in any case, no matter in which state the
devices are. All devices must release all signals, so that the bus changes into a
normal bus free phase. Normally, after having assigned an ID to all devices, the
dominant initiator will send the SCAM function sequence CONFIGURATION PROCESS
COMPLETE and then release the /D signal.

Plug-and-Play SCSI

Plug-and-Play (PnP) SCSI is supposed to make SCSI easier for the user. This is
achieved in two ways. On the one hand, the options offered by SCSI are severely
restricted to ensure, for example, that connectors and cables of all Plug-and-Play
SCSI systems fit together. On the other hand, the SCAM protocol is used to assign
the SCSI IDs. Together with appropriate operating system software, this is meant to
ensure that a user must only switch his/her computer off, connect a new SCSI
device, and switch the computer back on. The host adapter automatically assigns the
new device its ID and, if needed, the operating system installs the corresponding
drivers.

Less is more: restrictions on options

PnP SCSI devices have a single-ended interface and must have parity implemented.
The only external connector allowed is the 50-pin high density connector. External

294 The parallel SCSI interface

Table 19.16 Plug-and-Play SCSI default IDs.

SCSI ID PnP SCSI default ID
7 Host adapter
6 Magnetic disk drive
5
4 Tape drive or rewritable optical disk
3 CD-ROM
5

Scanner or printer

o —

connectors must be identified with the symbol for single-ended SCSI. Only active
terminators are permitted. Devices that supply TERMPWR must employ an auto-
matic fuse which after having been activated must close the circuit at the next
power-up of the device.

PnP SCSI devices must support SCAM level 1. In addition, the PnP document
suggests default IDs for certain devices. The dominant initiator should preferably
assign devices their default ID (Table 19.16); if this is not possible, the next smaller
free ID.

System configurations

PnP configurations can only contain internal devices, external devices or a mixture
of both internal and external devices. PnP host adapters that support external devices
must possess a terminator at the external port that switches on and off automatically
depending on whether a device is connected or not. PnP SCSI devices must not ter-
minate the bus. Instead, external PnP subsystems must be terminated by an external
terminator which is plugged into the output socket of the last external subsystem.

For the internal SCSI bus, coded sockets and connectors must be used to ensure
that cables cannot be connected erroneously. The internal SCSI bus is terminated by
an internal terminator on the cable and not, as usual, on a device. When the host
adapter is integrated on the mother board, it terminates the bus. The internal cable
leads from the host adapter to the internal devices and from there possibly to a socket
that leads to the outside world. This socket must contain an automatic terminator that
switches off when an external cable is connected.

Software considerations

A common compatibility problem with hard disks can occur when a disk has been
formatted using an adapter of manufacturer ‘A’ and is then connected to an adapter
of manufacturer ‘B’. When the mapping, that is, the assignment of logical blocks to
the sectors of PC interrupt INT13h, is handled differently by both adapters, disks
formatted with one adapter cannot be used with the other one.

Mind you, mapping of physical sectors to logical SCSI blocks is the disk’s
business and independent from the host adapter and transparent to the outside. Here

Plug-and-Play SCSI 295

we are talking of the conversion of SCSI logical blocks to the CHS values of the PC
BIOS interrupt INT13h. PnP SCSI specifies that this mapping must follow the
documentation of Microsoft’s INT13 extensions.

Chapter 9 of the PnP SCSI specification lists some more general points that PnP

SCSI devices must adhere to.

The READ CAPACITY command must indicate the capacity value effectively avail-
able to the user (without spare sectors).

After power-on, the device should react without great delay to the INQUIRY
command, that is, possibly before it is READY.

Each device must tolerate negotiation of synchronous transfer, that is, it must
either accept it or refuse it correctly.

Host adapter manufacturers should supply software for one or more of the driver
levels ASPI, CAM or Miniport (WIN 95, NT).

A host adapter should be software-configurable. This applies both to hardware

resources such as address and interrupt and to SCSI options such as synchronous
transfer.

A host adapter should assign the SCSI IDs via SCAM in a reproducible way.
Thus, as long as the configuration does not change, the devices should be
assigned the same IDs at every system start.

20 scsi interlock protocol

20.1

296

The SCSI interlock protocol (SIP) is the protocol of the parallel SCSI interface. It has
been called SIP only since SCSI-3; before, it was simply the SCSI protocol. It has
practically not changed from SCSI-2 to SCSI-3 and consists mainly of the SCSI
message system. One important change has been made, however, to the IDENTIFY
message which now supports 32 LUNSs.

The message system

In the previous chapter we went over the workings of the MESSAGE phase in detail.
We saw that during the course of a normal SCSI command at least two MESSAGE
phases occur: after SELECTION or RESELECTION and before the final BUS FREE phase.
SCSI messages represent the lowest level of bidirectional communication on the
SCSI bus.

We now take a closer look at the SCSI message system. SCSI messages are used
for a number of different purposes. Messages are the only means by which an ini-
tiator can inform a target of a problem. As an example, consider a parity error on the
data bus (see Section 20.3). In general, a message can interrupt the normal flow of
phases at any time. The initiator simply sets the ATN signal, completely asynchro-
nously, and the target then collects the message.

The target also uses messages to inform the initiator of events that the initiator
cannot foresee. An example of this is when the target wishes to free the bus during
a running command. In this case it tells the initiator to secure certain information
vital to the I/O process and also informs it of the imminent release of the bus.

Table 20.1 SCSI message format.

Value Message format
00h One-byte message (COMMAND COMPLETE)
Olh Extended messages

02h-1Fh One-byte messages

20h-2Fh Two-byte messages

30h-7Fh Reserved

80h-FFh One-byte message (IDENTIFY)

Table 20.2 Extended message format.

The message system

297

Bvte Value Description
0 Olh Extended message
1 n Number of following message bytes
2 Ext. Code Extended message code
3-n+1 Message arguments

Finally, messages are used to negotiate the parameters of the various options such
as synchronous or Wide transfers. Here either the target or initiator sends a number of
messages indicating the desired option and parameters. The other device then returns
messages either echoing these parameters or values corresponding to its capabilities.

SCSI messages consist of one, two or an arbitrary number of bytes. The first byte,
known as the message code, determines the format of a message. Table 20.1 shows
the message format. In the case of an extended message the second byte gives the
length and the third byte contains the extended message code. Table 20.2 depicts the
general structure of an extended message.

The following discussions of the individual messages are grouped by function.
Table 20.3 is an overview of all SCSI messages ordered by message code.

Table 20.3 SCSI message codes.

Code Ini Tar Name Page Direction ATN neg.
00h ‘M D | COMMAND COMPLETE 300 In
0l.xx,00h O O MODIFY DATA POINTER 301 In
0l,xx,0lh O O SYNCHRONOUS DATA TRANSFER REQUEST 303 In/Out Yes
01.xx,03h O O WIDE DATA TRANSFER REQUEST 304 In/Out Yes
02h O O SAVE DATA POINTERS 301 In
03h O O RESTORE POINTERS 301 In
04h 'O O DISCONNECT 302 [n/Out Yes
05h gﬁ "M INITIATOR DETECTED ERROR 300 Out Yes
06h O M| ABORT 307 Out Yes
07h M M MESSAGE REECT 308 In/Out Yes
08h \f NO OPERATION 300 Out Yes
0%h ‘M M MESSAGE PARITY ERROR 308 Out Yes
0Ah O O LINKED COMMAND COMPLETE 300 In
0Bh O O LINKED COMMAND COMPLETE (WITH FLAG) 300 In
0Ch O [M¥ BUS DEVICE RESET 307 Out Yes
0Dh O O ABORT TAG 307 Out Yes
OEh O O CLEAR QUEUE 307 Out Yes
OFh O O INITIATE RECOVERY Out Yes
10h O O RELEASE RECOVERY Out Yes
11h O O TERMINATE /O PROCESS 307 Out Yes
12h O O CONTINUE TASK Out Yes
13h O O TARGET TRANSFER DISABLE Out Yes
14h O (M} BUS DEVICE RESET OTHER PORT Out Yes
16h M CLEAR ACA 308 Out '
20h SIMPLE QUEUE TAG 306 In/Out No
21h HEAD OF QUEUE TAG 306 Out No
22h ORDERED QUEUE TAG 306 Out No
23h IGNORE WIDE RESIDUE 305 In
24h ACA QUEUE TAG 306 Out
80h+ IDENTIFY 299 In/Out No

298 SCSlinterlock protocol

20.2

I/O processes (tasks)

I/O process and nexus

The terms ‘nexus’ and ‘I/O process’, as described in the SCSI standard, are loosely
defined. In SCSI-3 an I/O process is called a task. Since this book is based on
SCSI-2, I will continue to use the term I/O process. An I/O process begins with the
initial selection of a target by an initiator and extends through all bus free phases and
reselections until a final bus free is reached. The I/O process may consist of a single
SCSI command or a series of linked commands. The process normally ends with the
BUS FREE phase which follows the final COMMAND COMPLETE message. A process can
be terminated in response to a number of different messages, a SCSI reset or a
protocol error.

The initiator maintains an area in memory of the host for each I/O process to store
COMMAND, DATA, and STATUS information. For each area, or so-called buffer, there exist
two pointers: the current and saved pointers. At the start of the process all three current
pointers point to the beginning of their respective buffers. As the process progresses
these pointers advance through memory. When a disconnect takes place another
process may start up and use the bus, so prior to this the active pointers need to be
saved. This is actually accomplished by the target, which sends a SAVE POINTERS
message to the initiator. Later when the process becomes active again the saved
pointers are copied back to the active pointers and the process continues to completion.

Nexus is the term used to describe the relationship between an initiator and a
target during an I/O process. As soon as the selection of a target takes place an ini-
tiator—target nexus (I_T nexus) is established. However, an I_T nexus alone is not
enough to carry out an I/O process.

SCSI commands sent by an initiator are not executed by a target itself, but rather
by one of its LUNs or target routines. As we saw earlier, LUNs are the physical
devices connected to the target. Target routines are a set of very particular programs
that run on the target. These routines are optional and mainly used for diagnostic
purposes. They are, however, only seldom implemented and have therefore been
omitted in SCSI-3. A closer look at target routines is taken in Section 12.1.

With the sending of an IDENTIFY message to the target, either a LUN or a target
routine is addressed. This replaces the existing I_T nexus with an initiator—
target—-LLUN nexus (I_T_L nexus) or an initiator—target-routine nexus (I_T_R nexus),
respectively. The SCSI standard speaks of an I_T_x nexus when referring to either of
these. An I_T_x nexus is sufficient to carry outan I/O process.

Tagged queues, which are optionally supported by targets, are an ordered stack for
SCSI commands. They allow a target to store up to 256 commands from various ini-
tiators. Tagged queues do not exist for target routines. When supported, a QUEUE TAG
message follows immediately after the IDENTIFY message. The existing I_T_L nexus
is thereby replaced by an initiator—target-LUN—queue nexus (I_T_L_Q nexus). The
SCSI standard speaks of an I_T_x_y nexus when referring to either an I_T_x or an
I_T_L_Q nexus (Figure 20.1). We will see more on queues later in this chapter.

Without a tagged queue a target can accept only one command per LUN for each
initiator on the SCSI bus. In this case only I_T_L nexuses are ever established.

/0 processes (tasks) 299

Target
LUNs routines
QUEUE-TAG | I_T_L.Q
message nexus
4 - C/)Smplete
I/O process
IDENTIFY
message I_T_L nexus | I_T_R nexus
SELECTION
phase I_T nexus

Figure 20.1 Structure of a nexus.

IDENTIFY (80h—FFh)

The IDENTIFY message is used to establish a connection, or nexus, between a device
and a LUN or target routine. For the initial SELECTION of an I/O process it is an ini-
tiator that establishes this so-called I_T_x nexus. For any subsequent RESELECTION
the target then uses an IDENTIFY message to identify a particular I_T_x nexus and
thus which I/O process to activate.

The IDENTIFY message itself, which is one byte long, is shown in Table 20.4. As you
can see IDENTIFY messages have a variable field within this single byte of information.
Bit 7 is always set. In effect this reserves all messages from 80h to FFh as IDENTIFY
messages. The remaining seven bits carry the variable information:

® DiscPriv (disconnect privilege): This bit may only be set by an initiator. It allows
a target to use its own discretion to disconnect from the initiator and thus free the
bus for others to use.

® LUNTAR (LUN/target routine): When this bit is set a target routine is addressed,
otherwise a LUN is addressed. (Note that the name implies otherwise!)

® LUNTRN (LUN/target number): The LUN or target routine number.

In SCSI-2, target routines were intended for maintenance and diagnostic purposes.
They were, however, seldom implemented and have disappeared with SCSI-3.

In SCSI-3, the structure of the IDENTIFY message is slightly different. Since target
routines no longer exist, bit 5 is now reserved. On the other hand, since SCSI-3 now
supports up to 32 LUNSs, bits O to 4 are used for this purpose (Table 20.5).

Table 20.4 DENTIFY message in SCSI-2.

765432‘/‘0

1 DiscPriv [LUNTAR | Reserved |Reserved LUNTRN

Table 20.5 IDENTIFY message in SCSI-3.
7 6 5 4 ‘ 3 ‘ 2 ‘ ! ‘ 0
1 DiscPriv |Roserved LUN

300 SCSlinterlock protocol

Since most SCSI devices have embedded controllers — that is, they recognize
only LUN 0 - the most common IDENTIFY message is COh. This means IDENTIFY,
LUN 0 with disconnect privilege. If the target is not allowed to release the bus
during command execution the message becomes 80h.

An initiator is allowed to send multiple IDENTIFY messages during a single I/O
process. However, only the disconnect privilege may be modified. Should an initia-
tor attempt to change the LUN or target routine number this will cause the target to
bring about BUS FREE. Such an unexpected disconnect terminates the I/O process.

There are many ways in which an IDENTIFY message will be considered invalid.
The simplest case is when either of the two reserved bits is set. Also, a message
addressing a target routine is invalid when no such routines are implemented. Here
the target may respond with either a MESSAGE REJECT message or a CHECK CONDITION
status.

A reselection to an I/O process that does not exist is called an unexpected rese-
lection. In this situation the proper response is an ABORT message.

COMMAND COMPLETE (00h)

The target uses this message to inform the initiator that the I/O process has com-
pleted. Afterwards a BUS FREE phase is brought about by the target.

LINKED COMMAND COMPLETE (OAh) and
LINKED COMMAND COMPLETE (WITH FLAG) (0OBh)

These messages are sent instead of COMMAND COMPLETE for linked commands of a
command chain. LINKED COMMAND COMPLETE (WITH FLAG) is used when the control
byte of the command had its flag bit set. The last command of a chain uses the
regular COMMAND COMPLETE message.

NO OPERATION (08h)

This dummy message, as the name implies, does nothing. As an example of when it
might be useful, consider an initiator that has asked to send a message by setting ATN.
In the time it takes the target to switch to the message phase the initiator may elimi-
nate the need for the message. In this case it sends a NO OPERATION in order to use up
the message phase and allow the command to continue.

INITIATOR DETECTED ERROR (05h)

An initiator uses this message when it encounters an internal problem but believes it
can continue with the process. Since it is possible that the active pointers have
become defective the target must either send a RESTORE POINTERS message Or cause
BUS FREE (Without SAVE DATA POINTERS) and then reselect the initiator.

20.3

SCSI pointers 301

Parity error

Arb Re- Msg Data ¢ Msg Data
sel Out In

lo1]81[s0lon]01]02 03]07]03]00]01 02]03]04]05]05 stc...

IDENTIFY
RESTORE
POINTERS

Figure 20.2 Parity error.

SCSI pointers

As mentioned earlier, each initiator manages a set of three pointers for each I/O
process. These pointers keep track of the current position in the COMMAND, DATA and
STATUS buffers. The target can influence these pointers using the message system.

SAVE DATA POINTERS (02h)

This message causes the initiator to save the active data pointer to the saved data
pointer. It is sent before every BUS FREE phase change.

RESTORE POINTERS (03h)

RESTORE POINTERS causes the initiator to copy the saved pointers to the current point-
ers. This mechanism is put to use, for example, when a target detects a parity error
in a COMMAND, DATA or STATUS byte (see Figure 20.2). As soon as such an error is
discovered the target sends a RESTORE POINTERS message to the initiator. Afterwards
the next DATA OUT phase starts the transfer at the beginning of the data buffer.

MODIFY DATA POINTER (01h, 05h, 00h, byte 3 ... byte 6)

This message allows the target to directly modify the value of the data pointer (Table
20.6). The 4-byte argument is interpreted as a signed integer, which is added to the
current value of the data pointer.

Table 20.6 MODIFY DATA POINTER.

Byte Value Description

0 Olh Extended message
05h Length of extended message
00h MODIFY DATA POINTER
(MSB)

Argument

NN WY -
[= 2=}

(LSB)

302 SCSlinterlock protocol

204

Disconnect/reconnect: freeing the bus

One of the most important characteristics of the SCSI bus is the ability to interrupt
a running I/O process in order to free the bus for other devices. This opportunity
arises frequently for targets that must access data from a physical medium. Hard
drives typically require in the order of 20 ms to access their data, while tape drives
sometimes need several minutes.

When and under what conditions a device should free the bus can be programmed
into the target using the MODE SELECT command. An entire parameter page, the dis-
connect/reconnect page, is dedicated to this purpose. In addition, the DiscPriv
(disconnect privilege) bit in the IDENTIFY message tells the target whether it may dis-
connect for the current I/O process. Besides the DISCONNECT message, which will
now be introduced, the SAVE DATA POINTERS message of the previous section plays an
important role in freeing the bus.

DISCONNECT (04h)

Using the disconnect/reconnect parameters supplied by the initiator, the target
decides when to free the SCSI bus. It then sends the messages SAVE DATA POINTERS
and DISCONNECT, and brings about the BUS FREE phase. It is important to remember
that the DISCONNECT message does not cause the data pointer to be saved. DISCON-
NECT indicates only that the target intends to switch to the BUS FREE phase.

The initiator may also send the DISCONNECT message, which is understood by the
target as an ultimatum. In this case the target switches to the MESSAGE IN phase and
sends the SAVE DATA POINTERS and DISCONNECT messages. The target must wait for at
least a disconnect delay of 200 us after BUS FREE before arbitrating again for the bus.

Let us turn now to Figure 20.3. Time runs from left to right in the figure. /O
process 1 frees the bus after only a short time. During this disconnect time two other
processes take the opportunity to use the bus. The numbers in the boxes represent the
data (in hex) on the SCSI bus during the various bus phases, while the details are
explained above.

At the left-hand side the initiator with SCSIID 7 arbitrates for the bus. We see bit
7 set in the data byte or 80h. It wins the arbitration and starts the first /O process.
During the SELECTION phase it chooses the target with ID 0. The 81h on the data bus
reflects the addition of bit O to the initiator’s own bit 7. Following selection comes a
MESSAGE OUT phase, which the initiator uses to send an IDENTIFY message with
DiscPriv set for LUN 0 (COh). Now comes a READ®) command with the opcode
(08h), logical block number (00000h), number of blocks (01h), and control byte
(00h). After accepting the command the target decides to release the bus. It sends the
message SAVE DATA POINTER (02h) and DISCONNECT (04h) and frees the bus for other
devices.

A little later, after two other processes have been active, /O process 1 again takes
control of the bus. It first arbitrates with ID 0 (01h) and reselects the initiator by
adding ID 7 to its own (81h). At this point it could very well be the case that the
target and initiator have several activeI/O processes. Using an IDENTIFY message, the

20.5

Transfer options 303

Buz free Arh Sel Msg Data Sta Msg Bus free
[o1]81 80[ao o1 FE FF 00 00
Resalection) | g ¥ I|
h = | i o u |
| 2z 1 o o
| & | \ =1
Bus free Arb Sel Msg Command Msg Busifree — 1 ‘\ 8 |
80 1[CA 08 00 00 00 01 a0z ¢a] | | T
. o L . } <
Y] | l \ z
= E W \ | S |
z £ 2 ! I Y0
w S g 4 | |
=] s | Y I
< @ | | p |
2 8 Y | \ |
8 [|I \ [
2 L | I
« ! | \'. |
| vl
Lo Vo
. II', | \ I|
. L e .
[S T By S S 1
1/0 process 1 /O process 2 /O process 3 1/0 process 1

Figure 20.3 Freeing the bus and reselection.

target indicates the specific LUN and therefore I/O process. With this established the
target sends the actual data of the requested logical blocks. Finally, a GooD status
(00h) and coMMAND COMPLETE message (00h) conclude the I/O process.

Transfer options

SYNCHRONOUS DATA TRANSFER REQUEST (01h, 03h, 01h, mm, nn)

The target and initiator negotiate whether to use synchronous transfers using the
message system. Bear in mind that such transfers apply only to the data phases.
Commands, messages, and status are always sent asynchronously.

A SCSI device that wishes to use synchronous transfers sends the message SYN-
CHRONOUS DATA TRANSFER REQUEST to the other device. Contained in this extended
message are the desired transfer period and offset. The value in byte 3 times 4 ns
equals the transfer period, while byte 4 equals the offset (Table 20.7). An exception
to this rule is the value 12h, 50 ns, which is needed for Fast-20.

The other device, either initiator or target, replies immediately with its own SYN-
CHRONOUS DATA TRANSFER REQUEST. This message either echoes the first request or
contains less demanding parameters, such as longer period, less offset. If the device

Table 20.7 SYNCHRONOUS DATA TRANSFER REQUEST.
Byte Value Description

0 0lh Extended message

i 03h Number of message bytes after byte 2

2 Olh SYNCHRONOUS DATA TRANSFER REQUEST

3 n Transfer period

4 n REQ/ACK offset

304 SCSl interlock protocol

Seq. Phase Data Text

No. symbol hex comment

0 BUS FREE

1 ARBITRATION co ID 7 and ID 5, ID 7 wins

2 SELECT 81 Target ID 0

3 MESSAGE OUT 80 IDENTIFY

4 MSG OUT 01 Extended Message

5 MSG OUT 03 Extended Message Length

6 MSG OUT 01 SYNCHRONOUS TRANSFER REQUEST
7 MSG OUT 34 Wants transfer period 136nS
8 MSG OuUT OF Wants REQ/ACK offset 15

9 MSG IN 01 Extended Message

10 MSG IN 03 Extended Message Length

11 MSG IN 01 SYNCHRONOUS TRANSFER REQUEST
12 MSG IN 32 Gets transfer period 128nS
13 MSG IN OF Gets REQ/ACK offset 15

14 COMMAND 00

15 COMMAND 00

16 COMMAND 00

Figure 20.4 Synchronous transfer request.

does not support synchronous data transfer at all it can send either a MESSAGE REJECT
or a SYNCHRONOUS DATA TRANSFER REQUEST with the offset set to zero. In both cases
the result is asynchronous transfers for the data phases. Figure 20.4 shows a relevant
sequence taken from a SCSI analyzer.

In principle, either target or initiator can request synchronous transfers. In practice,
however, the initiator or in general the host adapter is the one that initiates this nego-
tiation. Some older host adapters were known to have difficulty with a SYNCHRONOUS
DATA TRANSFER REQUEST from a target. For this reason some target devices allow the
synchronous transfer option to be disabled by jumper.

This negotiation does not take place for every I/O process. Rather the agreement
holds between devices until the next SCSI reset or a BUS DEVICE RESET message. Of
course, either device may decide to negotiate new parameters should a reason arise.

WIDE DATA TRANSFER REQUEST (0Th, 02h, 03h, nn)
A device that wishes to uses Wide SCSI sends its partner device a WIDE DATA TRANS-

FER REQUEST. This message contains the desired bus width encoded in byte 3. Here

Table 20.8 WIDE DATA TRANSFER REQUEST.

Byte Value Description

0 0lh Extended message
02h Number of message bytes after byte 2
03h WIDE DATA TRANSFER REQUEST

n Transfer width 23*"

w o —

20.6

Tagged queues 305

00h means 8-bit, 01 h 16-bit and 02h 32-bit wide transfers (Table 20.8). Just as with
the synchronous negotiation, the partner device replies immediately with its own
WIDE DATA TRANSFER REQUEST message here either echoing the width or sending a
smaller value. If Wide SCSI is not supported then it either replies with a width of
zero or sends the MESSAGE REJECT message.

This agreement also holds until a SCSI reset or BUS DEVICE RESET message.
Likewise, the negotiation does not take place before each I/O process. Such an imple-
mentation would increase the overhead of the SCSI protocol unnecessarily.

Of course, it can also occur that the total number of bytes to be sent is not divis-
ible by the transfer width. Here the valid bytes of the final transfer are padded with
one or more dummy bytes. In this case a message is sent immediately following the
transfer indicating how many bytes to ignore.

IGNORE WIDE RESIDUE (23h, nn)

IGNORE WIDE RESIDUE indicates which bytes of a final wide transfer to ignore. Table
20.9 shows the structure of the message and the meaning of byte 1.

Tagged queues

We took a first look at tagged queues during the definition of a nexus. Tagged queues
are a SCSI-2 option which allows each LUN to queue up to 256 I/O processes per
initiator. The main advantage of this approach is that it makes optimization possible.

For targets that support tagged queues, implementing the QUEUE TAG message is
obligatory. An initiator enters a command into the queue by sending QUEUE TAG
immediately following IDENTIFY. This action sets up an I_T_L_Q nexus replacing the
I_T_L nexus previously established.

There are three types of QUEUE TAG messages. All contain a reference number for
the I/O process or queue tag in byte 1 (Table 20.10). This same tag is sent in a QUEUE
TAG message at reselection time to identify which process is resuming.

Table 20.9 IGNORE WIDE RESIDUE.

Byte Description

0 IGNORE WIDE RESIDUE (23h)

1 Byte mask

Invalid bits
Byte mask 32-bit transfers 16-bit transfers

00h Reserved Reserved
Olh DB{3I-24) BR{15-8)
02h DB(31-16) Reserved
03h DB(31-8) Reserved

04h-FFh Reserved Reserved

306 SCSlinterlock protocol

Table 20.11 The QUEUE TAG messages.

Byte Description
0 Message (20h, 21h, 22h)
1 Number

Using the QUEUE TAG messages, an initiator also has the ability to influence the
position of commands within the queue.

SIMPLE QUEUE TAG (20h)

This message causes the I/O process to be added to the command queue. It is up to
the target to decide exactly when to process it (provided no ORDERED QUEUE TAGS
have been received, which are discussed next). Commands with a SIMPLE QUEUE TAG
allow, for example, disk drives to optimize time intensive seeks to the medium.
Targets always use this message when reselecting an initiator for a tagged process.

HEAD OF QUEUE TAG (21h)

This message leads to placing the I/O process in question at the beginning of the
queue. The currently active process is run until completion. Subsequent HEAD OF
QUEUE TAG processes are placed ahead of older ones at the beginning of the queue.
In this way multiple HEAD OF QUEUE TAG processes are executed in last-in, first-out
order.

ORDERED QUEUE TAG (22h)

This message causes I/O processes to be executed in the order in which they were
received. In other words, all processes that were already in the queue will be exe-
cuted before this process and likewise all processes that arrive afterwards will be
executed after this one. An exception to this is made for processes with the HEAD OF
QUEUE TAG.

ACA QUEUE TAG (24h)

This message is new in SCSI-3 and causes a task to be entered into the queue as an
ACA task (auto contingent allegiance). The device server handles this task accord-
ing to the rules set forth in the SCSI architecture model.

Tagged queues and error handling

A target that does not support tagged queues will reply to a QUEUE TAG message with
MESSAGE REJECT. If an initiator receives a command tagged with a number already in
the queue the result is a so-called incorrect initiator connection. In response, the
target terminates all /O processes of this initiator and sends the CHECK CONDITION

20.7

Termination of I/0 processes 307

status. A subsequent request sense command would then return the sense key
ABORTED COMMAND and the extended sense key OVERLAPPED COMMANDS ATTEMPTED.

If a target attempts to reselect with an incorrect number in the QUEUE TAG
message, the initiator will respond with ABORT TAG.

Termination of I/O processes

There are a number of ways to terminate or kill /O processes, for instance simple
termination of all processes of a target or LUN. In tagged queues either all or only
active processes can be halted. Additionally, an I/O process can be made to termi-
nate ‘as soon as possible’.

BUS DEVICE RESET (OCh)

This message tells the target to kill all active and outstanding I/O processes. In
reality, the target performs a soft reset. This action not only kills all /O processes
but also nullifies device reservations and causes device parameters to be reset to
start-up values. The target enters unit attention condition, which means that it will
reply to the next command with a CHECK CONDITION status. The sense key for the fol-
lowing REQUEST SENSE command will be UNIT ATTENTION (06h).

CLEAR QUEUE (OEh)

This message is only implemented by devices supporting tagged queues. The CLEAR
QUEUE message Kkills the active I/O processes and those waiting in the queue from
any and all initiators for this LUN or target routine.

ABORT TAG (0Dh)

The ABORT TAG message allows I/O processes within ordered tagged queues to be
terminated. This message kills only the currently active process. Neither status nor
a final message will be sent for the terminated process. The I/O processes in the
queue are unaffected. The state of the LUN remains unchanged in all other respects.

ABORT (06h)

The abort message terminates all running I/O processes and all those in the queue
for this I_T_L nexus. As with the ABORT TAG message, the target skips the status and
message phases and immediately brings about BUS FREE. All other I_T_L nexuses
remain unaffected.

TERMINATE 1/O PROCESS (11h)

This message tells the target to terminate the current /O process as soon as possi-
ble. There are a few differences here with respect to the methods just described.

308 SCSlinterlock protocol

20.8

Firstly, it is up to the target’s own discretion as to when to end the process. In this
way it can see to it that, for example, the data structure of a tape is not damaged by
continuing a write until the end of the record. If the write were immediately cut short
a damaged record would result.

After the target has terminated the process the progression to the BUS FREE phase
takes place normally. First, the status 1/0 PROCESS TERMINATED is sent followed by a
COMMAND COMPLETE message. If by chance an error occurs when terminating the
process the status byte will reflect this.

The message TERMINATE 1/O PROCESS is intended for longer I/O processes that may
delay the execution of more important tasks. A subsequent request sense command
will return the sense key NO SENSE (00h) and the extended sense key 1/0 PROCESS TER-
MINATED (00h, 06h). The information field of the sense data will contain the
difference between the amount of data requested and the amount transferred.

CLEAR ACA (16h)

This message is new in SCSI-3. The target terminates the auto contingent allegiance
state and releases the bus.

Error handling in the message system

Two problems may occur when sending messages for which there is a means to
recover. Since the message system represents the lowest level of communication on
the SCSI bus, special messages exist to handle precisely these cases.

MESSAGE REJECT (07h)

This message is appropriate when a device does not support an optional message.
After receiving the unsupported message the device responds immediately with
MESSAGE REJECT.

If an initiator wishes to reject a message it must first assert ATN before de-assert-
ing the Ack of the last REQ/ACK sequence.

In the case of a target, which can control bus phases directly, it simply brings about
the MESSAGE IN phase and sends the message. If ATN is still active after the MESSAGE
REJECT message the target switches back to MESSAGE OUT and collects the messages.

MESSAGE PARITY ERROR (09h)

The target responds to parity errors during COMMAND, DATA, and MESSAGE OUT phases
with a RESTORE POINTERS message. This action makes it possible to retry the transfer
with the same data.

However, parity errors during a MESSAGE IN phase require a special procedure. In
this case the initiator sends the MESSAGE PARITY ERROR message. As always, it asserts
ATN to inform the target of its desire to send a message. The target reacts to MESSAGE
PARITY ERROR by resending the original message.

20.9

Asynchronous event notification 309

Asynchronous event notification

In addition to messages SCSI provides targets with an alternative method of inform-
ing an initiator of unforeseen difficulties. This optional mechanism is called
asynchronous event notification (AEN).

To carry out AEN the initiator and target must be able to trade roles temporarily.
The target (acting as an initiator) sends the initiator (acting as a target) the SEND
command. The data within the command contains information describing the
target’s difficulties.

The SEND command and the AEN format for the data are described in Chapter 12.

There are a number of applications for AEN. For example, devices of the com-
munications or processor class often have data for an initiator that is not the direct
result of a command. AEN allows the target to inform the initiator of the situation,
which in turn can request the data from the device.

Another application is the implementation of a write cache for a disk or tape
drive. A write cache allows a device to send GOOD status and COMMAND COMPLETE
immediately upon receiving the write data into its cache, effectively eliminating the
access time from the command execution time. Of course, at this point the data has
not been written to the medium and therefore a write error could still occur. AEN is
used to inform the initiator of the problem by sending it the sense data describing the
nature of the error (Figure 20.5).

There is a possible alternative to the above approach for devices that have write
cache but do not implement AEN. Here the target simply responds with a CHECK
CONDITION status for the next command. The disadvantage of this method is obvious:
an initiator does not learn of the error until it sends that same device another
command. Up until that point it goes on believing that the command was successful.

Cached
WRITE
_ Host Drive
(initiator) & (target)
Status
GOOD
Error é
SEND (AEN) i
Host G Drive |
(temporary (temporary
target) < — initiator)
AEN Packet ‘
with
sense data

Figure 20.5 Asynchronous event notification.

271 The new SCSI-3 interfaces

310

Many expectations in connection with SCSI-3 are directed towards the new serial
interfaces. They can and will remedy the fundamental problems of the parallel SCSI
bus. Since at the same time an important part of SCSI, namely device models, com-
mands and parameters, remains untouched, the higher level software drives can also
remain unchanged. In other words, when someone builds a host adapter with a Fibre
Channel interface, they must only supply an ASPI driver for this host adapter in
order to make existing operating systems and application programs work with the
new interface.

Three competing serial interfaces have been integrated into SCSI-3: Fibre
Channel, Fire Wire and SSA (Figure 21.1). None of these interfaces has been
invented by the SCSI committee. Fibre Channel is backed by an industrial consor-
tium and, as SCSI, is standardized by ANSI. Fire Wire is a development initiated by
Apple and an IEEE standard (P1394). SAA, finally, is an IBM development.

Device-specific command sets
- = ! | |
SCSI-3 SCSI-3 primary command set (SPC)
Architecture | | | |
Model SCSI-3 SCSI-3 SCSI-3 SCSI-3
Interlock Fibre Channel Serial Storage
(SAM) Protocol Protocol Protocol Protocol
(SIP) (FCP) (SBP) (SSP)
| | | |
A Fibre [EEE Sed
F. a;:teerlace ¢harnef fkins Archci)tr:gtire
ast- A
25t (sPI) (FC-PH) (1394) (SSA)

Figure 21.1 The new SCSI interfaces.

21.1

Fundamental problems of the parallel SCSI interface 311

In spite of the enthusiasm shown by supporters of each of these interfaces, one
fact should not be forgotten: although some of the standards have been ready for a
fairly long time, there are still hardly any devices that implement them. This is
exactly the opposite of how the successful SCSI standards have developed. They
were always developed on the basis of such a popular demand that they were imple-
mented into large numbers of devices even before the standard was finalized. All
will depend on whether there is enough user demand for the features of one of the
new interfaces before they have become obsolete.

Another important point of development and success of SCSI must not be for-
gotten: the parallel SCSI interface makes it possible to offer peripheral devices with
only one interface for all computer systems, from home computers to PCs, to work-
stations and even mainframes. This means enormous cost savings for manufacturers
and commerce and, in the end, the users. This is why the differential parallel inter-
face, in spite of its undisputed advantages, has never had a broad success.

The new interfaces would once again mean stockpiling of different versions of
the same device. And even worse, Fibre Channel comes in countless variations:
twisted pair, coaxial cable, and several kinds of fiber optic cables. SSA too has
defined twisted pair and fiber optic cables.

Thus, I hardly believe that all three serial interfaces will succeed on the market.
Only one of them will probably make it. Personally, I think it even possible that none
of these SCSI interfaces will actually succeed.

Fundamental problems of the parallel SCSI interface

The wish for other interface alternatives originates out of real deficiencies of the par-
allel SCSI interface. Some of these deficiencies can be remedied, others are
fundamental and nothing can be done about them.

Cables

50-pin or 68-pin cables are relatively expensive and the voluminous connectors
stand in the way of further miniaturization of the devices.

Serial interfaces are better off. Fire Wire only needs 6 leads, but the cable is rel-
atively thick because it also carries a power supply voltage. Fibre Channel can use
fiber optic, coaxial and 9-pin twisted pair cables. SSA too only needs a 9-pin cable.

Bus length

For many applications, the bus length is too short. Even though it is possible to reach
up to 25 m with the differential interface, the problem remains that the differential
interface is only available for a few devices. The single-ended interface allows a
maximum of 6 m which is reduced by the new fast variation down to 3 or even 1.5 m.

Fire Wire can connect 16 devices that can be up to 4.5 m from one another. SSA
allows a device distance of 20 m with twisted pair cables and 680 m with optical

312 The new SCSI-3 interfaces

21.2

fiber cables. With up to 128 devices, this allows quite a distance to be covered.
Things look similar with Fibre Channel. Distances of up to 50 m with twisted pair
cables and up to 10 km with optical fiber are possible between two devices. The
maximum number of devices lies between 127 and 16 million.

Data rate

The original data transfer rate of 10 Mbytes/sec was too low. Here, however, things
have been changing. With SCSI-3 the propagation of 16-bit wide SCSI is growing,
and at the same time Fast-20 was defined. In combination this results in a data rate
of 40 Mbytes/sec. Most recent developments under discussion are Fast-40 and Fast-
80. Should these developments succeed, the data rate of 160 Mbytes/sec will be
higher than that of some serial alternatives. I would like, however, to remind you that
command transfer is carried out in all parallel SCSI variations with a maximum of
about 5 Mbytes/sec.

Fire Wire allows data rates of 3 to 50 Mbytes/sec and thus runs the risk of being
surpassed by parallel SCSI. SSA goes up to 80 Mbytes/sec and Fibre Channel even
up to 200 Mbytes/sec.

Real time/guaranteed bandwidth

With the widespread introduction of multi-media applications such as video, an old
issue becomes important again. The parallel SCSI interface is not real-time capable
and can also not provide a guaranteed bandwidth for a given device.

Fire Wire and Fibre Channel allow isosynchronous transfer. This is a transfer
with guaranteed delivery of data in a specific time window. In the worst case, data
is delivered incorrectly rather than too late. This is exactly the feature needed for
multi-media. Applied to video, ‘incorrect’ means a (maybe only minimally) dis-
turbed image, whereas ‘too late’ means a jerky image.

Data integrity

With only one parity bit per byte, the parallel SCSI interface is not particularly well
protected against data errors.

Here, the serial interfaces promise remedy. Fibre Channel and SSA, which have
error correction built in at hardware level, are excellent. Fire Wire is only mediocre
with its error correction being carried out on the higher protocol levels.

Fibre Channel

Fibre Channel is a universal serial high-speed interface for computers and mass
storage. In contrast to all other interfaces and buses discussed in this book, it pos-
sesses features of both an I/O channel and a local network. Indeed, Fibre Channel
can serve as the transport medium for both application areas. However, the Fibre

Fibre Channel 313

FC-ATM FC-SB FC-FP FC-LE SCSI-FCP FC-13
Single Byte HIPPI Link Fibre Channel 1P
Command Sets Encapsulation Protocol

FC-AL

Arbitrated Loop

FC-PH2
Fibre Channel Enhanced
Physical Interface FC-SW
Switch Fabric
FC-PH FC-FG

Fibre Channel Physical Interface Generic Fabric
Requirements

FC-IG Fibre Channel Implementation Guide

FC-GS
Generic Services

Figure 21.2 Fibre Channel protocol family.

Channel does not contain a higher protocol of its own, but protocols such as SCSI-3,
IPI or IP build on Fibre Channel as their base (Figure 21.2).

Fibre Channel allows data rates from 12.5 to 100 Mbytes/sec; up to 400 Mbytes/sec
are being planned. Fibre Channel allows point-to-point connection, a ring or a switch
topology. The number of nodes is practically unlimited. Other than its name suggest,
Fibre Channel can use twisted pair, coaxial and fiber optic cables as transport
medium. Depending on speed and transport medium, distances from a few meters up
to 10 km can be covered. With fiber optic cables, covering the maximum distance is
even possible at 100 Mbits/sec.

Fibre Channel originates from the development of an improved physical interface
for IPL. It was developed from 1988 by the ANSI committee X3T9, and it was clear
from the beginning that Fibre Channel would also be used as a physical interface for
other protocols. Wide industry support made this development possible. The main
part of this support comes from IBM who contributed their experience with the
ESCON channel and the patented 8B/10B coding. Outside ANSI there is the indus-
trial Fibre Channel Association (FCA) whose aim is to promote marketing of the
Fibre Channel. Meanwhile the X3T9 committee has been split, and now X3T11 is
responsible for the Fibre Channel.

Fibre Channel protocol layers

The Fibre Channel main document is FC-PH and is available in Revision 4.3 of June
1994. Extensions to FC-PH are laid out in FC-PH2. FC-PH is divided into four
layers, FC-0 to FC-4 (Figure 21.3).

314 The new SCSI-3 interfaces

FC'4 508! IPl-3 HIPPI others

FC-3 Common services

FC 2 Signalling protocol
= frames, flow control
FC_ 1 Transmission protocol
coding / decoding
FC-0 | Inerfaces ... 133 266 531 1062
Media (cables) . Mbits Mbits Mbits Mbits

Figure 21.3 Fibre Channel protocol layers.

FC-0 describes the physical interface, that is transport media, connections,
senders and receivers. All variations, such as twisted pair, coaxial and fiber optic
cables are covered. In FC-PH2 the original definition is complemented with
transfer rates of 2 and 4 Gigabits/sec.

FC-1 describes the 8B/10B coding method. This method is an IBM patent and is
also used by the SSA interface (see Section 21.6).

FC-2 describes the signaling protocol. This contains all mechanisms needed to
transport data from one node to another. FC-2 describes the addressing and the
possible topologies. The protocols of FC-4 use these mechanisms.

FC-3 describes services that regard all ports of a node.

FC-4 contains the mappings of the various protocols, that is SCSI, IPI, HIPPI
or IP.

Fibre Channel terminology

In the following pages, Fibre Channel is often abbreviated as FC. Devices that can
be accessed via Fibre Channel are called nodes. FC nodes have at least one port. A
node that initiates a transaction is called an originator; the node that answers it is
called a responder.

Besides nodes, there are Fibre Channel switches. In a network constructed out of

switches, the entirety of the switches is called the fabric. For the nodes, the fabric
represents a kind of black box: nodes do not have to know what happens in the fabric
and they also have nothing to tell the fabric. The fabric forwards data packets from
a source to a destination. Connections between FC ports are called links.

Fibre Channel 315

Table 21.1 Fibre Channel interfaces.

Sender Medium i bazzlhmugl;t]/;rvres Jrec | Distance
LED 625 pm 132.81 12.5 1 km
long-wave Multimode
Laser Monomode 2 or 10 km
long-wave
0] 2
LED 62.5 pm 265.62 25 1.5 km
p long-wave Multimode
t Laser 50 um 2 km
i short-wave Multimode -
Laser 50 um
. 1k
¢ short-wave Multimode m
a 3 531.25 50
aser Monomode 2 or 10 km
1 long-wave
Laser 50 um
short-wave Multimode I'km
L 1062.5 100
aser Monomode 2 or 10 km
long-wave
E CATV coax 100 m
1 Submin coax 132.81 125 40m
€ Twisted pair 100 m
C CATV coax 75 m
t ECL Submin coax 265.62 25 30m
r Twisted pair 50 m
i CATV coax 53125 % 50m
c Submin coax - 20 m
a CATV coax 1062.5 100 25m
1 Submin coax - 10 m

Fibre Channel interfaces

Fibre Channel defines a large number of physical interfaces. Fiber optic, coaxial and
twisted pair cables can be used as the transport medium. Speeds reach from 12.5
Mbytes/sec to 100 Mbytes/sec, in future even up to 400 Mbytes/sec. Distances reach
from a few meters to 10 kilometers. Table 21.1 lists the variations.

This variety is a result of the attempt to find a compromise between cost, through-
put and transfer distance for different applications. However, not all variations are
compatible with each other. This will certainly lead to the effect that only a few vari-
ations will finally succeed. Furthermore, a whole new market might open up for
adapter products with and without speed adaptation.

Fibre Channel topologies

Fibre Channel supports three fundamental topologies: the point-to-point connection,
the ring (arbitrated loop) and the fabric (see Figure 21.4).

316 The new SCSI-3 interfaces

Workstations i ""___i

.

M | Arbitrated loop

Server Storage array :

Figure 21.4 Fibre Channel topologies.

A ring can have 126 nodes. The address space of a fabric is only limited by the
length of the ID (24 bits). This allows for about 16 million nodes.

FC frames

Data packets in Fibre Channel are called frames. A frame consists of a start mark,
the header, the payload, a checksum and an end mark (Figure 21.5). The payload
may contain further headers if they are required by the protocol. These additional
headers, however, reduce the amount of transported user data.

A sequence consists of one or more frames and has a sequence ID (SEQ_ID).
Within a sequence the frames are numbered by a sequence number (SEQ_CNT). A
sequence always represents a unidirectional operation.

Several, even simultaneous sequences can be combined into an exchange.
Exchanges can be bidirectional. An exchange has an ID on both the originator and
the responder side.

4 bytes 24 bytes 0 - 2112 bytes 4bytes 4 bytes
Start Payload End
mark Header (optional header and user data) CRC mark

Figure 21.5 Structure of a Fibre Channel frame.

From Fibre Channel to SCSI-3: the Fibre Channel Protocol (FCP) 317

Table 21.2 Header of a Fibre Channel frame.

Byte 0 Byte 1 Byte 2 Byte 3

Bit 31 Bit 0
0 Routing Destination ID
4 Reserved Source ID
8 Type Frame control
12 Sequence ID Data control Sequence number
16 Originator exchange ID Responder exchange ID
20 Parameters

The FC header primarily (Table 21.2) contains the source and destination IDs.
The routing field contains the routing information. The Type field specifies the
contents of the payload. For SCSI FCP it contains the value 08h.

21.3 From Fibre Channel to SCSI-3:
the Fibre Channel Protocol (FCP)
The Fibre Channel protocol defines the mapping of SCSI processes onto Fibre
Channel. A SCSI task (SCSI-2: I/O process) corresponds to a FC exchange. SCSI
requests and responses as defined in the SAM (they correspond to SCSI-2 bus
phases) are mapped onto information units (IU).
The information units
All SCSI processes are combined out of four basic IU types: FCP_CMND (command),
FCP_DATA (data), FCP_XFER_RDY (ready to transfer) and FCP_RSP (response). Table
21.3 shows, by way of example, the structure of the FCP_CMND information unit.
Table 21.3 Structure of a FcP_cMND IU.
7 e | s] o« s | 2] 1] o
FCP_LUN 0..7 LUN number
8 Reserved
9 Reserved Task attributes
FCP_CNTL 10 TRM CLR TRGT R d CLR ABRT R d
TASK | ACA | RESET eserve TSKST | TSKST |~ oe
11 Reserved
12 ... SCSI command block
FCP_CDB
.27 (CDB)
FCP_DL 28 ..31 Transfer length

318 The new SCSI-3 interfaces

214

Initiator U Target
SCSI READ i
command FCP_CMND Prepare
data
Data
] ready

&—— FCP_XFER_RDY
Send
¢——— FCP_DATA ———— data

Prepare
response
4=-=—-—=-==- FCP_RSP merm——mees Send
response
Command
terminated

Figure 21.6 Execution of a SCSI READ command on the Fibre Channel.

Figure 21.6 shows the schematic execution of a SCSI READ command on the
Fibre Channel.

Fire Wire (IEEE P1394)

Fire Wire is the marketing name given by the initiator Apple to the serial IEEE P1394
bus. Fire Wire has been especially designed for the requirements of multi-media
applications. It supports arbitration and both asynchronous and isosynchronous trans-
fer. Asynchronous transfer might be characterized by the motto ‘better late than
wrong’, isosynchronous transfer by ‘better wrong than late’.

P1394 was developed as a peripheral bus with the aim of low cost and appropri-
ate transfer speed and delay. Its configuration is shown in Figure 21.7.

P1394 uses either the conductors of a backplane or a shielded cable with three
wire pairs. Two of them are used for signal transmission; the third one carries the
power supply voltage for the peripheral device. The signal lines employ differential
CMOS transceivers with a signal voltage of 220 mV. Fire Wire allows devices to be
connected or disconnected during normal operation.

Data transfer is carried out half duplex, that is, either one or the other device can
send on one connection. The serial transfer rate for backplane buses is 24.5 or
49 Mbits/sec. For external P1394 it is a multiple of 98.304 Mbits/sec. The coding
allows every device to determine the speed at which data is sent by itself.

P1394 devices are called nodes. On the cable, two nodes may be up to 4.5 m from
each other. Since a P1394 cable bus can have 16 nodes, the total cable length can be
72 m. The total address space, however, is much higher. The node ID is 16 bits long.
The higher 10 bits address the bus, the lower 6 bits the node. An entire system can
thus have 64 449 nodes, 63 each on 1023 buses.

Fire Wire (IEEE 1394) 319

Syslem bus

Bridge

Cable bus

| = |

Bridge

Figure 21.7 Fire Wire configuration.

Protocol structure

The P1394 protocols are divided into three layers: the transaction layer, the link
layer and the physical layer (Figure 21.8).

Transaction layer

(READ, WRITE, LOCK)

Link layer

Packetsender l |Packa! receiver | | Cycle control

Physical layer

. Data Coding /
| NV | synchranization | decoding |
| Connector / cable | | Connection | l Signals |

state

Figure 21.8 P1394 block diagram.

320 The new SCSI-3 interfaces

Transaction layer

The transaction layer defines a complete protocol in the form of request and
response. It defines three transactions, namely READ, WRITE and LOCK. A READ trans-
action transfers data from an answering device, the responder, to the requesting
device, called the requestor. Vice versa, a write transaction transfers data from a
requestor to one or more responders. A LOCK transaction corresponds to the well-
known read/modify/write cycle: data is sent from a requestor to a responder which
processes it and sends it back to the requestor.

Link layer

The link layer provides half-duplex packet transmission. Two subactions are
defined: one delivers an asynchronous packet, the other delivers an isosynchronous
packet. Each subaction consists of three parts: arbitration, packet transmission and
acknowledgment.

Physical layer

The physical layer obviously includes cables and connectors. P1394 uses a shielded
twisted pair cable with two wire pairs for the signals and one for the power supply
voltage. Figure 21.9 shows the connector plug.

The topology of the cable bus is tree-shaped. It has one root node, branching
nodes and end nodes (leaves). This tree-like structure also implies that, as opposed
to the parallel SCSI bus, the bus signals must be forwarded actively. Thus, at least
the root and each branching node must be switched on.

Arbitration too belongs to the physical protocol layer. P1394 has three arbitration
modes: fair, urgent and isosynchronous arbitration. Isosynchronous arbitration
always has precedence. Only after all nodes that want to transfer isosynchronously
have finished their transfers, a pause occurs which is long enough to begin an urgent
or a fair arbitration. In this procedure, the distance between a node and the root has
no influence on the arbitration.

Finally, a very important feature of P1394 belongs to the physical layer: the auto-
configuration. In Fire Wire, no addresses must be configured. The bus configures
itself as part of the initialization process. The bus also detects when a node is added
or removed after initialization. Then it executes a reinitialization. Here a node may
receive a new physical node address.

I

Figure 21.9 P1394 connector.

From P1394 to SCSI-3: the Serial Bus Protocol (SBP) 321

21.5 From P1394 to SCSI-3: the Serial Bus Protocol (SBP)

The task of the SBP is to map the elements defined by the SCSI architecture model
onto the P1394 architecture. The main elements are SCSI commands, task manage-
ment functions and error handling.

initialization

First the P1394 bus must initialize itself. Then the SBP makes use of the transaction
layer services to transmit commands, data and status. Each P1394 node contains a
configuration ROM which stores a 64-bit long, worldwide unique node ID.
Furthermore, it contains information on whether a node supports the SBP and with
it the SCSI-3 protocol.

After initialization, an initiator scans the P1394 bus and logs in with the targets
that support the SBP. Only then can normal SCSI commands be issued. An SBP
target contains one or more command FIFOs for SCSI commands. A FIFO (first in
first out) is a form of a waiting queue.

The CDS

The Command Data Structure (CDS) is a data structure that transports commands
and control information from an initiator to a target (Table 21.4). When an initiator
writes a CDS into a target, this is called a TAP operation. When a target gets a CDS
from an initiator, this is called a FETCH operation.

Table 21.4 SCSI CDS.

Bytes Description

0-3 (MSQ) Address of

4-7 next CDS (LSQ) |
8-11 (MSQ) Address of

12-15 this CDS (LSQ)
16-19 Reserved Identifier LUN
20-23 CDS codes Task codes Reserved Protocol flags
24-27 CDB 0 CDB | CDB 2 CDB 3
28-31 CDB 4 CDB 5 CDB 6 CDB 7
32-35 CDB 8 CDB 9 CDB 10 CDB 11
36-39 CDB 12 CDB 13 CDB 14 CDB 15
4043 CDS transfer length
4447 Data transfer control CDS sensc length
48-51 | (MSQ) Data buffer

52-55 address (LSQ)
56-59 | (MS0)) CDS status FIFO
60-63 address (LSQ)
64-67 | (MSQ) CDS sense data
68-71 buffer address (LSQ)

322 The new SCSI-3 interfaces

21.6

Initiator sends command

== BLOCK WRITE PACKET ——>
cas (Address = FIFO,
Initiator Data = CDS) Target

4—— ACKNOWLEDGE

Target sends data

€= BLOCK WRITE PACKET ===
(Address = Data address,

Initiator Data = Requested data) Target
ACKNOWLEDGE =————

Target sends status

€— BLOCK WRITE PACKET ===
- (Address = Status FIFO,
Initiator Data = Status block) Target

ACKNOWLEDGE sty

Figure 21.10 READ command execution.

Information is transferred on the P1394 bus in quadlets, that is four bytes, or
octlets, that is eight bytes. The data structure of a CDS is divided into quadlets. The
most significant quadlet is called MSQ, the least significant quadlet LSQ.

There are five different types of CDS: the login CDS, the SCSI CDS, the man-
agement CDS, the isosynchronous SCSI CDS and the isosynchronous control CDS.
Table 21.4 shows a SCSI CDS. A SCSI CDS offers space for a SCSI-CDB up to
16 bytes long.

Command execution

Figure 21.10 shows the example of a READ command execution.

SSA

SSA stands for Serial Storage Architecture. It was originally developed by IBM as
I/O channel 9444 and made available to the entire computer industry in 1991 as an
alternative to the parallel SCSI-3 interface. Since 1994, the ANSI X3T10.1 commit-
tee is concerned with its standardization and documentation.

SSA 323

Write 20 Mbytes/sec rl Read 20 Mbytes/sec
Adapter
Read 20 Mbytes/sec Write 20 Mbytes/sec

80 Mbytes/sec full duplex

‘ 2-port H ‘ 2-port H ‘ 2-port || ‘ 2-port ||

Figure 21.11 SSA sample configuration.

SSA is a high performance interface designed as an I/O bus from the very begin-
ning. SSA builds on ports that are capable of transmitting 20 Mbytes/sec in full
duplex mode. Dual port architecture allows a theoretical maximum speed of 80
Mbytes/sec to be reached.

The dual port architecture also allows fault-tolerant connections between host and
/O device to be established. Figure 21.11 shows one of the many possible SSA
configurations.

Features

SSA has several features that are missing in the parallel SCSI interface. SSA cables
and connectors are relatively small. For internal connections, a 6-pin cable with a
minute connector is used. Externally, a shielded cable and Mini-DB9 connectors are
employed. With copper wire cable, SSA can be transmitted over 20 m, with fiber
optic cable a distance between two nodes of up to 680 m can be covered.

The reliability of the data connection is higher than with SCSI. Already at hard-
ware level, CRC allows an error rate of one error per 10" bytes to be reached. A
further data check is carried out on the link layer.

SSA devices can be exchanged during normal operation. The dual port architec-
ture allows you to configure fault-tolerant subsystems with high availability.

The modules

An SSA system consists of different basic modules. A node is a system, a controller
or a peripheral device with one or more SSA connections. There are three types of
node: single port nodes, dual port nodes and switch nodes.

A link is a dedicated connection between two individual ports of two nodes.
When a link does not transmit data, synchronization characters are exchanged which
allow you to establish whether the link is working or not.

The physical SSA connection is called a port. A port can be connected to exactly
one link.

324 The new SCSI-3 interfaces

Host

Link - T
SSA adapter Dual port node
(single port node) Port 1]
. Router
N Port2 B

Function

Figure 21.12 SSA modules.

A node can assume the role of an initiator or a target. As the SSA initiator, it
issues requests to other nodes. At least one SSA node must be an initiator. This is
the master node. An SSA target executes the requests of SSA initiators. Up to 128
SSA LUNs can be connected to an SSA target.

A logical unit (LUN) is a physical or logical device which can be accessed by a
target. Figire 21.12 summarizes the configuration of SSA modules.

A router is a functional unit in a dual port node which decides whether an incom-
ing frame is destined to this node or should be forwarded via the other port.

Topology

Three different topologies can be realized with SSA: the bus, the ring and the con-
nection of several buses via switches. Figure 21.13 shows the different topologies.
A bus can have 129 nodes, aring 128. The end of a bus can be a switch, whereas
a ring cannot contain any switches. A switch can have up to 96 ports and be itself
connected to other switches, which allows one to build very large SSA networks.

Data transfer

The SSA transport layer is defined in the SSA TL1 document (X3T10.1/0989D).
Information transfer is carried out on the basis of frames. A frame consists of a
control character, a one to six character address, between zero and 128 characters of
data and four CRC characters (Figure 21.14).

Data bytes and protocol functions are coded as characters in the 8B/10B code, an
IBM development. A particular feature of this code is that there are special characters

SSA 325

Bus topology

|
1-parn | 2-port || 2-port || [1-port

Ring topology

2-part | 2-pon |] 2port 2epart

Switch topology

|

Figure 21.13 SSA topologies.

which can be found in a continuous data stream because they use bit sequences
which otherwise do not occur. These special characters are used for structuring the
data stream and for protocol functions.

There are three different types of frame. Application frames are used for data
transport and for all information of the higher protocol layers. SCSI commands, data
status and messages are transported in application frames. Privileged frames are

- One frame _—
1 character 1-6 characters 0-128 characters 4 characters
| FLAG Control | Address | Data | CRC FLAG |
SSA User
messages data
(max. 32 byles) (max.
128 b tes)

Figure 21.14 SSA frames.

326 The new SCSI-3 interfaces

<— 1byte —»

T T
I Path
: L

T
Chﬁanne!

Each byte in the address field

teitz[6 [s [&« [3] 2] 1] o]
rE:mnd[Index r

Figure 21.15 SSA address field.

used by the transport layer for configuration and error handling. Control frames are
used by the transport layer to reset nodes or links.

The data field of an application frame is of particular interest. It can contain either
user data or a SSA message structure (SMS). The latter contains, for example, SCSI
messages, commands and status.

Addressing

The address of an application frame consists of six bytes (Figure 21.15). Four bytes
address the path and two the channel. In each address byte, the most significant bit
is the extend bit. When set, it means that this byte is complemented by the follow-
ing byte. Thus, from left to right, the first byte with the extend bit not set is the end
of the path, and the second one is the end of the channel.

The addressing itself, that is the structure of a path, is more than strange. It is opti-
mized to make routing as easy as possible. It can best be understood by looking at
the routing rules. By means of these simple rules, routing can be carried out entirely
by the hardware, thus very fast.

Routing rules

The routing rules are represented in a syntax similar to that of the Pascal program-
ming language.
A single port node follows this routing rule:

If FirstByte = 00h
then
begin
'Accept the frame';
'Interpret the remainder of the address as channel';
end
else 'Reject the frame';

A dual port node follows this routing rule:

If FirstByte = 00h
then
begin
'Accept the frame';
'Interpret the remainder of the address as channel';
end

21.7

From SSA to SCSI-3: the Serial Storage Protocol (SSP) 327

else
if FirstByte.Index 0
then
begin
FirstByte.Index := FirstByte.Index - 1;
'Forward frame via other port';
end
else 'Reject the frame';

Thus, in a frame that is forwarded, the index is decremented by 1. The frame is
forwarded until the index is zero. Then it has reached its destination. The routing
rules for a switch are only slightly more complicated.

From SSA to SCSI-3: the Serial Storage Protocol (SSP)

The task of the SSP is to map the elements defined by the SCSI architecture model
onto the SSA architecture. The main elements are SCSI commands, task manage-
ment functions and error handling. Task management is carried out by the SSP via
SSA message structures (SMS). Although there are SSA message structures which
correspond exactly to one SCSI message, this is not always the case. SSA message
structures and SCSI-3 messages must not be confused.

The SCSI command SMS

As an example of SCSI SSA message structures, Table 21.5 shows you how a SCSI
command is embedded in the SCSI command SMS. Table 21.6 lists the types of
SCSI SMS.

Table 21.5 SCSI command SMS.

7‘6‘5‘4|3|2|1!0
0 SMS code (82h)

1 SSP code (10h)

2.3 Tag

4. Initiator

.1 path

8 LUN

9 Reserved

10 DDRM Reserved Qucue Cntl

11 Reserved

12...13 Initiator channel

14 ... 15 Reserved

16 ... SCSI command

.31 block (CDB)

328 The new SCSI-3 interfaces

Table 21.6 Types of SCSI SMS.

SMS name SMS code SSP code Sender Receiver
SCSI RESPONSE 82h 03h Target Initiator
SCSI COMMAND 82h 10h Initiator Target
SCSI STATUS 82h 11h Target Initiator
ABORT TAG 82h 30h Initiator Target
ABORT 82h 31h Initiator Target
CLEAR QUEUE 82h 32h Initiator Target
DEVICE RESET 82h 33h Initiator Target
CLEAR ACA CONDITION 82h 34h Initiator Target

22 The ASPI software interface

It is fortunate that SCSI-2 defines devices so precisely on the target side. The result
is that a SCSI-2 host adapter works well with all SCSI-2 targets. However, what
about the relationship between the host and the host adapter? Here the operating
system must understand which SCSI commands to send to the target.

For host adapters that emulate a standard disk drive controller this is no problem.
The host adapter receives drive commands like any PC disk drive controller and then
translates the actions to appropriate SCSI commands. However, this hardly takes
advantage of the full functionality of the SCSI bus. Here the controller is dedicated
to the disk and cannot, for example, control a scanner or printer on the same bus.

There is much more involved in supporting a so-called transparent host adapter,
one capable of sending arbitrary commands to any SCSI target device. There is a
large number of such host adapters and each of them is designed differently; each
must be supported differently by the operating system.

Help comes in the form of an additional software layer between the host adapter
and the operating system or application. This software is delivered with hardware
(since it is hardware specific) and provides a standardized software interface to the
operating system. The result is that from the operating system’s point of view all
host adapters using this software interface look the same.

Here there are a number of examples of such an approach in the industry. The
VMS operating system for DEC VAX machines uses the concept of class and port
drivers. These are already integrated into the system so that the interplay of subsys-
tems is clearly defined. In the PC domain two important software interfaces have
emerged specifically for SCSI: the ANSI CAM (Common Access Method) specifi-
cation and the ASPI interface from Adaptec, Inc.

At the moment ASPI drivers are easier to come by than CAM drivers. In fact, the
SCSI monitor program (with source code) included with this book sits on top of
ASPL This application represents a good example of an ASPI implementation and
it makes sense to give an overview of ASPI at this time. We will go into just enough
detail to understand how ASPI is used in the SCSI monitor. The complete docu-
mentation for ASPI under DOS, Windows, OS/2, Novell and UNIX is available
from Adaptec.

329

330 The ASPI software interface

22.1

22.2

Operating system i (Backup ‘
SCSI
Disk CD-ROM Tape monitor
driver driver driver
ASPI level

ASPI manager ASPI manager ASPI manager
for for for
adapter A adapter B adapter C

Figure 22.1 ASPI functional overview.

The concept of ASPI

ASPI stands for Advanced SCSI Programming Interface. Figure 22.1 depicts the
functional layers of the interface. Different host adapters use different ASPI man-
agers, and multiple managers can be installed simultaneously. The host software,
whether device drivers or applications, talks to the SCSI bus through the ASPI inter-
face. In this way the host software is isolated from the specific hardware details of a
given host adapter.

In a DOS environment the ASPI manager is loaded at boot time by the system.
Therefore, in order to use ASPI one must first obtain the entry point from DOS.
When a call is made to ASPI using the entry point the address of a SCSI request
block is put onto the stack. All the information necessary to carry out the SCSI pro-
cedure is contained in the request block. In the following section I show how this is
done by way of short examples in Turbo Pascal (7.0).

SCSI request blocks

ASP! function calls

ASPI has a set of seven function calls, which are listed in Table 22.1. It is worth
pointing out that no hard SCSI reset is included among these. This is certainly due

Table 22.1 ASPI function codes.

Code Meaning

00h HOST ADAPTER INQUIRY

Olh GET DEVICE TYPE

02h EXECUTE SCSI COMMAND

03h ABORT SCSI COMMAND

04h RESET SCSI DEVICE

05h SET HOST ADAPTER PARAMETERS

06h GET DISK DRIVE INFORMATION

SCSI request blocks 331

Table 22.2 ASPI status bytes.

Status Description

00h In progress

Olh OK

02h SRB cancelled by host
04h Error

80h Invalid SRB

81h Invalid host adapter

82h SCSI target not found

to the fact that ASPI is capable of multi-tasking and allows many active SCSI
processes to be active simultaneously. A SCSI reset would abort all of these
processes in one fell swoop. On the other hand, a little experience with the SCSI
monitor will show that an illegal command causes some host adapters to crash, and
only a SCSI reset or system boot will correct this. The ASPI status bytes are shown
in Table 22.2.

SCSI request block (SRB) fields either contain parameters to be set or they
deliver information back and can only be read. In the SRBs depicted here the fields
that contain information returned from ASPI have a gray background.

SRB header

An SRB always includes an 8-byte long header. Following the SRB come a certain
number of parameter bytes, depending on the function. The SRB header is shown in
Table 22.3:

Function: One of the function codes given in Table 22.1.

Status: This byte takes on the values given in Table 22.2.

Host adapter: The ASPI number of the host adapter. This number is assigned by
the ASPI manager. The first adapter is assigned zero.

Flags: These flags are independent of the function.

HOST ADAPTER INQUIRY (00h)

This function call returns information on the installed host adapter (Table 22.4). The
host adapter number must be provided to the call.

Table 22.3 Format of an SRB header.

7 | e | s | o+ | 3] 2 | 1 | o
0 Function
1 Status
2 Host adapter
3 Flags
4.7 Reserved

332 The ASPI software interface

Table 22.4 HOST ADAPTER INQUIRY.

7 e | s | o« | s | 2 | 1 | o

0 HOST ADAPTER INQUIRY (00h)
I Status
2 Host adapter
3 Reserved

4.7 Reserved
8 Number of host adapters
9 SCSI'ID

10 ...25 SCSI managerl name

26 ... 41 Host adapter name

02, 557 Host adapter specific

The Host adapter ID field contains the SCSI ID of the host adapter. The Host
adapter name and SCSI manager name fields are ASCIIL.

The function call GET DEVICE TYPE returns information on the SCSI device class.
This can be accomplished using the INQUIRY command, so we skip it here.

EXECUTE SCSI COMMAND (02h)

This call is used to send an arbitrary SCSI command (Table 22.5). After the call the
SRB status must be polled until a value other than zero appears. The Adaptec docu-
mentation describes an alternative to polling which uses a so-called POST routine.
This is not recommended for application programs but is preferable for device
drivers.

In byte 3 we are only concerned with the Direction bits. A value of 0 here means
that the direction of the data transfer is determined by the SCSI command.

Target ID: The SCSI ID of the target to receive the command.
LUN: The LUN number sent in the IDENTIFY message.
Data buffer length: The number of data bytes to be transferred.

Sense data length: The number of bytes reserved for sense data at the end of this
SRB. For the SCSI monitor this is set to 0 and the automatic requesting of sense
data should be turned off at the host adapter.

Data buffer: Segment and offset of the data buffer.

e SRB link pointer: Pointer to the next SRB in set of linked commands (its use
should be avoided).

® SCSI command length: Length of SCSI command.
® Host adapter status: Here five status codes are defined.
— 00h: OK
11h: Target does not respond

333

SCSI request blocks
Table 22.5 EXECUTE SCSI COMMAND.
7 | e [s |4 | 3 | 2 | 1 | o
0 EXECUTE SCSI COMMAND (02h)
1 Status
2 Host adapter
3 Reserved Direction | Reserved ‘ Link ‘ Post
4.7 Reserved
8 Target ID
9 LUN
10 ... 13 Data buffer length
14 Sense data length
15..16 Data buffer (offset)
17 ... 18 Data buffer (segment)
19...20 SRB link pointer (offset)
21..22 SRB link pointer (segment)
23 SCSI command length
24 Host adapter status
25 Target status
26 .. 27 POST routine (offset)
28 ...29 SRB routine (segment)
30 .. 63 Reserved
64...64+m SCSI command
Gl Sense data
64+m+n

12h: Data overrun
13h: Unexpected BUS FREE
14h: Target bus phase error

e Target status: This is the byte returned during the SCSI status phase.
® SCSI command: The bytes of the SCSI command.

® Sense data: Reserved for sense data when the host adapter is set to automatically
request sense.

ABORT SCSI COMMAND (03h)

This function call attempts to abort a SCSI command (Table 22.6). The call itself
always returns with a GOoD status. Whether or not the command was actually
aborted can be determined only by examining the status of the original SRB.

334 The ASPI software interface

Table 22.6 ABORT SCSI COMMAND.
7 | 6 ‘ 5 ‘ 4 ‘ 3 [2] / { 0
0 ABORT SCSI COMMAND (03h)

| Status

~

Host adapter

3 Reserved
4.7 Reserved
8..9 SRB address (offset)
10 ... 11 SRB address (segment)

22.3 ASPI initialization and function calls

ASPI initialization

In order to call ASPI the entry point must be known. This is achieved using DOS
interrupt 21h, as shown in the following program sample. First ASPI is opened and
the entry point is determined; afterwards ASPI is closed.

ASPI open

function FileOpen(FileName:string):integer;
const DOS_OPEN_FILE = $3D;

var register: registers;

begin

FileName:=FileName+chr(0);
with register

do
begin
ax := DOS_OPEN_FILE shl 8;
bx:=0;
cx:=0;
ds := seg(FileName);
dx := ofs(FileName)+1; { because Pascal strings
carry their length in byte 0 }
end;
MSDOS(register);

if (register.flags and FCarry) O
then FileOpen:=-1
else FileOpen:=register.ax;

end;

ASPI initialization and function calls 335

ASPI entry point

procedure GetASPIEntry(FileHandle:integer; var
AspiEntry:MemAdress);

const ASPI_ENTRY_LENGTH = 4;
DOS_IOCTL_READ = $4402;

var register: registers;

begin
Wwith register
do
begin
ax := DOS_IOCTL_READ;
bx := FileHandle;
cx := ASPI_ENTRY_LENGTH;
ds := seg(AspiEntry);
dx := ofs(AspiEntry);
end;
MSDOS(register);
end;

ASPI close

function FileClose(FileHandle:integer):integer;
const DOS_CLOSE_FILE = $3E;
var register: registers;

begin
with register
do
begin
ax := DOS_CLOSE_FILE shl 8;
bx:=FileHandle;
end;
MSDOS(register);
if (register.flags and FCarry)
then FileClose:=0
else FileClose:=register.ax;
end;

1
o

And all together ...

function InitializeASPI(var
AspiEntrypoint:MemAdress):boolean;

336 The ASPI software interface

const ASPI_NAME = 'SCSIMGRS';

var result: integer;

AspiFileHandle: integer; begin
AspiFileHandle:=FileOpen(ASPI_NAME);
if AspiFileHandle-1
then

begin

GetASPIEntry(AspiFileHandle, AspiEntryPoint);
FileClose(AspiFileHandle);
InitializeASPI:=true;

end
else InitializeASPI:=false;

end;

Calling ASPI

The following function calls ASPI to execute an SRB. The variable AspiEntryPoint
is a global variable of the main program:

procedure SRBexecute(var SRB: SRBarray);
var SRBsegment, SRBoffset: integer;

begin
SRBsegment:=seg(SRB);
SRBoffset:=0fs(SRB);

asm
mov ax, SRBsegment
push ax
mov ax, SRBoffset
push ax
LEA BX, AspiEntryPoint
call DWORD PTR [bx1
add sp,4
end;

end;

Afterwards the SRB status must be polled until it changes from O to another value:

Procedure HostInquire;

const

SRB_STATUS = $01;
HA_SCSI_ID = $09;
ENTRY_LENGTH = $10;
MANAGER_NAME = $0A;

HA_NAME $1A;

ASPI initialization and function calls

var k: integer;
Status: byte;
SRB: SRBarray;
DataBuffer : DataBufferType;

begin
for k:=0 to high(SRB) do SRBLkIJ:

0;

{What is the result of this ASPI call?
Right! HOST ADAPTER INQUIRY Host adapter number 0}

SRBexecute(SRB);
repeat until SRBLSRB_STATUSIO;
if SRBLSRB_STATUS] = 1
then
begin
writeln('Host Adapter SCSI ID:
' ,SRBLHA_SCSI_IDI);
write ('Name of Host Adapter: ');
for k:=0 to ENTRY_LENGTH-1 do
write(char(SRBCHA_NAME+k1));
writeln;
end
else writeln('SRB Execution Error!');
end;

337

In Appendix E and on the accompanying diskette you will find the source code to
SCANSCSI.PAS. The program is relatively easy to follow and provides a good

example using an ASPI interface call to execute a SCSI command.

23 The SCSI monitor program

338

Accompanying this book is a diskette containing a SCSI monitor program. This
program allows you to send arbitrary SCSI commands to a SCSI device, including
the sending and receiving of data. For users without the necessary SCSI host adapter
the program includes a target simulator so that a bit of experimentation is still pos-
sible.

The program runs on an IBM PC compatible computer with at least 512 Kbytes
of memory running DOS 3.3 or later. A hard disk is not required. Also necessary is
a SCSI host adapter and ASPI (developed by Adaptec) manager software supporting
the host adapter. It is also possible to integrate the driver software into the program
itself. The hooks for this are included in the source code.

A list of tested host adapters is contained in the README.DOC file of the
diskette. Please take note that Adaptec host adapters can be configured to send a
REQUEST SENSE automatically upon a CHECK CONDITION status. This is not desirable
for use with a monitor program since here the user wants to be in full control of the
sequence of commands. This feature can be disabled by a switch or jumper on the
host adapter board.

Warning

This program gives no warning or feedback concerning the outcome of SCSI com-
mands on a target. It allows you to give any and all SCSI commands regardless of
their effect. Be extremely careful when sending commands to a disk drive contain-
ing important information. A seemingly innocent write command could destroy
valuable data.

The program is useful for familiarizing yourself with the many details of SCSI
protocol and commands. In order to avoid undesired results reserve the test target
using the RESERVE UNIT command.

And a bit of advice: if you aren’t exactly sure what something will do, don’t do it!

Program design

The SCSI monitor program is written in Borland Pascal 7.0. You should also be able
to compile it using Turbo Pascal 7.0. It will definitely not run unmodified with Turbo

The SCSI monitor program 339

Pascal versions 6.0, 4.0 and earlier. In order to make the program easier to port to
other systems it is written in standard Pascal. I have not made use of any special
features unique to Turbo Pascal. However, a minimal amount of machine specific
assembler code has been incorporated.

The user interface is simple but at first perhaps a little cryptic. After some prac-
tice, however, it is quick and easy to work with. Be careful not to confuse commands
for the monitor program with SCSI commands.

The monitor program makes use of 10 command buffers and 10 data buffers for
holding SCSI commands and SCSI data. Each data buffer is 4 Kbytes long. A
command buffer has room for 12 command bytes as well as a status byte, a byte for
the SCSI ID, a byte for the LUN, a byte for the command length, and finally a byte
indicating the next command buffer to be used. Both the command and data buffers
are numbered, respectively, from 0 to 9.

The current command and data buffer are displayed on the screen. The command
buffer and data buffer are completely independent of each other. For example,
command buffer 3 can be used with the data in data buffer 0.

The display

Figure 23.1 shows the display of the SCSI monitor. All values are in hexadecimal.
At the top of the display you see the current command buffer along with ID, LUN,
and status. Below this the current data buffer is shown in hexadecimal. To the right
are the corresponding ASCII characters, which is useful for interpreting the data
from commands such as INQUIRY. A value of 40h is added to control characters
below 20h and displayed in inverse video.

SCSI Monitor 1.0 - 024 11.3.93

Id Lu 3¢ IN nX
SCSI command 00: 27 00 7. . . - . Il 0L I .00 00 00 22 00 =%
SCSI data buffer ir. i

0000:
0010:
0020:
0030:
0040:
0050:
0060:
0070:
0080:
0090:
0020: T2 &7 R
00BO: GO -& 00 ..
00Cc0: 00 00 00 - T:+ .

00D0O: 00 00 00 = <i it ER T a0 e 00
00EO: 00 00 00 00 00 00 00 00 00 ©7 00 v Q0
00F0: 00 00 00 00 00 00 OO 00 00 00 00 00 " 00 00

02

Command: H
Commands: Data, End, Co, i, w, Command, ..

. ledNgth, .i=ivee

Figure 23.1 SCSI monitor with help information.

340 The SCSI monitor program

The command buffer

Command nn: The current command buffer.
Id (SCSI ID): The ID of the device to receive the command.
Lu: LUN to which the command pertains.

St: SCSI status of the last executed command. This value remains unchanged
until another command is executed. Even if the command buffer, the LUN, or the
SCSI ID is edited the status remains unchanged.

Three special symbols are displayed in this field:

?? No command has been executed from this buffer.
** SCSI command is now being executed.

—— The target does not reply.

® |N: Length of the command. If this value is zero then the default command length
defined for SCSI-2 command groups is used. Otherwise no command is sent. The
behavior depends on the hardware employed (see README.DOC).

® nX: Next command buffer to be used when this command has completed.

Monitor commands

C (Command)
Syntax: C<Number>,<Offset>,<Count> <Byte1> <Byte2> ...

® Number: Number of the command buffer. The current command buffer changes
to display this buffer. Default: the current buffer.

o Offset: Byte position in the buffer where the command should be placed. Default:
00h.

® Count: When this parameter is included then only one command byte can be
given. This single command byte is then copied into the buffer ‘Count’ times.
Default: 00h.

® Bytel ... ByteN: The command bytes.

Examples

C1 12 00 00 00 FF

This example writes ‘12 00 00 00 FF’ starting at byte O into command buffer 1 and
makes this the current command buffer.

3

This command makes command buffer 3 the current command buffer.
C3 AA

This command writes AAh into byte 3 of the current command buffer.

C,A0

The SCSI monitor program 341

This command fills the current command buffer with zeros.

I (ID)
Syntax: I <ID>
@ ID: The ID for the current command buffer is changed to this value.

L (LUN)
Syntax: L <LUN>
@ LUN: The LUN for the current command buffer is changed to this value.

N (IeNgth)

Syntax: N <Value>

® Value: The command length for the current command buffer is changed to this
value.

X (neXt)

Syntax: X <CommandBuffer>

@ CommandBuffer: The number of the command buffer, which should be executed
automatically after the execution of the current command. The value FFh means
that no command is to be executed afterwards. Looping on the current command
buffer is allowed.

D (Data)

Syntax: D<Number>,<Offset>,<Count> <Byte1> <Byte2> ...
This command, along with its arguments, works completely analogously to the
‘C’ command. It allows modification of the data buffer.

G (Go)

Syntax: G

This command starts the execution of the SCSI command in the current command
buffer. When necessary the current data buffer is employed. During the execution
time of the command the status will display ‘* *’. The execution of a string of com-
mands linked using the nX field can be aborted by hitting any key.

H or ? (Help)
Syntax: H
This causes a short command overview to be displayed.
R (dRiver)
Syntax: R <Driver>

® Driver: A for the ASPI driver or S for the target simulator. The target simulator
emulates a target at ID 0, LUN 0. The target simulator is capable of executing
TEST UNIT READY, INQUIRY and REQUEST SENSE.

Q (Quit)
Syntax: Q
Quit the program.

342 The SCSI monitor program

Getting started

Insure that the SCSI monitor is working by sending an INQUIRY command. INQUIRY
will return a GooD status even if an invalid LUN is addressed or if the target is in
UNIT ATTENTION.

I assume here that a host adapter has been installed and that the ASPI manager
has been successfully loaded. Connect a SCSI target device with ID O to the bus. You
can easily determine whether your device is recognizable to the host adapter using
the program SCANSCSI.EXE, which is also on the diskette.

Afterwards run the SCSI monitor and enter the following command:

Command: C 12 000 FF

You should now see this command in the current command buffer. The ID and LUN
should both be zero, the default settings, which need not be modified. The status
‘?7?’ indicates that a command has yet to be executed.

Now enter:

Command: G

Now a 00h should be seen in the status field. Furthermore, data returned from the
target should now occupy the current data buffer. You should see the product name
written to the right of the buffer in ASCIL

If status is ‘- -’ then SCSI ID O did not reply. In general this means that the
device was not properly installed.

Examples

When working with the SCSI monitor bear in mind that it is possible to send any
arbitrary SCSI command, whether valid or not. Therefore, always check the status
field after sending a command to see whether it has been successfully executed.

SCSI Monitor V1.0 rev 024 11.3.93 (fs)
ID Lu St 1N nX
SCSI command 00: 00 00 00 00 00 00 00 00 00 00 00 00 03 00 02 00 FF

SCSI data buffer No. 00:

0000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0020: 00 00 00 0O 00 00 00 00 00 00 00 0O 00 00 00 00
0030: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0040: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0050: 00 00 00 00 00 00 0O 0O 00 0O 00 00 00 00 00 00 !
0050: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0070: 00 00 00 00 00 00 00 00 00 0O 00 00 00 00 00 00
0080: 00 00 00 00 00 00 00 0O 00 OO 00 00 00 00 00 00
0090: 00 00 00 00 00 00 00 00 00 0O 00 00 00 00 00 00
00A0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00B0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00CO: 00 00 00 00 00 00 00 0O 00 00 00 00 00 00 00 00
00D0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00EO: 00 00 00 00 00 00O 00 OO 00 00 00 00 00 00 00 00
00F0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Command: G

Figure 23.2 SCSI monitor after TEST UNIT READY.

The SCSI monitor program 343

SCSI Monitor L0 Lo g
Id Lu St 13 n¥
B D L TR AP AT 03 00 02 00 FF

Qu o 00

00 00 ol 00 00
00 00 00 v 00 00 v 00 . 00 &
0¢ - 00 oo - 00 00 00 0n
Yo 315} - 0u

) 00 w0 o Q0 - o 00 o0 + .
60 vo 00 0n o o0 06 04 100 0t

) 00 00 00 0o - w0 06 0 » 00 00
LTI 00 0o 00 oo C 00 00
o [ST R 0: i
00 ¢ T

00 00

Command: : . LI o~

Figure 23.3 How REQUEST SENSE is set up.

The first example in Figure 23.2 shows a CHECK CONDITION status (02h) after a TEST
UNIT READY command. Why was this status returned? To answer this question, the
command REQUEST SENSE is set up in the command buffer. This is shown in Figure 23.3.

Finally, the example in Figure 23.4 shows the results of the REQUEST SENSE
command. The error code is 70h, indicating that the error pertains to the last exe-
cuted command. The sense key is 02h (NOT READY). The sense code 29h means
POWER-ON OR RESET. This is just what is expected from a LUN receiving its first
command after power-up.

In order to observe this with my configuration I had to turn the SCSI target off
and on after the system had already booted. In this way I prevented the host adapter
from clearing the UNIT ATTENTION when it scans the bus at boot time.

ID Lu St 1N nX
03 00 00 00 ¥t

SCSI ¢

0000:
0010:
0020:
0030:
0040:
0050
0060:
0070:
0080:
50:

00B0:
0aco:
00DO0:
J0EOQ:

Figure 23.4 Results of the REQUEST SENSE command.

24 Measuring and testing

24.1

344

Two components are needed in order to test SCSI targets practically: a SCSI emula-
tor capable of sending arbitrary SCSI commands, and a logic analyzer with which
one can monitor the happenings on the SCSI bus. For testing initiators the same

setup is needed except that the emulator must be capable of emulating a target.

SCSI analyzers

A SCSI analyzer permits the logging of SCSI bus activity and displaying it in a
variety of formats. The most basic form of representation is the timing diagram.
Such diagrams have been presented throughout this book in schematic form. Here
we will see diagrams generated from an actual piece of measurement equipment

(Figure 24.1).

5CSI TIRIG} - Timing KMaveforms
Harxers ort

Accuhulate

Delay Sample period = 10 ns H

o

07 [

—

i

Tima/Div [_10.00 us
|

=

[~
=]

= =y

ANTAL

—

ALK

Jeieilt

T
i

—

Figure 24.1 SCSI timing diagram.

24.2

SCSI emulators 345

Timing diagrams

Timing diagrams of the SCSI bus can, in principle, be made using any logic ana-
lyzer. However, the device should have a time resolution of at least 10 ns (that is,
100 MHz). For Fast SCSI this resolution is almost too low. The Fast hold time, the
minimal time between the activation of REQ or ACK and the changing of the data
lines, is defined to be 10 ns. If I were trying to track down Fast synchronous data
transfer problems I would prefer the successor model with a resolution down to 1 ns.

If there are problems with phase sequencing on the SCSI bus there is no way to
avoid the need for a timing analysis. Fortunately such problems have become very rare
now that bus timing is controlled by protocol chips. Nevertheless, the potential for bus
timing problems will always exist, no matter how reliable the protocol chips are.

Another application of a timing diagram is to gain an overview of longer time inter-
vals. For example, how long does a target need from arbitration to the MESSAGE OUT
phase? Here, there may be a world of difference in the behavior of different SCSI
devices. Alternatively, how long are the gaps between bursts for fast synchronous
transfers? Does a device disconnect from the bus and how long does it take to do so?
All of these questions can be answered using the timing diagram.

Bus phase list

Another important representation of bus activity is in the form of a list of bus phases.
Here the individual bus phases are listed one after another, usually stamped with a
time mark. This representation is especially helpful for software development. Did
the host adapter really send the command it was supposed to send? Why was nothing
returned? Did the target answer? Was the correct LUN addressed in the MESSAGE OUT
phase?

A number of logic analyzers equipped with a SCSI disassembler are capable of
delivering a list of bus phases. However, most of these have very small buffers,
holding 1 Kbyte or less. Here it becomes extremely important to trigger on an event
close enough to the activity of interest, otherwise it will pass through and out of the
shallow buffer.

Better still are a number of dedicated SCSI analyzers offered by various manu-
facturers. Although they may lack timing diagram capabilities, they possess buffers
for the bus phase lists of 32 Kbytes and larger.

SCSI emulators

The SCSI monitor program

The SCSI monitor included with this book is an easy to use program (without rival
as far as price is concerned) which allows arbitrary SCSI commands to be sent to
any target on the SCSI bus. Although it is really intended as an educational device for
the SCSI bus it can also be used for simple evaluation testing of SCSI peripherals.

346 Measuring and testing

24.3

With a little practice you can modify the MODE parameters and format a disk
drive. Such tasks are a little cambersome without the ability to execute a series of
preprogrammed commands. The source code of the monitor is included on the
diskette, so it is easy to modify and extend the original program (but note that this is
not allowed for commercial purposes).

Commercial solutions

Commercial SCSI emulators have more flexibility. For example, these are often
capable of generating SCSI bus errors and other conflicts that are extremely useful
for evaluating SCSI devices. Moreover, they allow lengthy test sequences to be pro-
grammed and run, and often come delivered with tests designed for various devices.
Target emulation is also possible with some equipment. This makes it possible to put
initiators through tests that might be impossible using actual target devices. How do
you get a normal target to return more data than was requested? A target emulator is
designed to do just that.

Examples from industry

The intent here is not to give a comprehensive overview of products but rather a
feeling for the variety of devices by way of a few examples.

Logic analyzers

Among the classic logic analyzers are the HP 1630 and HP 1650 machines. A SCSI
bus adapter, the HP 10343B, is available for both of these. The adapter makes con-
necting to both single-ended and differential buses very simple. Wide SCSI support,
however, is lacking. The adapter comes with SCSI disassembler software, which
enables the analyzer to display output in the form of a bus phase list. The analyzer
is capable of resolution down to 10 ns which is more than adequate for most situa-
tions. The only weak point is the very small event buffer of 512 bytes. The timing
diagrams and bus phase lists in this book were generated using the HP 1650B
together with the HP 10343B.

The successor to this product is the HP 16500 logic analyzer family. This device
is capable of measuring down to 1 ns. The event buffer size has been increased to 16
Kbytes. There is also an HP E2423 A SCSI preprocessor available. This adapter, like
the HP 10343B, allows access to single-ended and differential SCSI buses. In addi-
tion, Wide SCSI is supported.

SCSI analyzers

Adaptec builds an entire family of SCSI analyzers (see Figure 24.2). These are all
implemented as PC boards with associated software. The SDS-310 is designed for
transfer rates up to 5 Mbytes per second (50 ns resolution) and 8-bit SCSI. The
SDS-310F supports fast synchronous transfers (20 ns resolution) and 16-bit SCSI as

Examples from industry 347

55.619_293_720 Bus_free 00032
56.611_335_080 Arb_win 7 00034
56.612_463_240 (Atn Assertion) A 00035
56.612_886_480 Sel_start 5 7 A 00036
56.612_899_440 Sel_end A 00037
56.614_185_340 Msg_out CoO 01 03 01 32 00038
56.615_214_460 (Atn Deasset) 00039
56.615_227_600 Msg_out 07 00040
56.615_459_880 Msg_in 01 03 01 3E 07 00041
56.623_041_840 Command 00 00 00 00 00 00 00042
56.623_470_080 Status 00 00043
56.623_896_700 Msg_in 00 00044
56.624_697_760 Bus_free 00045
62.382_979_060 Arb_start 7 00046
62.382_981_460 Arb_win 7 00047
62.384_108_860 (Atn Assertion) A 00048
62.384_530_060 Sel_start 57 A 00049
62.384_543_260 Sel_end A 00050
62.385_669_740 (Atn Deassert) 00051

Figure 24.2 Bus phase list of Adaptec analyzer.

well. Both devices have a 32 Kbyte buffer. A special adapter is required for differ-
ential buses.

I-Tech is a company that specializes in SCSI test systems. It makes the IPC-6500,
an analyzer with 20 ns resolution for Fast and Wide SCSI. This device comes with
a 64 Kbyte buffer and is capable of timing diagram as well as phase list output.
I-Tech also makes SCSI emulators and pocket testers. The latter use LEDs and are
useful for diagnosing bus problems, such as a differential device connected to a
single-ended bus.

SCSI emulators

Ancot is another important name in the area of SCSI test systems. The INI-350 is a
SCSTI initiator capable of generating controlled errors. The device is able to test SCSI
targets by putting them through strange phase sequences. It is important for a target
to be able to recover from improper sequences and, above all, not to lock up the bus.
For these reasons the INI-350 is valuable in the design verification process. Of
course, it is also fully capable of normal operation and serves well as a SCSI com-
pliant initiator. Ancot also offers the usual assortment of test equipment, with an
emphasis on standalone devices.

SCSI development systems

The SDS-3F family of test equipment is ideal for testing the entire range of SCSI
options including fast synchronous and 16-bit wide transfers. These products repre-
sent an integrated development system complete with SCSI analyzer and emulator.
The analyzer component has a configurable event buffer of up to 256 Kbytes. Its
time resolution, however, is only good down to 20 ns. Various configurations of the
emulator are capable of playing both initiator and target roles.

Adaptec has also announced the SDS-5 series of equipment. Among the improve-
ments are an event buffer of 2 Mbytes and resolution down to 10 ns.

348 Measuring and testing

Summary

If you are mainly interested in occasionally testing SCSI targets for overall func-
tionality then the SCSI monitor should be more than adequate for you.

If, on the other hand, you really need to know what is happening on the SCSI bus
then there is no way to avoid investing in either a logic analyzer or a dedicated SCSI
analyzer. In general, logic analyzers have better time resolution than dedicated SCSI
analyzers, but the latter are less expensive and have larger event buffers.

In most circumstances the combination of a powerful SCSI emulator together
with a SCSI analyzer should suffice for the testing and evaluation of SCSI targets.

For professional design work an extensive SCSI development system is an
invaluable tool, especially for work on initiators. What is more, targets supporting
tagged queues are almost impossible to test without the aid of such a system.

25 sCSi chips

The development of SCSI followed closely the development of the SCSI protocol
chips. Without an inexpensive, fast implementation of the bus interface SCSI would
never have captured the market in the way it has. In this chapter I introduce three
VLSI protocol chips which have helped to make this possible. In general, each of
them is suited to a different application.

Chip characteristics

When choosing a protocol chip a number of criteria must be taken into considera-
tion.

Initiator or target?

Most protocol chips are capable of playing either the initiator or the target role.
Nevertheless, some chips are better suited to one application or the other. In partic-
ular, there are chips for host adapters that require no additional logic for use with the
ISA bus. In addition, these chips have a lot of SCSI overhead built in.

SCSI features

By SCSI features I mean, above all, the support of (fast) synchronous transfers as
well as Wide SCSI. Here the maximum REQ/ACK offset is of interest. For Wide SCSI,
if the second 8-bit data path is not implemented on the chip then there should at least
be provision for the REQB/ACKB signals of the B cable.

SCSI bus drivers

Whether or not SCSI line drivers are integrated into the chip represents an important
cost consideration. Chips with integrated single-ended drivers are the norm, but they
should also provide the control signals for additional differential circuitry.

CPU interface

The CPU interface is key to smooth integration of the SCSI chip into the device
design. A SCSI chip designed for an Intel 286 microprocessor will not only require
extra ‘glue’ logic to make it work with a Motorola 68000, but it will also work less
efficiently. Since this information is sometimes lacking in the chip’s data sheets, you
should ask the manufacturer.

349

350 SCSI chips

25.1

Host bus interface

Recently, more and more chips are entering the market that come with an integrated
host bus interface, for example for the PCI bus. Often the same chip kernel is avail-
able with different host bus or CPU interfaces.

Architecture

The architecture of a chip includes various aspects of the hardware, including the
data path width, and the number and kinds of registers. Another important point is
to what extent the firmware of the SCSI device must intervene in the SCSI bus pro-
tocol. Ideally, the firmware should be responsible for setting up transfers, and the
rest should be handled by the chip. With respect to this area, there are chips that
cover the entire spectrum, beginning with those that need to be led by the firmware
through every single bus phase.

Another important architecture issue is the presence of a buffer for SCSI trans-
fers. The larger the buffer is on the chip, the more time the firmware has to react
without slowing overall performance.

The NCR 5385

The NCR 5385 was the original single chip SCSI controller. Over the years it was
succeeded by the 5385E and then the 5386. All three versions have fundamentally
the same design. You would be hard pressed to find a 5385 in a newly developed
product. The NCR chip business has since passed into the hands of the new Symbios
Logic corporation which produces chips with latest state-of-the-art technology.
Nevertheless, here we take a quick look at the very first NCR chip, in order to gain
a perspective for the later generations.

The 5385 is equally suited to target and initiator applications. It supports exclu-
sively asynchronous transfers with a maximum transfer rate of approximately 2
Mbytes per second. The 5385 even needs external SCSI line drivers. Additional
logic is necessary for differential drivers as well.

Table 25.1 NCR 5385 registers.

Address Type Register
Oh R/W Data register
1h R/W Command register
2h R/W Control register
3h R/W Target ID
4h R Extra status
Sh R ID register
6h R Interrupt register
7h R Source ID
9h R Diagnostic status
Ch R/W (MSB)
Dh R/W Transfer counter
Eh R/W (LSB)

25.2

PC host adapters: FUTURE DOMAIN TMC-950 351

The 14 registers of the 5385 (Table 25.1) are selected using four address lines. It
is up to the hardware designer whether to map the registers to the memory or /O
space of the processor.

The 5385 is not capable of linking together complex SCSI phase sequences. What
is more, every phase change must be controlled by the firmware. Here the chip occu-
pies three states: DISCONNECTED, INITIATOR, and TARGET. In each state only certain
commands are possible. This keeps the firmware from initiating invalid bus phases.
For example, the command RESELECT is only possible in the DISCONNECT state.

PC host adapters: FUTURE DOMAIN TMC-950

The TMC-950 is an example of a single chip SCSI host adapter (Figure 25.1). No
additional components are necessary to build an ISA to SCSI adapter; only if you
wish to integrate a BIOS will an EPROM and decode circuitry be required. This
solution is seen on a number of low cost host adapters from the Far East. Because of
its popularity we take a closer look now at the workings of the TMC-950. The chip
on the Seagate STO1 and STO2 host adapters has a different name but is identical.

The chip comes in a JEDEC 68-pin PLCC package. It incorporates both single-
ended SCSI drivers and an ISA bus interface. It supports only the initiator role and
cannot be used for target applications. Only asynchronous SCSI transfers are possi-
ble, and this at a maximum rate of 2 Mbytes per second. Although such features put
the chip at the lower end of the performance spectrum, its low cost and simplicity
make it very attractive in many applications. It lends itself well to a system where
access to a CD-ROM and perhaps a SCSI tape drive is necessary but speed is not
crucial. If, on the other hand, access to a number of fast disk drives is called for, the
TMC-950 is not recommended.

Programming the chip is very simple. For example, to cause the chip to arbitrate
involves the sending of a single command. Afterwards one merely waits until the
chip responds that it has succeeded.

ISA bus

Data s SCSI bus

| [.
2dL [y
TALSE ages scsi

TMC-950

Figure 25.1 Three-chip PC host adaptor using TMC-950.

352 SCSI chips

PC address space TMC-950 address space
1 Mbyte
Base + 1FFF
512 Bytes
Base + 1E00 | SCS! data 4
Base + 1DFF
Base 8 Kbyte TMC-950 Base + 1000 Control/status 512 Bytes
Base + 18FF . 256 Bytes
A0000 640 Kbyte Base + 1800 RAM (internal) y!
FFFFF
+ 17FF
EPROM 6 Kbyte
(external)
640 Kbyte
main memory
Base
Base
00000 — | 0 Kbyte
9FFFF

Figure 25.2 Address space of TMC-950.

Hardware model

The model of the TMC-950 is unusual and differs from those chips designed pri-
marily for target applications (Figure 25.2). From the host’s perspective the chip is
an 8 Kbyte window in memory above the 640 Kbyte boundary. Four base addresses
can be selected, the default of which is CAQ0Oh. The lower 6 Kbytes address the
external ROM. The ROM holds disk BIOS routines. Above this at base+1800h
comes 256 bytes of internal RAM. This is used to store BIOS variables and flags.
The area from base+1CO00h to base+1DFFh is the control/status register, regardless
of which of the 512 bytes is addressed. The same is true for the area from
base+1EQOh to base+1FFFh, which addresses the SCSI data register. For the Seagate
STOI1 and STO2 the control/status register lies in memory between base+1A00h and
base+1BFFh, and the SCSI data register lies between base+1C00h and base+1FFFh.

When read, the control/status register returns status information; when written,
control bits are set or cleared (Table 25.2).

The control register

The bits RST, SEL, BSY and ATN activate the corresponding signals on the SCSI bus.
It is the responsibility of the software to assure a proper sequence of bus phases. This
allows for the generation of invalid phases in order to test the response of a target.

® Arb (start arbitration): When this bit is set the chip will begin arbitration.

® Par (SCSI parity enable): Turns on the generation of the SCSI parity bit.

® ISel: When this bit is set the chip will generate an interrupt when the SEL signal
goes active.

25.3

PCI bus to Fast-20: Symbios Logic SYM53C860 353

Table 25.2 The control and status registers of the TMC-950.

Control register

7 6 5 4 3 2 1 0
Dri ISel Par Arb ATN BSY SEL RST
Status register
7 6 5 4 3 2 1 0
ArbC Par SEL RnA C/D /0 MSG BSY

® Dri (SCSI bus drivers enable): The SCSI line drivers of the TMC-950 are only
enabled during arbitration or when this bit is set along with an active /O signal.

The status register

The bits BSY, MSG, /O, C/D and SEL reflect the state of the corresponding signals
of the SCSI bus (Table 25.2).

® RnA (request and not acknowledge): This bit is set as long as REQ but not ACK is
active. This is the precise moment when the data register must be written or read.

® Par: This bit is set when a SCSI parity error occurs.
® ArbC: This bit is set when the chip wins arbitration.

The SCSI data register

The SCSI data register is used to exchange data with the SCSI bus. By program
control the signals /0 and REQ are monitored through the status register. As soon as
REQ is active the value of 1/0 determines whether a read or a write is performed.
Afterwards the chip activates the ACK signal.

Summary

The TMC-950 is a chip designed exclusively for use in PC host adapters. No addi-
tional components are necessary for integration in an ISA system. On the SCSI side
the chip supports only asynchronous transfers. Single-ended SCSI drivers are incor-
porated in the chip. To a certain extent SCSI bus phases are handled by the chip
autonomously. The lack of a data buffer for SCSI data transfers results in a slower
transfer rate.

PCI bus to Fast-20: Symbios Logic SYM53C860

Symbios Logic was excorporated from NCR and has taken over the entire chips
business of NCR. The SYMS53C860 is a particularly advanced chip of the 53C8xx
family. It has an 8-bit wide single-ended SCSI interface which besides asynchronous

354 SCSI chips

SYM53C860
Data
4 rro |4 3
(BO bytes)
PCI 4P| scrIPT |4 5 b
master processor scs| y
and 4> FIFO i
slave and v
controt control | e
SCsl 4 a
L register |V L r
Config-
¥ unation
regisier

Figure 25.3 SYMS53C860 block diagram.

and synchronous SCSI also supports Fast-20, that is synchronous transfer with up to
20 Mbytes/sec. The chip has a complete PCI interface as its system interface (Figure
25.3). The SYMS53C860 can be programmed in two different ways. On the one hand,
it contains a processor which interprets a special script language. For these scripts
there is a complete development package which even contains ASPI and CAM
drivers. On the other hand, as with first-generation chips, each SCSI signal can be
accessed at register level. Thus, if you want to build a simple SCSI analyzer or tester
yourself, the 53C860 is a possible candidate.

SCRIPTS

In first-generation SCSI chips, a microprocessor or the host CPU must control and
monitor each individual bus phase. This results in a massive workload for the

Host system
Host CPU
\ Script start
address
Memory
b
Fetch
Seript 4 script
SYM53CE60 SCsi

Buffer for: / o
Message / Data

Command
Data
Status

Figure 25.4 SCRIPTS functional overview.

PCI bus to Fast-20: Symbios Logic SYM53C860 355

10/31/95

Tt

;ABSOLUTE TIEL
ABSOLUTE non_handled_msg
ABSOLUTE bad_extended_msg

msg_out_buf {22y,
cmd_buf E{2?),

ENTRY dizoiaraboions
ENTRY msg_out_phase

msg_out_phase:

return, if not atn ;retu:n ¥ atn gone

move from msg_out_buf, with msg_out ;get message byte

jump rel - 0x01 1: 1f extended message

jump rueldfaio:it, 1f 0x06 ;jump if abort message

jump rel (msg_out_phase), if 0x08 ;jump back if nop message

int non_handled_msg ;inuerrupt 1f can<€@l4d6>t handle message
abort:

move 0x20 to scntll ;turns off the halt on parity error or atn
disconnect ;go to bus 7~
int command_aborted ;int to notify driver that command was aborted

Figure 25.5 Sample SCRIPTS program.

processor and, if there is insufficient computing power, in a slow SCSI transfer.
Modern chips reduce this workload by processing parts of SCSI sequences without
the aid of the external processor.

The Symbios Logic chips go one step further. They contain their own RISC
processor which executes instructions of the script language SCRIPTS which is spe-
cially targeted toward SCSI (Figure 25.4). The SCRIPTS processor itself fetches the
instructions via DMA from main memory. Ready-made scripts for initiator and
target applications are available as a development package from the chip manufac-
turer. The scripts themselves can be exchanged among the various chips of Symbios
Logic.

SCRIPTS programs look like assembler programs (Figure 25.5). Also the pro-
gramming technique is much the same and consists of creating data structure tables
and writing routines for different initiator or target states. The different routines are
accessed by jumps or by interrupts. Programmers familiar with any assembler
should not have any difficulties with SCRIPTS.

Appendix A

SCSI-2 commands (by opcode)

LYEYUO <OX R
<

Mandatory

Optional

Vendor specific

Disk drives

Printers

WORM drives

Scanners

Medium-changers

Ao =xmm4

Tape drives

Processor drives
CD-ROM

Optical storage
Communication devices

Opcode D T P E W R 0O M C Command
00 M MMM M M M M TEST UNIT READY
01 M REWIND
01 (6] \Y% O O O O REZERO UNIT
02 NG VvV ENER VO BUR V \%
03 M M M M M M M M M REQUEST SENSE
04 (0) FORMAT
04 M (6] FORMAT UNIT
05 N M B V B V \% READ BLOCK LIMITS
06 NE V B V IR V A%
07 (0] INITIALIZE ELEMENT STATUS
07 @= V N O O B REASSIGN BLOCKS
08 M GET MESSAGE(06)
08 O M V ®8 O O B READ(06)
08 (6] RECEIVE
09 Vo VvV VE V AV A%
0A M PRINT
0A M SEND MESSAGE(06)
0A M SEND(06)
0A O M © o B¢ WRITE(06)
0B (0] o8 O O V SEEK(06)
0B O SLEW AND PRINT

357

358 Appendix A

Opcode D T P E W R § O M C Command
0C Ve V BV V BE V \%
0D VE V BV VO vV \%
OE V| VO IV VOV A\
OF Vi O B vV B V \% READ REVERSE
10 (0] (0] SYNCHRONIZE BUFFER
10 VvV M vV V V WRITE FILEMARKS
11 Ve M BV V B V SPACE
12 M MM MMMMMM M INQURY
13 Ve O BV V I V VERIFY(0)6)
14 S O RON V IV V RECOVER BUFFERED DATA
15 O M @ O O O O O O MODE SELECT(6)
16 M M M M O RESERVE
16 M M M RESERVE UNIT
17 M M M M O RELEASE
17 M M M RELEASE UNIT
18 gl O @ O @8 O fed O COPY
19 WE M BV V BVl V ERASE
1A G M @ O O O O O O MODE SENSE(6)
1B (0] LOAD/UNLOAD
1B (0] SCAN
1B (0] STOP PRINT
1B (0) & O (0] START/STOP UNIT
1C O O O O O O O O O O RECEIVE DIAGNOSTIC RESULTS
1D M M M MM M M M M M SENDDIAGNOSTIC
1E O O @8 O O O PREVENT/ALLOW MEDIUM
REMOVAL
20 A% Va VvV vV O
21 v vV V vV O
22 \% VY vV 0O
23 \% VA vV vV O
24 W V V M SET WINDOW
25 (0] GET WINDOW
25 M M M READ CAPACITY
25 M READ CD-ROM CAPACITY
26 \% vV V
27 A% vV V
28 O GET MESSAGE(10)
28 M M M M M READ(10)
29 Vv vV V (0] READ GENERATION
2A O SEND MESSAGE(I0)
2A (0] SEND(10)
2A M M M WRITE(10)
2B (0] LOCATE
2B (0] POSITION TO ELEMENT
2B (0] O O (0] SEEK(10)

SCSI-2 commands (by opcode) 359

Opcode D T P E W R § O M C Command

2C A/ (0] ERASE(10)

2D \" (0] (6] READ UPDATED BLOCK

2E (0] (0] (0] WRITE AND VERIFY (10)

2F (0] O O O VERIFY(10)

30 (0] O O (0] SEARCH DATA HIGH(10)

3] (0] OBJECT POSITION

31 (0] o8 O (0] SEARCH DATA EQUAL(10)

32 (0] O O (6] SEARCH DATA LOW(10)

33 O @ O (0] SET LIMITS(10)

34 (0] GET DATA BUFFER STATUS

34 (0] @8 O (6] PRE-FETCH

34 (0] READ POSITION

35 O @8 O (0] SYNCHRONIZE CACHE

36 (0] O O (0] LOCK/UNLOCK CACHE

37 O (6] READ DEFECT DATA(10)

38 (0) (0] MEDIUM SCAN

39 O O jlG8 O §®a O §@= O COMPARE

3A Of O B8 O IGR O =@ O COPY AND VERIFY

3B O O O O O O O O O O WRITE BUFFER

3C O O O O O O O O O O READ BUFFER

3D (0] (0] UPDATE BLOCK

3E (0] @8 O O READ LONG

3F Q) (0} O WRITE LONG

40 O O O O O O O O O O CHANGE DEFINITION

41 O WRITE SAME

42 O READ SUB-CHANNEL

43 O READ TOC

44 O READ HEADER

45 (0] PLAY AUDIO(10)

47 (0] PLAY AUDIO MSF

48 (6] PLAY AUDIO TRACK INDEX

49 (0] PLAY TRACK RELATIVE

4B O PAUSE/RESUME

4C O O O O O O O O O O LoGSELECT

4D O O O O & O [@ O '@ O LOGSENSE

55 o8 O (@ O O O O O O MODE SELECT(10)

SA ©OF O @ O O O O O O MODE SENSE(10)

AS M MOVE MEDIUM

AS (0] PLAY AUDIO(12)

A6 O EXCHANGE MEDIUM

A8 O GET MESSAGE(12)

A8 @4 O (6] READ(12)

A9 (0] PLAY TRACK RELATIVE(i2)

AA O SEND MESSAGE(12)

AA (0] (6} WRITE(i2)

360 Appendix A

Opcode T i R . Oi C Command
AC (0] ERASE(12)
AE (0] WRITE AND VERIFY(12)
AF (0] (0] VERIFY(12)
BO (0] (0] SEARCH DATA HIGH(12)
Bl (0] (0] SEARCH DATA EQUAL(12)
B2 (0] (0] SEARCH DATA LOW(12)
B3 (0] (0] SET LIMITS(12)
BS REQUEST VOLUME ELEMENT

ADDRESS

B6 SEND VOLUME TAG
B7 (0] READ DEFECT DATA(12)
B8 READ ELEMENT STATUS

Appendix B

SCSI-2 commands
(alphabetically)

Command Opcode B T HBE E WE R E8 O MW C
CHANGE DEFINITION 40 OF O lG8 O @8 O BN O pam O
COMPARE 39 ©F O G O & O E@(N O

COPY 18 G O &y O @R O @8 O

COPY AND VERIFY 3A §@8 O @ O @8 O e O

ERASE 19 Ve M BEE V VR V

ERASE(10) 2C A% (0]

ERASE(12) AC (0]
EXCHANGE MEDIUM A6 (0]
FORMAT 04 (0]

FORMAT UNIT 04 M (0]

GET DATA BUFFER STATUS 34 (0]

GET MESSAGE(06) 08 M
GET MESSAGE(10) 28 (0]
GET MESSAGE(12) A8 (0]
GET WINDOW 25 (0]

INITIALIZE ELEMENT STATUS 07 (0]
INQUIRY 12 M MM MMMMMMM
LOAD/UNLOAD 1B (0]

LOCATE 2B (0]

LOCK/UNLOCK CACHE 36 (0] o8 O (0]

LOG SELECT 4C ©F O &8 O §@m O O @ O
LOG SENSE 4D O O O O O O O j@es O
MEDIUM SCAN 38 (0] (0]

MODE SELECT(06) 15 O M O @8 O BN O &N O
MODE SELECT(10) 55 oF O i@ G O IG8 O @ O
MODE SENSE(06) 1A O M O ©F O @ O e O
MODE SENSE(10) SA O O O G O @R O @R O
MOVE MEDIUM AS M
OBJECT POSITION 31 (0]

PAUSE/RESUME 4B (0]

PLAY AUDIO MSF 47 (0]

PLAY AUDIO TRACK INDEX 48 (0]

PLAY AUDIO(10) 45 (0]

PLAY AUDIO(12) AS (0]

361

362 Appendix B

Command OpcodeD T P E W R 8§ O M C

PLAY TRACK RELATIVE(10) 49 (0]

PLAY TRACK RELATIVE(12) A9 (0]

POSITION TO ELEMENT 2B (0]

PRE-FETCH 34 (0] o8 O (0]

PREVENT/ALLOW MEDIUM IE B O o8 O O O
REMOVAL

PRINT 0A M

READ BLOCK LIMITS 05 M M B V e V \%

READ BUFFER 3C G O &y O Gx O @&y O em O

READ CAPACITY 25 M M M

READ CD-ROM CAPACITY 25 M

READ DEFECT DATA(10) 37 (0] (0]

READ DEFECT DATA(12) B7 (0]

READ ELEMENT STATUS B8 (0]

READ GENERATION 29 Vv vV V (0]

READ HEADER 44 (0]

READ LONG 3E (0] o O (0]

READ POSITION 34 (0]

READ REVERSE OF i O B V e V A%

READ SUB-CHANNEL 42 (0]

READ TOC 43 (0]

READ UPDATED BLOCK 2D \% (0] (0]

READ(06) 08 o M B o O O V

READ(10) 28 M M M M M

READ(12) A8 o O (0]

REASSIGN BLOCKS 07 oy VvV (0] O V

RECEIVE 08 (0]

RECEIVE DIAGNOSTIC RESULTS 1C BN O i@y O §i@s O @Gy O f@m O

RECOVER BUFFERED DATA 14 Bl O &N V B V

RELEASE 17 M M M M O

RELEASE UNIT 17 M M M

REQUEST SENSE 03 M MMMMMMMMM

REQUEST VOLUME ELEMENT B5 (0]
ADDRESS

RESERVE 16 M M M M O

RESERVE UNIT 16 M M M

REWIND 01 M

REZERO UNIT 01 (0] A% o O (O

SCAN IB ©)

SEARCH DATA EQUAL(10) 31 (0] o O (0]

SEARCH DATA EQUAL(I2) Bl o8 O (0]

SEARCH DATA HIGH(10) 30 (0] N O (0]

SEARCH DATA HIGH(12) BO BN O (0]

SEARCH DATA LOW(10) 32 (9] o8 O (0]

SEARCH DATA LOW(12) B2 oy O (0]

SEEK(06) 0B (0] oy O O N

SEEK(10) 2B (0] oy O (0]

SCSI-2 commands (alphabetically) 363

Command Opcode R o C
SEND DIAGNOSTIC 1D M M M
SEND MESSAGE(06) 0A M
SEND MESSAGE(10) 2A (0]
SEND MESSAGE(12) AA (0]
SEND VOLUME TAG B6

SEND(06) 0A

SEND(10) 2A

SET LIMITS(10) 33 (0] (0]

SET LIMITS(12) B3 (0] (0]

SET WINDOW 24 \%

SLEW AND PRINT OB

SPACE 11 \%

STOP PRINT 1B

START/STOP UNIT 1B (0] (0]
SYNCHRONIZE BUFFER 10

SYNCHRONIZE CACHE 35 (0] (0]

TEST UNIT READY 00 M M M
UPDATE BLOCK 3D (0]
VERIFY(06) 13 \%

VERIFY(10) 2F (0] (0]
VERIFY(12) AF (0] (0]

WRITE AND VERIFY(10) 2E (0]

WRITE AND VERIFY(12) AE (0]

WRITE BUFFER 3B (0] (0] (0]
WRITE FILEMARKS 10 \"%

WRITE LONG 3F (0]

WRITE SAME 41

WRITE(06) 0A (0]

WRITE(10) 2A M

WRITE(12) AA (0]

364

Appendix C
SCSI-2 sense codes

Sense | Extended Meaning
code ' sense code
00 00 NO ADDITIONAL SENSE INFORMATION
00 01 FILEMARK DETECTED
00 02 END-OF-PARTITION/MEDIUM DETECTED
00 03 SETMARK DETECTED
00 04 BEGINNING-OF-PARTITION/MEDIUM DETECTED
00 05 END-OF-DATA DETECTED
00 06 1/0 PROCESS TERMINATED
00 11 AUDIO PLAY OPERATION IN PROGRESS
00 12 AUDIO PLAY OPERATION PAUSED
00 2] AUDIO PLAY OPERATION SUCCESSFULLY COMPLETED
00 14 AUDIO PLAY OPERATION STOPPED DUE TO ERROR
00 155 N O CURRENT AUDIO STATUS TO RETURN
01 00 INDEX/SECTOR SIGNAL
02 00 SEEK COMPLETE
03 00 PERIPHERAL DEVICE WRITE FAULT
03 01 NO WRITE CURRENT
03 02 EXCESSIVE WRITE ERRORS
04 00 LOGICAL UNIT NOT READY
04 01 LOGICAL UNIT IS IN PROCESS OF BECOMING READY
04 02 LOGICAL UNIT NOT READY
04 03 LOGICAL UNIT NOT READY
04 04 LOGICAL UNIT NOT READY
05 00 LOGICAL UNIT DOES NOT RESPOND TO SELECTION
06 00 REFERENCE POSITION FOUND
07 00 MULTIPLE PERIPHERAL DEVICES SELECTED
08 00 LOGICAL UNIT COMMUNICATION FAILURE
08 01 LOGICAL UNIT COMMUNICATION TIME-OUT
08 02 LOGICAL UNIT COMMUNICATION PARITY ERROR
09 00 TRACK FOLLOWING ERROR
09 01 TRACKING SERVO FAILURE
09 02 FOCUS SERVO FAILURE
09 03 SPINDLE SERVO FAILURE

SCSI-2 sense codes 365

Sense Extended Meaning
code sense code

0A 00 ERROR LOG OVERFLOW

0C 00 WRITE ERROR

0C 01 WRITE ERROR RECOVERED WITH AUTO REALLOCATION

0C 02 WRITE ERROR — AUTO REALLOCATION FAILED

10 00 CRC OR ECC ERROR

11 00 UNRECOVERED READ ERROR

11 01 READ RETRIES EXHAUSTED

11 02 ERROR TOO LONG TO CORRECT

11 03 MULTIPLE READ ERRORS

11 04 UNRECOVERED READ ERROR — AUTO REALLOCATE FAILED

11 05 L-EC UNCORRECTABLE ERROR

11 06 CIRC UNRECOVERED ERROR

11 07 DATA RESYNCHRONIZATION ERROR

11 08 INCOMPLETE BLOCK READ

11 09 NO GAP FOUND

11 0A MISCORRECTED ERROR

11 OB UNRECOVERED READ ERROR — RECOMMEND REASSIGNMENT

11 0c UNRECOVERED READ ERROR — RECOMMEND REWRITE THE DATA

12 00 ADDRESS MARK NOT FOUND FOR ID FIELD

13 00 ADDRESS MARK NOT FOUND FOR DATA FIELD

14 00 RECORDED ENTITY NOT FOUND

14 01 RECORD NOT FOUND

14 02 FILEMARK OR SETMARK NOT FOUND

14 03 END-OF-DATA NOT FOUND

14 04 BLOCK SEQUENCE ERROR

15 00 RANDOM POSITIONING ERROR

15 01 MECHANICAL POSITIONING ERROR

15 02 POSITIONING ERROR DETECTED BY READ OF MEDIUM

16 00 DATA SYNCHRONIZATION MARK ERROR

17 00 RECOVERED DATA WITH NO ERROR CORRECTION APPLIED

17 01 RECOVERED DATA WITH RETRIES

17 02 RECOVERED DATA WITH POSITIVE HEAD OFFSET

17 03 RECOVERED DATA WITH NEGATIVE HEAD OFFSET

17 04 RECOVERED DATA WITH RETRIES AND/OR CIRC APPLIED

17 05 RECOVERED DATA USING PREVIOUS SECTOR ID

17 06 RECOVERED DATA WITHOUT ECC — DATA AUTO-REALLOCATED

17 07 RECOVERED DATA WITHOUT ECC — RECOMMEND REASSIGNMENT

18 00 RECOVERED DATA WITH ERROR CORRECTION APPLIED

18 01 RECOVERED DATA WITH ERROR CORRECTION AND RETRIES APPLIED

18 02 RECOVERED DATA — DATA AUTO-REALLOCATED

18 03 RECOVERED DATA WITH CIRC

18 04 RECOVERED DATA WITH LEC

18 05 RECOVERED DATA — RECOMMEND REASSIGNMENT

19 00 DEFECT LIST ERROR

19 01 DEFECT LIST NOT AVAILABLE

19 02 DEFECT LIST ERROR IN PRIMARY LIST

366 Appendix C

Sense
code

Extended
sense code

Meaning

19
1A
1B
1C
1C
IC
1D
1E
20
21
21
22
24
25
26
26
26
26
27
28
28
29
2A
2A
2A
2B
2C
2C
2C
2D
2F
30
30
30
30
31
31
32
32
33
36
37
39
3A
3B
3B

03
00
00
00
01
02
00
00
00
00
01
00
00
00
00
01
02
03
00
00
01
00
00
01
02
00
00
01
02
00
00
00
01
02
03
00
01
00
01
00
00
00
00
00
00
01

DEFECT LIST ERROR IN GROWN LIST
PARAMETER LIST LENGTH ERROR
SYNCHRONOUS DATA TRANSFER ERROR
DEFECT LIST NOT FOUND

PRIMARY DEFECT LIST NOT FOUND

GROWN DEFECT LIST NOT FOUND

MISCOMPARE DURING VERIFY OPERATION
RECOVERED ID WITH ECC CORRECTION
INVALID COMMAND OPERATION MODE
LOGICAL BLOCK ADDRESS OUT OF RANGE
INVALID ELEMENT ADDRESS

ILLEGAL FUNCTION (SHOULD USE 20 00)
INVALID FIELD IN CDB

LOGICAL UNIT NOT SUPPORTED

INVALID FIELD IN PARAMETER LIST
PARAMETER NOT SUPPORTED

PARAMETER VALUE INVALID

THRESHOLD PARAMETERS NOT SUPPORTED
WRITE PROTECTED

NOT READY TO READ TRANSITION (MEDIUM MAY HAVE CHANGED)
IMPORT OR EXPORT ELEMENT ACCESSED
POWER ON

PARAMETERS CHANGED

MODE PARAMETERS CHANGED

LOG PARAMETERS CHANGED

COPY CANNOT EXECUTE SINCE HOST CANNOT DISCONNECT
COMMAND SEQUENCE ERROR

TOO MANY WINDOWS SPECIFIED

INVALID COMBINATION OF WINDOWS SPECIFIED
OVERWRITE ERROR ON UPDATE IN PLACE
COMMANDS CLEARED BY ANOTHER INITIATOR
INCOMPATIBLE MEDIUM INSTALLED

CANNOT READ MEDIUM — UNKNOWN FORMAT
CANNOT READ MEDIUM — INCOMPATIBLE FORMAT
CLEANING CARTRIDGE INSTALLED

MEDIUM FORMAT CORRUPTED

FORMAT COMMAND FAILED

NO DEFECT SPARE LOCATION AVAILABLE
DEFECT LIST UPDATE FAILURE

TAPE LENGTH ERROR

RIBBON

ROUNDED PARAMETER

SAVING PARAMETERS NOT SUPPORTED

MEDIUM NOT PRESENT

SEQUENTIAL POSITIONING ERROR

TAPE POSITION ERROR AT BEGINNING-OF-MEDIUM

SCSI-2 sense codes 367

Sense Extended Meaning
code sense code

3B 02 TAPE POSITION ERROR AT END-OF-MEDIUM

3B 03 TAPE OR ELECTRONIC VERTICAL FORMS UNIT NOT READY

3B 04 SLEW FAILURE

3B 05 PAPER JAM

3B 06 FAILED TO SENSE TOP-OF-FORM

3B 07 FAILED TO SENSE BOTTOM-OF-FORM

3B 08 REPOSITION ERROR

3B 09 READ PAST END OF MEDIUM

3B 0A READ PAST BEGINNING OF MEDIUM

3B OB POSITION PAST END OF MEDIUM

3B oc POSITION PAST BEGINNING OF MEDIUM

3B 0D MEDIUM DESTINATION ELEMENT FULL

3B OE MEDIUM SOURCE ELEMENT EMPTY

3D 00 INVALID BITS IN IDENTIFY MESSAGE

3E 00 LOGICAL UNIT HAS NOT SELF-CONFIGURED YET

3F 00 TARGET OPERATING CONDITIONS HAVE CHANGED

3F 01 MICROCODE HAS BEEN CHANGED

3F 02 CHANGED OPERATING DEFINITION

3F 03 INQUIRY DATA HAS CHANGED

40 00 RAM FAILURE (SHOULD USE 40 NN)

40 NN DIAGNOSTIC FAILURE ON COMPONENT NN (80H—FFH)

41 00 DATA PATH FAILURE (SHOULD USE 40 NN)

42 00 POWER-ON OR SELF-TEST FAILURE (SHOULD USE 40 NN)

43 00 MESSAGE ERROR

44 00 INTERNAL TARGET FAILURE

45 00 SELECT OR RESELECT FAILURE

46 00 UNSUCCESSFUL SOFT RESET

47 00 SCSI PARITY ERROR

48 00 INITIATOR DETECTED ERROR MESSAGE RECEIVED

49 00 INVALID MESSAGE ERROR

4A 00 COMMAND PHASE ERROR

4B 00 DATA PHASE ERROR

4C 00 LOGICAL UNIT FAILED SELF-CONFIGURATION

4E 00 OVERLAPPED COMMANDS ATTEMPTED

50 00 WRITE APPEND ERROR

50 01 WRITE APPEND POSITION ERROR

50 02 POSITION ERROR RELATED TO TIMING

51 00 ERASE FAILURE

52 00 CARTRIDGE FAULT

53 00 MEDIA LOAD OR EJECT FAILED

53 01 UNLOAD TAPE FAILURE

53 02 MEDIUM REMOVAL PREVENTED

54 00 SCSI TO HOST SYSTEM INTERFACE FAILURE

55 00 SYSTEM RESOURCE FAILURE

57 00 UNABLE TO RECOVER TABLE-OF-CONTENTS

58 00 GENERATION DOES NOT EXIST

368 Appendix C

Sense Extended Meaning
code sense code

59 00 UPDATED BLOCK READ

SA 00 OPERATOR REQUEST OR STATE CHANGE INPUT (SPECIFIED)
S5A 01 OPERATOR MEDIUM REMOVAL REQUEST

5A 02 OPERATOR SELECTED WRITE PROTECT

5A 03 OPERATOR SELECTED WRITE PERMIT

5B 00 LOG EXCEPTION

5B 01 THRESHOLD CONDITION MET

5B 02 LOG COUNTER AT MAXIMUM

5B 03 LOG LIST CODES EXHAUSTED

5C 00 RPL STATUS CHANGE

5C 01 SPINDLES SYNCHRONIZED

5C 02 SPINDLES NOT SYNCHRONIZED

60 00 LAMP FAILURE

61 00 VIDEO ACQUISITION ERROR

61 01 UNABLE TO ACQUIRE VIDEO

61 02 OUT OF FOCUS

62 00 SCAN HEAD POSITIONING ERROR

63 00 END OF USER AREA ENCOUNTERED ON THIS TRACK

64 00 ILLEGAL MODE FOR THIS TRACK

Appendix D
The SCSI bulletin board

The ANSI SCSI specification can also be acquired in an electronic format from the
SCSI bulletin board (SCSI BBS) in the US. The telephone number (as of January
1997) is:

+1-719-533-7950

If you are calling for the first time, you will need to register for a user account. In
general it takes a few days to set up the account and the permissions that allow you
to access data on the BBS. The SCSI BBS offers access to the various X3T9 docu-
ments, among other important documentation and information. You can follow, for
example, ongoing discussions concerning the SCSI-3 standard. It is also possible to
access information on other X3T domains such as IPI, ATA, or HIPPI.

WILDCAT! Copyright (c) 87,95 Mustang Software, Inc. All Rights Reserved.
Registration Number: 92-3725. wv4.10 M10(MultiLine 10). Node: 1.

Connected at 14400 bps. Reliable connection. ANSI detected.

Provided by Symbios Logic Inc. (formerly NCR Microelectronics)
Using the WildCat! BBS Package Version 4.10 M10 Node 1

Modem............ooo.n. USR Courier HST(tm) Dual Standard(tm)
Baud rates............. 300--14400 (+HST 16800)

You may either use your REAL name (which gives you more privileges AFTER I
upgrade your account) or the guest account (which lets you list and download
files without registering).

To use the guest account, log in as:

First Name? Guest
Last Name? (just press enter)
Password? [] (just press enter)
What is your first name? friedhelm
What is your last name? schmidt
Looking up “FRIEDHELM SCHMIDT”. Please wait...
Your name “FRIEDHELM SCHMIDT” was not found in the user data base.
Hello! You are a new user to the system and we want to welcome you.

369

370 Appendix D

There are many features to discover, so please read the HELP files and
experiment with new choices.

Check the Bulletin menu and Newsletter file for additional information.
Welcome to The SCSI BBS.

For our BBS records we would like to get some additional information.
Please answer as correctly as possible to enable us to provide

the best service and support possible.

and so on ...

khkhkkhkhhkhkhhhhhkhkhhhkhhhhkhk Draft standards khhkhkkhhhkhhhhkhkhhhhkhhhkhhhd

While this BBS is called The SCSI BBS, there are other I/O interfaces covered
here as well. I have separated the files for these projects into different
file areas in a rather ad hoc fashion. Here is the map:

SCSI-1 File Area 7

SCSI-2 File Area 8

SCSI-3 File Area 20
ATA File Area 15
CAM File Area 13
ESDI File Area 21
HIPPI File Area 16
IPI File Area 14

Fibre Channel File Area 17

Please remember that these files are provided for review and comment purposes
only. The final ANSI-approved versions will not be posted here; if you

want an ANSI-approved standard, you must purchase the paper copy from ANSI
(or Global Engineering Documents). Ordering information is contained in
another bulletin.

Appendix E
Source code for SCANSCSI.PAS

SCANSCSI is a short utility program that also serves as a good example of an ASPI
application. It checks all LUNs of all SCSI IDs to see whether a device is present. It
does not rely on the ASPI internal table of devices but rather sends an INQUIRY
command to each LUN. In this way devices that have been added to the bus after the
loading of the ASPI manager are also discovered.

program scanscsi(input,output);

{*** Copyright Notice: This source code belongs to the book
"The SCSI Bus and IDE Interface" from Addison-Wesley.

It may be ported and modified for non-commercial
purposes when this copyright notice is included.

Authorization of the publisher is necessary for
commercial purposes.

uses CRT, DOS;

const
PNAM : string='SCSI-Scanner V1.0 rev 003 25.2.93 (fs)';

{ASPI Specific Constants}
ASPI_SRB_LENGTH = $7F;

SRB_COMMAND_CODE = $00;

SRB_STATUS = $01;
SRB_TARGET_ID = $08;
SRB_LUN = $09;

SRB_DATA_LENGTH = $0A;

SRB_BUFFER_OFS = $OF;
SRB_BUFFER_SEG = $11;
SRB_SCSI_LEN = $17;

371

372 Appendix E

SRB_HA_STATUS = $18;
SRB_TARGET_STATUS= $19;
SRB_SCSI_CMD = $40;
SRB_X_SCSICMD = $02;
{SCSI Specific Constants}

SCSI_CMD_LENGTH = 11;

{Program specific constants}

DATA_LENGTH = $FF;
{Messages}
ASPI_CONNECTED ='ASPI Lloaded';
ASPI_OPEN_ERROR ='Error opening ASPI';
type

{Generic Types}
MemAdress = record
Offset: integer;
Segment: integer;
end;

{ASPI-Types}

SRBsize= 0..ASPI_SRB_LENGTH;
SRBarray = array[SRBsizel of byte;

{SCSI-Types}

SCSICmdSize = 0..SCSI_CMD_LENGTH;
SCSICmd = record
Command: array[SCSICmdSizel of byte;
Status: byte;
ID: byte;
LUN: byte;
Len: byte;
TimeOut: integer;
end;
BufferLength = 0..DATA_LENGTH;
DataBufferType = array[BufferLength]l of byte;

var
CommandBuffer : SCSICmd;
DataBuffer : DataBufferType;

ID,LUN ! byte;

Source code for SCANSCSI.PAS 373

AspiEntryPoint: MemAdress;
SRB: SRBarray;
SCSIConnected: string;

{**** | ow Level Functions}

function FileOpen(FileName:string):integer;
const DOS_OPEN_FILE = $3D;

var register: registers;

begin
FileName:=FileName+chr(0);
with register
do
begin
ax := DOS_OPEN_FILE shl 8;
bx:=0;
cx:=0;
ds := seg(FileName);
dx := ofs(FileName)+1; { because Pascal strings carry their
length in byte 0 }
end;
MSDOS(register);
if (register.flags and FCarry) > 0
then FileOpen:=-1
else FileOpen:=register.ax;
end;

function FileClose(FileHandle:integer):integer;
const DOS_CLOSE_FILE = $3E;
var register: registers;

begin
with register
do
begin
ax := DOS_CLOSE_FILE shl 8;
bx:=FileHandle;
end;
MSDOS(register);
if (register.flags and FCarry) =0
then FileClose:=0
else FileClose:=register.ax;
end;

{**** Miscellanous Generic Functions}

374 Appendix E

{**** §CSI generic functions}

function SCSICmdLen(Opcode: byte):byte;
begin
SCSICmdLen:=0;
if Opcode and $EO
if Opcode and $EO
if Opcode and $EO
if Opcode and $EO
end;

$00 then SCSICmdLen:=6;

$20 then SCSICmdLen:=10;
$40 then SCSICmdLen:=10;
$A0 then SCSICmdLen:=12;

{**** ASPI-specific functions}

procedure GetASPIEntry(FileHandle:integer; var
AspiEntry:MemAdress);

const ASPI_ENTRY_LENGTH = 4;
DOS_IOCTL_READ = $4402;

var register: registers;

begin
Wwith register
do
begin
ax := DOS_IOCTL_READ;
bx:=FileHandle;
cx:=ASPI_ENTRY_LENGTH;
ds := seg(AspiEntry);
dx := ofs(AspiEntry);
end;
MSDOS(register);
end;

procedure SCSI2SRB(var SRB: SRBarray,; Command: SCSICmd;
var DataBuffer: DataBufferType);

var k:integer;
begin
for k:=0 to High(SRB) do SRBLk]:=0;
SRBLSRB_COMMAND_CODEJ:=SRB_X_SCSICMD;
with Command do
begin
SRBLSRB_TARGET_ID]1:=ID;
SRBLSRB_LUNI:=LUN;
SRBLSRB_SCSI_LENJ]:=SCSICmdLen(Command[1]);
for k:=0 to SRBLSRB_SCSI_LENJ-1 do
SRBLSRB_SCSI_CMD+kJ:=Commandlk];
end;

Source code for SCANSCSI.PAS

SRBLSRB_DATA_LENGTHI:=Lo(DATA_LENGTH);
SRBLSRB_DATA_LENGTH+11:=hi(DATA_LENGTH);
SRBLSRB_BUFFER_SEG]:=lo(seg(DataBuffer));
SRBLSRB_BUFFER_SEG+1]:=hi(seg(DataBuffer));
SRBLSRB_BUFFER_OFS]:=lo(ofs(DataBuffer));
SRBLSRB_BUFFER_OFS+11:=hi(ofs(DataBuffer));

end;

procedure SRBexecute(var SRB: SRBarray);
var SRBsegment, SRBoffset: integer;

begin

SRBsegment:=seg(SRB);
SRBoffset:=ofs(SRB);

asm

mov ax, SRBsegment
push ax

mov ax, SRBoffset

push ax

LEA BX, AspiEntryPoint
call DWORD PTR [bx1]
add sp,4

end;
end;

function InitializeASPI(var AspiEntrypoint:MemAdress):

const ASPI_NAME = 'SCSIMGRS';

var result: integer;
AspiFileHandle: integer;
begin
AspiFileHandle:=FileOpen(ASPI_NAME);
if AspiFileHandle>-1
then
begin
GetASPIEntry(AspiFileHandle,AspiEntryPoint);
FileClose(AspiFileHandle);
InitializeASPI:=true;
end
else InitializeASPI:=false;
end;

procedure initialize;

var ByteNbr : integer;

boolean;

375

376 Appendix E

begin
with CommandBuffer do
begin
for ByteNbr:=0 to SCSI_CMD_LENGTH do
Command[ByteNbrl:=0;
1D:=0;
LUN:=0;
Status:=$FF;
end;
for ByteNbr:=0 to DATA_LENGTH do DataBuffer[ByteNbrl:=0;
end;

Procedure Inquire(ID,LUN:byte);
const INQUIRY : array [SCSICmdSizel of byte =
($12,%$0,%0,%0,%ff,$0,%$0,%$0,$0,$0,%0,%0);

var k: integer;
Status: byte;
begin
for k:=0 to SCSI_CMD_LENGTH do CommandBuffer.commandCk]:=INQUIRYLCk];
CommandBuffer.ID:=1ID;
CommandBuffer.LUN:=LUN;
If LUN=0 then writeln('sSCSI-ID ',ID,': ');
SCSI2SRB(SRB,CommandBuffer,DataBuffer);
SRBexecute(SRB);
repeat until SRBLSRB_STATUS1<>0;
if SRBLSRB_STATUS] = 1 then
if SRBLSRB_HA_STATUSI= 0 then
begin
Status:=DataBuffer[0] and $EO;
if Status=0 then
begin
write(' LUN ',LUN,': ');
for k:=8 to 35 do write(chr(DataBufferl[kl));
writeln;
end;
end
else if LUN=0 then writeln;
end;

begin
writeln(PNAM);
initialize;
if InitializeASPI(AspiEntryPoint)
then
begin
writeln(ASPI_CONNECTED);
for 1ID:=0 to 7 do
for LUN:=0 to 7 do Inquire(ID,LUN);
end
else writeln(ASPI_OPEN_ERROR);

end.

Appendix F

Addresses of manufacturers
and organizations

Adaptec (SCSI host adapters and chips)

Adaptec, Inc.

691 South Milpitas Blvd.
Milpitas, CA 95035
USA

Tel.: +1-408-945-8600
Fax: +1-408-262-2533
http://www.adaptec.com

AdvanSys (SCSI host adapters and chips)

Advanced System Products, Inc.
1150 Ringwood Court

San Jose, CA 95131

USA

Tel.: +1-408-383-9400

Fax: +1-408-383-9612
http://www.advansys.com

Ancot (SCSI testers)

Ancot Corporation

115 Constitution Drive
Menlo Park, CA 94025
USA

Tel.: +1-415-322-5322
Fax: +1-415-322-0455
http://www.ancot.com

Apcon (SCSI expanders and switches)

APCON, Inc.

17938 SW Upper Boones Ferry Road
Portland, OR 97224

USA

Tel.: +1-503-639-6700

Fax: +1-503-639-6740
http://www.apcon.com

377

378 Appendix F

Buslogic (SCSI host adapters)
BusLogic, Inc. have been taken over by Mylex.

DTP (SCSI host adapters)

Distributed Processing Technology
140 Candace Drive

Maitland, FL 32751

USA

Tel.: +1-407-830-5522

Fax: +1-407-260-5366
http://ftp.dpt.com

Emulex (Fibre Channel)

Emulex Corporation
3545 Harbor Blvd
Costa Mesa, CA 92626
USA
http://www.emulex.com

ENDL (Documentation)

ENDL Inc.

14426 Black Walnut Court
Saratoga, CA 95070

USA

Tel.: +1-408-867-6630
Fax: +1-408-867-2115
dal_allan@mcimail.com

FCA (Fibre Channel)

FCA Fibre Channel Association

12407 MoPac Expressway North 100-357

P.O. Box 9700

Austin, TX 78766-9700

USA

Tel.: +1-512-328-8422

Fax: +1-512-328-8423
http://www.amdahl.com/ext/CARP/FCA/FCA .html

Future Domain (SCSI host adapters and chips)

Future Domain Corporation have been taken over by Adaptec.

Global Engineering (SCSI standards)

Global Engineering Documents
15 Iverness Way East
Englewood, CO 80112

USA

Tel.: +1-303-792-2181

Fax: +1-303-792-2192

Addresses of manufacturers and organizations

I-Tech (SCSI testers)

I-Tech Corporation

6975 Washington Ave. SO.
Edina, MN 55439

USA

Tel.: +1-612-941-5905
Fax: +1-612-941-2386
http://www.i-tech.com

ICP (SCSI Raid)

Vortex Computersysteme GmbH
Falterstrale 51-53

D-74223 Flein
Tel.:+49-7131-59720

Fax: +49-7131-255063
sales@vortex.de

IntraServer (Host adapters)

IntraServer Technology, Inc.
125 Hopping Brook Park
Holliston, MA 01746

USA

Tel.: +1-508-429-0425

Fax: +1-508-429-0430
http://www.intraserver.com

Mylex (Host adapters, RAID controllers)

Mylex Corporation
34551 Ardenwood Blvd.
Fremont, CA 94555
USA

Tel.: +1-510-796-6100
Fax: +1-510-745-7521

Paralan (SCSI expanders)

Paralan Corporation
7875 Convoy Court
San Diego, CA 92111
USA

Tel.: +1-619-560-7266
Fax: +1-619-560-8929
http://www.paralan.com

Promise (SCSI host adapters)

Promise Technology, Inc.
1460 Koll Circle

San Jose, CA 95112
USA

379

380 Appendix F

Tel.: +1-408-452-0948
Fax: +1-408-452-1534
http://www.promise.com

QLogic (SCSI chips, Fibre Channel products)

QLogic Corporation
3545 Harbor Blvd
Costa Mesa, CA 92626
USA

Tel.: +1-714-668-5359
Fax: +1-714-668-5090
http://www.qglc.com

SSA

SSA Industry Association
http://www.ssaia.org

STA

SCSI Trade Association

c/o Technology Forums Ltd
3331 Brittan Avenue, Suite 4,
San Carlos, CA 94070

USA

Tel.:+1-415-631-7152

Fax: +1-415-631-7154
http://www.scsita.com

Symbios Logic (SCSI chips)
Symbios Logic

1635 Aeroplaza Drive
Colorado Springs, CO 80916
USA

Tel.: +1-719-573-3200
http://www.symbios.com

Western Digital (SCSI host adapters, chips and peripheral devices)

Western Digital Corporation
8105 Irvine Center Drive
Irvine, CA 92718

USA

Tel.: +1-714-932-5000

Fax: +1-714-932-4300
http://www.wdc.com

SCSI

IDE

SCSI-3

FC

SCSI,
SSA, FC

Glossary

Active high

An electrical signal is active high when it is interpreted as true for high voltage
levels. See also Active low.

Active low

A signal that is interpreted as true in the low voltage state. Often such signals have
a bar over the name, such as DASP.

Since all SCSI signals are active low they are not marked in any special way in
the SCSI chapters.

Active low signals are marked with a bar in the IDE chapters.
Application client

An application client is an abstract construction inside an initiator which handles
exactly one SCSI command or task management request. The application client dies
with the termination of the associated function.
Arbitrated loop
A ring-shaped topology for Fibre Channel. It is less demanding on the hardware than
the Fabric and thus less expensive.
Arbitration
The process used by the devices connected to the bus to determine which of them
can use the bus next.
AT bus
Refers to either the system bus of IBM AT compatible computers, the ISA bus, or
the IDE interface. The term AT bus is not used in this book but instead ISA bus and
IDE interface are used.
ATA standard
The ANSI version of the IDE interface is called ATA. The name comes from AT
Attachment. In this book ATA is used whenever the ANSI standard is meant.
Bandwidth
see Throughput.

381

382 Glossary

SSA

SCSI

SCSI

SCSI

SCSI

SCSI

Bridge
A connection from an internal backplane bus to the external cable bus.

Bridge controller

A SCSI device controller which is not integrated into the device, but accesses the
device via an additional I/O bus.

Cache

A small storage capable of very fast access. For disk drives such a cache is imple-
mented as RAM, usually at least 1 Mbyte in size. All data read from the medium is
stored here. Data that is already in the cache can be read up to 20 times faster. When
the cache is full the oldest data is overwritten.

CAM

The Common Access Method is a standard for the software interface between oper-
ating system and host adapter.

CCS

The Common Command Set is an extension to SCSI-1 which defines the command
set for magnetic disks much more precisely. The CCS looks very similar to the disk
commands in SCSI-2.

Contingent allegiance condition

This is created for an I_T_x nexus after a CHECK CONDITION or COMMAND TERMINATED
status. In this condition a LUN holds sense data pertaining to the I_T_x nexus. If a
LUN is only capable of holding data for a single I_T_x nexus then attempts by all
other initiators to access the LUN will be met with BUSY status. In the event that a
tagged queue is implemented for this LUN other commands will not be affected (see
Extended contingent allegiance condition). The contingent allegiance condition ends
when a new command is received from the same initiator or by an ABORT or BUS
DEVICE RESET message.

Controller

In this book a controller is a system component that controls a peripheral device. A
controller may reside on the peripheral itself or be integrated into the host system.
The term is often used with reference to a subsystem that is actually a combination
of a controller and host adapter. As an example, a disk drive controller allows for the
attachment of disk drives to the host system.

A SCSI controller allows the connecting of one or more peripheral devices to the
SCSI bus. The device that connects the SCSI bus to the host system is called a host
adapter.

CRC (cyclic redundancy check)

A checksum that is written in addition to the data to a sector. With the aid of CRC
data errors can be detected with higher confidence than with a simple parity bit.

Data rate
see Throughput.

SCSI-3

SCSI-3

SCSI

FC

Glossary 383

Device server

Functional unit inside a SCSI LUN responsible for the management of the physical
device.

DMA (direct memory access)

Refers to the ability of a host adapter to write and read host system memory without
host intervention. This not only makes possible very fast data transfers but also frees
the host processor to do other tasks. This is especially advantageous in multi-tasking
systems where multiple tasks are the norm. Programmed I/O (PIO), on the other
hand, is performed entirely by the host processor.

Domain

An I/O subsystem in which all SCSI devices are connected via a common service
delivery subsystem. In more practical terms: all SCSI devices that are connected to
each other in such a way that they share the SCSI ID address space.

ECC (error correction code)

Additional bits written with the data that allow, to a certain degree, the recognition
and correction of data errors. Disk drives always employ error correction codes.

Extended contingent allegiance condition

This extends the normal contingent allegiance condition in that the execution of all
commands in the tagged queue of this LUN is also suspended. This condition exists
for an I_T_L nexus and is entered by the target in certain error situations. The target
sends an INITIATE RECOVERY message after a CHECK CONDITION status. Afterwards the
initiator should take appropriate measures to recover from the error. The extended
contingent allegiance condition is ended when the initiator sends a RELEASE RECOVERY
message.

Fabric

An abstract construction in Fibre Channel topology which can be best imagined as
an electronic cross bar distributor. FC devices connected to a fabric deliver their data
packets to the fabric which then forwards them to the correct destination device.

Formatted capacity

As opposed . to unformatted capacity, this is the amount of space available to store
information on a disk drive. The replacement sectors are not included. The format-
ted capacity of a drive is usually between 10 and 30% less than the unformatted
capacity.

Formatting

A hard disk or replaceable medium disk needs to be formatted before data can be
stored on it. Here sectors for data storage are written to the medium. Since the
sectors take up more room than just what is needed for data storage there arises a
difference between formatted and unformatted drive capacity.

Full duplex

A communication mode which allows simultaneous sending and receiving.

384 Glossary

SCSI

SCSI

SCSI

SCSI

Geometry

The geometry of a disk drive describes the format of the drive in terms of cylinders,
heads, and sectors. For example, two drives with different geometries differ in the
number of cylinders.

Hard sector

A type of disk drive formatting where the beginning of each sector is marked by a
pulse generated by the head disk assembly. In comparison, the pulse from a soft
sector format is generated from the read/write electronics and requires space on the
medium.

Host adapter

A host adapter allows a controller to be connected to the I/O bus of the host. The
host adapter may be integrated on the motherboard of the system or it may be imple-
mented as a separate board.

IDE interface

A disk drive interface used primarily in the PC domain. The name comes from inte-
grated disk electronics. Also known as ATA interface.

Index

A pulse indicating the beginning of a track on a rotating disk.

Initiator

One of two possible roles a SCSI device can play. The initiator is the device that ini-
tiates the I/O process. As soon as the target device is selected it controls the I/O
process as well as the SCSI protocol.

I/O bus

A computer bus for the attachment of peripheral devices.

I/0O process

Any logical connection between two SCSI devices is referred to as an I/O process.
It begins with the selection of a target by an initiator. It exists during the entire
command execution or command chain including all BUS FREE periods. Normally,
the process ends after the message COMMAND COMPLETE with a BUS FREE phase. In
SCSI-3, an I/O process is called task.

ISA bus

The original system bus of the IBM AT. The bus has since become a standard and is
used by all AT compatible systems. The name comes from industry standard archi-
tecture.

I_T_x Nexus

Either an I_T_L nexus or an I_T_L_Q nexus.
LUN (logical unit)
Each SCSI target contains at least one and up to eight LUNs. A LUN is the actual

physical device. For example a SCSI controller connected to three disk drives con-
trols three LUNS.

IDE

FC

FC

SCSI-3

FC

Glossary 385

Mapping

For disk drives, the correspondence between physical sectors and logical block
numbers is accomplished through a mapping. A linear mapping refers to the
approach where first sectors of a track, then tracks of a cylinder, and finally cylin-
ders are exhausted for increasing LBN numbers. This approach insures that the
access time for continuous logical blocks is minimal.

Master

When two devices or systems are in such a relationship that one of them has control
over the other, the controlling device is the master and the other device the slave.
Master drive

For IDE, drive O is the master drive. The term derives from the fact that when
spindle synchronization is used this drive supplies the clock for the second drive.
Otherwise the drives are independent.

Mirrored drives

Two disk drives that are maintained to hold exactly the same information are said to
be mirrored. Mirroring is the responsibility of a controller or special software and is
transparent to the user. Mirrored drives are used for redundancy purposes in the event
of a hardware failure.

Originator

Device that initiates a Fibre Channel transaction. Corresponds to the SCSI initiator.
Parity bit

Simple error detection for a data byte. A parity bit transferred with the data byte
allows the receiver to detect 1-bit errors. Multiple bit errors may not be detected.
Payload

The part of a Fibre Channel data packet available for user data or data of higher pro-
tocol levels.

PIO (programmed 1/0)

The exchange of data via a register or port by program control. In contrast to direct
memory access (DMA), the processor moves each individual piece of data to
memory, which is very time consuming.

Redundancy

Insurance against data loss or downtime through the use of duplicate components. In
order to guarantee zero downtime some systems allow for replacements ‘on-the-fly’,
or hot swaps.

Request/response

Transaction model introduced with the SCSI-3 SAM architecture model.

Responder

Device that executes a Fibre Channel transaction. Corresponds to the SCSI target.

386 Glossary

SSA

SCSI-3

IDE

SCSI

SCSI

SCSI-3

IDE

Rotational position sensing (RPS)

A controller connected to multiple disk drives which monitors the relative rotational
position of each drive is said to employ RPS. This is accomplished by monitoring
the index pulses of the drives. When processing multiple I/O requests this allows the
controller to choose the drive that can be accessed with minimal access time.
Router

Functional unit in a SSA node that decides whether a data packet is destined for this
node or whether it must be forwarded.

SAM (SCSI Architectural model)

A new document that describes the SCSI-3 architecture. All other SCSI-3 docu-
ments must meet the requirements of the SAM.

Slave

see Master.

Slave drive

see Master drive.

Soft sectoring

A method of formatting for a disk drive. Here the pulse marking the beginning of a
sector is written to the medium during formatting and read from the medium during
access to the sector, in contrast to hard sectoring, which uses slightly less space on
the disk.

Spindle synchronization

Two or more disk drives that are synchronized for spindle speed and rotational posi-
tion are said to employ spindle synchronization. This allows, for example,
simultaneous writing of mirrored drives.

Status

A byte sent from the target to the initiator at the end of a command sequence. This
byte reflects the success or failure of the command execution. Afterwards the
message COMMAND COMPLETE normally follows.

Status phase

The SCSI bus phase where a status byte is transferred from the target to the initiator.

Target

One of two possible roles a SCSI device can play. The target is the device that exe-
cutes commands for the initiator. After the selection phase the target takes control of
bus protocol.

Task
New name in SCSI-3 for the I/O process used in SCSI-2.
Task file

Another name for the command register block of an IDE controller.

SCSI

SCSI

Glossary 387

Terminator

A SCSI bus must be terminated at both ends by means of a terminator. Terminators
are different for single-ended and differential SCSI. At higher transfer rates (Fast
SCSI, Fast-20), single-ended SCSI needs active terminators.

Throughput (bandwidth, data rate)

Given in Mbytes per second, throughput relates how much data can be transferred
over the bus in a given time. Throughput is the product of the transfer rate in MHz
times the bus width in bytes. For example, a 32-bit wide SCSI bus with a transfer
rate of 10 MHz results in a throughput of 40 Mbytes per second. As a further dif-
ferentiation, there is also the peak transfer rate and sustained transfer rate. For
example, a disk drive typically has a sustained transfer rate of 3 Mbytes per second.
This is how fast the data can be read from the medium. However, a controller using
Fast SCSI might be able to reach a peak data rate of 10 Mbytes per second.

Transfer rate

The speed at which a data transfer occurs measured in MHz. In the case of 8-bit
transfers this is identical to throughput in Mbytes per second. It is often used to
express serial rates like that of the data from the head of a drive. Here a transfer rate
of 24 MHz corresponds to a throughput of 3 Mbytes per second.

Twisted pair cable

Cable built out of twisted wire pairs. Particularly suited for transmission of differ-
ential signals because they ensure that external interferences are received with nearly
the same strength on both wires and therefore eliminate each other.

Unformatted capacity

The capacity of a disk drive or medium before formatting. Only the formatted capac-
ity is important to the user. Unformatted capacity is approximately 10 to 30% higher
than this. Manufacturers cite unformatted capacity since formatted capacity is a
function of the exact method of formatting.

Unit attention condition

This condition exists in a LUN relative to certain initiators when a status change has
occurred in the LUN that the initiators did not cause. Examples of such status
changes are the insertion of a medium in a replaceable medium drive, the setting of
MODE parameters from a third-party initiator or a SCSI reset. As long as a unit atten-
tion condition exists the LUN will reply to all commands with a CHECK CONDITION
status and status key UNIT ATTENTION, with the exception of INQUIRY and REQUEST
SENSE, which will be executed normally. After this the LUN enters into a contingent
allegiance condition. The unit attention condition ends for an initiator as soon as it
receives the CHECK CONDITION status. Unit attention can also hold for all LUNs and
all initiators. This occurs, for example, at power-up or after a SCSI reset.

Index

1/2-inch tape 184
6-byte command 124
10-byte command 125
12-byte command 175

A
A cable 19
ABORT 307

ABORT TAG 307
ABORT TASK 118
ABORT TASK SET 118
abort command 50
ACA 116
ACA bit 113
ACA QUEUE TAG 306
access time 18, 56
ACKNOWLEDGE MEDIA CHANGE 66
ACTIVE (status) 60
active negation 250, 258
active termination 257
address register 46, 49
address space 25
addressing

logical 56

physical 55
AEN 130, 147, 148, 150, 309
AER 148,150
alternative status register 47, 48
ANSI 31
ANSI version 130
application client 107
ARBITRATION phase 274
arbitration 27, 274
architecture

SCSI 101
ASPI 330

asynchronous

8

asynchronous event 309

asynchronous event notification 309

AT bus 31

AT task file 44

ATA interface
ATA-2 32
ATA-3 32

32

ATAPI 32,73

ATAPI IDENTIFY

DEVICE 81

ATAPI PACKET 77, 81
ATAPI SOFT RESET 82

ATAPI

configuration word 81

register 76

task file 76
transport protocol 77

audio 241

auto contingent allegiance 116
autosense 111

B

B cable 19
backplane 26

bandwidth 25

Bi-Tronics inte
BIOS 57

rface 12

block descriptor 142

block format
BOM 184
BOOT - POST-BO

166

oT 66

BOOT - PRE-BOOT 66

BPI 184

bridge controller 91, 106, 199
buffer 16, 156

buffer mode

186, 196, 203

389

390 Index

BUS DEVICE RESET 307 COMMAND COMPLETE 300
BUS FREE phase 273 command descriptor block 110, 123
bus command model 110
memory bus 27 COMMAND phase 278
I/O bus 27 command phase (IDE) 51
universal bus 28 command phase (SCSI) 278
command register 48
C
command

cache 133,156, 157, 172 optional 66

CAM. 3?, 1.7’29 overlapping 117
capacity limits 57 communications device 205
capacity Compaq 31
formatted 17 configuration sector 63
net 17 connector 254
CCs 96 Conner Peripherals 53
CD recorder 245 contingent allegiance 116
CD-ROM 235 controlgb te lglz
CD-ROM/XA 237 Y

control mode page 147
CDC 13 controller 18, 91
CDS 321 ’

Centronics 10 CRC 15

cylinder 14,55
CHANGE DEFINITION 139 . .
cylinder number register 47
CHECK POWER MODE 66

CHS mode 55 cylinder skew 17
CLEAR ACA 118, 308 D

’ DATA phase 279, 283

CList 156

. data phase (IDE) 51
CLOSE SESSION/TRACK 247 q s
CLV 235 data ratei “
command (SCSI) ata reglster

6-byte command 124 data separat(.)r 15, 18
10-byte command 125 defect descriptors 166

12-byte command 125 defect list 156
16-byte command 126 defect management S8, 155

command descriptor block 111 deferred error 133, 157

control byte 112 device control register 48
group 112 device type 122
linked 113 diagnosis 61
opcode 112 diagnostic pages 138
status 114 differential 93
type of 126 direct memory access 42
command abortion 50 DISCONNECT 302
command chain 300 disconnect
command class unexpected 274
class1 49 disconnect privilege 299
class2 50 disconnect/reconnect page 145
class3 51 DList 156
class4 51 DMA 42,51,68,71

class5 52 DMA mode 40

domain 103, 267

DOOR LOCK 66

DOOR UNLOCK 66
double ported buffer 59
DOWNLOAD MICROCODE 67
Draft Proposal 88

drive synchronization 40
drive/head register 47
dualport 130

E

ECB bus 28

ECC 15,16, 46, 69,71, 72, 161
ECC error 65

EIA 7

EIDE 32

EISAbus 33

element 215

embedded controller 105
emulation 200

Enhanced Technical Report 267
EOD 185

EOM 184
EPI 267
ERASE 191

ERASE(10) 181

error code 61

error register 45, 61

ESDI interface 13
EXABYTE 185

EXCHANGE MEDIUM 219
EXECUTE DRIVE DIAGNOSTICS 61
expander 267

extended message 276

extent 154
F
fabric 314

Fast SCSI 282
Fast-20 248, 285
FCA 313

FCP 317

feature register 46
Fibre Channel 312
filemark 186

Fire Wire 318

flag bit 113

forced perfect termination 258
FORMAT 203
FORMAT MEDIUM 189

Index

FORMAT TRACK 67
FORMAT UNIT 163
FORMAT/RESERVE TRACK 246
formatted capacity 17
formatter 15, 18
formatting 16, 58, 67, 163
formatting

magnetic tape 189
frame

Fibre Channel 316
freeing the bus 302

G

generations 176

geometry 14, 55, 64, 65, 170
GET MESSAGE®6) 206

GET MESSAGE(10) 207

GET MESSAGE(12) 207

GList 156

glitch 276

grown defects 156

H

handshake 11,277

hard disk 13, 14
geometry 14

hard sectoring 15

hardware reset 52

HDA 18

head 55

HEAD OF QUEUE TAG 306

header 15,16

host adapter 18, 91, 105

I

I/0 bus 27

I/O process 298, 307
ID 90

IDE

adapter 33
command 61
command classes 49
controller 44
interface 31
signals 38
IDENTIFY 299
IDENTIFY DEVICE 63
IDENTIFY DRIVE 63
IDLE 67

IDLE (status) 60, 66

391

392 Index

IDLE IMMEDIATE 68
IGNORE WIDE RESIDUE 305
index 14
index format 166
information unit

Fibre Channel 317
initialization pattern 164
INITIALIZE DRIVE PARAMETERS 65
initiator 91, 106

SSA 324
INITIATOR DETECTED ERROR 300
INQUIRY 128
INQUIRY (ATAPI version) 82
INT 13 57

interface
CMD 13
ESDI 13

peripheral interface 5, 7
physical 5, § 10
printer interface 5, 10
serial 7

ST506 13

interleave 16

interrupt request 47, 48
IPS 184

isosynchronous 318
I_T_nexus 298

L

large frame 236
LBA mode 56
LBN 124,152
linear mapping 56
link bit 112
link
Fibre Channel 314
SSA 323
LINKED COMMAND COMPLETE 300
linked commands 113
LOAD/UNLOAD 195
LOCATE 193
logic analyzer 345, 346
logical addressing 56
logical block 124, 152, 176
logical block (magnetic tape) 185
logical block number 56
logical unit 122
low voltage differential 249, 265
LUN 108, 122, 124, 298
incorrect selection 117

SSA 324
LVD 249, 265

M

MAINTENANCE(IN) 230
mandatory command 61
mapping 153, 237
linear 56
mass storage 4
master drive 34, 40, 53
measuring units 209
media changer
attached 155, 15
MEDIA EJECT 68
medium 14
medium-changer devices 215
medium defects 155
MEDIUM SCAN 179
memory bus 27
message 118
message format 296
MESSAGE PARITY ERROR 308
MESSAGE phase 276
MESSAGE REJECT 308
message system 296, 308
MFM encoding 22
MEFS format 236
mixed-mode CD 237
MMC 235
mode 40
mode parameter 122
mode parameter page 143
mode parameter pages
for all device types 144
for CD-ROMs 243
for communications devices
for disk drives 168
for medium-changers 223
for optical storage 181
for printers 203
for scanners 213
for storage array controllers
for tape devices 197
MODE SELECT 140
MODE SENSE 140
model
of a hard disk 13
of a peripheral device 5
of a peripheral interface 5
of an IDE hard disk 55

207

233

MODIFY DATA POINTER 301
mount 184

MOVE MEDIUM 218
multi-initiator 136
multi-session 237
multimedia devices 235

N

net capacity 17

net throughput 25
nexus 298

NO OPERATION 300
node

Fibre Channel 314
P1394 318

SSA 323

NOP 68

notch 154, 168, 174

(0]

offset 283

opcode 112

open collector transistors 250
optical storage 175
ORDERED QUEUE TAG 306
originator 314

P
P cable 248,259
P1394 318

parameter list 123, 139
parity error 253, 301, 308
partition 185
passive termination 256, 257
PAUSE/RESUME 241
PC host adapter 351
PCI bus 34
peak transfer rate 18
peripheral device page 146
peripheral device type 129
peripheral interface 5
peripheral qualifier 129
phase 270
physical addressing 55, 65
physical interface 5
pin assignments

differential SCSI 262

single-ended SCSI 258
PIO mode 40
PLAY AUDIO MSF 241

Index

PLAY AUDIO TRACK/INDEX 243
PLAY AUDIO(10) 241
PLAY AUDIO(12) 241
PList 156

pointer 301

port

Fibre-Channel 314
SSA 323
PostScript 6

power conditions 60
power-up 52
pre-fetch 156

PRINT 201

printer 5, 10, 199
priority 104
processor devices 148
programmed /O 41
protocol 12

IDE 49
XON/XOFF 9

Q

Q22 bus 28
QIC 185
queue 298, 305

R

RAID 226
RAID array 92
RAM-Disk 155
READ 212

tape drive 188
READ(6) 159
READ(10) 159
READ BLOCK LIMITS 192
READ BUFFER 68
READ CAPACITY 162
READ CD-ROM CAPACITY 239
READDMA 68
READ DRIVE STATE 68
READ ELEMENT STATUS 220
READ GENERATION 179
READ LONG 69, 161
READ MULTIPLE 69
READ POSITION 193
READ REVERSE 188
READ SECTORS 65
READ TOC 240
READ UPDATED BLOCK(10) 179
READ VERIFY SECTORS 65

393

394 Index

read/write head 14

ready condition 183

real time 25

RECALIBRATE 69

RECEIVE 150

reconnect 276, 302
recording format 184

Red Book 236
redundancy group 229
REDUNDANCY GROUP(IN) 232
register block 44

register model 44

relative addressing 130
RELEASE 136

removable medium drives 154
REQ/ACK offset 283
REQ/ACK sequence 277
REQUEST SENSE 115, 132
request/acknowledge 11
request/acknowledge handshake 277
reselection 302
unexpected 300
RESELECTION phase 276
RESERVATION CONFLICT 136
RESERVE 136

reset 52

hard 307

responder 314
REST (command) 69
RESTORE DRIVE STATE 69
RESTORE POINTERS 301
REWIND 186

RLL encoding 22
rotational latency 18
rotational position locking 172
router 324

RS-232 7

S

SACL 226

SASI 87

SAVE DATA POINTERS 301
SBC 152

SBP 321

SCA 254

SCAM 286

SCAN 213

scan window 210
scanner 209

SCC 226

SCSI
architecture model 101
device 90
differential 262
expander 267
fast 303
history 87
priority 104
segment 267
single-ended 256
synchronous 282, 303
Wide 251, 286, 304
SCSI analyzer 344, 346
SCSI Bulletin Board 97
SCSI bus phase 270
ARBITRATION 274
BUS FREE 273
COMMAND 278
DATA 279, 283
MESSAGE 276
RESELECTION 276
SELECTION phase 274
STATUS 280
SCSI bus timing 272
SCSI cable 253
SCSI chip 349
SCSI configurations 108
SCSI controller 105
SCSI emulator 344, 345, 347
SCSI interlock protocol 296
SCSI message 296
SCSI pointer 301
SCSI signals 250
SCSI standard 97
SCSI transfer rates 94
SCSI-1 96
SCSI-2
as opposed to SCSI-1 122, 140, 187, 271,
274, 282
SCSI-3 89
SDI 104
Seagate 13
sector 14,55
sector buffer 49, 59, 63, 67, 68, 71
sector count register 46
sector format 14, 16, 167
sector number register 47
sector skew 16
seek time 18
segment 267

SELECTION 274
selection phase 274
SEND 150, 212

SEND DIAGNOSTIC 138
SEND MESSAGE(6) 206
SEND MESSAGE(10) 207
SEND MESSAGE(12) 207
sense code 134

sense data 116, 133
sense key 134
sequential access 183

serial storage architecture 322

serial transmission 8
SERVICE 82

service delivery subsystem
service response 115
SET FEATURES 70

SET FEATURES (ATAPI) 82
SET MULTIPLE MODE 70
SET WINDOW 211
setmark 186

SFF 73

signal level 256, 262
SIMPLE QUEUE TAG 306
single ported puffer 59
single-ended 93

SIP 296

slave drive 34, 40, 53
SLEEP (command) 71
SLEEP (status) 60
SLEW AND PRINT 202
slot 26

Small Form Factor 32
SMD interface 13
SMS 326

soft sectoring 15, 22
SPACE 190

spare 230

SPARE(IN) 232

SPI 248

spiral offset 17

SRB 330

SSA 322

SSF8020 32

SSP 327

ST412 interface 13
STS506 interface 13
ST506 interface 19
STANDBY (command) 71
STANDBY (status) 60, 66

104

Index

STANDBY IMMEDIATE 71
standby timer 67

status 114

CHECK CONDITION 114
RESERVATION CONFLICT 136
status byte 110

status codes 114

STATUS phase 280

status register 47

STOP PRINT 202

structural model 103
subordinate SCAM initiator 288
surface 14

sustained transfer rate 18
switch

Fibre Channel 314
SYNCHRONIZE BUFFER 203

SYNCHRONOUS DATA TRANSFER REQUEST 303

synchronous SCSI 282
synchronous transfer 303
synchronous transfer period 283
synchronous transmission 9

T

tagged queue 298
tape drive 183
tape marks 185
target 91, 106, 121
SSA 324
target emulator 346
TARGET RESET 118
target routine 122, 298
task 107, 115, 298
task attributes 120
task identifier 110
task management 118
task set 116
task set management 119
Technical Report 267
TERMINATE 1/0 PROCESS 308
TERMINATE TASK 118
termination 252, 256
active and passive 257
differential 263
improper 258
terminator 20
TEST UNIT READY 131
third party reservation 137
throughput 9, 12, 16, 18, 25
timing 272

395

396 Index

timing diagram 345
track 14, 237

track skew 17
transfer mode 70
transfer period 283
transfer rate 18

U

ULP 281

Ultra-SCSI 248, 250
unexpected disconnect 274
unexpected reselection 300
UNIT ATTENTION state 117
universal bus 28

UPDATE BLOCK 178

upper level protocol 281

A%
Video-8 185
VME bus 28

volume set 230
VOLUME SET(IN) 232
volume tag 216

W
Western Digital 31

WIDE DATA TRANSFER REQUEST 304

Wide SCSI 286

WORM drive 176
WRITE

tape drive 189
WRITE(6) 159

WRITE(10) 159

WRITE BUFFER 71
WRITE DMA 71

WRITE FILEMARKS 191
WRITE LONG 71, 161
WRITE MULTIPLE 71
write precompensation 46
write protection 183
WRITE SAME 71

WRITE SECTORS 66
WRITE SESSION 246
write splice 16

WRITE VERIFY 72
write-through cache 158

Y
Yellow Book 237

Z
ZBR 56, 154
zone 168

zone bit recording 56, 154

R s

SECOND
EDITION

PC HARDWARE & PERIPHERALS

SECOND EDITION

The

SCSI Bus & IDE Interface

Protocols, Applications
FRIEDHELM SCHMIDT

Imost all computers, including PCs,
Aworkstations and mainframes, are

equipped with a SCSI interface. The
SCSI Bus is designed to connect hard
drives, tape drives, CD-ROMs, scanners
and printers to any type of computer,
while the IDE hard disk interface is found
almost exclusively
in the world of IBM
PC compatibles.

information was
available about this
specification until
The SCSI Bus and
IDE Interface was
first published. This
fully expanded and
updated second
edition continues
to provide an
accessible description of both SCSI and
IDE interfaces, including an explanation of
essential terminology together with a
breakdown of the commands and
protocols. The book acts as a tutor to SCSI
and IDE and an invaluable guide to the
ANSI literature.

e
-

ADDISON-WESLEY

& Programming

Key aspects of the book:

* Description of peripheral core technologies
and device models

* Detailed descriptions of SCSI and IDE,
including the physical and logical
interfaces, command sets and a summary
of the essential terminology

» Thorough cross-referencing to the
previously impenetrable ANSI
documentation

* A practical chapter on testing SCSI targets

Features new to this edition:
New All SCSI material has been adapted and
updated to reflect the new SCSI-3

QOutside the standard documentation
ANSI standard Jt New A new chapter on SCSI-3 Serial
; . interfaces
documentation, & i . .
3 i ‘ot . N A full dated k
little additional e g TEW Y P disk containing the

source code for the program examples
and a SCSI monitor tool for testing and
troubleshooting SCSI devices

Er!edhe.\‘m Schmidt is an independent SCSI
"cﬂnsuitant based in Heilbronn, Germany. An

" expert in SCSI, over the last 20 years he has
held various technical positions within the
computer industry, including eight years with
EMULEX, one of the pioneers in SCSI
development.

Find A-W Developers Press on the World Wide
Web at http://www.aw.com/devpress/

“ 53 4“9 -

7802017175141
ISBN 0-201-17514-2

$34.95 US
$47.95 CANADA

d B suonedyddy ‘51003044

dey3u| 341 B NG 1SS YL

buiwiwebol

U
(&)
e o4
=
o
—

	Blank Page
	Blank Page

