
PC Interfacing

Pei An, University of Manchester

Paperback

352 pages

Publication date: JAN-1998

ISBN-13: 978-0-7506-3637-7

ISBN-10: 0-7506-3637-8

Imprint: NEWNES

PREFACE

Preface

This book is aimed at demonstrating how a personal computer can be used practically in interfacing
applications by using its Centronic, RS232 and game ports. The book contains a collection of
interfacing experiments and ideas using the most up-to-date electronic devices to show how a PC
gathers information from the real world and how it exerts control over external devices. Having a
quick look of the contents at this moment will give you some ideas of the variety of the experiments.
There is a control software written in either Turbo Pascal or Visual Basic to accompany some
experiments. The combination of hardware and software embodies the true meaning of computer
interfacing.

The Centronic, RS232 and game ports are the most popular ports that almost every computer has,
thus the circuits introduced in this book can be used universally for all types of computers: desktop,
laptop and palmtop IBM-PCs and compatibles, Macintosh PCs, Amiga PCs and PSION palmtop
computers.

The book is intended to address a wide range of people. It is for:

�9 people who use a computer to interact with the real world;
�9 programmers who write software for PCs which are interacting with the real world;
�9 electronic engineers who want to connect digital electronic devices to a computer;
�9 students who want to understand computer interfacing by conducting hands-on experiments;
�9 people who explore innovative PC applications.

The book has eight chapters, each covering a specific topic. Chapter 1 takes a tour of the Centronic,
RS232 and game port. It gives their hardware details inside the PC and explains how to use software
to control the ports. The software is written in various programming languages.

Chapter 2 shows how to construct some useful tools for PC interfacing experiments. In particular,
it gives the details of three experimental boards for the Centronic, RS232 and game port. The boards
provide a visual indication of the status of I/O lines in the ports. This allows users to visualize I/O
operations through the port. The experimental boards will be used in all the experiments to be
introduced in this book.

Chapter 3 presents the software drivers, resource libraries and windows DLLs for the three boards.
Turbo Pascal 6 for DOS, Turbo Pascal for Windows and Visual Basic version 3 are the programming
languages. The programming libraries and DLLs can be used in your own programs.

Chapter 4 explains some basic methods for expanding the Centronic, RS232 and game ports.
Useful circuit diagrams and software listings are presented.

Chapter 5 shows various methods for driving external devices. The devices include relays, LEDs,
DC motors, stepper motors, message display modules, mains operated devices and many more.
Useful circuit diagrams and software listings are given.

X PC INTERFACING

PREFACE

Chapter 6 is concerned with catching data from the real world into the computer. The topics
include analogue-to-digital converters, voltage-to-frequency converters and various sensors with
digital outputs. Experimental circuits are provided to enable a computer to read in the information
of temperature, flow rate of fluid, light intensity, magnetic field, etc.

Chapter 7 shows how a computer is connected to other devices such as digital-to-analogue
converters, clocks, memories and signal generators.

Chapter 8 focuses on computer remote control and network applications. The topics include
modem, radio transmitter and receiver modules, radio transceivers and mains modem.

Hands-on experiments

This book contains a number of PC interfacing experiments. Each experiment involves an electronic
circuit and a sof~are driver. Most of the components are available from RS Components. RS stock
numbers of components are given in the text to assist readers to conduct experiments. The Web site of
the RS Components is http://www.rs-components.com/rs/.

The programming languages used are Turbo Pascal 6 for DOS, Turbo Pascal for Windows and
Visual Basic 3. A complete program list is given for each experiment. The software can be
downloaded from the link which appears with this title on the Newnes web page,
http://www.newnespress.com.

Caution!

This book introduces some devices that may use voltages which can be dangerous or lethal. Use
proper electrical safety procedures at all times.

Please note

Although every care has been taken with the writing of this book to ensure that any experiments,
designs and programs contained herein, operate in a correct and safe manner, the author does not
accept responsibility in any way for the failure, including faults in hardware design and programs to
work correctly or to cause damage to any other equipment that it may be connected to or used in
conjunction with, or in respect of any other damage or injury that may be so caused.

PC INTERFACING xi

ACKNOWLEDGEMENTS

Acknowledgements

First of all I would like to thank Mr Duncan Enright for his idea in initiating this book. My thanks
also go to Dr Shuisheng He, Dr Jiankang Li, Dr Jing Zhao, Dr Feibiao Zhou, Dr Xiaohong Peng and
Dr Cindy Qiu for reading the manuscript. I would like to thank the following companies who
assisted me in writing the book by providing samples and relevant documentation: RS Components,
UCC International, Three Five Systems and Speake and Co. Ltd.

Xii PC INTERFACING

TRADE MARK NOTICE

Trade mark notice

Amiga is a trade mark of Commodore Business Machines Corporation

Analog Devices is a trade mark of Analog Devices Incorporated

Allegro MicroSystems is a trade mark of Allegro Microsystems Incorporated

Cystal Semiconductors is a trade mark of Cystal Semiconductors Incorporated

Dallas Semiconductor is a trade mark of Dallas Semiconductor Corporation

GEC Plessey Semiconductors is a trade mark of GEC Plessey Semiconductors Limited

Harris Semiconductors is a trade mark of Harris Corporation

Hewlett Packard is a trade mark of Hewlett Packard Corporation

Hitachi is a trade mark of Hitachi Ltd

Holtek is a trade mark of Holtek Microelectronics Incorporated

IBM is a trade mark of International Business Machines

Isocom is a trade mark of Isocom Ltd

Maplin is a trade mark of Maplin plc

Maxim is a trade mark of Maxim Integrated Products Incorporated

Microchip is a trade mark of Microchip Technology Incorporated

MS-DOS, Visual Basic, Windows are trade marks of Microsoft Corporation

National Semiconductors is a trade mark of National Semiconductors Incorporated

NEC is a trade mark of NEC Corporation

Newport Components is a trade mark of Newport Components Incorporated

Optek is a trade mark of Optek Technology, Inc.

Philips Semiconductors is a trade mark of Philips Semiconductors

PSION is a trade mark of PSION plc

Quality Technologies is a trade mark of Quality Technologies

PC INTERFACING xiii

TRADE MARK NOTICE

Radio Solutions is a trade mark of Radio Solutions Ltd

Radiometrix is a trade mark of Radiometrix Ltd

RS is a trade mark of RS Components Ltd

SGS-Thomson is a trade mark of SGS-Thomson Microelectronics

Siemens is a trade mark of Siemens AG

Sharp is a trade mark of Sharp Corporation

Speake & Co. Ltd. is a trade mark of Speake & Co. Ltd.

Texas Instruments is a trade mark of Texas Instruments Incorporated

Three Five Systems is a trade mark of Three Five Systems Incorporated

Timely is a trade mark of Timely Technology Ltd

Toshiba is a trade mark of Toshiba Corporation

Turbo Pascal is a trade mark of Borland International Inc.

UCC is a trade mark of UCC International Ltd

Xicor is a trade mark of Xicor Semiconductor Incorporated

xiv PC INTERFACING

CENTRONIC, RS232 AND GAME PORTS

Centronic, RS232 and game ports

The Centronic, RS232 and game ports are the most common I/O ports that a modern computer has.
Some notebook computers may not have a game port, but the Centronic and the RS232 ports are
the universal features of all types of computers.

Originally, these ports were designed for specific applications. Centronic ports are used for
connecting computers to printers; RS232 ports for connecting printers, modems and mice; and game
ports for connecting joysticks. They can also be used for other interfacing applications. Peripheral
devices designed for these ports not only provide the easiest way of connection to computers but also
offer a universal hardware solution for all computers. Therefore, it would be very useful to under-
stand how these ports work and how to make the best use of them.

1.1 The Centronic port

The Centronic port, also known as the printer port or the parallel port, is an industrial standard
interface designed for connecting printers to a computer. A computer at least has one such a port
installed. The port may come with the computer's mother-boards or with plug-in I/O cards. Adding
more Centronic ports is easy and inexpensive. In total, four Centronic ports may be installed on a
computer and they have logic names LPT1 to LPT4.

This book describes the Centronic port from the point of view that it is used as a general purpose
I/O interface. Operations specific to printers are not discussed in detail.

1.1.1 Port connectors

The port connectors on a computer and on a printer are different. The one on the computer is a 25
pin D-type female connector (Figure 1.1(a)), and the latter is a 36-pin female Centronic-type
connector (Figure 1.1(b)). The pin functions of the two connectors are shown in Figure 1.1. To
connect a printer to a computer, a printer cable is used (Figure 1.2). The length of the cable must not
exceed 5 metres. The Centronic interface is not for long distance operations.

1.1.2 Internal hardware organization

The circuit of a generic Centronic port inside a PC is shown in Figure 1.3. Eight-bit data is latched
into IC1 by writing to a port having an address: base address+0. This operation pulls down

PC INTERFACING 1

CENTRONIC, RS232 AND GAME PORTS

Figure 1.1 Pin-out of the Centronic port connectors on computers
and printers

2 PC INTERFACING

CENTRONIC, RS232 AND GAME PORTS

Figure 1.2 The printer lead

-WRITE_DATA. The output of the data forms the Data group. Data can be read into the computer
from the same address via IC2 under the control of-READ_DATA. When reading data, the output
from IC1 must be in high impedance state. This is achieved by making pin 1 (OUTPUT ENABLE)
of IC1 high. A 6-bit control word is latched to IC3 by writing to base address§ which pulls down
-WRITE_CONTROL. Bit 0 to bit 3 are output to the port connector to form the Control group.
Some of the lines are inverted by open-collector inverters (IC6 and IC7). All the output lines are
pulled to +5V by 4k7 resistors. These bits can be read back into the computer at the same address
via IC4a under the control of-READ_CONTROL. Bit 4 of the control byte enables the interrupt
and bit 5 enables or disables the output of IC1. Five lines in the port connector (the Status group)
can be read into the computer via IC4b under the control of-READ_STATUS. The address
associated with this is base address§ These inputs are pulled to § by 4k7 resistors and one of
the lines is inverted.

In original IBM PCs, the output enable of IC1 is tied to ground to permanently enable the outputs.
This is the uni-directional version of the Centronic port. From IBM PSI2, the output enable of IC1
is connected to bit 5 of the control register IC3 as shown in Figure 1.3 and the port becomes a bi-
directional port. It should be pointed out that many Centronic ports that come with plug-in I/O cards
are uni-directional Centronic ports. A simple program can be used to detect whether your Centronic
port is a uni-directional or a bi-directional one.

Each output line in the Data group is capable of sourcing 2.6 mA current with the voltage varying
between 2.6 to 5V. Each can sink 24 mA. The lines in the Control group have a much smaller
capacity to source and to sink current. They can only source 100 laA and sink 8 mA current. For both
ports, short circuiting of any two outputs and connecting any lines to the ground or +5V power

PC INTERFACING 3

CENTRONIC, RS232 AND GAME PORTS

Figure 1.3 Circuit diagram of the generic Centronic port

supply rail are strictly avoided. As the lines in the data port could supply a small current, they can
supply power to a circuit which is connected to the Centronic port. The rate of data transfer through
the Centronic port is greater than 1 Mbyte/second.

In this chapter, the uni-directional Centronic port is discussed in detail. The I/O lines in the port
are organized into three groups, namely, the Data group, the Control and the Status group. Figure
1.4 gives the logic structure of the Centronic port.

Data group

This sends data from PCs to external devices. It has eight latched output lines and the group is
associated with an 8-bit CPU port. The address is. base address.

4 PC INTERFACING

CENTRONIC, RS232 AND GAME PORTS

Figure 1.4 Logic structure of the Centronic port on
computers

Control group

This controls the operation of external devices. It contains four latched output lines (-STROBE,
-LF/CR, -SLIN and -INITIALIZE) which are from the computer to the devices. The group is
controlled by a CPU port having an address: base address+2. -STROBE, -LF/CR and -SLIN lines are
inverted.-INITIALIZE is not.

Status group

The group is used by the computer to obtain the current status of external devices. It contains five
lines (-ERROR, SLCT, PE,-ACK and BUSY), which are directed from external devices to the
computer. It is fed into a CPU port, the address of which is: base address+l. BUSY line is inverted
and the other four lines are not.

PC INTERFACING 5

CENTRONIC, RS232 AND GAME PORTS

The bit functions of each I/O port are summarized in Table 1.1.

Table 1.1

Data group
bits 0-7

Control group
bit 0 (-STROBE)
bit 1 (-LF/CR)
bit 2 (-INITIALIZE)
bit 3 (-SLIN)
bit 4 (-IRQ)
bit 5 (-Data I/O)

Status group
bits 0-2 (UNUSED)
bit 3 (-ERROR)
bit 4 (SLCT)
bit 5 (PE)
bit 6 (-ACK)
bit 7 (BUSY)

bit 0 to bit 7

0=normal; 1=output of data
0=normal; 1=auto line feed after carriage return
0=initialize printer; 1=normal
0=deselect printer; 1=Select printer
0=printer interrupt disabled; 1=enabled
0=output data; 1=input data from data port

Unused
0=printer error; 1=no error
0=printer not on-line; 1=printer on-line
0=printer has paper; 1=out of paper
0=printer acknowledges; 1=normal
0=printer busy; 1=not busy

The base addresses for LPT1 and LPT2 are shown below:

LPTI: 956D (3BCh) or 888D (378h)
LPT2: 632D (278h)

The base address for LPT1 varies. This depends on the hardware configuration of the computer.
There are two ways to obtain the base address. One is to check the hardware configuration of your
computer. The other is to find the addresses directly from the user's program by using the facilities
provided by the computer's basic input output system (BIOS). When a computer is powered on or
reset, the BIOS checks all the possible Centronic ports. If it finds one, it writes the addresses (a 2-
byte word) of that port to two specific memory locations. For LPT1, the locations are 0000h:0408h
and 0000h:0409h. The former stores the LSB byte and the latter stores the MSB byte of the base
address. By reading the content of these memory locations, the base address of the LPT1 can be
obtained. The memory locations for LPT1 to LPT4 are listed as follows:

LPTI: 0000:0408h - 0000:0409h
LPT2: 0000:040Ah - 0000:040Bh
LPT3: 0000:040Ch - 0000:040Dh
LPT4: 0000:040Eh - 0000:040Fh

There is another useful memory location, 0000:4011h. It stores the total number of Centronic ports
installed. The information is contained in bit 6 and bit 7.

bit 7=0, bit 6=0: no Centronic port installed
bit 7=0, bit 6=1: one Centronic port installed
bit 7=1, bit 6=0: two Centronic ports installed
bit 7=1, bit 6=1: three Centronic ports installed

6 PC INTERFACING

CENTRONIC, RS232 AND GAME PORTS

1.1.3 Software control

(a) How to obtain the base address of a Centronic port

The following program is written in QBASIC. It displays the total number of installed Centronic port
and the base addresses of LPT1 to LPT3. Line 20 reads the byte stored in the memory location
0000:0411h using the 'PEEK()' command. Bit 7 and bit 6 of this byte are masked by 'AND (128 +
64)'. Then the result is shifted 6 bits towards the LSB using a division command '/64'. Line 30 reads
two bytes from two memory locations holding the LSB and MSB part of the base address for LPT1.
Lines 40 and 50 perform the same action for LPT2 and LPT3.

i0 DEF SEG = 0

20 PRINT "Number of Centronic ports: ", (PEEK(&H411) AND (128 + 64)) / 64

30 PRINT "Address of LPTI: ", PEEK(&H408) + 256 * PEEK(&H409)

40 PRINT "Address of LPTI: ", PEEK(&H40A) + 256 * PEEK(&H40B)

50 PRINT "Address of LPTI: ", PEEK(&H40C) + 256 * PEEK(&H40D)

60 INPUT x

The following TP6 procedure finds the number of Centronic interfaces installed and assigns the
number to a variable Number o f LPT. Then it reads base addresses from memory locations holding
the addresses of LPT1 to LPT4. Next the program asks the user to select an LPT to which an external
circuit is to be connected. Finally it assigns the selected base address to C e n t r o n i c _ a d d r e s s . In
Turbo Pascal 6, 'MEM[base:offset]' and 'MEMW[base:offset]' are used for reading memory
locations. 'MEM[...]' reads a byte from a memory location. 'MEMW[...]' reads a 2-byte word from
the memory location specified and the one above it.

1" --Resource Library No. AI (Detection of LPT base address)-- *)

Procedure Centronic address ;

(* $000:$0408 holds the printer base address for LPTI

$000:$040A holds the printer base address for LPT2

$000:$040C holds the printer base address for LPT3

$000:$040e holds the printer base address for LPT4

$000:$0411 number of parallel interfaces in binary format *)

var

ipt:array[l..4] of integer;

number of ipt,LPT_number,code:integer;

kbchar:char;

begin

clrscr;

LPT number:=l; (* to set default printer *)

number of ipt:=mem[$0000:$0411]; (* to read number of installed Centronic ports *)

number of ipt:=(number of ipt and (128+64)) shr 6; (* Bit manipulation *)

Ipt[l]:=memw[$0000:$0408]; (* Memory read procedure *)

ipt[2]:=memw[$0000:$040A];

ipt[3]:=memw[$0000:$040C];

PC INTERFACING 7

CENTRONIC, RS232 AND GAME PORTS

ipt[4]:--memw[$0000:$040E];

textbackground(blue); clrscr;

textcolor(yellow); textbackground(red); window(10,22,70,24); clrscr;

writeln('Number of LPT installed : ',number of ipt:2);

writeln('Addresses for LPTI to LPT 4: ',Ipt[l]:3,' ', ipt[2]:3,' ', Ipt[3]:3,' ', ipt[4]:3);

write('Select LPT to be used (1,2,3,4) : ');

delay(1000);

if number of ipt>l then begin {select LPTI through LPT4 if more than 1LPT installed}

repeat

kbchar:=readkey; (* read input key *)

val(kbchar, LPT_number, code); (* change character to value *)

until (LPT_number>=l) and (LPT_number<=4) and (ipt[LPT_number]<>0);

end;

clrscr-

P_address:=ipt[LPTnumber];

writeln('Your selected printer interface: LPT',LPT_number:l);

write('LPT Address : ',P_address:3);

delay(1000);

textbackground(black); window(l,l,80,25); clrscr;

end;

The following CENTRONIC(X) {unction is a Window Dynamic Link Library (DLL) function
written in Turbo Pascal for Windows. It can be called by programs written by other Windows
programming languages such as Visual Basic and Visual C. Centronic (0) returns the number of LPTs
installed. Centronic (1) returns the base address of LPT1. Centronic (2) returns the base address of
LPT2, etc.

Function Centronic(x:integer):integer; export;

(* $000:$0408 holds the printer base address for LPTI

$000:$040A holds the printer base address for LPT2

$000:$040C holds the printer base address for LPT3

$000:$040e holds the printer base address for LPT4

$000:$0411 number of parallel interfaces in binary format *)

begin

number of LPT, LPTI, LPT2, LPT3, LPT4 :integer;

number of LPT:=mem[$40:$11];

number of LPT:=(number of ipt and (128+64)) shr 6;

iptl:=0; ipt2:=0; ipt3:=0; ipt4:=0;

LPTl:=memw[$40:$08];

LPT2:--memw[$40:$0A];

LPT3:~memw[$40:$0C];

LPT4:--memw[$40:$0E];

case x of

0: centronic:=number of LPT;

(* read number of parallel ports *)

(* Memory read procedure *)

8 PC INTERFACING

CENTRONIC, RS232 AND GAME PORTS

end;

i: centronic:=iptl;

2: centronic:=ipt2;

3: centronic:=ipt3;

4: centronic:=ipt4

end;

(b) How to output and input data via the Centronic port

Printer commands and BIOS interrupt routines

In QBASIC, the printer instruction is 'PRINT'. In TP6, it is 'WRITELN(LST)'. Another method for
controlling printers uses the BIOS interrupt INT 17h. A typical sequence for outputting data via the
Centronic port is shown in Figure 1.5. First the computer checks if the printer is ready to accept new
data by checking the BUSY line. When it is low (not busy), the computer places the data on the data
port. After 500 ns, the computer brings the -STROBE low. This will result in the printer changing to
the busy state (BUSY-I). The printer receives the data and processes the data. Next the printer sets
the -ACK low to indicate that the received data has been processed. In the same time the printer
brings the BUSY line low. For most computers, only -STROBE and BUSY lines are used for
handshaking. -ACK handshake is not used.

The advantage of using the method is that the standard printer instructions can be used and the
instructions can be found in almost any programming languages. It has a disadvantage. Each port
has a dedicated purpose and they operate together, therefore the method is not flexible for general

Figure 1.5 Printer handshake timing sequence

PC INTERFACING 9

CENTRONIC, RS232 AND GAME PORTS

purpose I/O operations. If an external circuit is connected to the computer, a special logic circuit
should be provided to generate signals of BUSY and -ACK. If a computer only uses the BUSY line
for handshake there is an easy way of doing this. BUSY is connected permanently to the digital
ground to indicate that the circuit is always ready to accept data. PE is connected to the ground to
indicate that the 'printer' always has paper and -ERROR connected to the high state. If PE and
-ERROR are not connected this way, error messages will appear when the computer issues a print
command. A more flexible way of controlling the Centronic port is to use direct I/O access.

Direct I /0 access

This method controls the data, control and status ports separately using direct UO access. In this
case, the Centronic port is treated as three separate I/O ports: two of which are output and one of
which is input. Let us take an example of controlling the LPT1. Assuming that the addresses of the
data, control and status ports are 888D, 890D and 889D, respectively, to send data to the data and
the control ports, the following QBASIC commands are used:

OUT 888, X

OUT 890, X

X is the output value in decimal. Some lines in the control port are inverted. This has to be taken
into account when outputting the data. To read data from the status port, the following command
can be used:

Y=INP[889]

Y is the decimal value of the input data. The input data bits correspond to bit 3 to bit 7 of the status
port and one line is inverted. This has to be taken into account.

The following TP6 procedures write data to the data and the control ports. Both procedures
require the base address of the selected Centronic port and the value of the output data. Output data
to the control port requires bit manipulation. There is no such a problem for the data port.

(* --Resource Library No. A4 (Write data to DATA port of pc)-- *)

Procedure Write data_port(P_address:integer; port data:byte);

(* no lines in the Data port are not inverted *)

begin

port[Paddress]:=port_data; (* output a byte to the data port *)

end;

(* --Resource Library No. A5 (Write data to CONTROL port of pc)-- *)

Procedure Write_controlport(P_address:integer; port_data:byte);

(* Bit 0, Bit I and Bit 3 are inverted. Bit manipulation is required *)

begin

if port_data and i =i then port_data:=port_data and (255-1)

else port_data:=portdata or 1;

if port_data and 2 =2 then port data:=port_data and (255-2)

else port_data:=portdata or 2;

10 PC INTERFACING

CENTRONIC, RS232 AND GAME PORTS

if port_data and 8 =8 then port_data:=port_data and (255-8)

else port_data:=port_data or 8;

port[Paddress+2]:=port_data; (* output a byte to the control port *)

end;

The following TP6 function reads bit 3 to bit 6 from the status port. It requires the base address of
the selected Centronic port. The function also performs bit manipulation and returns the value of the
4-bit input data.

(* --Resource Library No. A3 (Read data into pc)-- *)

Function Read_status_port(P_address:integer):byte;

var

bytel:byte;

begin

bytel:=port[P_address+l]; (* read a byte from the status port *)

bytel:=bytel and 120; (* 01111000 (MSB to LSB) and 0dddd... = 0dddd000 *)

Read_status_port:=bytel shr 3;(* shift 3 bit right, Read_status_port = 0000hhhh *)

end;

The following Windows DLLs are used for outputting and inputting data via the Centronic port.
They are written in Turbo Pascal for Windows.

(* --Resource Library No. A4 (Write data to DATA port of pc)-- *)

Function Write data_port(P_address:integer; port_data:integer):integer; export;

(* no lines in the Data port are not inverted *)

begin

port[P_address]:=port_data; (* output a byte to the data port *)

end;

(* --Resource Library No. A5 (Write data to CONTROL port of pc)-- *)

function Write control_port(P_address:integer; port_data:integer):integer;export;

(* Bit 0, Bit 1 and Bit 3 are inverted. Bit manipulation is required *)

begin

if port_data and 1 =i then port_data:=portdata and (255-1)

else port_data:=port_data or i;

if port_data and 2 =2 then port_data:=port_data and (255-2)

else port_data:=port_data or 2;

if port_data and 8 =8 then port_data:=port_data and (255-8)

else port_data:=port_data or 8;

port[P_address+2]:=port_data; (* output a byte to the control port *)

end;

(* --Windows Resource Library No. A3 (Read data into pc)-- *)

Function Read_status_port(Paddress:integer):integer; export;

var

bytel:byte;

PC INTERFACING 11

CENTRONIC, RS232 AND GAME PORTS

begin

end;

bytel:=port[P_address+l];

bytel:=bytel and 120;

Read_statusport:=bytel shr 3;

(* read a byte from the status port *)

(* 01111000 (MSB to LSB) and 0dddd... = 0dddd000 *)

(* shift 3 bit right, Read_status_port = 0000hhhh *)

(c) Bit manipulation
This section discusses some basic bit manipulation techniques. The topics include bit weight, making
a particular bit of a byte high, making a bit of a byte low and shifting bits.

Bit weight

The relationship between a bit and its bit weight is given below:

bit 0 1 (decimal value)
bit 1 2
bit 2 4
bit 3 8
bit 4 16
bit 5 32
bit 6 64
bit 7 128

To make a bit high

The following example shows how to make bit 3 (bit weight = 8) of the data port to go high while
keeping the status of others unchanged. If the original status of bit 3 is high, it will still be high. If
the original status is low, it becomes high.

I0 x= Original_data OR 8

20 OUT 888, x

Line 10 performs the 'OR' operation. The truth table of the OR operation is shown below:

0 O R 0 = 0
0 O R I = I
1 O R 0 = I
1 O R I = I

Example of the bit-wise OR operation

Data-l: XXXXXXXX (bit 7 to bit 0)
Data-2:00001000
Data-1 OR Data-2: XXXX1XXX

To make a bit l ow

The following a QBasic example shows how to make bit 4 (bit weight = 16) of the data port go low.

i0 x= Original_data and (255 - 16)

20 OUT 888, x

12 PC INTERFACING

CENTRONIC, RS232 AND GAME PORTS

Line 10 performs the AND operation. The truth table of the AND operation is shown below.

0 AND 0 = 0
0 AND 1 = 0
1 AND 0 = 0
1 AND 1 = 1

Example of the bit-wise AND operation

Data- l : XXXXXXXX (bit 7 to bit 0)
Data-2:11101111

Data-1 AND Data-2: XXXOXXXX

To shift bits left or right

As shown above, when inputting a four bit data bit 0, bit 1, bit 2 and bit 3 into the status port, the
bits are connected internally to bit 3, bit 4, bit 5 and bit 6 of the I/O port. In order to reproduce the
value of the input data, bit shift should be performed. In TP6, two shift instructions are available.
SHL shifts bits left (towards MSB) and SHR shifts bits right (towards LSB). The following examples
show these two operations.

Data: 11111111 (bit 7 to bit 0)
255 SHL 3 :11111000
255 SHR 3:00011111

1.2 RS232 serial interface

The RS232 serial interface is an industrial standard bi-directional asynchronous serial data
communication interface. For computers, it is used for connecting printers, modems, mice, etc. The
communication distance is 20 metres.

Unlike a parallel I/O port, which consists of a number of data lines and each time transmits a byte,
the serial data transmission requires only one line. A byte is transmitted bit by bit. This reduces data
lines between devices. It reduces the rate of data transfer too.

1.2.1 Serial data transmission

The serial data stream itself contains the information of synchronization and the actual data to be
transferred. A serial data format includes four parts: a start bit (1 bit), serial data bits (5, 6, 7 or 8 bits),
a parity check bit (1 bit) and stop bits (1 or 1.5 bit). Figure 1.6 shows a typical serial data format. When
no data is sent, the data line is at logic high. This is called the waiting stage. The beginning of a data
transmission is indicated by pulling the line to the logic low state for 1 bit time. This bit is the start bit.
The data bits are then sent out one after another with the least significant bit (LSB) sent first. The number
of the data bits can be 6, 7 or 8. Following the data bits comes the parity bit which is used to check
transmission errors occurred during the data transmission. The last bits are the stop bits, which pull the
data line to the high state for at least i bit time to indicate the end of the data transmission. The number
of the stop bits can be 1, 1.5 and 2 bits. A specially designed electronic device which generates and

PC INTERFACING 13

CENTRONIC, RS232 AND GAME PORTS

.

WAITING
LSB MSB '

STAGE
START DATA DATA DATA DATA DATA DATA DATA DATA '.PARITY STOP WAITING

BIT BIT-0 B IT -1 BIT-2 BIT-3 BIT-4 BIT-5 BIT-6 BIT-7 ' BIT BIT STAGE

2.5V-5V

' : / / . - -

0~08V~ ~ 0 0 l.: 1... 0 0 l 10
, ,

. ,

, ,

0.1042 ms

(Baud rate: 9600, Data bit length: 8, Parity: Even, Stop bit: 1)

Figure 1.6 The format of a serial data transmission produced by the UARTs

receives the asynchronous serial data is called the Universal Asynchronous Receiver/Transmitter (UART).
The serial data transmission format is generated by the transmitting UART. The receiver detects the
leading edge of the start bit. It then waits for one and a half bit times before reading the data bit. The
reading should come exactly in the middle of the first data bit. It waits for one bit time and reads the
second bit. This time the reading comes exactly in the middle of the second data bit. After reading all the
data bits, the receiver detects the parity of the received data for error checking and resets itself during the
stop bit. It is then ready for receiving the next data transmission.

The rate at which the data bits are sent is measured by the baud rate. It is defined as 1 over the time
period between the shortest signal transition (see Figure 1.6). The standard baud rates for an RS232
serial port are 110, 150, 300, 600, 1200, 2400, 4800, 9600 and 19200. Knowing the baud rate, the
number of bytes to be transmitted per second can be calculated. For example, if a serial data has 8
data bits, no parity check and 1 stop bit, the total length of serial data bits is 10. The transfer rate for
characters is the baud rate divided by 10. A baud rate of 9600 will transfer 960 characters per second.

The parity check can be ODD, EVEN or NONE. The odd and even parities indicate that the total
number of ones ('1') in the transmitted serial data is an odd number or an even number. This is the
simplest method for detecting transmission errors occurred during a data transmission. It is only
reliable to detect single-bit errors. Errors occurred to several bits can not be detected. The parity bit
is generated by the transmitting UART in such a way that the number of ones ('1') in the data bits
plus the parity bit is an odd or an even number as declared. At the receiver end, the receiving device
must also be configured to have the same parity check. The receiving UART counts the number of
ones in the received data. If the data does not have a right parity, an error is generated to indicate
that a transmission error has been detected. If the parity check is declared as NONE, the parity bit
will not be generated and checked.

Most AT computers use 16450 UARTs. XT computers use 8250 UARTs. The UARTS have a TTL
voltage level. In order to achieve a long distance communication, the TTL voltage level is converted
to higher voltage level (logic 0 = - 1 2 to -3V, logic 1 = +3V to +12V). This is achieved by using
dedicated RS232 drivers/receivers. All drivers/receivers have an inverting action.

1 4 PC INTERFACING

CENTRONIC, RS232 AND GAME PORTS

1.2.2 RS232 port connector and connections

A standard RS232 interface is a 25-pin interface housed in a 25-pin or a 9-pin D-type male
connector. Figure 1.7 gives the pin-out and functions of connectors.

Figure 1.7 Pin-out and functions of the RS232 connectors on
computers

PC INTERFACING 15

CENTRONIC, RS232 AND GAME PORTS

Table 1.2

Prot Protective ground. It is connected to the metal screening of the cable and the chassis of the equipment.

GND Ground line. It provides a common voltage reference for all signals.

TD Transmitting Data. Serial data is transmitted on this line. It is an output line from the computer.

RD Receiving Data. Serial data is received from the line. It is an input line to the computer.

RTS

CTS

Request To Send. It is a handshake line and indicates that a transmitting device is ready to send
data. It is an output from the computer. If handshake is not required, it can be used as an output.

Clear To Send. It is a handshake line from which a receiving device tells a transmitting device that it
is ready to receive data. It is an input to the computer. If handshake is not used, it could be used as
an input.

DTR Data Terminal Ready. It is a handshake line and indicates that a transmitting device is ready. It is an
output from the computer. If handshake is not used, it can be used as another output.

DSR Data Set Ready. It is a handshake line from which a receiving device tells the transmitting device
that the data set is ready. It is an input to the computer. If handshake is not used, it can be used as
another input.

Figure 1.8 RS232 connections between a PC and an
external device

16 PC INTERFACING

CENTRONIC, RS232 AND GAME PORTS

Two types of RS232 link between a computer and an external device are shown in Figure 1.8. The
arrows show the direction of data flow. Figure 1.8(a) is known as the null modem. Figure 1.8(b)
shows a connection using only three lines. One line is for transmitting data and the other for
receiving data. The connection is arranged so that the transmitting line of the first device is connected
to the receiving line of the second device.

1.2.3 Internal hardware organization

An IBM-PC computer can have up to four RS232 interfaces installed. They are labelled COM1 to
COM4. Each COM port is associated with a 16450 UART inside the computer.

(a) 8250/16450 UART

Figure 1.9 shows the internal block diagram. There are eight 8-bit internal registers within the UART.
The I/O addresses of these internal registers are calculated by adding the offset of the register to the
base address of the COM port. The offsets and functions of the UART registers are summarized
below.

00h Transmitter hold register/receiver buffer register: store received data and hold data to be transmitted
01h Interrupt enable register: set the mode of interrupt request

Figure 1.9 Internal block diagram of the 8250/16450 UART

PC INTERFACING 17

CENTRONIC, RS232 AND GAME PORTS

02h Interrupt identification register: check the mode of interrupt request
03h Data format register: set the format of serial data transmission
04h Modem control register: set modem controls (RTS, DTR, etc.)
05h Serialization status register: contain information on status of the receiver and transmitter section
06h Modem status register: contain the current status of DCD, RI, DSR and CTS
07h Scratch-pad register: act as a memory byte

Offset 00h is the receiver buffer register and the transmitter hold register. The transmitter hold
register can be accessed if the DLAB bit in the data format register (offset 03h) is zero. If a byte is
written to this address, it is transferred to the transmitter shift register and it is output serially. After
a serial data is successfully received and converted into the parallel format, the data is transferred
into the receiver buffer register. After reading the data from the register, the buffer register is cleared
and is ready for receiving the next data.

Offset 01h is the interrupt enable register by which you configure the interrupt generated by the
UART. The bit functions of bit 7 to bit 0 are shown as follows:

0 0 0 0 SINP ERBK TBE RxRD

bit 7-4 always zero
SINP 1: interrupt on state-change of-CTS, -DSR, -DCD and -RI

0: no interrupt
ERBK 1: interrupt on parity, overrun, framing errors or break

0: no interrupt
TBE 1: interrupt on transmitter hold register empty

0: no interrupt
RxRD 1: interrupt when one byte is ready in receiver buffer register

0: no interrupt

Offset 02h is the interrupt identification register which indicates whether an interrupt is pending. A
pending interrupt is indicated by bit 0 of the register. Bit 1 and bit 2 indicate the causes of this
interrupt. The bit functions of bit 7 to bit 0 of the register are shown below:

0 0 0 0 0 ID1 ID0 -PND

-PND 1 = no interrupt pending; 0-interrupt pending,
ID1, ID0 00 = change of an RS-232 input signal (priority 3)

01 - transmitter hold register empty (priority 2)
10 = data ready in the receiver buffer register (priority 1)
11 = data transfer error or break (priority 0, highest priority)

Once an interrupt is generated, it must be cleared before it is able to respond to the next interrupt.
The action required to clear the interrupt is shown below:

IDI=0, ID0=0: read the modem status register (offset 06h)
IDI=0, ID0-1: write to the transmitter hold register (offset 00h) or read the interrupt identification register (offset

02h)
IDI-1 , ID0-0: read data byte from the receiver buffer register (offset 00h)
IDI=I , ID0-1: read the serialization status register (offset 05h)

Offset 03h is the data format register which defines the serial data format such as the baud rate,
number of data bits, number of stop bits and parity check. The bit functions for bit 7 to bit 0 are
given below:

1 I} PC INTERFACING

CENTRONIC, RS232 AND GAME PORTS

DLAB BRK PAR2 PAR1 PAR0 STOP DAB1 DAB0

DLAB l=access to the divisor latches
0=access to the receiver buffer/transmitter hold register (offset 00h) and the interrupt enable register (offset 01h)

BRK 1=break on, 0=break off
PAR2,1,0 000=none, 001=odd, 011=even, 101=mark, 11/=space
STOP 1= 2 stop bits, 0= 1 stop bit
DAB1, 0 00=5 data bits, 01=6 data bits, 10=7 data bits, 11=8

When DLAB bit is 1, the receiver buffer/transmitter hold register (00h) and the interrupt enable
register (01h) are used for loading the divisor. The first one holds the LSB byte and the second holds
the MSB byte. They form a 16-bit divisor and the value is calculated using the following equation:

Divisor = byteregiste r 00h + 256 x byteregiste r 01h

In a computer, the clock frequency to the UARTs is 1.8432 MHz. Inside the UART, the reference
frequency is the clock frequency divided by 16, giving 115200 Hz. The relationship between the
divisor and the baud rate is:

115200
Baud rate =

Divisor

A baud rate of 9600 requires a divisor of 12. Therefore when loading the divisor bytes into the
registers, '12' should be loaded into the receiver/transmitter buffer register (00h) and '0' loaded into
the interrupt enable register (01h). If 1 is loaded into the divisor registers, it gives the highest baud
rate, 115200.

Offset 04h is the modem control register. It is used to control the UART modem control logic. In
general interfacing applications, the register can be used to control two outputs, RTS and DTR. The
bit functions of bit 7 to bit 0 of the register are shown below:

0 0 0 L O O P - O U T 2 -OUT1 -RTS -DTR

bits 7-5 always zero
Loop 1= enabled loop back, 0= disabled loop back
-OUT2 1=enabled, 0=disabled, used internally
-OUT1 1=enabled, 0=disabled, used internally
-RTS 1=enabled, 0=disabled, available from the RS232 connector
-DTR 1=enabled, 0=disabled, available from the RS232 connector

Offset 05h is the serialization status register which contains the information on the status of the
receiver and transmitter of the UART. Together with the Interrupt identification register (offset 02h),
a source of interrupt can be identified. The bit functions of bit 7 to bit 0 of the register are shown
below:

0 TXE TBE BREK FRME PARE OVFE RxRD

TXE (transmitter empty)

TBE (transmitter buffer empty)

BREK (break)
FRME (frame error)
PARE (parity error)

1 = no byte in the transmitter hold register and the shift register
0 = one byte in the transmitter hold and shift register
1 = one byte in the transmitter hold register
0 = one byte in the transmitter hold register
1 = detected 0 = no break
1 = error detected 0 = no error
1 = error detected 0 = no error

PC INTERFACING 19

CENTRONIC, RS232 AND GAME PORTS

OVRE (overrun error) 1 = error detected 0 = no error
RxRD (received data ready) 1 = received data in the receiver buffer register

0 = no received data

Offset 06h is the modem status register. It can be used to determine the status of RS232 input signals
such as DCD, DSR, CTS. For general purpose interfacing applications, this register can be used to
read three digital input lines. The bit functions for bit 7 to bit 0 are shown below:

-DCD -RI -DSR -CTS DDCD DRI DDSR DCTS

-DCD (data carrier detect) I=DCD active 0=DCD inactive
-RI (ring indicator) 1= RI active 0=RI inactive
-DSR (data set ready) I=DSR active 0=DSR inactive
-CTS (clear to send) I=CTS active 0=CTS inactive
DDCD (delta data carrier detect) I=DCD change since last read

0=DCD not changed
DRI (delta ring detect) I=RI change since last read

0=RI not changed
DDSR (delta data set ready) I=DSR change since last read

0=DSR not changed
DCTS (delta clear to send) I=CTS change since last read

0-CTS not changed

Offset 07h register is a scratch-pad memory which is a random access memory byte. Writing data
into the register has no effect on the operation of the UART.

(b) RS232 driver/receivers

The RS232 output control signals (-RTS and -DTR) and input status signals (-CTS,-DSR,-DSR) are
processed by the UART in an inverted form. The serial data signal SIN and SOUT are in a non-
inverting form. The UART produces the T-['L/CMOS voltage levels only. RS232 line drivers/receivers
are connected between the UART and the RS232 connector. The drivers convert the TTL voltage to
the RS232 voltage level and the receivers convert the RS232 level to the TTL level. All the
drivers/receivers have inverting action. The logic structure of the RS232 port is shown in Figure 1.10.

(c) Base addresses of COM ports

The base addresses of COM1 to COM4 are summarized below.

COMI: 3F8h
COM2: 2F8h
COM3: 3E8h
COM4: 2E8h

When a computer is switched on or reset, the BIOS checks all possible RS232 addresses. If it finds
an installed one, it writes the base address (a 2-byte word) into specific memory locations. For
COM1, the locations are 0000:0400h and 000:0401h. By reading these locations, the base address
can be obtained. The memory locations for COM1 to COM4 are listed below.

COMI" O000:0400h - 0000:0401h
COM2: 0000:0402h - 0000:0403h
COM3: 0000:0404h - 0000:0405h

20 PC INTERFACING

CENTRONIC, RS232 AND GAME PORTS

Figure 1.10 Logic structure of the RS232 port

COM4: 0000:0406h - 0000:0407h

Another useful one-byte memory location is 000:4011h. It stores the total number of COMs
installed. The information is contained in bit 3, bit 2 and bit 1 of the byte.

bit 3=0, bit 2=0, bit 1--0 no COM port installed
bit 3=0, bit 2=0, bit 1-1 one COM port installed
bit 3=0, bit 2=1, bit 1-0 two COM ports installed
bit 3=0, bit 2=1, bit 1--1 three COM ports installed
bit 3=1, bit 2=0, bit 1-0 four COM ports installed

1.2.4 Software control

(a) How to obtain the base address of a COM port

The following program is written in QBASIC. It prints the number of COM ports installed and the
base addresses of the installed ports. Line 20 reads the byte stored in the memory location
0000:0411h using the 'PEEK()' command. Bit 0, bit 1 and bit 2 of the byte contain the information
about the number of COMs installed. These three bits are masked by 'AND (1+2+4)', giving the
number of installed ports. Line 30 reads two bytes from two memory locations holding the base
address for COM1. Lines 40, 50 and 60 perform the same action for COM2 to COM4.

i0 DEF SEG = 0

20 PRINT "Number of RS232 ports: ", (PEEK(&H411) AND (1+2+4))

30 PRINT "Address of LPTI: ", PEEK(&H400) + 256 * PEEK(&H401)

40 PRINT "Address of LPTI: ", PEEK(&H402) + 256 * PEEK(&H403)

PC INTERFACING 21

CENTRONIC, RS232 AND GAME PORTS

50 PRINT "Address of LPTI:

60 PRINT "Address of LPTI:

70 INPUT x

", PEEK(&H404) + 256 * PEEK(&H405)

", PEEK(&H406) + 256 * PEEK(&H407)

The following function written in TP6 detects the number of RS232 ports installed and assigns the
number to a variable Number o f COM. Then it reads base addresses from memory locations holding
the addresses of COM1 to COM4. Next it allows the user to select a COM port to be used. Finally
the procedure assigns the selected base address to a variable, R S 2 3 2 _ a d d r e s s .

(* --Resource Library No. A6 (detection of COM base address)-- *)

Procedure COM address;

(* $0000:$0400 holds the printer base address for COMI

$0000:$0402 holds the printer base address for COM2

$0000:$0404 holds the printer base address for COM3

$0000:$0406 holds the printer base address for COM4

$0000:$0411 number of parallel interfaces in binary format *)

COM:array[l..4] of integer;

COM_number, number_of_com, code: integer;

kbchar:char;

begin

clrscr;

COM_number:=l; (*defaut printer *)

number_of_COM:=mem[$0000:$0411]; (* read number of parallel ports *)

number_of_COM:=(number_of_COM and (8+4+2)) shr I;

COM[l]:=memw[$0000:$0400]; (* Memory read procedure *)

COM[2]:=memw[$0000:$0402];

COM[3]:=memw[$0000:$0404];

COM[4]:=memw[$0000:$0406];

textbackground(blue); clrscr;

textcolor(yellow); textbackground(red); window(10,22,70,24); clrscr;

writeln('Number of COM installed : ',number of COM:2); _ _

w r i t e l n (' A d d r e s s e s for COMI to COM4: ',COM[I]:3,' ', COM[2]:3,'

write('Select COM to be used (1,2,3,4) : ');

delay(1000);

if number of COM>I then begin (* select COMI through COM4 if more than 1LPT installed *)

repeat

kbchar:=readkey; (* read input key *)

val(kbchar, COMnumber, code); (* change character to value *)

until (COM_number>=l) and (COM_number<=4) and (COM[COM_number]<>0);

end;

clrscr;

RS232_address:=COM[COM_number];

writeln('Your selected RS232 interface: COM',COMnumber:l);

write('RS232 Address : ',RS232 address:4); _

', COM[3]:3,' ', COM[4]:3);

22 PC INTERFACING

CENTRONIC, RS232 AND GAME PORTS

delay(1000);

textbackground(black); window(l,l,80,25); clrscr;

end;

The RS232(X) is a Windows DLL function written in Turbo Pascal for Windows. R5232 (0) returns
the number of COMs installed. RS232 (1) returns the base address of COM1. RS232 (2) returns the
base address of COM2, etc.

(* ~Resource Library No. A6 (detection of COM base address)~ *)

Function RS232(x:integer):integer; export;

{Universal auto detection of COM base address}

{ $0000:$0400 holds the printer base address for COMI

$0000:$0402 holds the printer base address for COM2

$0000:$0404 holds the printer base address for COM3

$0000:$0406 holds the printer base address for COM4

$0000:$0411 number of parallel interfaces in binary format}

begin

number of COM, COMI, COM2, COM3, COM4 :integer;

number of COM:=mem[$40:$11]; {read number of parallel ports}

number of COM:=(number of COM and (8+4+2)) shr i;

COMI:=0; COM2:=0; COM3:=0; COM4:=0;

COMl:=memw[$40:$00]; {Memory read procedure}

COM2:=memw[$40:$02];

COM3:=memw[$40:$04];

COM4:=memw[$40:$06];

case x of

0:

i:

2:

3:

4:

end;

RS232:=number of COM; _ _

R S 2 3 2 : = C O M I ;

RS232:=COM2;

RS232:=COM3;

RS232:=COM4

end;

(b) How to initialize a COM port

Before a COM can be used, it must be configured to have a specific serial data format. The
configuration includes the settings of the baud rate, number of data bits, number of stop bits and the
parity check bit. There are three methods of doing this.

The first method is to use the 'MODE' command under DOS prompt. The syntax of the command is:

MODE COMm: baud=b, parity=p, data=d, stop=s, retry=r
or MODE COMm: b, p, d, s, r

'MODE COMI: 96,n,8,1' configures COM1 port to have a baud rate of 9600, no parity check, 8-
bit data length and 1-bit stop bit. The command can be included in the AUTOEXEC.BAT file. The

PC INTERFACING 23

CENTRONIC, RS232 AND GAME PORTS

disadvantage of this method is that it does not allow users to change the serial data format within a
user's program.

The second method uses the BIOS interrupt, INT 14h, which allows the configuration to be made
within a user's program. This requires that register AH is loaded with 0, DX is loaded with a number
0 to 3 representing COM1 to COM4. AL is loaded with an 8-bit initialization code. The bit functions
of bit 7 to bit 0 of this code are shown below:

BD2 BD1 BD0 PAR1 PAR0 STOP DA1 DA0

BD2 to 0: define baud rate bits
111= 9600 011= 600 110= 4800 010= 300
101= 2400 001= 150 100= 1200 000= 110

PAR1,0 Define parity check
00= No parity 10= No parity 01= Odd 11= Even

STOP: Define stop bit
0=1 1=2

DA1, 0: Define data length
10= 7 bit 11= 8 bit

The following TP6 program shows how to achieve the same function as the DOS command 'MODE
COMI" 96,n,8,1'.

{COMI:

var

begin

Procedure initialize;

9600, no parity check, 8 bit data and 1 stop bit}

register:registers;

with register do begin

ah : =0 ; {load interrupt function number}

ai:=128+64+32+0+0+0+2+i; {load initialization code, III00011B}

dx:=0; {COMI is to be initialized, DX=0 for COMI, DX=I for COM2, DX=2 for COM3...}

intr($14, register); {Call the BIOS interrupt}

end;

end;

A limitation of this method is that the baud rate can be set only up to 9600. The 16450 UART can
run at 115200 baud rate. This can only be achieved by direct register access as shown below.

The third method configures the COM port by writing the configuration data directly into the data
format register (offset = 03h) of the UART. This is the most flexible way to configure the serial data
format. The following program written in TP6 configures the data format register. The procedure
requires the information of the base address of the selected COM port, the baud rate, parity checking
mode, data bit length and the stop bit length. The procedure converts the input baud rate into a 16-
bit divisor and loads the divisor into the corresponding registers.

(* --Resource Library No. A9 (to write to the data serialization register)-- *)

Procedure Write_dataformat(RS232_address, Baud, Parity, Data_bit, Stop_bit:integer);

var

bytel, byte2, output_byte: byte;

divisor: integer;

24 PC INTERFACING

CENTRONIC, RS232 AND GAME PORTS

begin

divisor:=l15200 div Baud;

if divisor<=255 then begin bytel:=divisor; byte2:=0 end;

if divisor>255 then begin byte2:=divisor div 256; bytel:=divisor mod 256; end;

output_byte:=(data_bit-5) + 4*(stopbit-l) + 8*(parity);

port[RS232_address+3]:=128;{Loading serial data format, first bit of the register is I}

port[RS232address+0]:=Bytel; {LSB of the divisor is i}

port[RS232address+l]:=Byte2; {MSB of the divisor is 0}

port[RS232address+3]:=output_byte; {Load divisor and other parameters}

end;

The following DLL function written in Turbo Pascal for Windows has the same function.

(* --Resource Library No. A9 (write to the data serialization register)-- *)

Function Write_data_format(RS232_address, Baud, Parity, Data_bit, Stop_bit:integer):integer; Export;

begin

bytel, byte2, output_byte: byte;

divisor: integer;

divisor:=l15200 div Baud;

if divisor<=255 then begin bytel:=divisor; byte2:=0 end;

if divisor>255 then begin byte2:=divisor div 256; bytel:=divisor mod 256; end;

output_byte:=(data_bit-5) + 4*(stop bit-l) + 8*(parity);

port[RS232_address+3]:=128;{Loading serial data format, first bit of the register is i}

port[RS232 address+0]:=Bytel; {LSB of the divisor is i}

port[RS232 address+l]:=Byte2; {MSB of the divisor is 0}

port[RS232_address+3]:=output byte; {Load divisor and other parameters}

end;

(c) How to transmit and receive serial data

There are several ways to read and send serial data via the RS232 interface. One way is to use printer
command and BIOS interrupt calls. The other is to use the direct port access. The latter is more
flexible for general purpose I/O operations. Let us take an example of COM1. To send data from the
COM1, you can write data directly to the transmitter hold register, 3F8h. The following QBASIC
instruction can be used:

OUT 3F8h, X

X is the data in decimal. To read data from the COM1 port, you may read data from the receiver
buffer register, 3F8h, and the following command can be used (Y is the input byte in decimal)"

Y=INP [3F8h]

The following two procedures having the same functions are written in TP6.

(* --Resource Library No. AI0 (to write to the transmit buffer register)-- *)

Procedure write_transmit_buffer (RS232 address, Output_byte : integer) ;

PC INTERFACING 25

CENTRONIC, RS232 AND GAME PORTS

begin

end;

port[RS232_address]:=Output_byte;

(* --Resource Library No. AI2 (to read data from receive buffer register)-- *)

Function Read_receivebuffer(RS232_address:integer):integer;

begin

Read_receive_buffer:=port[RS232_address];

end;

The following two functions are D L L s written in Turbo Pascal for Windows.

(* --Resource Library No. AI0 (to write to the transmit buffer register)-- *)

Function write_transmit_buffer(RS232_address, Output_byte: integer):integer; Export;

begin

port[RS232_address]:=Outputbyte;

end;

(* --Resource Library No. A12 (to read data from receive buffer register)-- *)

Function Read receive buffer(RS232 address:integer):integer; Export;

begin

Read_receive_buffer:=port[RS232_address];

end;

(d) How to read and write data via handshake lines

To output data from RTS and DTR lines, you should write to the particular bits of the modem
control register (offset 04h). Bit 1 and bit 0 corresponds to RTS and DTR. The following TP6
procedure and Windows DLL function control the status of RTS and DTR. The procedures require
the base address of the selected COM port and status of RTS and DTR which should be either 1 or
0. In these two procedures, RTS and DTR are inverted before they are output to the port. This is due
to the use of the TI'L/RS232 transceivers which have an inverting action. The transceivers are used
externally for voltage level translation.

(* --Resource Library No. All (to write to the modem status register)-- *)

Procedure Write_modemstatus(RS232_address, RTS, DTR:integer);

(* RTS and DTR = 0 or i, RTS and DRT are inverted by MAX238 on the experimental board *)

(* RTS=bit 1, DTR=bit 0 of Modem control register, offset 04 *)

begin

RTS:=I-RTS;

DTR:=I-DTR;

Port[RS232_address+4]:=RTS*2 + DTR (* to output to the register 04 *)

end;

(* --Resource Library No. All (to write to the modem status register)-- *)

Function Write_modem_status(RS232address, RTS, DTR:integer):integer; Export;

26 PC INTERFACING

CENTRONIC, RS232 AND GAME PORTS

(* RTS and DTR = 0 or i, RTS and DRT are inverted by MAX238 on the experimental board *)

(* RTS=bit I, DTR=bit 0 of Modem control register, offset 04 *)

begin

RTS : = I-RTS ;

DTR: = I-DTR;

Port[RS232_address+4]:-RTS*2 + DTR (* to output to the register 04 *)

end;

To read data from DSR, CTS and DCD lines, we should read the modem status register (offset 06h).
The following TP6 procedure and Windows DLL functions are written for this purpose. The status
of DCD, DSR and CTS can be read by putting different value of 'x'. These procedures require the
base address of the selected COM port. The DCD DSR and CTS status are inverted. Again this is
because of the use of the TrL/RS232 transceivers in the external circuit.

(* --Resource Library No. AI3 (to read modem status register)-- *)

Function Read_modem_status(RS232address, x:integer):integer;

(* X=I select DCD bit, x=2 select DSR bit, x=3 select CTS bit *)

(* DCD=bit 7, DSR=bit 5, CTS=bit 4 of Modem status register, offset 06h *)

(* All bits are inverted by the Max238 on the experimental board *)

var

input_byte:byte;

begin

end;

input_byte:=port[RS232_address+6];

case x of

i: Read_modem_status:=l-round((input_byte and 128)/128);

2: Read_modem_status:=l-round((input_byte and 32)/32);

3: Read_modem_status:=l-round((input_byte and 16)/16);

end;

(* --Resource Library No. AI3 (to read modem status register)-- *)

Function Read_modem_status(RS232_address, x:integer):integer; Export;

(* X=l select DCD bit, x=2 select DSR bit, x=3 select CTS bit *)

(* DCD=bit 7, DSR=bit 5, CTS=bit 4 of Modem status register, offset 06h *)

(* All bits are inverted by the Max238 on the experimental board *)

var

input_byte:byte;

begin

end;

input_byte:=port[RS232_address+6];

case x of

i: Read_modem_status:=l-round((input_byte and 128)/128);

2: Read_modem_status:=l-round((input_byte and 32)/32);

3: Read_modem_status:=l-round((input_byte and 16)/16);

end;

PC INTERFACING 27

CENTRONIC, RS232 AND GAME PORTS

1.3 Game ports

Most desktop computers also provide a game port from which one or two joysticks can be
connected. Although it is primarily designed for joysticks, it can be used also for other interfacing
applications. The port provides four digital input lines and four analogue input lines. The digital
input lines read digital data and the analogue inputs measure resistance. The resistance value should
be within the range from 0 to 100 k•.

A joystick has two 100 kQ potentiometers arranged perpendicular to each other to indicate the X
and Y positions of the joystick. It also has two normally-open buttons. The corresponding lines are
pulled to logic high by internal circuitry of the joystick. When the buttons are pressed, the lines
become low.

1.3.1 Port connector

The game port is housed in a 15-way female 'D' type connector.
typical connection to joysticks are given in Figure 1.11.

The pin-out, functions and the

Figure 1.11 Pin-out, pin functions and the typical connection of the game
port

28 PC INTERFACING

CENTRONIC, RS232 AND GAME PORTS

1.3.2 Internal hardware organization

The internal circuit diagram of the generic game port is given in Figure 1.12. The logic structure of
the game port is given in Figure 1.13. We can see that the 8-bit data of the data bus consists of four
bits from four NE555s via IC5a and four bits from the button inputs via IC5b. The four button
status inputs are pulled to +5V by pull-up resistors. The port is connected to a CPU I/O port having
an address of 201h. The bit functions from bit 7 to bit 0 of the port are shown below:

Figure 1.12 Circuit diagram of the generic game port

PC INTERFACING 29

CENTRONIC, RS232 AND GAME PORTS

Figure 1.13 Logic structure of the game port on computers

BB2 BB1 BA2 BA1 BY BX AY AX

BB2, BB1, BA2 and BAI" digital input lines
BY, BX, AY and AX: monostable output status

The status of BB2, BB1, BA2 and BA1 can be checked. The measurement of resistance has a different
approach. Monostable circuits based on 555s are utilized. The outputs of the 555s are normally low.
When writing a byte to the port 201h, -WRITE_GAME_ PORT goes low for a short period of time.
The low going edge of the signal triggers the four monostables and BY, BX, AY and AX lines become
1. The monostable has a 10 nF capacitor, which is charged via a 2.2 k• resistor on the adapter board
and the potentiometer inside the joystick. If the voltage across the capacitor increases above a
threshold level, the monostable output becomes 0. The period in which the output is 1 is determined
by the external resistance value, assuming that the values of the internal capacitor and resistance are
fixed. The time interval and the external resistance are related by the following equation:

Time interval (ps)- 24.21as
Resistance (Q) = 0.011

The time interval may vary in the range 24.2 las for a zero external resistance and 1124 ps for a
100 kQ resistor. However, uncertainties in the internal capacitor and resistor make the equation
invalid. In practice, a calibration should be carried out which involves measurements of the one-shot
period when the input resistance is zero and when the input resistance is precisely 100 k•.

30 PC INTERFACING

CENTRONIC, RS232 AND GAME PORTS

Some game port adaptors on computers only support joystick A. In this case, only two resistance
channels and two digital input channels are available.

1.3.3 Software control

In the QBASIC programming language, there are two instructions which are specific to the game
port. One is the 'STICK(x)' function and the other is the 'STRIG(x)' function. For the STICK
function, x can be a value of 0, 1, 2 and 3 and is used to read X and Y potentiometers of joystick A
and B.

x=0 read X coordinate of joystick A
x=l read Y coordinate of joystick B
x=2 read X coordinate of joystick A
x=3 read Y coordinate of joystick B

When using this instruction, you must call STICK(0) first before you call STICK(I), STICK(2) or
STICK(3). STICK function returns a coordinate value which varies from 6 for zero resistance to
about 150 for 100 kff2 resistance.

STRIG(x) returns -1 if the condition is true. It returns 0 if the condition is not true. x can be a
value of 0 to 7 and is used to select a specific joystick button status condition.

x=0 1st button of joystick A was pressed since last STRIG(0)
x=l 1st button of joystick A was currently pressed
x=2 1st button of joystick B was pressed since last STRIG(2)
x=3 1st button of joystick B was currently pressed
x=4 2nd button of joystick A was pressed since last STRIG(4)
x=5 2nd button of joystick A was currently pressed
x-6 2nd button of joystick B was pressed since last STRIG(6)
x-7 2nd button of joystick B was currently pressed

The following QBASIC program prints the X and Y coordinate values of joystick A on the screen
and shows the status of the two buttons.

i0 dummy=STiCK(0)

20 print "Coordinate of X: ", STICK(0)

30 print "Coordinate of Y: ", STICK(I)

40 print "Current status of Ist button:

50 print "Current status of 2nd button:

60 end

", STRIG(1)

, STRIG(5)

The following TP6 function returns the status of a particular bit specified by a variable Bitx. The
content of the joystick register is read into the computer and assigned to I n p u t _ b y t e . Then the
status of a particular bit is obtained by masking the selected bit.

(* --Resource Library No. AI4 (to read Game port register)-- *)

Function Read_Game_port (Bitx: integer) : integer;

(* Game port address: 201H

Bitx (I to 8) selects status of AX, AY, BX, BY, BAI, BA2, BBI and BB2 *)

PC INTERFACING 31

CENTRONIC, RS232 AND GAME PORTS

var

inputbyte:byte;

begin

input_byte:=port[$201];

Read_game_port:=round((input_byte and bit_weight(bitx))/bit_weight(bitx));

end;

To determine the resistance value, firstly you output a byte to the 201h port to start the one-shot
monostable. The corresponding bit in the joystick register rises to 1. Then, you continuously poll the
corresponding bit to see if it falls to 0. The time period required is obtained. The most convenient way
to find the time period is to use the third counter of the 8253/8254 timer chip inside the PC. The
counter can be configured as a free running count-down timer. If the counters are loaded with a value
of 255, the value of the counters reaches zero for every 55 millisecond. Only counter 3 of the 8253
can be used for the purpose. Counters 1 and 2 are already used by the computer's operating system.

The following TP6 function allows the period for a resistance channel to be measured. The channel
is specified by x. The function issues a write operation to the game port using PORT [$201]:=0 to
start the monostables. Immediately following this, the value in the 8253 counter is read and is
assigned to Time 1. Next, a loop continuously checks if the associated register bit goes low. As soon
as it does so, the 8253 counter is read again and the value is assigned to Time 2. The time interval
is then calculated. This function uses two other function/procedures. One is the init_8253. It writes
255 to the low and high order counters of the counter 3 and configures it as a free running counter.
'Read_8253' is a function to read the high-order and low-order bytes of the counter 3.

(*--Resource Library No. AI6 (to get time interval of the multivibrator after one shot)-- *)

Function Interval_Gameport(x:integer):integer;

(* x selects AX (x=l), AY (x=2), BX (x=3), BY (x=4) *)

var

Timel, Time2, dummy: integer;

Procedure init 8253; _

(* Initialize 8253 *)

begin

(* Control word= b6H = 10110111b

10 = select counter 2

ii = read/write low count byte first then high byte

011 = mode 3

0 = binary counting with 16-bit *)

Port[$43]:=$b6; (* load control word to the control register of 8253 *)

Port[S42]:=255; (* load low count byte *)

port[S42]:=255; (* load high count byte *)

port[$61]:=port[$61] or i; (* disable speaker *)

port[$43]:=$80; (* 80H is the counter latch command for counter 3 *)

end;

Function read_8253:integer;

32 PC INTERFACING

CENTRONIC, RS232 AND GAME PORTS

(* read low order and high order bytes of the counters *)

var

low_byte, high_byte:byte;

begin

low_byte:=port[$42];

high_byte:=port[$42];

read_8253:=low_byte + 256* high_byte;

end;

Var

begin

end;

i:integer;

init 8253;

for i:=l to i00 do i:=i;

i:=0;

dummy:=bit_weight(x);

port[S201]:=0;

Timel:=read 8253; _

repeat i:=i+l until (port[S201] and dummy=0) or (i>=5000);

Time2:=read 8253; _

Interval_gameport:=timel-time2;

if i>=5000 then Interval_game_port:=0;

The Windows DLLs are written in Turbo Pascal for Windows.

(* --Resource Library No. AI4 (to read Game port register)-- *)

Function Read_Gameport(Bitx:integer):integer;Export;

(* Game port address: 201H

Bitx selects status of AX, AY, BX, BY, BAI, BA2, BBI and BB2 *)

var

input_byte:byte;

begin

input byte:=port[$201];

Read_game_port:=round((input_byte and bit_weight(bitx)/bit_weight(bitx)));

end;

(* m-Resource Library No. AI5 (to write to Game port register)-- *)

Function Write_Game_port:integer;Export;

(* output byte 0 to the game port to start the multi-vibrators *)

begin

port[S201]:=0;

end;

PC INTERFACING 33

CENTRONIC, RS232 AND GAME PORTS

(* --Resource Library No. AI6 (to get time interval of the multivibrator after one shot)-

Function Interval_Game_port(x:integer):integer;Export;

(* x selects AX (x=l), AY (x=2), BX (x=3), BY (x=4) *)

var

Timel, Time2, dummy: integer;

Procedure init_8253;

(* Initialize 8253 *)

begin

(* Control word= b6H = 10110111b

10 = select counter 2

ii = read/write low count byte first then high byte

011 = mode 3

0 = binary counting with 16-bit *)

Port[$43]:=$b6; (* load control word to the control register of 8253 *)

Port[S42]:=255; (* load low count byte *)

port[S42]:=255; (* load high count byte *)

port[$61]:=port[$61] or i; (* disable speaker *)

port[$43]:=$80; (* 80H is the counter latch command for counter 3 *)

end;

Function read_8253:integer;

(* read low order and high order bytes of the counters *)

var

low_byte, high_byte:byte;

begin

low_byte:=port[$42];

high_byte:=port[$42];

read_8253:=low_byte + 256* high_byte;

end;

Var

begin

end;

i:integer;

init 8253;

for i:=l to I0 do i:=i; (* a short delay *)

i:=0;

dummy:=bit_weight(x);

port[S201]:=0;

Timel:=read 8253; _

repeat i:=i+l until (port[S201] and dummy=0) or (i>=10000);

Time2:=read 8253; _

Interval_game_port:=timel-time2;

if i>=10000 then Interval game_port:=0;

34 PC INTERFACING

TOOLS FOR EXPERIMENTERS 2

Tools for experimenters

The voltage required by TTL and CMOS logic chips is +5V. +12V,-5V and-12V are used by some
A/D converters and operational amplifiers. Some circuit ideas of power supplies are given in Section
2.2 of this chapter. Measurement tools are used for measuring voltage, current, resistance and other
physical properties or showing the waveform of a signal. Muhimeters and oscilloscopes are essential
tools for these purposes. For digital experiments in particular, logic probes are used for checking
logic status and detecting digital pulses. Some logic probe circuits are given in Section 2.3. Analogue
and digital signal generators are used for generating signals. Section 2.4 shows some circuit ideas. All
interfacing experiments described in this book are carried out using three experimental boards,
namely the Centronic experimental board, the RS232 experimental board and the game port
experimental board. Section 2.5 gives the hardware details of the boards. The circuit-making tools
are used to construct experimental circuits. They include breadboards, stripe boards and printed
circuit boards.

2.1 Power supplies

2.1.1 DC power supply

An 8-15V 1A DC power supply is required by the three interfacing boards. Any DC power supplies
having a suitable output voltage range and a current rating can be used. Batteries can be used too.

Figure 2.1 shows a circuit of a dual DC power supply system. It provides +16V a n d - 1 6 V DC
power supply rails with each rated at 1.8 A. The mains side of the power supply consists of a primary
mains switch, a 110V/230V voltage selector, a primary fuse and a transformer. The transformer is of
50VA capacity with two independent primary windings that can be connected in series for 240V
operation or in parallel for 110V operations. The fuse for the primary winding is a standard quick-
action 3A fuse. The fuses for the secondary windings are the resettable fuses (RS183-9629). When
the fuses are subject to a current overload, they rapidly switch from a low resistance state to a very
high resistance state. Once the fault condition has been removed, they automatically reset themselves
within a short period of time, returning to the low resistance state.

2.1.2 +5V, -5V, + 12V, -12V and other voltage supplies

The simplest way of generating a fixed voltage is to use Zener diodes. The regulated voltage can vary
from 2.4V to 75V using the BZX79 series diodes. The diodes in this series are rated at 500 mW and

PC INTERFACING 35

2 TOOLS FOR EXPERIMENTERS

NO

E©

SW 110V t
0V

220V

tOv

4A bridge rectifier

Fuse
.85A resettable +16V

Fuse C2 ~[---
1.85A resettable V

f ' - - ' l

• .. C1, C2: Electrolytic
capacitor

50VA transformer 6800 ,LL F/25V

Figure 2.1 +16V and -16V power supply system

the tolerance of the stabilizing voltage is 5%. Figure 2.2 shows a circuit which converts a 16V DC
voltage into 5.1V with a supply current of 20 mA.

The most common way of generating a fixed voltage is to use the 78 and 79 series voltage
regulators. The former generates positive voltages and the latter generates negative voltages. They
offer different stabilizing voltages (5, 9, 12, 15, 2 4 , - 5 , - 1 2 , - 1 5 , - 2 4 V , etc.) with a typical tolerance
of 5%. 78L and 79L series are rated at 100 mA; 78 and 79 series at 1A and 78S and 79S series at
2A. All the regulators are equipped with an automatic over-temperature shutdown facility. Figure 2.3
shows a circuit supplying +5V,-5V, + 12V and-12V voltages. The input DC supply may be provided
by the circuit shown in Figure 2.1. The 78 and 79 series regulators are used. Heat sinks with a
capacity of several °C per Watt should be used for all regulators. 1A resettable fuses are used for each
power supply rail.

+16V O

GND O

I
I-!

R = 440 Ohm H

"O +5.1V, Max current: 20 mA

5V1 Zener diode 5 mA

, O GND

Figure 2.2 +5V power supply using a Zener
diode

36 PC INTERFACING

TOOLS FOR EXPERIMENTERS 2

+~ov 0

\ \ / /

C2
10 2.LF

Fuse 1A

I ', 0 +12V

\ \ / /
Fuse 1A

! I O +5v

C4

lO LLF

ov 0 0 ov
~'LED

-~6v 0

/ / \ \

C7 C8

10n, ! T 10 J J F .

/ / \ k

R
390R J Fuse 1A

' ' 0 5 V i i

Fuse 1A
i i • • O 1 2 V

78 series 78L series 79 series 79L serie~

0 0 ~
II II

Output C Input Comm Input

In put utput Corn mon utput

Common Input

(Viewed from the top) (Viewed from the top)

)utput

Figure 2.3 +5V, -5V, +12V and -12V power supply system

PC INTERFACING 37

2 TOOLS FOR EXPERIMENTERS

These voltage regulators have a high voltage drop. This means that the incoming supply voltage
should be at least 2 to 3 volts higher than the output voltage. They also exhibit a high quiescent
current, typically, 1 to 8 mA. There are other types of regulators which feature a lower voltage drop.
The LM2930A (SGS-Thomson) is a 5V regulator and has a 0.4 V voltage drop when the supply
current is 400 mA. When the supply current drops to 150 mA, the voltage drop could be as low as
0.2V. It also includes protection features such as ±40V input overvoltage protection, polarity
protection, thermal shutdown and current limiting. The quiescent current is 22 mA for a 150 mA
supply current. The LM2940CT (National Semiconductor) is a 1A +5V low voltage drop regulator.
The voltage drop is between 0.5 to 1.0V. It has a quiescent current of typically 3 mA for an input
and output voltage difference above 3V. If the difference becomes less than 3V, the quiescent current
increases to 10 mA. It also features thermal overload and short-circuit protection. Figure 2.4 shows
the pin-out of the two regulators and typical application circuits.

I o l

Input Output
Gnd

(Minimum voltage = 5.5V)
IN

Vin 0 i

C1 100nF

GND O T

LM2

COM

I OUT

)30 I
O 5V

Maximum current: 0.4A

T c2 IO0//F

- O GND

(a) Typical application of LM2930A

(Minimum voltage = 6V)

Vin O T

C1 4.7J~ F

1 GND O

,N I

I ,,,,LM2

COM

I OUT
940 I i O 5v Maximum current: 1A

T C2 22,/.t F

v O GND

(b) Typical application of LM2940CT

Figure 2.4 LM2930A and LM2940CT regulators and applications

38 PC INTERFACING

I I III II

TOOLS FOR EXPERIMENTERS 2

The HT-7230, -7233, -7250 and -7290 (Hohek) give fixed voltages of 3.0V, 3.3V, 5.0V and 9.0V,
respectively, with a typical tolerance of 5%. The maximum output current is 100 mA. The voltage
drop is typically 100 mV and the quiescent current is 500 pA. The HT-1030 and HT-1050 exhibit a
quiescent current of 3.5 pA and supply a fixed voltage of 3V and 5V. Their current rating is 30 mA.
Figure 2.5 shows an application circuit using these regulators.

Gnc I Output

Input

(Viewed from the top)

HT-10 ser ies

Gnd

(Viewed from the top)

HT-72 ser ies

Regulators Vout I max
HT-1030 3.0V 30mA
HT-1050 5.0V 30mA
HT-7230 3.0V 100 mA
HT-7233 3.3V 100 mA
HT-7250 5.0V 100 mA
HT-7290 9.0V 100 mA
,,

Vin
O T

(5.1 - 12 V for HT-10 series) /
(5.1 - 24 V for HT-72 series)

C1 10 ,UF T

O - -

GND

IN HT-1
HT-7

COM

oxx I OUT
2XX I

I !

O +5V

C2 10 zL F

0 GND

Figure 2.5 HT-72XX and HT-10XX series voltage regulators

Variable voltage regulators are also very useful. Figure 2.6 shows a circuit using an L200C (SGS-
Thomson) adjustable voltage regulator. It can supply a regulated voltage from 2.85 to 36V with an
output current up to 2 A. It features current limiting, thermal shutdown and input over voltage
protection up to 60V. The quiescent current is typically 4.2 mA. A heat sink with a capacity of several
°C per watt should be used.

PC INTERFACING 39

2 TOOLS FOR EXPERIMENTERS

+16V 0

GND 0

Cl
100nF

1 2 3 4 5

Pin-out functions

1 Input
2 Current limit
3 GND
4 Reference
5 Output

VR1 50
i I J

Set current limit
5

2
L200

VR2

Set output
voltage

R1
820

C2

100nF

2.8-14V

2A

, ' , C3
IOOJZF

. 4 0 GND

Figure 2.6 L200C variable voltage regulator and its typical application

2.1.3 Voltage references

In MD and D/A applications, precision voltage references are required. The REF-03CNB, REF-02CP
and REF-01CP (Analog Devices) give 2.50V, 5.00V and 10.0V voltage with a typical _*1% tolerance.
The maximum output current is 21 mA. The input voltage should be at least 2V higher than the
output voltage and the quiescent current is about 1 mA. They all feature short circuit protection.
Figure 2.7 shows the pin-out of the devices.

The LM4040-XX (National Semiconductor) series are micropower shunt voltage references,
which are available in several voltages: 2.500V, 4.096V, 5.000V, 8.192V and 10.000V and have
several precision grades: grade A: 0.1%, grade B: 0.2% and grade C: 0.5%, grade D: 1% and grade
E: 2%. The quiescent current of the devices varies from 60 laA for the 2.5V reference to 100 laA for
the 10V reference. All versions have a maximum supply current of 15 mA. The pin-out and a typical
application are given in Figure 2.8.

The TLE2425CLP (Texas Instruments) is another voltage reference which outputs a voltage
of 2.50V with a tolerance of _*0.8%. It sinks or sources 20 mA current. The quiescent current is

40 PC INTERFACING

TOOLS FOR EXPERIMENTERS 2

COMPEt

330 pF

N.C. N.C.

N.C. +Vs

OUTPUT NC

ADJUST GROUND

N.C.

N.C.

OUTPUT

ADJUST

N.C.

+Vs

TEMP CO

GROUND

N.C.

N.C.

OUTPUT

ADJUST

+15V

+9.7V to
10.3V

Output voltage adjustment

Figure 2.7 REF-XX series voltage reference ICs

N - +

I

/

N - +

(Viewed from the top) ~ /

O 5.5-15V

o +5v

O GND

Figure 2.8 Pin-out of LM4040 and a typical application

PC INTERFACING 41

2 TOOLS FOR EXPERIMENTERS

Vin C

GND 0

Ou n

Common

'N /
COM

(Viewed from the top)

OUT
O +2.50 V

0 GND

Figure 2.9 Pin-out a typical application of TLE2425

4.5V battery

SW

10 K multi-turn variable resistor

LED

R I K

O

,, O

Precision Voltmeter

Gnd

Figure 2.10 Variable voltage generator

42 PC INTERFACING

TOOLS FOR EXPERIMENTERS

I I

2

170 pA. The input voltage is in the range 4V to 40V. The pin-out and a typical application are given
in Figure 2.9.

A variable reference voltage generator is shown in Figure 2.10. It is built around a multi-turn
potentiometer and is a very useful device in testing A/D and D/A converters. The output voltage
could vary from several millivolts to several volts. A precision digital voltmeter should be used to
monitor the voltage.

2.1.4 Voltage converters

The circuit shown in Figure 2.11(a) is a voltage inverter which converts +5V voltage to -5V using an
SI7660CJ voltage converter (Siliconix). The chip is able to generate a negative voltage output which is

10.LtF ' '

,1,

C 2 ' ~ 1 ,

+5V

7660

, J - .
m - r

10ZLF
(a) 7660 voltage inverter circuit

+5V

680

, = ~ , C3

C4

C1-C4: 10,/.t F

(b) MAX680 voltage doubler and inverter

Figure 2.11 Voltage converter circuits

O V out

o V+

GND

O V-

PC INTERFACING 43

2 TOOLS FOR EXPERIMENTERS

I I I

equal to the positive voltage input in the range 1.5V to 10V. Pin 7 should be tied to ground for a supply
voltage below 3.5V. For supply voltages above 6.5V, a diode should be connected in series of the output.
The output has an internal resistance of 70 ft. If a 10 mA current is drawn from the output, the voltage
will be 4.3V. The quiescent current is 170 ~A and the maximum output current is 40 mA.

The circuit shown in Figure 2.11(b) converts a ÷5V voltage to ÷10V and-10V using a MAX680CPA
voltage doubler and inverter (Maxim). The input voltage ranges from 2V to 6V. The internal
resistances for the positive and negative output are 150 fl and 90 Q respectively. If a 10 mA current
is drawn from both outputs, the positive voltage falls to 7V and the negative voltage becomes-6.1V.
The quiescent current of the device is typically 1 mA for a 5V power supply.

2.1.5 Isolated voltage supply circuits
This circuit is used when a complete isolation between two circuits is required. NME and NMA
series DC-to-DC converters (Newport Components) are high efficiency voltage converters, the
outputs of which are isolated up to 1000V relative to the input. The NME series operate from a 5V
or 12V DC input and provide an isolated +5V, 12V or 15V output, depending on types. Up to 200
mA supply current is available from the 5V type, 84 mA from the 12V type and 67 mA from the 15V
type. The NMA series provide dual _+5V, _+12V and _+15V DC supplies fro m a single 5V or 12V DC
input. Up to 100 mA is available from the 5V type and 42 mA from the 15V type. The pin-out of
the devices is shown in Figure 2.12.

Isolation barrier Isolation barrier

1 2

GND :VCC

3 4 1 2

0V V+ GND VCC

3 4 5

V- 0V V+

INPUT OUTPUT INPUT OUTPUT
VOLTAGE VOLTAGE VOLTAGE VOLTAGE

(a) NME single output type (b) NMA dual output type

Figure 2.12 Isolated DC/DC converters

44 PC INTERFACING

TOOLS FOR EXPERIMENTERS 2

2.2 Logic level detectors

A simple TTL logic probe can be constructed using a buffer IC such as the 74LS241 or 74LS245.
Such a circuit is shown in Figure 2.13(a). Current limiting resistors are used for LEDs. When the
input of the buffer is high, the output will go high. This switches on the corresponding LED. This
digital probe provides multi-channel test inputs. It is unable to detect transition status and high
frequency pulse trains.

Figure 2.13(b) shows a circuit of an advanced logic probe. It is built around an LM339 voltage
comparator. It has three LEDs, red, green and yellow. When the probe detects a logic high state, the
red LED illuminates. When it detects a logic low, the green LED illuminates. When a transitional
status is detected, the green and red LEDs are both off but the yellow LED illuminates. If it detects
a train of pulses, the red and green LEDs both illuminate. The circuit, however, is still not able to
detect pulses with a very short duration. A pulse stretching circuit should be used. A 555 configured
as a monostable can be adopted for this purpose.

2.3 Digital and analogue signal generators

2.3.1 Digital signal generators

Figure 2.14(a) shows an eight-channel logic status generator circuit. It consists of eight single pole
double throw (SPDT) switches and eight lk metal film resistors. When a switch is off, the status of
the corresponding channel is high. When it is switched on, a logic low is generated. At logic high,
each channel can drive up to 25 LSTTL chips. This logic generator suffers that the output signal is
not 'clean' when it changes the status. When the switch changes position, the output signal does not
change from one state to the other instantly. It consists of a number of oscillations within a very short
period of time. To solve this problem, a de-bouncing circuit is used. Figure 2.14(b) shows such a
circuit using a Schmitt trigger inverter, 74LS14. When the switch is closed, the output gives logic 1.
When the switch is open, the output gives logic 0.

Another logic generator is the toggle action switch. When a switch is pressed momentarily, the
output changes status. The status is maintained until the switch is pressed again. Figure 2.14(c) gives
such a circuit.

Figure 2.15 shows two square wave generator circuits. The first one is based on a 555 timer. It
gives a 1 kHz signal with a 67% duty cycle. Figure 2.15(b) is an oscillator producing square wave
signals having various frequencies. It uses a CD4060 16-stage ripple counter. The original frequency
is determined by Rt and Ct.

To achieve a higher accuracy in frequency, crystal oscillators are used. Figure 2.16 shows three
circuits. The first signal generator uses a 10 MHz crystal oscillator and a 74LS04 inverter. It generates
a digital signal precisely at 10 MHz. Lower frequencies can be obtained using dividers. Figure 2.16(b)
shows a crystal oscillator circuit using a 2.4576 crystal oscillator and a 16 stage ripple counter
CD4060. It outputs square wave signals of various frequencies at different pins. Figure 2.16(c) shows
another circuit using an EX0-3 programmable crystal oscillator (Interface Quartz Devices). It has an
on-board programmable frequency divider which provides 1/2 to 1/2 n (n- l , 2 to 8) divisions of the

PC INTERFACING 45

2 TOOLS FOR EXPERIMENTERS

Digital inputs

+5V For standard LEDs: R=200 Ohm
For low-current LEDs: R=2K

R ~f~If
LED1

R # #
LED2

R # #
LED3

R # #
LED4

.##
LED5

R # #
LED6

LED7

LED8

74LS244

or 74HCT244

(a) Multi-channel logic probe using a 74LS244

Probe

R2

..7K

D2

D'I '{
red

., [] . , .7
1M 27K 220R

7

~ 9 8 A 2 ~ 1 4

]~°
6.2K

I ,

Iree

:112
.)201

• ' i ~ 1

D3

D4

I]1 [
220R

• 5 ~ 4
A1 to A3:LM339
D1 to D4:1N4148

R l l

1M

D7

yellow

(b) logic probe using an LM339 voltage comparator

5V

- - - - - - - - O

r ' - "--~ C1
m m

10 ,L~F

GND

Figure 2.13 Logic probe circuits

4 6 PC INTERFACING

TOOLS FOR EXPERIMENTERS 2

D1

R1

SWl

D2 D3 D4 D5 D6 D7 D8

R2 R3 R4 R5 R6 R7 R8 R1-R8:1K

. Z

SW2 SW3 SW4 SW5 SW6 SW7 SW8

(a) multi-channel logic status generator

Sl
(normally open)

R10 4k7

O +5V

R2
100R

74LS14

Output

C1
10 2.iF

O ov
(b) debounced switch input

R1
4k7

PB1 ~)
()

Push to
toggle

ICla
1/6 74LS14 R3I]

] R2 1K

100 1 14 ,

7

R4 I l l i +5V

U 270

~ E ~ LED

01 '--- "--'

10 AF T

14 i~i 12
1
3 13

11 I C2a

112 74LS73

(Output

O GND

(c) latching action switch

Figure 2.14 Logic status generator circuits

PC INTERFACING 47

2 TOOLS FOR EXPERIMENTERS

I 7 4 8

100nF

l u F T

O +5V

O

"I-I'L output with 67% duty cycle

(a) 7555 oscillator

O GND

frequency='~.

Rs=10 Rt

Example:
Rt=100K, Ct=

Q4 (f/16)
Q5 (f/32)
Q6
Q7
Q8
Q9
Q10
Q12
Q13
Q14

(b) CD4060 oscillator

Figure 2.15 Signal generators (a) based on a 555 (b) based
on a CD4060

4 8 . PC INTERFACING

I

TOOLS FOR EXPERIMENTERS 2

74LS04

1 2
20 nF

II
" |1

10 MHz

IBI

74LS04

3 ~ 5 6

" ~" " 74SL

(a) 74LS04 crystal oscillator

" 0 +5V

0 Output
(10 MHz TTL)

0 GND

--'~ IX: 4.9152MHz I
IC1=C2=27p I
IR=IM I

53.6 kHz
'6.8 kHz
~8.4 kHz
9.2 kHz
L6 kHz
L8 kHz
!.4 kHz
~00 Hz
~00 Hz
50 Hz

(b) digital signal generator based on a CD4060

A B " N
0 0 0 2
0 0 1 4
0 1 o 8
0 1 1 16
1 0 0 32
1 0 1 64
1 1 '0 128
1 1 1 256

(c) programmable crystal oscillator

0 +5V

Output

Original frequency
.~ncy =

N

~, GND

Figure 2.16 Cystal osci l lators

PC INTERFACING 4 9

2 TOOLS FOR EXPERIMENTERS

original frequency. The original signal is generated by an on-board crystal oscillator. Divisions are
selected by three pins (A, B and C). Available original frequencies are 12 MHz (RS296-879), 14.318
MHz (RS296-885), 18 MHz (RS296-891)and 19.661 MHz (RS296-908).

2.3.2 Analogue signal generators

Figure 2.17 shows an analogue signal generator circuit using a popular ICL8038BC function
generator IC (Harris Semiconductor). It gives sine, square and triangular signals with frequencies
adjustable from 20 Hz to 18 kHz. The outputs from the ICL8038 is buffered by three op-amps.

LOW
FREQUENCY
ADJUSTMENT

22k 10M

;..~ 10 11

i V+c i
)nF ~

4k7 4k7

4 6 9

8 i, i ~ ~ ,i.!~: ~ ~.~,i.i,il ,~i:~ ,: 2
3

12! 1

4n7
n B m
m j

4m••n7 +12V

15k 1/4
O84

4k7
~-I i_. t - i

square
4k7 [wave

- ' " 1/4
5 ~84

6
tb

'91"~ .:~ EI 1Ok

- 100k

10k

sine

1/4
1_2 ~ 4

4 i 13 EEE~
3k9 triangluar

wave

-12V

T
4n7

Figure 2.17 ICL8038 digital signal generator

50 PC INTERFACING

TOOLS FOR EXPERIMENTERS 2

2.4 Centronic port, RS232 and game port experimental boards

These boards serve as the interfaces between the computer and user's experimental circuits. On each
board, LEDs are provided to indicate the logic status of each input and output line. This enables
users to trace the effect of I/O operations. Each I/O line has a detachable screw terminal from which
user's experimental circuits can be connected. All the digital lines fed into the computer are buffered
by Schmitt trigger buffers. All the boards require a single rail 8-15V unregulated DC power supply.
The on-board 7805 ÷5V 1A voltage regulator converts the input voltage to ÷5 V. The current of the
regulated power supply is limited by a 1A on-board fuse. The boards use popular electronic
components and are constructed on single sided PCB boards. The boards allow various interfacing
experiments to be carried out using the Centronic port, RS232 port and the game port.

2.4.1 Centronic experimental board

Figure 2.18 shows the circuit diagram of the Centronic experimental board. DB0 to DB7 of the data
port of the Centronic port are fed into the inputs of 74LS244 Schmitt trigger buffers (IC2) via eight
100 if2 resistors (RL2, eight-way resistor array). The outputs of the buffers are connected to an
eight-way detachable screw terminal. Each line is also connected to a low current LED via a 3.3K
resistor. When a line has a logic high state, the corresponding LED illuminates. The four output
lines of the control port are connected in the same way as for the data port. Four inputs are
connected to the inputs of four Schmitt trigger buffers of IC3. The outputs of the buffers are
connected to the four input lines of the status port via four 100• resistors. The status port has five
input lines, but only four of them are connected this way. The logic status of these lines is monitored
by LEDs.

The fifth input line of the status port (the BUZY input) is connected permanently to the ground.
This is a very useful feature if high level printer control commands are used to control the board. In
this case, the BUZY line is used as a handshake line and it is always low, indicating that the Centronic
experimental board is always ready to receive data.

The power supply incorporates a 1A +5V 7805 fixed voltage regulator (see Figure 2.19). Power is
fed to the board via a power connector SK1. SW1 controls the on/off of the power. A 1A fuse is used
on the board to limit the total current. The on/off status is indicated by an LED. The 7805 regulator
requires a heat sink. The input unregulated power supply and the regulated +5V DC are both
connected to a four-way screw terminal (J1). The components utilized on the board are listed in
Table 2.1.

PC INTERFACING 51

2 TOOLS FOR EXPERIMENTERS

D2 - D9
Low current

LEDs

RL1
8 * 3K3

J3
8-WAY SCREW TERMINAL

D1

D2

D3

Data port D4
(Output #1) D5

D6

D8

D8

@

/
+5V

20

18

" I ,~

1

D10 - D17
Low current

LEDs

RL3
8 * 3k3

m ~ c3

~ 10nF

J4 I RL4
8-WAY SCREW TERMINAL IC3 74LS244 8 * 100R

[- ~ 1 " 3 17
Control port C2 ~ i " 16 4 " " ' ~:;~ :::::
(Output #2) C3 ~ | - !15

N
C 4 ~.~ "11 9 ~ ; ~ ~

= i!~ Sl ~ 8 12

Status port $2 ~ 13 7 " ~

iX; (Input) $3 ~ i 6 14
-

S4 ~ MOO

1 -'t-

C4
B ~ 10 nF

RL2
8 * 100R

J5
36-way female

Centronic connector
Pin function
and pin number

Data port

DB0 (2)

DB1 (3)

DB2 (4)

DB3 (5)

DB4 (6)

DB5 (7)

DB6 (8)

DB7 (9)

Control port

Bit 0 Strobe (1)

Bit 1 .,~ LF/CR (14)
Bit 2 ~]
Bit 3 i ~ Initialize~ (31)

Slin (36)

Status port

Bit 3 Erro---'~ (32)
Bit 4 ~ I

SLCT (13)
Bit 5 I ~] PE (12)

Bit 6 I ~ AC--"K (10)

BUZY (11)

Ground (19-30)

Figure 2.18 Circuit of the Centronic experimental board

5 2 PC I N T E R F A C I N G

TOOLS FOR EXPERIMENTERS 2

+5V --r"

I

HEATSINK (HS)
X..l..t_/

OUT :;~,. ! IN

390RLEDD1R1~,,. ~ J:= C2T,,. IOZLF COM 1 ~0~ 'n F , , .

J2 AND
1A FUSE SWl

' SK1
8-15 V POWER

J1
4-WAY SCREW TERMINAL

8-15V GND +5V
POWER CONNECTOR

Figure 2.19 Power supply circuit for the three interfacing boards

Table 2.1

Resistors (all 1% 0.25W metal film resistors)
R1 390R
RL1, RL3 3.3K eight-way resistor array
RL2, RL4 100R eight-way resistor array

Capacitors
C1, C3, C4 100 nF
C2 10 pF

Semiconductors
IC1 7805 1A +5V voltage regulator
IC2, IC3 74LS244
D1 5mm green LED
D2-D17 Low power 3 mm red LEDs

Connectors
J1
J2
J3, J4
J5
SK1

Four-way detachable screw terminal block set
Fuse holder
Eight-way detachable screw terminal block set
36-way female Centronic type connector
2.5 mm male power connector

Others
SW1 PCB mounting miniature SPDT switch
Fuse 1A 25 mm length
Heat sink (5 deg/watts)
PCB boards
Holders for 3mm LEDs
PCB pilar & screws

PC INTERFACING 53

2 TOOLS FOR EXPERIMENTERS

2.4.2 RS232 experimental board

The circuit diagram of the RS232 experimental board is given in Figure 2.20. The three outputs of the
RS232 port of a PC (TD, RTS and DTR) are fed into the MAX238 RS232-TTL driver/receiver (IC3,
Maxim), where the RS232 voltage level is converted to TTL level. The outputs from the IC3 are fed
into Schmitt trigger buffers 74LS244 (IC2), the outputs from which are connected to three screw
terminals (J3). The logic status of each line is monitored by low current LEDs. The four input signals
(RD, DSR, DCD and CTS) are fed into the 74LS244 buffers. The outputs from the buffer are fed into
IC3 where the TTL voltage level is converted into the RS232 level. Their logic status is monitored by
LEDs. The power supply system is the same as that for the Centronic experimental board.

The MAX238 is an RS232/TTL receiver/transmitter that meets all the EIA RS-232C specifications
while requiring only a single +5V supply. The two on-chip charge pump voltage converters generate
+10 V a n d - 1 0 V power supplies from a single +5V supply. The IC contains eight voltage level
converters, four of which convert the TTL/CMOS level into the RS232 level, and four of which
convert the RS232 voltage level into the TTL/CMOS level. It requires five external 1.0 pF capacitors.
All the voltage converters have an inverting action. The components utilized on the board are listed
in Table 2.2.

D2-D8
Low current

LEDs

J3
8-WAY SC EWTERMINAL

GND
DTR

Output [TD
RTS

RD
DSR

Input DCD

CTS

1
+5V

R 2 - R 8 ~ - ~
3K3 C7

_L 5V

16 4 22 ~ ~ 2a
5 15 17 ~: ~ i;:iL 16

11 if::: ~iiii:: ! ~ i , ii:, 9 " ~. 18 1

- - 103 MAX238CNG ~! ' ~
t I t , , ta l A

C6

C4 - C8
1 ,/J.F

DTR (7)

TD (5)

RTS (6)

RD(1)

DSR (3)

DCD (4)

CTS (2)

GND (9, 10)

10-WAY PCB CONNECTOR

Figure 2.20 Circuit diagram of the RS232 experimental board

5 4 P C I N T E R F A C I N G

TOOLS FOR EXPERIMENTERS 2

Table 2.2

Resistors (all 1% 0.25W metal film resistors)
R1 390R
R2-R8 3.3K

Capacitors
C1 100 nF
C2 10 pF
C3-C7 1 pF

Semiconductors
IC1 7805 1A +5V voltage regulator
IC2 74LS244
IC3 MAX238CNG
D1 5mm green LED
D2-D8 Low power 3mm red LEDs

Connectors
J1
J2
J3
J4
SK1

Four-way detachable screw terminal block set
Fuse holder
Eight-way detachable screw terminal block set
Ten-way PCB connector set
2.5mm male power connector

Others
SW1 PCB mounting miniature SPDT switch
Fuse 1A 25mm length
Heat sink (5 deg/watts)
PCB boards
Holders for 3mm LEDs
PCB pilar & screws
9 pin female D-type connector and housing
lm 9 core digital signal cable

2.4.3 Game port experimental board

The circuit diagram of the game experimental board is given in Figure 2.21. The four resistance
inputs are connected to an eight-way screw terminal (J3). The +5V voltage from the computer is
connected to the terminal via a protection fuse rated at 25 mA. The +5V voltage is not intended to
be used as a power supply. It is only used for connecting resistors. The four digital inputs are first
fed into the 74LS244 Schmitt trigger buffers (IC2). The outputs from the buffers are connected to
the four input bit of the game port via 100R resistors. Their logic status is monitored by LEDs. The
power supply system is the same as that for the Centronic experimental board.

Some game ports on a PC only support one joystick. In this case, only two resistance channels and
two digital input channels are used. The components utilized on the game port experimental board
are listed in Table 2.3.

PC INTERFACING 55

2 TOOLS FOR EXPERIMENTERS

J3

8-WAY SCREW TERMINAL

i VCC
R1

VCC
Resistance / R2

input VCC

vcc
~R4

Inputs

J5 & 25 mA fuse

D2 - D5
Low current

LEDs

J4
4-WAY SCREW TEn,AttAr

IN1
IN2
IN3
IN4

C3 100nF

IC2 74LS244

II RXA

RYA

RXB

RYB

R6 - R 9 , 1 0 0 R

r---I

IN1A

IN2A

IN1B

IN2B

Resistance input

+5V (1)

RXA (2)

RYA (3)

RXB (4)

RYB (5)

Digital input

IN1A (6)

IN2A (7)

IN1B (8)

IN2B (9)

Ground (10)

10-WAY PCB CONNECTOR

Figure 2.21 Circuit diagram of the game port experimental board

5 6 PC I N T E R F A C I N G

TOOLS FOR EXPERIMENTERS 2

Table 2.3

Resistors (all 1% 0.25W metal film resistors)
R1 390R
R2-R5 3K3
R6-R9 100R

Capacitors
C1, C3 100 nF
C2 10 pF

Semiconductors
IC1 7805 1A +5V voltage regulator
IC2 74LS244
D1 5mm green LED
D2-D5 Low power 3mm red LEDs

Connectors
J1
J2
J3
J4
J5
J6
SK1

Four-way detachable screw terminal block set
Fuse holder
Eight-way detachable screw terminal block set
Four-way detachable screw terminal block set
Fuse holder
Ten-way PCB connector set
2.5mm male power connector

Others
SWl PCB mounting miniature SPDT switch
Fuse 1 1A 25 mm length
Fuse 2 25mA 25mm length
Heat sink (5 deg/watts)
PCB boards
Holders for 3mm LEDs
PCB pillar & screws
15 pin D-type male connector with housing
1 m 10 core screened digital signal cable

PC INTERFACING 57

2 TOOLS FOR EXPERIMENTERS

2.4.4 Construction of the experimental boards

The artwork of the PCBs for the three experimental boards is shown in Figures 2.22 to 2.24. The
component layouts for the experimental boards are shown in Figures 2.25 to 2.27.

Figure 2.22 PCB artwork of the Centronic experimental
board

58 PC INTERFACING

c

E
, m

L _

Q.
X

E
m

o

o
L _

L _

Q.
0
0

m

a .

n

c

E
, u

! , _

c~
X

CE

c-

O

L _

0

m

G.

m
• ~ 0

2 TOOLS FOR EXPERIMENTERS

Detachable I screw
terminals 0

I Centronic Experimental Board C3
J3 D2-D9 J5 "~"

- ~ --- ~ I °

D3 ~ -

D4 ~

D5 .,91-

D6 ~ RL1 3K3 RL2 100R
D7

~ D 8 ' ~ -

~ C3 ~

C4 ~

E , , , ,
$2

;- sa ~ 0
S4 ~ F E

8-15V DC

GND
u~

GND

n° +5V

IC3 LS244

L)10-D17 0 C1 HEAT SINK

+ ['] IC1 7805 I
I '

8-15V D C - ' ~ ~ ~ - - GND

0

Figure 2.25 Component layout of the Centronic experimental board

6 0 PC INTERFACING

TOOLS FOR EXPERIMENTERS 2

Detachable
screw

terminals

GND

DTR

m TD

RTS

~ RD

DSR

DCD

m C T S

i 8-15V DC
GND ¢n
GND

no
+5V

O J3 04-08: l uF O R2-R8 3K3
D2-D8 0-0 ©1

--Oje
! , - J 4

O

8-15V D C ~ ~ - ~ GND

RD
CTS
DSR
DCD
TD
RTS
DTR
ND
GND

Figure 2.26 Component layout of the RS232 experimental board

PC INTERFACING 61

2 TOOLS FOR EXPERIMENTERS

m VCC

R1

VCC - I~

R2

VCC - I~

R3

VCC - I ~

R4

I IN2B
IN1B

.¢_
"~ IN2A T=
/'~ IN1A

>, 1 8"15V DC
GND

GND

no +5V

Detachable
screw

terminals

voc 0
R1

VCC

R2
J3

v c c

R3

VCC

R4

D2-D5

IN2B

IN1B

IN2A

INIA

D1

$K1

R2-R5 3k3

J5 25mA

C310nF

ic2 LS244
Oc

IC1

R6-R9 100R
r ' - 3
l - - " -]

O

02 O

I I +5v
RXA

.... I Ry A
~! I RX B

~],. .'~| I RYB
i IN1A
i IN2A

~,. ~I ! IN1B
I IN2 B
I Ground

J6

Figure 2.27 Component layout of the game port experimental board

2.5 Circuit making tools

The circuit making tools are bread boards, strip boards and PCBs. Using the bread board is the
quickest way of making temporary experimental circuits. Stripe boards and PCBs are used for
making permanent circuits.

6 2 PC INTERFACING

SOFTWARE DRIVERS FOR THE EXPERIMENTAL BOARDS

Software drivers for the experimental
boards

This chapter describes software drivers for the Centronic, the RS232 and the game port experimental
boards. Three programming languages, Borland Turbo Pascal 6 for DOS (TP6), Borland Turbo
Pascal for Windows (TPW) and Microsoft Visual Basic 3 (VB3), are used for developing the
programs. The complete software package has two parts: driver programs and programming
resource libraries. The software drivers include:

TP6 driver for the Centronic experimental board, CENTEXP.PAS
VB3 driver for the Centronic experimental board, CENTEXP
TP6 driver for the RS232 experimental board, RS232EXP.PAS
VB3 driver for the RS232 experimental board, RS232EXP
TP6 driver for the Game experimental board, GAMEEXP.PAS
VB3 driver for the Game experimental board, GAMEEXP

The programming libraries include:

TP6 Programming Resource Library- 1, TPLIBI.PAS
TP6 Programming Resource Library- 2, TPLIB2.PAS
Window DLL library- 1 (written in TPW), WLIBI.PAS

The TP6 programming resource libraries contain a collection of procedures and functions for basic
I/O operations of the Centronic, RS232 and game ports and for detecting keyboard strokes and
showing messages on screens, etc. The libraries can be included in users' TP6 program. Procedures and
functions can then be called elsewhere in the program. The Windows DLLs library contains functions
for I/O operations of the three ports and it is written in Turbo Pascal for Windows. The DLLs can
be called by other Windows programs which may be written in Visual Basic and Visual C, etc.

The TP6 drivers for the boards run in the DOS environment and the VB3 drivers run in the
Windows 3.1 and Windows 95 environments. The drivers allow users to understand basic I/O
operations of the ports and to perform simple interfacing experiments using the ports. They also
demonstrate how to integrate the resource libraries into users' programs.

3.1 Software drivers for the Centronic experimental board

3.1.1 DOS TP6 software driver CENTEXP.PAS

The driver provides the following functions:

PC INTERFACING 63

SOFTWARE DRIVERS FOR THE EXPERIMENTAL BOARDS

�9 reports the number of installed Centronic ports on your computer
�9 allows you to select a Centronic port (LPT1 to LPT4) to be used
�9 changes the bit status of the data port (8 bits) and Control port (4 bits)
�9 reads data from the status port (4 lines)

After typing in the name of the program, path + CENTEXP, followed by a return in the DOS prompt,
the following messages appear on the screen:

Number of LPT installed: 2

Addresses for LPTI to LPT4:888 632 0 0

Select LPT to be used (i, 2,3 or 4)

The first line shows the number of LPT(s) installed on your computer. In this example there are 2
LPTs installed. The second line shows the base addresses for the installed LPTs. The third line allows
users to select a Centronic port. Once an LPT is selected, a virtual control panel (Figure 3.1) appears

Figure 3.1 Turbo Pascal 6 virtual control panel for the Centronic experimental board

64 PC INTERFACING

SOFTWARE DRIVERS FOR THE EXPERIMENTAL BOARDS

on the screen. There are 16 virtual LEDs on the panel corresponding to the 16 real LEDs on the
Centronic experimental board. Eight of them represent the outputs of the data port; four of them
represent the outputs of the control port and the other four represent the four inputs to the status
port. At the bottom of the control panel, a key definition window is provided to show key functions.

[ARROW KEYS]
[SPACE]
[Q or q]

to select an output line
to toggle the logic status of the selected output line
to quit the program

By pressing the left or right arrow keys, one of the 12 output lines can be selected. A selected line is
indicated by a circle around the virtual LED. The status of the LED is toggled by pressing the space.
A red LED indicates the logic high state. Every time the arrow keys or the space is pressed, the 4-bit
data at the inputs of the status port is read into the computer and its status is shown on the screen.
The program list is given below:

TP 6 program list of CENTEXP.PAS

Program Centronic_Experimental_Board;

(* Software driver for the Centronic experimental board *)

uses

graph,crt,dos;

var

i,led_selected:integer;

ch:char;

status:array[l..18] of integer;

key_pressed:string[10];

(* include two included libraries: TPLIBI and TPLIB2 *)

{$I c:\ioexp\tplibl.pas}

{$I c:\ioexp\tplib2.pas}

procedure Draw_panel;

(* draw the control panel of the Centronic experimental board on the screen *)

begin

(* draw 16 LEDs on the screen *)

setbkcolor(cyan);

for i:=l to 16 do status[i]:=0;

for i:=l to 8 do draw_led(30+i*30, 350, status[i]);

for i:=l to 8 do draw_led(340+i*30, 350, status[8+i]);

(* draw captions *)

draw_led(20,20,1); draw_message(50,20,70,20,1ightblue,'LED ON',0,l,yellow);

draw_led(20,60,0); draw_message(50,60,70,20,1ightblue,'LED OFF',0,l,yellow);

draw_message(50,390,230,20,blue,' DATA PORT D1 - D8 ',0,l,yellow);

PC INTERFACING 65

SOFTWARE DRIVERS FOR THE EXPERIMENTAL BOARDS

draw_message(360,390,110,20,blue,'CONTROL DI-D4',0,l,yellow);

draw message(480,390,110,20,blue,'STATUS Di-D4',0,l,yellow);
_

(* draw bottom help bar *)

setfillstyle(l,magenta);

bar(l,420,800,480);

settextstyle(0,0,1);

outtextxy(20,430,'[ARROW]: Select a led [SPACE]: Change LED status [Q]: quit');

(* draw central message box *)

draw_message(60,200,500,50,blue,' Centronic Experimental Board',0,2,yellow);

end;

(* initialize the outputs *)

Write_data_port(P_address, 0);

Write_control_port(Paddress, 0);

Procedure Output_Input;

(* output and input procedure *)

var

Output_byte, Input_byte:byte;

begin

(* to calculate the value of data to be sent to the Data port *)

Output_byte:=0;

for i:=l to 8 do Output_byte:=Output_byte + Status[i] * bitweight(i);

Write_dataport(P_address, Output_byte);

(* to calculate the value of dta to be sent to the Control port *)

Output_byte:=0;

for i:=9 to 12 do Output_byte:=Output_byte + Status[i]*bit_weight(i-8);

write_control_port(P_address, Outputbyte);

end;

(* to input data from the Status port and calculate status for LEDs *)

input_byte:=read_statusport(P_address);

for i:=l to 4 do status[12+i]:=round ((inputbyte and bit_weight(i)) / bit_weight(i));

Procedure scan_keyboard;

(* scan the keyboard and detect the keystroke *)

var

led_selected_old:integer;

begin

led_selected_old:=led_selected;

66 PC INTERFACING

SOFTWARE DRIVERS FOR THE EXPERIMENTAL BOARDS

(* detect the keystrokes *)

key_pressed:=getkey;

if key_pressed='LEFT' then led_selected:=led_selected-l;

if key_pressed='RIGHT' then led selected:=led_selected+l;

if key_pressed =' ' then status[led_selected]:=l - status[led_selected];

(* show virtual LEDs with status on the screen *)

setbkcolor(cyan);

for i:=l to 8 do draw_led(30+i*30, 350, status[i]);

for i:=l to 4 do draw ied(340+i'30, 350, status[8+i]);

Output_input;

for i:=5 to 8 do draw_led(340+i*30, 350, status[8+i]);

if led selected>12 then led selected:=12; _

if led selected<l then led selected:=l;

end;

(* display a circle around the virtual LEDs *)

setlinestyle (0,0,3);

setcolor(cyan);

if led_selected_old<=8 then circle(30+30*ledselected_old, 350,15)

else circle(340+30*(ledselected_old-8),350,15);

setcolor(yellow);

if led_selected<=8 then circle(30+30*led_selected, 350,15)

else circle(340+30*(led_selected-8),350,15);

(* Main program *)

begin

centronic_address; (* input centronic address *)

initialize_graph; (* initilize the graphics mode *)

draw_panel; (* draw the virtual panel *)

led selected:=l;

repeat

scan_keyboard; (* scan the keyboard and detect keystrokes *)

until (key_pressed='Q') or (key_pressed='q');

closegraph; (* Close graphics mode *)

end.

The program first includes two libraries, TPLIB1.PAS and TPLIB2.PAS, using the TP6 INCLUDE
instruction.

{$I C: \IOEXP\TPLIBI .PAS}

{$I C: \IOEXP\TPLIB2.PAS}

The program contains three main procedures. Draw__panel draws the virtual panel of the experimental
board on the screen. Draw_ledO and Draw_messageO are two procedures in TPLIB2.PAS library.
Output_input deals with I/O operations of the Centronic port. Write_data_portO,

PC INTERFACING 67

SOFTWARE DRIVERS FOR THE EXPERIMENTAL BOARDS

write_control_~ortO and Read_statusportO are procedures or functions in the TPLIB1.PAS library.
Scan_keyboard scans the keyboard. It detects four keystrokes 'left', 'right', 'space' and 'q' and carries
out corresponding tasks. It uses the getkey function in the TPLIB2.PAS library.

3.1.2 Windows VB3 software driver

The VB3 software driver provides the following functions:

�9 reports the number of the installed Centronic ports on your computer
�9 allows you to select a Centronic port (LPT1 to LPT4) to be used
�9 changes the bit status of the data port (8 bits) and control port (4 bits)
�9 reads data from the status port (4 lines)

In Windows 95, Click the START button and then select RUN. Next type in the name of the software
driver: path + CENTEXP. After clicking the OK button, the screen shown in Figure 3.2 appears. It

Figure 3.2 Report of the number of Centronic ports installed on a PC by the VB3 driver

68 PC INTERFACING

SOFTWARE DRIVERS FOR THE EXPERIMENTAL BOARDS

reports the number of LPTs installed on your PC and their base addresses. Click OK to clear the
screen. Another screen appears (see Figure 3.3). This screen asks you to select an LPT port to which
the experimental board is to be connected. Key in the number of the LPT ports (1, 2, 3 or 4) and
click the OK button. After this, a virtual control panel for the experimental board appears on the
screen (Figure 3.4). By clicking the '0-1' buttons, the status of the corresponding output toggles. A
red LED indicates the logic high state. Clicking the 'Get it' button updates the input data. The
selected Centronic port and its base address are also shown in the panel. Users can re-select the
Centronic port by clicking the 'Change' button. At the bottom of the panel, an information bar is
provided to show the function of a control button when the mouse pointer moves over it.

The control panel consists of a number of objects. It has 15 command buttons which have the
following functions.

COMMAND 1: 'Get it' to get the status of the inputs
COMMAND2(0-7): '0-1' to toggle status of the Data port outputs
COMMAND2(8-11): '0-1' to toggle status of the Control port outputs

Figure 3.3 Screen for users to select a Centronic port to be used

PC INTERFACING 69

SOFTWARE DRIVERS FOR THE EXPERIMENTAL BOARDS

Figure 3.4 Visual Basic 3 virtual control panel for the Centronic experimental board

COMMANDS: 'Change' to re-select an LPT port
COMMAND4. 'Quit' to quit the program

The panel also has 19 shapes showing virtual LEDs and other graphic objects and seven labels
showing various information. The complete program list is given below. Some explanations are given
within the program list.

VB3 program list of CENTEXP.FORM

'Declare functions in the dynamic link library, WLIBI.DLL

' Declared functions : Centronic (), Bit_weight (), Read_status_port ()

' Write_data_port () and write_control_port()

Declare Function Centronic Lib "C:\Ioexp\Wlibl.dll" (ByVal X As Integer) As Integer

Declare Function Bit_weight Lib "C:\Ioexp\Wlibl.dll" (ByVal X As Integer) As Integer

Declare Function Read_status_port Lib "C:\Ioexp\Wlibl.dll" (ByVal address As Integer) As Integer

70 PC INTERFACING

SOFTWARE DRIVERS FOR THE EXPERIMENTAL BOARDS

Declare Function Write_data_port Lib "c:\Ioexp\Wlibl.dll" (ByVal address As Integer, ByVal Output_data As

Integer) As Integer

Declare Function write_control_port Lib "c:\IOEXPkWlibl.dll" (ByVal address As Integer, ByVal Output_data As

Integer) As Integer

Sub Commandl_Click ()

input_byte = Read_status_port(P_address)

For i = 12 To 15

status(i) = (input_byte And Bit_weight(i - ii)) / Bit_weight(i - ii)

If status(i) = 1 Then Shapel(i).BackColor = &HFF& Else Shapel(i).BackColor = black

Next i

End Sub

Sub Co~andl_MouseMove (Button As Integer, Shift As Integer, X As Single, Y As Single)

Label3.Caption = " Get the status of the Status port inputs (4 inputs)"

End Sub

Sub Command2_Click (index As Integer)

'Change status of the outputs of Data port and Control port

status(index) = 1 - status(index) 'toggle action

If status(index) = 1 Then Shapel(index).BackColor = &HFF& Else Shapel(index).BackColor = black 'output

status to the virtual LEDs

'Output data to the Data port

Output_byte = 0

For i = 0 To 7

Output_byte = Output_byte + status(i) * Bit_weight(i + i) 'form a byte to be output

Next i

dummy = Write_data_port(P_address, Output_byte) 'Output the byte to the Data port

'Output data to the Data port

Output_byte = 0

For i = 8 To ii

Output_byte = Output_byte + status(i) * Bit_weight(i - 7) 'form a byte to be output

Next i

dummy = write_control_port(P_address, Output_byte) 'output the byte to the Control port

' read the status port

input_byte = Read_status_port(P_address)

For i = 12 To 15

status(i) = (input_byte And Bit_weight(i - ii)) / Bit_weight(i - ii) 'find the status of each bit

If status(i) = 1 Then Shapel(i).BackColor = &HFF& Else Shapel(i).BackColor = black 'output status to the

virtual LEDs

PC INTERFACING 71

SOFTWARE DRIVERS FOR THE EXPERIMENTAL BOARDS

Next i

End Sub

Sub Command2 MouseMove (index As Integer, Button As Integer, Shift As Integer, X As Single, Y As Single) _

'show on-line help when mouse pointer movers across the buttons

If index <= 7 Then

Label3.Caption = " Change status of the Data port outputs (8 outputs)"

Else

Label3.Caption = " Change status of the Control port output (4 outputs)"

End If

End Sub

Sub Command3 Click ()

'Re-select a Centronic port

dummy = MsgBox(Str(Centronic(0)) - 1 & " Centronic ports (LPTs) are installed on your PC. Their base

addresses are: " & Format$(Centronic(1), "###") & & Format$(Centronic(2), "###") & &

Format$(Centronic(3), "###") & & Format$(Centronic(4), "#4#") & "Decimal", 48, "Centronic ports (LPT)

on your PC") 'show information on installed LPTs

Ipt_number = Val(InputBox$("Input i, 2, 3 or 4 to select a Centronic port (LPT) for the Mini-Lab Data

Logger/ Controller", "Select LPT ports")) 'Select a Centronic port

P_address = Centronic(ipt_number) 'find the base address of the selected LPT port

Label2.Caption = "Selected LPT port : " & Format(ipt_number) 'show the information on the selected

LPT port

Label4.Caption = "Base address of LPT: " & Format(P_address) 'show the information of the selected LPT

port

End Sub

Sub Command3 MouseMove (Button As Integer, Shift As Integer, X As Single, Y As Single)

'show on-line help when mouse pointer moves across the button

Label3.Caption = " re-select Centronic port"

End Sub

Sub Command4 Click () _

'Quit the program

End

End Sub

Sub Command4 MouseMove (Button As Integer, Shift As Integer, X As Single, Y As Single) _

Label3.Caption = " Quit the program"

End Sub

Sub Form Load () _

'initialize status()

72 PC INTERFACING

SOFTWARE DRIVERS FOR THE EXPERIMENTAL BOARDS

For i = 0 To ii

status(i) = 0

Next i

'show Centronic port information and allow user to select an LPT

dummy = MsgBox(Str(Centronic(0)) - 1 & " Centronic ports (LPTs) are installed on your PC. Their base

addresses are: " & Format$(Centronic(1), "###") & & Format$(Centronic(2), "###") & &

Format$(Centronic(3), "###") & & Format$(Centronic(4), "###") & "Decimal", 48, "Centronic ports (LPT)

on your PC")

ipt_number = Val(InputBox$("Input I, 2, 3 or 4 to select a Centronic port (LPT) for the Centronic

Experimental board", "Select LPT ports"))

P_address = Centronic(iptnumber)

Label2.Caption = "No of installed LPTs: " & Format(ipt_number)

Label4.Caption = "Base address of LPT: " & Format(Paddress)

dummy = Write_data_port(Paddress, 0)

dummy = write_control_port(P_address, 0)

End Sub

3.2 Software drivers for the RS232 experimental board

3.2.1 DOS TP6 software driver RS232EXP.PAS

The functions of the driver are shown below:

�9 reports the number of the installed COM ports on your computer
�9 selects an RS232 port (COM)
�9 configures the serial data transmission format
�9 inputs a byte and transmits the serial data from TD
�9 changes status of modem control lines, DTR and RTS
�9 reads a serial data from RD
�9 reads status of modem status lines, DSR, DCD and CTS

After typing in the name of the program, path + RS232EXP, in the DOS prompt followed by a return,
the following message appears:

Number of COM installed: 4

Addresses for COMI to COM4:1016 760 i000 744

Select a COM to be used (i, 2,3 or 4) :

The first line shows the number of COMs installed. The second line shows the base address of the
installed COMs. The third line asks users to select an RS232 port. Once a COM number is typed in,
a virtual control panel as shown in Figure 3.5 appears on the screen. There are seven virtual LEDs
corresponding to the seven real LEDs on the RS232 experimental board. Three LEDs represent the
three outputs of the RS232 port and four LEDs represent the four inputs. At the bottom of the screen
a help window is provided to show functions of keys.

PC INTERFACING 73

SOFTWARE DRIVERS FOR THE EXPERIMENTAL BOARDS

Figure 3.5 Turbo Pascal 6 virtual control panel for the RS232 experimental board

[ARROW KEYS]
IT or t]
[SPACE]
[C or c]
[Q or q]

left and right arrow keys to select an output
to input a data from the keybord and transmit the data from the TD line
to change the status of the selected output line
to configure the serial data format
to quit the program

By pressing the left or right arrow keys, an output line can be selected. A selected output is indicated
by a circle around the LED. To change the status of the output, press the space. This has a toggle
action. When an arrow key or the space is pressed, data at the inputs are read into the computer and
shown on the screen. If the TD and RD lines are wired together, a loop test can be performed. The
values of the output serial data and the input one should be the same.

74 PC INTERFACING

SOFTWARE DRIVERS FOR THE EXPERIMENTAL BOARDS

TP6 program list of RS232EXP.PAS

Program RS232_tester;

(* Software driver for the RS232 Experimental Board *)

graph,crt,dos;

i,led_selected,Serial_input_byte, Baud_rate_byte,

Data_length_byte, Stop_length_byte, Parity_byte :integer;

Serial output_string, Serial input_string, Old_serial_input_string :string[5];

ch:char;

status:array[l..18] of integer;

key_pressed:string[10];

(* to load two library files *)

{$I c:\ioexp\tplib2.pas}

{$I c:\ioexp\tplibl.pas}

procedure Draw_panel;

(* draw the control panel of the Centronic experimental board on the screen *)

begin

end;

for i:=l to 16 do status[i]:=0;

setbkcolor(cyan);

for i:=l to 3 do draw_led(80+i*50, 350, status[i]);

for i:=4 to 7 do draw led(180+i*50, 350, status[i]);

draw led(20,20,1);

draw_message(50,20,70,20,1ightblue,'LED ON',0,l,yellow);

drawled(20,60,0);

draw_message(50,60,70,20,1ightblue,'LED OFF',0,l,yellow);

setfillstyle(l,magenta);

bar(l,420,800,480);

settextstyle(0,0,1);

outtextxy(10,425,' [ARROW]:Select led [T]:Transmitted Data

outtextxy(10,440, ~ [C]:Configure RS232 [Q]: Quit');

draw_message(60,200,500,50,blue,' RS232 Experimental Board',0r2,yellow);

draw_message(l15,390,130,20,blue 'DTR TXD RTS ',0,l,yellow);

draw_message(370,390,180,20,blue,'RD DSR DCD CTS ',0,l,yellow);

[SPACE]:Change status');

Procedure Output Input;

var

Output_byte, Input_byte:byte;

PC INTERFACING 75

SOFTWARE DRIVERS FOR THE EXPERIMENTAL BOARDS

code:integer;

begin

end;

(* to calculate the value of data to be sent to the Data port *)

write_modem_status(RS232_address, status[3], status[l]);

val (serial_outputstring, output_byte, code);

Status[5]:=read_modem_status(RS232_address,2);

Status[6]:=read_modem_status(RS232_address,l);

Status[7]:=read modem status(RS232 address,3); _ _

if status[2]=l then

begin

repeat

write_transmit_buffer(RS232_address, output_byte);

until keypressed;

status[2]:=0;

end;

delay(50);

serial_input_byte:=readreceivebuffer(RS232_address);

setcolor(magenta);

outtextxy(420,460, 'Input serial data: '+ Oldserial_input_string);

setcolor(yellow);

str(serial_input_byte, serial_input_string);

outtextxy(420,460, 'Input serial data: ' + serial input_string);

old_serial_input_string:=serial_inputstring;

setbkcolor(cyan);

Procedure Scan_keyboard;

begin

key_pressed:=getkey;

if key_pressed='LEFT ' then led_selected:=ledselected-l;

if key_pressed='RIGHT ' then led_selected:=ledselected+l;

if key_pressed =' ' then status[led_selected]:=l - status[led_selected];

if (key_pressed='T') or (key_pressed='t') then

begin

setcolor(magenta);

outtextxy(30,460, 'Output serial data: ' + serial_output_string);

draw_message(100,290,100,60,cyan,' Input Serial data ',0,l,yellow);

gotoxy(22, 20); readln(Serial_output_string);

draw message(100,290,100,60,cyan,' Input Serial data ',0,l,blue);

setcolor(yellow);

outtextxy(30,460, 'Output serial data: ' + serial_output_string);

end;

if (key_pressed='C') or (key_pressed='c ') then

begin

76 PC INTERFACING

SOFTWARE DRIVERS FOR THE EXPERIMENTAL BOARDS

end;

end;

closegraph;

Writeln('Configure RS232 port');

Write('Input Baud Rate (115200-9600-4800-2400-1200): '); readln(Baud_ratebyte);

Write('Input Parity (0=None, l=Even, 3=Odd) : '); readln(Parity_byte);

Write('Input data bit length (5, 6, 7, 8) : '); readln(Datalength_byte);

Write('Input Stop bit length (2, i) : '); readln(stoplength_byte);

write_data_format(RS232address, Baudrate_byte, Parity_byte, Datalengthbyte, Stop_length_byte);

initialize_graph;

drawpanel;

led selected:=l;

procedure Drawled_status;

var

led selected old:integer;
_

b e g i n

led selected old:=led selected; _ _ _

s c a n _ k e y b o a r d ;

for i:=l to 3 do draw_led(80+i*50,

Output input;

350, status[i]);

end;

for i:=4 to 7 do draw led(180+i*50, 350, status[i]);

if led selected>3 then led selected:=3;

if led selected<l then led selected:=l;
_

setlinestyle (0,0,3);

setcolor(cyan);

if led selected old<=3 then circle(80+50*led selected old, 350,15);

setcolor(yellow);

if led_selected<=3 then circle(80+50*ledselected, 350,15);

(* Main program *)

b e g i n

COM address; _

initialize_graph;

draw_panel;

led selected:=l; _

repeat

draw led status;
_ _

PC INTERFACING 77

SOFTWARE DRIVERS FOR THE EXPERIMENTAL BOARDS

until (key_pressed=' Q') or (key_pressed=' q') ;

closegraph; (* Close graphics mode *)

end.

The program contains four procedures. Draw_panel is used to draw the virtual panel of the
experimental board on the screen. Output_input is a procedure for outputting and inputting data
thought the RS232 port. Write_moden_stautsO, tr,rite_transmit_bufferO, Read_modem_portO and
Read_receiver_bufferO are procedures or functions included in TPLIBI.PAS library. Scan_keyboard
scans the keyboard. It detects six keystrokes: 'left', 'right', 'space', 't', 'c' and 'q' and carries out
corresponding tasks.

3.2.2 Windows VB3 software driver

The driver provides the following functions:

�9 reports the number of the installed COM ports on your computer
�9 selects an RS232 port (COM)
�9 configures the serial data transmission format
�9 inputs a byte and transmits the serial data from TD
�9 changes status of modem control lines, DTR and RTS
�9 reads serial data from RD
�9 reads the status of modem status lines, DSR, DCD and CTS

Click the START button in Windows 95 and then select RUN. Next input the name of the software
driver: path + RS232EXP. After clicking the OK button, the screen shown in Figure 3.6 appears. The
screen reports the number of COMs installed on your computer and their base addresses. Click the
OK button to clear the screen. Another screen appears (see Figure 3.7). It asks users to select a COM
port to which the experimental board is connected. Type in the number of the COM port (1, 2, 3 or
4) and click the OK button. After this, the control panel of the experimental board appears on the
screen (Figure 3.8). By clicking the '0-1' buttons of the DTR and RTS, the status of the corresponding
line toggles. Logic high is indicated by a red LED. Users can input a serial data to be transmitted in
the data field on the panel. If the button for the TD line is clicked, the data will be transmitted from
the TD line continuously until the button is clicked again. Clicking 'Get it' updates the status of DSR,
DCD and CTS inputs. The serial data received at RD is also shown on the screen. Users can re-select
the COM port by clicking the 'Change Port' button and re-define the baud rate, parity, data bit
length and the stop bit length. At the bottom of the control panel, there is an information window
which displays the function of a control button when the pointer of the mouse moves over it.

A loop test can be carried out by connecting the TD and RD lines together. In this case the value
of the input serial data should be the same as that of the output data. When the program outputs
serial data, it will continuously transmit the data at the TD line. The waveform of the serial data
transmission can be observed by using an oscilloscope. Users can output different values and change
the baud rate, parity check and the data bit length. This can help users to understand serial data
transmission.

78 PC INTERFACING

SOFTWARE DRIVERS FOR THE EXPERIMENTAL BOARDS

Figure 3.6 Report of the number of RS232 ports installed on a PC by the VB3 driver

VB3 program list of RS232EXP

'declare functions in DLL, WLIBI.DLL

'declared functions: RS232(), Bit_weight(), Write_interrupt_enable()

' Read_interrupt_indentification()

' write_data_format(), write_transmitbuffer(), writemodemstatus()

' write_receive_buffer(), read_modem_status()

Declare Function RS232 Lib "C:\Ioexp\Wlibl.dll" (ByVal X As Integer) As Integer

Declare Function Bit_weight Lib "C:\Ioexp\Wlibl.dll" (ByVal X As Integer) As Integer

Declare Function Write_interrupt_enable Lib "C:\Ioexp\Wlibl.dll" (ByVal address As Integer, ByVal datax As

Integer) As Integer

Declare Function Read interrupt_indentification Lib "C:\Ioexp\Wlibl.dll" (ByVal address As Integer) As Integer

Declare Function write_data_format Lib "c:\IOEXP\Wlibl.dll" (ByVal address As Integer, ByVal Baud As Integer,

PC INTERFACING 79

SOFTWARE DRIVERS FOR THE EXPERIMENTAL BOARDS

Figure 3.7 Screen for users to select a COM port to be used

ByVal parity As Integer, ByVal Data_byt As Integer, ByVal Stopbit As Integer) As Integer

Declare Function Write_transmit_buffer Lib "C:\Ioexp\Wlibl.dll" (ByVal address As Integer, ByVal datax As

Integer) As Integer

Declare Function Write_modem_status Lib "C:\Ioexp\Wlibl.dll" (ByVal address As Integer, ByVal RTS As Integer,

ByVal DTR AS Integer) As Integer

Declare Function Read_receive_buffer Lib "C:\Ioexp\Wlibl.dll" (ByVal address As Integer) As Integer

Declare Function Read_modem_status Lib "C:\Ioexp\Wlibl.dll" (ByVal address As Integer, ByVai X As Integer) As

Integer

Sub Commandl Click () _

status(4) = Read_modem_status(RS232address, 2)

status(5) = Read modem_status(RS232address, i)

status(6) = Read modem status(RS232 address, 3)
_ _

80 PC INTERFACING

SOFTWARE DRIVERS FOR THE EXPERIMENTAL BOARDS

Figure 3.8 Visual Basic 3 virtual control panel for the RS232 experimental board

For iq = 4 To 6

If status(iq) = 1 Then Shapel(iq).BackColor = &HFF& Else Shapel(iq).BackColor = black

Next iq

Label3.Caption = Format$(Read_receive_buffer(RS232_address))

End Sub

Sub Commandl_MouseMove (Button As Integer, Shift As Integer, X As Single, Y As Single)

label7.Caption = "Get the status and read the serial data"

End Sub

Sub Command2_Click (index As Integer)

'toggle the status of the output lines

status(index) = 1 - status(index)

PC INTERFACING 81

SOFTWARE DRIVERS FOR THE EXPERIMENTAL BOARDS

If status(index) = 1 Then Shapel(index).BackColor = &HFF& Else Shapel(index).BackColor = black

'output data to the Modem status register

dummy = Write_modem_status(RS232_address, status(2), status(0))

'updata the input lines

status(4) = Read_modem_status(RS232_address, 2)

status(5) = Read_modem_status(RS232_address, i)

status(6) = Read_modem_status(RS232_address, 3)

For iq = 4 To 6

If status(iq) = 1 Then Shapel(iq).BackColor = &HFF& Else Shapel(iq).BackColor = black

Next iq

'read and show the serial input data

Label3.Caption = Format$(Read_receive_buffer(RS232address))

'output serial data

If status(l) = 1 Then

Do

dummy = Write_transmit_buffer(RS232_address, Val(textl.Text))

DoEvents

Loop While status(l) = 1

End If

End Sub

Sub Command2_MouseMove (index As Integer, Button As Integer, Shift As Integer, X As Single, Y As Single)

'show the help information

label7.Caption = "Change the status of the output line"

End Sub

Sub Command3 Click () _

'configure the selected RS232 port

baud rate = Val(text2(0).Text) 'assign baud rate _

parity = Val(text2(1).Text) 'assign parity

data_bit length = Val(text2(2).Text)'assign length of data bits

stop_bit length = Val(text2(3).Text) 'assign length of stop bits

dummy = write_data_format(RS232_address, baud_rate, parity, data_bit_length, stop_bit_length)'write the

configuration to the serial data format register

End Sub

Sub Command3 MouseMove (Button As Integer, Shift As Integer, X As Single, Y As Single)

label7.Caption = "Change the configuration of RS232 port"

End Sub

82 PC INTERFACING

SOFTWARE DRIVERS FOR THE EXPERIMENTAL BOARDS

Sub Command4_Click ()

End

End Sub

Sub Command4MouseMove (Button As Integer, Shift As Integer, X As Single, Y As Single)

label7.Caption = "Quit the program"

End Sub

Sub Command5_Click ()

're-select the RS232 port

dummy = MsgBox(Str(RS232(0)) & "

" & Format$(RS232(1), "###") & & Format$(RS232(2), "#46#") & & Format$(RS232(3), "###") & "

& Format$(RS232(4), "###") & "Decimal", 48, "RS232 ports (COM) on your PC") 'show RS232 information

RS232_number = Val(InputBox$("Input i, 2, 3 or 4 to select a RS232 port (COM) for the Mini-Lab Data

Logger/ Controller", "Select COM ports")) 'select a RS232 port

RS232_address = RS232(RS232_number) 'get the base address of the selected COM port

Label2.Caption = "Selected COM port : " & Format(RS232 number) 'show information of the selected _

port

Label4.Caption = "Base address of COM: " & Format(RS232address)

End Sub

RS232 ports (COMs) are installed on your PC. Their base addresses are:

, ,

Sub Command5_MouseMove (Button As Integer, Shift As Integer, X As Single, Y As Single)

label7.Caption = "Change RS232 port number"

End Sub

Sub Form_Load ()

For i = 0 To ii

status(i) = 0

Next i

dummy = MsgBox(Str(RS232(0)) & " RS232 ports (COMs) are installed on your PC. Their base addresses are:

" & Format$(RS232(1), "###") & & Format$(RS232(2), "###") & & Format$(RS232(3), "###") &

& Format$(RS232(4), "###") & "Decimal", 48, "RS232 ports (COM) on your PC")

RS232_number = Val(InputBox$("Input i, 2, 3 or 4 to select a RS232 port (COM) for the RS232 Experimental

board", "Select COM ports"))

RS232_address = RS232(RS232_number)

Label2.Caption = "No of installed COMs:

Label4.Caption = "Base address of COM:

baud rate = 9600

parity = 0

data_bit_length = 8

stop_bit_length = 1

" & Format(RS232 number) _

" & Format(RS232 address)

PC INTERFACING 83

SOFTWARE DRIVERS FOR THE EXPERIMENTAL BOARDS

text2(0).Text = FormatS(baud_rate)

text2(1).Text = FormatS(parity)

text2(2).Text = FormatS(data_bit_length)

text2(3).Text = FormatS(stop_bit_length)

dummy = write_data_format(RS232_address, baud_rate, parity, data_bit length, stop_bit_length)

End Sub

Sub Label3_MouseMove (Button As Integer, Shift As Integer, X As Single, Y As Single)

'show the received serial data

label7.Caption = "Value of the serial input data"

End Sub

Sub Label6_MouseMove (index As Integer, Button As Integer, Shift As Integer, X As Single, Y As Single)

Select Case index

Case 0

label7.Caption = "Baud rate = 115200, 19200, 9600, 2400, etc."

Case 1

label7.Caption = "0 = No Parity, 1 = Odd Parity, 3 = Even Parity"

Case 2

label7.Caption = "Input 5, 6,7 or 8 to select the data bit length"

Case 3

label7.Caption = "Input 1 or 2 to select Stop bit"

End Select

End Sub

Sub Textl MouseMove (Button As Integer, Shift As Integer, X As Single, Y As Single) _

'allow users to input the serial data to be transmitted

label7.Caption = "Input the serial data to be sent out"

End Sub

Sub Text2_Change (index As Integer)

Select Case index

Case 0:

Case I:

Case 2:

Case 3:

End Select

End Sub

{}4 PC INTERFACING

SOFTWARE DRIVERS FOR THE EXPERIMENTAL BOARDS

3.3 Software drivers for the game port experimental board

3.3.1 DOS TP6 software driver GAMEEXP.PAS

The functions of the software driver include:

�9 reading the status of two (or four) digital inputs
�9 measuring the period of the multivibrators for two (or four) resistance channels
�9 calibrating resistance channels
�9 measuring resistance of a resistor

After typing in the name of the program, path + GAMEEXP, under the DOS prompt followed by a
return, a control panel as shown in Figure 3.9 appears on the screen. There are four virtual LEDs and
eight virtual terminals corresponding to the four real LEDs and eight terminals on the game port
experimental board. At the bottom of the screen there is a help window to show the functions of keys.

Figure 3.9 Turbo Pascal 6 virtual control panel for the game port experimental board

PC INTERFACING 85

SOFTWARE DRIVERS FOR THE EXPERIMENTAL BOARDS

[ARROW KEYS]
[SPACE]
[C or c]
[Q or q]

left and right arrow keys to select a resistance channel
to read resistance value of the selected channel and the status of the inputs
to calibrate the selected resistance input channel
to quit the program

By pressing left or right arrow keys, a resistance input channel can be selected. The selected channel
is indicated by two circles around the virtual terminals on the panel. After connecting a resistor to
the terminals and pressing the space, the time period of the multivibrator is displayed. If that channel
has been calibrated, the resistance of the resistor is also displayed. Calibration of a channel is carried
out by pressing 'c'. During the calibration, users are asked to short the input terminals first and then
to connect a resistor of a known resistance to the terminals. After calibration, the resistance of any
resistors can be measured. The data present at the digital inputs is also read into the computer. The
bit status of the data is indicated by the virtual LEDs.

TP6 program list of GAMEEXP.PAS

Program Game_tester;

(* Software driver for the Game Experimental Board *)

uses

graph,crt,dos;

Const

Game address=513; _

i,led_selected,Timel, Time2 :integer;

ch:char;

status:array[l..18] of integer;

period:real;

Interval_0, Interval_R, Standard_R: array[l..4] of real;

key_pressed:string[10];

strx:string;

(* to load library files *)

{$I c:\ioexp\tplib2.pas}

{$I c:\ioexp\tplibl.pas}

Function Resistance(period:real; led_selected:integer):real;

(* calculate resistance knowing the period *)

(* a calibration is needed *)

var

dummy, dummy2:real;

begin

dummy2:=(Interval_R[ledselected] - Interval_0[led_selected]);

if abs(dummy2)<0.0001 then dummy2:=l;

dummy:=Standard_R[ledselected]/dummy2

*(period - Interval_0[led_selected]);

86 PC INTERFACING

SOFTWARE DRIVERS FOR THE EXPERIMENTAL BOARDS

if abs(dummy)>200 then resistance:=200 else resistance:=dummy;

end;

procedure Draw_panel;

(* draw the control panel of the Centronic experimental board on the screen *)

begin

for i:=l to 16 do status[i]:=0;

setbkcolor(cyan);

for i:=l to 8 do draw_led(20+i*40, 350, status[i]);

for i:=l to 4 do draw_led(420+i*40, 350, status[i+8]);

draw_led(20,20,1);

draw_message(50,20,70,20,1ightblue,'LED ON',0,l,yellow);

draw_led(20,60,0);

draw_message(50,60,70,20,1ightblue,'LED OFF',0,l,yellow);

setfillstyle(l,magenta);

bar(l,420,800,480);

settextstyle(0,0,1);

outtextxy(10

outtextxy(10

draw_message

draw_message

draw_message

draw_message

draw_message

,425,' [ARROW]:Select Resistor [SPACE]:Get resistance and botton status');

,440,' [C]: Calibration of resistance input channel [Q]: Quit');

(60,200,500,50,blue,' Game Port Experimental Board',0,2,yellow);

(50,390,305,20,blue,'AX VCC AY VCC BX VCC BY VCC',0,l,yellow);

(450,390,149,20,blue,'BB2 BBI BA2 BAl',0,l,yellow);

(55,320,280,20,cyan,'Terminals for connecting resistors',0,1, red);

(450,320,120,20,cyan,'button inputs',0,l,red);

end;

Procedure Output_Input;

var

Output_byte, Input_byte:byte;

begin

end;

(* read the botton status *)

Status[9]:=read_game_port(8);

Status[10]:=read_game_port(7);

Status[ll]:=read_game_port(6);

Status[12]:=read_game_port(5);

Procedure Scan_keyboard;

begin

key_pressed:=getkey;

if key_pressed='LEFT' then led_selected:=led_selected-l;

if key_pressed='RIGHT' then led_selected:=led_selected+l;

PC INTERFACING 87

SOFTWARE DRIVERS FOR THE EXPERIMENTAL BOARDS

if key_pressed=' ' then

begin

period:=interval_game_port(ledselected);

str(period*0.838:10:2, strx);

draw_message(25,460,250,10,magenta, 'Interval [us]: '+strx,0,1,1ightcyan);

str(resistance(period,led selected):10:2, strx); _

draw_message(370,460,250,10,magenta, 'Resistance [kOhm]: '+strx,0,1,1ightcyan);

end;

end;

end;

if (key_pressed='C') or (key_pressed='c') then

begin

closegraph;

clrscr;

writeln('Calibration of resistance input channels CH ',led_selected:4);

writeln('Short the input terminal for the selected channel');

writeln('Press RETURN to continue');

readln;

interval_0[led_selected]:=interval_game_port(led_selected);

Writeln('Connect the standard resistor to the selected channel');

write('Input the resistance of the resistor: ');readln(Standard_R[led_selected]);

interval_R[led_selected]:=interval_game_port(led_selected);

initialize_graph;

draw_panel;

procedure Draw_led_status;

var

led_selected_old:integer;

begin

led selected old:=led selected; _ _ _

s c a n _ k e y b o a r d ;

Output input;

for i:=l to 4 do draw ied(420+i'40, 350, status[i+8]); _

if led selected>4 then led selected:=4; _

if led selected<l then led selected:=l; _

setlinestyle (0,0,3);

setcolor(cyan);

if led selected old<=4 then _

b e g i n

circle(-20+80*led selected old, 350,15); _

c i r c l e (- 2 0 + 8 0 * (l e d selected old)+40, 350,15); _

end;

88 PC INTERFACING

SOFTWARE DRIVERS FOR THE EXPERIMENTAL BOARDS

end;

setcolor(yellow);

if led selected<=4 then _

begin

circle(-20+80*led_selected, 350,15);

circle(-20+80*(ledselected)+40, 350,15);

end;

(* Main program *)

begin

initialize_graph;

draw_panel;

init 8253;

led selected:=l;

repeat

draw led status _ _

until (key_pressed='Q') or (key_pressed='q');

closegraph; (* Close graphics mode *)

end.

The program contains four procedures and one function. Procedures and functions in the
programming resource libraries are also used. Draw_panel draws the virtual panel of the
experimental board on the screen. Draw_ledO and Draw_messageO are two procedures in the library
TPLIB2.PAS. Output_input is a procedure for inputting data through the game port. Scan_keyboard
scans the keyboard. It detects five keystrokes: 'left', 'right', 'space', 'c' and 'q' and carries out
corresponding tasks. It uses the getkey function in the library TPLIB2.PAS. Read_game_portO and
Interval_game_port are from the TPLIB1.PAS programming resource library. Function ResistanceO
calculates the resistance value using the calibration parameters which are obtained during the
calibration.

3.3.2 Windows VB3 software driver

The VB3 software driver provides the following functions:

�9 inputing the status of two (or four) digital inputs
�9 measuring the period of the multivibrators for two (or four) resistance channels
�9 calibrating each resistance channel
�9 measuring resistance of a resistor

Click the START button and then select RUN. Next input the name of the software driver, path §
GAMEEXP. After clicking the OK button, the control panel for the game port experimental board
appears on the screen (see Figure 3.10). The functions of this software are similar to those of the DOS
version.

PC INTERFACING 89

SOFTWARE DRIVERS FOR THE EXPERIMENTAL BOARDS

Figure 3.10 Visual Basic 3 virtual control panel for the game port experimental board

VB3 program list of GAMEEXP

Declare Function Bit_weight Lib "C:\Ioexp\Wlibl.dll" (ByVal X As Integer) As Integer

Declare Function read_game_port Lib "C:\IoexpkWlibl.dll" (ByVal X As Integer) As Integer

Declare Function Write_game_port Lib "c:\Ioexp\Wlibl.dll" () As Integer

Declare Function Interval_game_port Lib "c:\IoexpkWlibl.dll" (ByVal ledselected As Integer) As Integer

Sub Commandl_Click ()

DoEvents

For i = 12 To 15

status(i) = read_game_port(20 - i)

If status(i) = 1 Then Shapel(i).BackColor = &HFF& Else Shapel(i).BackColor = black

Next i

DoEvents

90 PC INTERFACING

SOFTWARE DRIVERS FOR THE EXPERIMENTAL BOARDS

period = Interval_game_port(led_selected) * .838

If period <> 0 Then

Label2.Caption = "Period of Multivibrator: " & Format(period, "~#~#~#.#")

Else

Label2.Caption = "Error reading Multivibrator '~

End If

LabelS.Caption = "Resistance: " & Format(resistance(period), "###.#")

End Sub

Sub Commandl_MouseMove (Button As Integer, Shift As Integer, X As Single, Y As Single)

label6.Caption = " Get button status and period of multivibrators"

End Sub

Sub Command2_Click (index As Integer)

status(index) = 1 - status(index)

If status(index) = I Then Shapel(index).BackColor = &HFF& Else Shapel(index).BackColor = black

For i = 12 To 15

status(i) = (read_game_port(i - ii) And Bit_weight(i - II)) / Bit_weight(i - ii)

If status(i) = 1 Then Shapel(i).BackColor = &HFF& Else Shapel(i).BackColor = black

Next i

End Sub

Sub Command3 Click ()

MsgBox ("Short the terminals of the selected resistance input. The selected channel is " & ledselected)

interval_0(led_selected) = Interval_gameport(led_selected) * .838

MsgBox ("Connect a standard resistor to the selected resistance input. The selected channel is " &

led_selected)

Standard_r(led_selected) = InputBox("Input the Resistance: ", "Calibration of resistance input", "i")

interval_R(ledselected) = Intervalgameport(led_selected) * .838

End Sub

Sub Command3_MouseMove (Button As Integer, Shift As Integer, X As Single, Y As Single)

label6.Caption = " Generate Resistance vs. period curve"

End Sub

Sub Command4_Click ()

End

End Sub

Sub Command4 MouseDown (Button As Integer, Shift As Integer, X As Single, Y As Single) _

label6.Caption = " Quit the program"

PC INTERFACING 91

SOFTWARE DRIVERS FOR THE EXPERIMENTAL BOARDS

End Sub

Sub Form_Load ()

For i = 0 To 16

status(i) = 0

Next i

End Sub

Sub Optionl_Click (index As Integer)

led selected = index + 1 _

End Sub

Sub Optionl_MouseMove (index As Integer, Button As Integer, Shift As Integer, X As Single, Y As Single)

label6.Caption = " Select No." & index + 1 & " resistance input channel"

End Sub

Function resistance (ByVal period As Single) As Single

dummy2 = (interval_R(led_selected) - interval_0(led_selected))

If Abs(dummy2) < .001 Then dummy2 = 1

dummy = Standard_r(led_selected) / dummy2 * (period - interval_0(led_selected))

If Abs(dummy) > 200 Then resistance = 200 Else resistance = dummy

End Function

3.4 Programming resource libraries

The program lists of the resource libraries, TPLIB1.PAS and TPLIB2.PAS for DOS TP6, and
WLIB.PAS (Windows DLLs) are shown below. Detailed explanations of the procedures and functions
are given within the program lists.

TP6 Programming Resource Library- 1, TPLIB1.PAS

(* Turbo Pascal 6 Programing Resource Library 1 *)

(* Library name: TPLIBI.PAS *)

(* Procedures for controlling the Centronic, RS232 and Game port *)

(* This library can be included in user's program *)

Var

P_address, RS232_address:integer;

(* --Resource Library No. A1 (Detection of LPT base addresses)-- *)

Procedure Centronic address;

(* $000:$0408 holds the printer base address for LPTI

92 PC INTERFACING

SOFTWARE DRIVERS FOR THE EXPERIMENTAL BOARDS

$000:$040A holds the printer base address for LPT2

$000:$040C holds the printer base address for LPT3

$000:$040e holds the printer base address for LPT4

$000:$0411 number of parallel interfaces in binary format *)

ipt:array[l..4] of integer;

number_of_ipt,LPT_number,code:integer;

kbchar:char;

begin

end;

clrscr;

LPTnumber:=l; (* to set default printer *)

number_of_ipt:=mem[$0000:$0411]; (* to read number of installed Centronic ports *)

number of ipt:=(number of ipt and (128+64)) shr 6; (* Bit manipulation *)

Ipt[l]:=memw[$0000:$0408]; (* Memory read procedure *)

ipt[2]:=memw[$0000:$040A];

ipt[3]:=memw[$0000:$040C];

ipt[4]:=memw[$0000:$040E];

textbackground(blue); clrscr;

textcolor(yellow); textbackground(red); window(10,22,70,24); clrscr;

writeln('Number of LPT installed : ',number_of_ipt:2);

writeln('Addresses for LPTI to LPT 4: ',ipt[l]:3, ~ ', ipt[2]:3,' ', ipt[3]:3,'

write('Select LPT to be used (1,2,3,4) : ');

delay(1000);

if number_of_ipt>l then begin {select LPTI through LPT4 if more than 1 LPT installed}

repeat

kbchar:=readkey; (* read input key *)

val(kbchar, LPT_number, code); (* change character to value *)

until (LPT_number>=l) and (LPT_number<=4) and (ipt[LPT_number]<>0);

end;

clrscr;

P address:=ipt[LPT_number];

writeln('Your selected printer interface: LPT',LPTnumber:l);

write('LPT Address : ',RS232_address:3);

delay(1000);

textbackground(black); window(l,l,80,25); clrscr;

, ipt[4]:3);

(* --Resource Library No. A2 (Find bit weight for a bit)-- *)

Function bit_weight(bit:byte):byte;

var

i,dummy:integer;

begin

if bit=l then bit_weight:=l

PC INTERFACING 93

SOFTWARE DRIVERS FOR THE EXPERIMENTAL BOARDS

end;

else begin

dummy:=l;

for i:=l to bit-i do dummy:=2*dummy;

if dummy=0 then dummy:=l;

bit_weight:=dummy;

end;

(* --Resource Library No. A3 (Read data into pc)-- *)

Function Read_status_port(P_address:integer):byte;

var

bytel:byte;

begin

bytel:=port[Paddress+l];

bytel:=bytel and 120;

Read_status_port:=bytel shr 3;

end;

(* read a byte from the status port *)

(* 01111000 (MSB to LSB) and 0dddd... = 0dddd000 *)

(* shift 3 bit right, Read_statusport = 0000hhhh *)

(* --Resource Library No. A4 (Write data to DATA port of pc)-- *)

Procedure Write_data_port(P_address:integer; port_data:byte);

(* no lines in the Data port are not inverted *)

begin

port[Paddress]:=port_data; (* output a byte to the data port *)

end;

(* --Resource Library No. A5 (Write data to CONTROL port of pc)-- *)

Procedure Write_control_port(P_address:integer; port_data:byte);

(* Bit 0, Bit 1 and Bit 3 are inverted. Bit manipulation is required *)

begin

if port_data and 1 =i then port_data:=port_data and (255-1)

else port_data:=portdata or i;

if port_data and 2 =2 then port_data:=portdata and (255-2)

else port_data:=port_data or 2;

if port_data and 8 =8 then port_data:=portdata and (255-8)

else port_data:=port_data or 8;

port[Paddress+2]:=port_data; (* output a byte to the control port *)

end;

(* --Resource Library No. A6 (detection of COM base address)-- *)

Procedure COM_address;

94 PC INTERFACING

SOFTWARE DRIVERS FOR THE EXPERIMENTAL BOARDS

(* $0000:$0400 holds the printer base address for COMI

$0000:$0402 holds the printer base address for COM2

$0000:$0404 holds the printer base address for COM3

$0000:$0406 holds the printer base address for COM4

$0000:$0411 number of parallel interfaces in binary format *)

var

COM:array[l..4] of integer;

COM_number, number of com, code: integer;

kbchar:char;

begin

end;

clrscr;

COM_number:=l; (*default printer *)

number_ofCOM:=mem[$0000:$0411]; (* read number of parallel ports *)

number_of_COM:=(number_of_COM and (8+4+2)) shr I;

COM[l]:=memw[$0000:$0400]; (* Memory read procedure *)

COM[2]:=memw[$0000:$0402];

COM[3]:=memw[$0000:$0404];

COM[4]:=memw[$0000:$0406];

textbackground(blue); clrscr;

textcolor(yellow); textbackground(red); window(10,22,70,24); clrscr;

writeln('Number of COM installed : ',number of COM:2);

writeln('Addresses for COMI to COM4: ',COM[I]:3,' ', COM[2]:3,' '

write('Select COM to be used (1,2,3,4) : ');

delay(1000);

if number_of_COM>l then begin (* select COMI through COM4 if more than 1LPT installed *)

repeat

kbchar:=readkey; (* read input key *)

val(kbchar, COM_number, code); (* change character to value *)

until (COM_number>=l) and (COM_number<=4) and (COM[COMnumber]<>0);

end;

clrscr;

RS232_address:=COM[COM_number];

writeln('Your selected RS232 interface: COM',COM number:l); _

write('RS232 Address : ',RS232address:4);

delay(1000);

textbackground(black); window(l,l,80,25); clrscr;

, COM[3]:3,' ', COM[4]:3);

(* --Resource Library No. A7 (to write to the interrupt enable register)-- *)

Procedure Write_interrupt_enable(RS232_address, Outputbyte: integer);

begin

Port[RS232_address+l]:=Output_byte;

end;

PC INTERFACING 95

SOFTWARE DRIVERS FOR THE EXPERIMENTAL BOARDS

(* --Resource Library No. A8 (to read from the interrupt identification register)-- *)

Function Read_interrupt_identification(RS232_address:integer):integer;

begin

Read_interrupt_identification:=Port[RS232address+2]

end;

(* --Resource Library No. A9 (write to data serialization register)-- *)

Procedure Write_data_format(RS232_address, Baud, Parity, Data_bit, Stop_bit:integer);

begin

end;

bytel, byte2, output_byte: byte;

divisor: integer;

divisor:=l15200 div Baud;

if divisor<=255 then begin bytel:=divisor; byte2:=0 end;

if divisor>255 then begin byte2:=divisor div 256; bytel:=divisor mod 256; end;

output_byte:=(data_bit-5) + 4*(stop_bit-l) + 8*(parity);

port[RS232_address+3]:=128;{Loading serial data format, first bit of the register is i}

port[RS232_address+0]:=Bytel; {LSB of the divisor is I}

port[RS232_address+l]:=Byte2; {MSB of the divisor is 0}

port[RS232_address+3]:=output_byte; {Load divisor and other parameters}

(* --Resource Library No. AI0 (to write to the transmit buffer register)-- *)

Procedure write_transmit_buffer(RS232_address, Outputbyte: integer);

begin

port[RS232_address]:=Output_byte;

end;

(* --Resource Library No. All (to write to the modem status register)-- *)

Procedure Write_modem_status(RS232_address, RTS, DTR:integer);

(* RTS and DTR = 0 or i, RTS and DRT are inverted by MAX238 on the experimental board *)

(* RTS=bit i, DTR=bit 0 of Modem control register, offset 04 *)

begin

RTS:=I-RTS;

DTR:=I-DTR;

Port[RS232_address+4]:=RTS*2 + DTR (* to output to the register 04 *)

end;

96 PC INTERFACING

SOFTWARE DRIVERS FOR THE EXPERIMENTAL BOARDS

(* --Resource Library No. AI2 (to read data from receive buffer register)-- *)

Function Read receive_buffer(RS232_address:integer):integer;

begin

Read_receive_buffer:=port[RS232address];

end;

(* --Resource Library No. AI3 (to read modem status register)-- *)

Function Read modem_status(RS232address, x:integer):integer;

(* X=I select DCD bit, x=2 select DSR bit, x=3 select CTS bit *)

(* DCD=bit 7, DSR=bit 5, CTS=bit 4 of Modem status register, offset 06h *)

(* All bits are inverted by the Max238 on the experimental board *)

var

inputbyte:byte;

begin

end;

input_byte:=port[RS232_address+6];

case x of

i: Read_modem_status:=l-round((input_byte and 128)/128);

2: Read_modem_status:=l-round((inputbyte and 32)/32);

3: Read_modem_status:=l-round((inputbyte and 16)/16);

end;

(* --Resource Library No. AI4 (to read Game port register)-- *)

Function Read_Game_port(Bitx:integer):integer;

(* Game port address: 201H

X (I to 8) selects status of AX, AY, BX, BY, BAI, BA2, BBI and BB2 *)

var

input_byte:byte;

begin

input_byte:=port[$201];

Read_gameport:=round((input_byte and bit_weight(bitx))/bitweight(bitx));

end;

(* --Resource Library No. AI5 (to write to Game port register)-- *)

Procedure Write_Gameport;

(* output byte 0 to the game port to start the multi-vibrators *)

begin

port[S201]:=0;

end;

(* --Resource Library No. AI6 (to get time interval of the multivibrator after one shot)-- *)

Function Interval_Game_port(x:integer):integer;

PC INTERFACING 97

SOFTWARE DRIVERS FOR THE EXPERIMENTAL BOARDS

(* x selects AX (x=l), AY (x=2), BX (x=3), BY (x=4) *)

var

Timel, Time2, dummy: integer;

Procedure init 8253; _

(* Initialize 8253 *)

begin

(* Control word= b6H = 10110111b

10 = select counter 2

ii = read/write low count byte first then high byte

011 = mode 3

0 = binary counting with 16-bit *)

Port[$43]:=$b6; (* load control word to the control register of 8253 *)

Port[S42]:=255; (* load low count byte *)

port[S42]:=255; (* load high count byte *)

port[$61]:=port[$61] or i; (* disable speaker *)

port[$43]:=$80; (* 80H is the counter latch command for counter 3 *)

end;

Function read_8253:integer;

(* read low order and high order bytes of the counters *)

var

low_byte, high_byte:byte;

begin

low byte:=port[$42];

high_byte:=port[$42];

read_8253:=low_byte + 256* high_byte;

end;

Var

begin

end;

i:integer;

init 8253; _

for i:=l to 100 do i:=i;

i:=0;

dummy:=bit_weight(x);

port[S201]:=0;

Timel:=read 8253; _

repeat i:=i+l until (port[S201] and dummy=0) or (i>=5000);

Time2:=read 8253; _

Interval_game_port:=timel-time2;

if i>=5000 then Interval_game_port:=0;

98 PC INTERFACING

SOFTWARE DRIVERS FOR THE EXPERIMENTAL BOARDS

TP6 Programming Resource Library-2, TPLIB2.PAS

(* Turbo Pascal Program Resource Library 2 *)

(* Library name: TPLIB0.PAS *)

(* graphics and read keyboard procedures*)

(* This library can be included in user's program *)

(* --Resource Library No. 01 (initialize graph mode)-- *)

Procedure initializegraph;

var

Gd, Gm: Integer;

Radius: Integer;

begin

Gd := Detect; InitGraph(Gd, Gm, '');

end;

(* --Resource Library No. 02 (draw a led on the screen)-- *)

Procedure draw_led(x,y: integer; status:byte);

(* x, y = centre position, status = ON or OFF *)

begin

setcolor(red);

setlinestyle(l,l,2);

if status=l then setfillstyle(l,red)

else

begin

setcolor(white);

setfillstyle(l,white);

end;

pieslice(x,y,0,360,10);

setcolor(magenta);

circle(x,y,10);

setcolor(yellow);

circle(x,y,5);

end;

(* --Resource Library No. 03 (draw a text box and show message)-- *)

procedure draw_message(xl,yl,width,height,color_box:integer; message:string; font, size_text,

color_text:integer);

(* xl,yl = left side position

Width, height = width and height of the text box

Color box = color of the text box
_

Message= message to be shown on the screen

Font, size_text, color_text = font, size and color of the text *)

begin

setfillstyle(l,color_box);

PC INTERFACING 99

SOFTWARE DRIVERS FOR THE EXPERIMENTAL BOARDS

bar(xl,yl-round(height/2),xl+width,yl+round(height/2));

setcolor(color text); _

settextstyle(font,0,size text); _

outtextxy(xl+5,yl-4,message);

end;

(* --Resource Library No. 04 (read some keystrokes)-- *)

Function getkey:string;

var

ch:char;

begin

ch:=readkey; (* to read a character from the keyboard *)

if ch=#0 then (* if an extended character is keyed, start the following procedures *)

begin

ch:=readkey; (* to read keyboard again to get the key code of the extended key *)

end

if ch=#72 then getkey:=

if ch=#80 then getkey:=

if ch=#75 then getkey:=

if ch=#77 then getkey:=

if ch=#82 then getkey:=

if ch=#83 then getkey:=

if ch=#71 then getkey:=

if ch=#79 then getkey:=~ '

if ch=#71 then getkey:='HOME '

if ch=#79 then getkey:='END'

UP' (* UP arrow = #72 *);

DOWN' (* DOWN arrow = #80 *);

LEFT' (* LEFT arrow = #75 *);

RIGHT' (* RIGHT arrow = #77 *);

INSERT'(* INSERT arrow = #82 *);

DELETE'(* DELETE arrow = #83 *);

HOME' (* HOME arrow = #71 *);

(* END arrow = #79 *);

(* HOME arrow = #71 *);

(* END arrow = #79 *);

else

(* the pressed key is not an extended key *)

begin

if ch=#13 then getkey:= 'RETURN'

else if (ch=#8) or (ch=#127) then getkey:='BACKSPACE'

else getkey:=ch;

end;

end;

Procedure init 8253;

begin

(* Control word= b6H = 10110111b

10 = select counter 2

II = read/write low count byte first then high byte

011 = mode 3

0 = binary counting with 16-bit *)

Port[$43]:=$b6; (* load control word to the control register of 8253 *)

Port[S42]:=255; (* load low count byte *)

100 PC INTERFACING

SOFTWARE DRIVERS FOR THE EXPERIMENTAL BOARDS

end;

port[S42]:=255; (* load high count byte *)

port[$61]:=port[$61] or i; (* disable speaker *)

port[$43]:=$80; (* 80H is the counter latch command for counter 3 *)

Function read_8253:integer;

var

low_byte, high_byte:byte;

begin

low byte:=port[$42];

high_byte:=port[$42];

read_8253:=low_byte + 256* high_byte;

end;

Function find_period(Address:integer; Bit_weight:integer):real;

(* find the period of an input digital signal.

Input signal is specified by Input port address (Address) and bit.

Bit 0, Bit_weight=l

Bit I, Bit_weight=2

.....

Bit 7, Bit_weight=128 *)

count, Average_number,timel,time2:integer;

begin

end;

(* Testing the period of low state of a digital signal. This will be used

for calculating Averagenumber *)

repeat until port[Address] and Bit_weight=Bit_weight; (* signal state high *)

repeat until port[Address] and Bit_weight=0; (* signal state low *)

timel:=read 8253; (* read counts in 8253 first time*)
_

repeat until port[Address] and Bit_weight=Bit_weight; (* signal state high again *)

time2:=read 8253; (* read counts in 8253 the second time *)
_

A v e r a g e _ n u m b e r : = r o u n d (1 0 0 0 0 / (T i m e l - T i m e 2)) ; (* find Average_number *)

if Average_number=0 then Average_number:=l;

repeat until port[Address] and Bit_weight=Bitweight; (* signal state high *)

repeat until port[Address] and Bit_weight=0;

timel:=read 8253; _

for count:=l to Average_number do

begin

repeat until port[Address] and Bit_weight=Bit_weight;

repeat until port[Address] and Bit_weight=0;

end;

Time2:=read 8253; _

(* signal state low *)

(* read counts in 8253 first time *)

(* find low going edge of a digital signal *)

(* signal state high *)

(* signal state low *)

(* read counts in 8253 the second time *)

Find_period:=((Timel-time2)*i/(2*l193180)*le6/Average_number);

PC INTERFACING 101

SOFTWARE DRIVERS FOR THE EXPERIMENTAL BOARDS

Windows Programming Resource Library, WLIB.PAS

(* Windows Programming Resource Library A *)

(* Input and Output procedures for the Centronic port, RS232 and Game ports *)

Library libA;

uses

Wincr t ;

(* --Windows Resource Library No. A1 (Detection of LPT base address)-- *)

Function Centronic(x:integer):integer; export;

(* $000:$0408 holds the printer base address for LPTI

$000:$040A holds the printer base address for LPT2

$000:$040C holds the printer base address for LPT3

$000:$040e holds the printer base address for LPT4

$000:$0411 number of parallel interfaces in binary format *)

begin

end;

number_of_LPT, LPTI, LPT2, LPT3, LPT4 :integer;

number of_LPT:--mem[$40:$11];

number_of_LPT:=(number_of_lpt and (128+64)) shr 6;

iptl:=0; ipt2:=0; ipt3:=0; ipt4:=0;

LPTl:=memw[$40:$08];

LPT2:--memw[$40:$0A];

LPT3:=memw[$40:$0C];

LPT4:=memw[$40:$0E];

case x of

0: centronic:=number of LPT;
_ _

I: centronic:=iptl;

2: centronic:=ipt2;

3: centronic:=ipt3;

4: centronic:=ipt4

end;

(* read number of parallel ports *)

(* Memory read procedure *)

(* --Windows Resource Library No. A2 (Find bit weight for a bit)-- *)

Function bit_weight(bit:integer):integer; export;

var

i,dummy:integer;

begin

if bit=l then bit_weight:=l

else begin

102 PC INTERFACING

SOFTWARE DRIVERS FOR THE EXPERIMENTAL BOARDS

end;

dummy:=l;

for i:=l to bit-i do dummy:=2*dummy;

bit_weight:=dummy;

end;

(* --Windows Resource Library No. A3 (Read data into pc)-- *)

Function Read_status_port(P_address:integer):integer; export;

var

bytel:byte;

begin

bytel:=port[P_address+l];

bytel:=bytel and 120;

Read_status_port:=bytel shr 3;

end;

(* read a byte from the status port *)

(* 01111000 (MSB to LSB) and 0dddd... = 0dddd000 *)

(* shift 3 bit right, Read_status_port = 0000hhhh *)

(* --Resource Library No. A4 (Write data to DATA port of pc)-- *)

Function Write_data_port(P_address:integer; port_data:integer):integer; export;

(* no lines in the Data port are not inverted *)

begin

port[P_address]:=port_data; (* output a byte to the data port *)

end;

(* --Resource Library No. A5 (Write data to CONTROL port of pc)-- *)

function Write_control_port(P_address:integer; port_data:integer):integer;export;

(* Bit 0, Bit 1 and Bit 3 are inverted. Bit manipulation is required *)

. begin

end;

if port_data and 1 =I then port_data:=portdata and (255-1)

else port_data:=port_data or i;

if portdata and 2 =2 then port_data:=port_data and (255-2)

else port_data:=port_data or 2;

if port_data and 8 =8 then port_data:=portdata and (255-8)

else port_data:=port_data or 8;

port[Paddress+2]:=port_data; (* output a byte to the control port *)

(* --Resource Library No. A6 (detection of COM ports)-- *)

Function RS232(x:integer):integer; export;

{Universal auto detection of COM base address}

PC INTERFACING 103

SOFTWARE DRIVERS FOR THE EXPERIMENTAL BOARDS

{ $0000:$0400 holds the printer base address for COMI

$0000:$0402 holds the printer base address for COM2

$0000:$0404 holds the printer base address for COM3

$0000:$0406 holds the printer base address for COM4

$0000:$0411 number of parallel interfaces in binary format}

var

number_of_COM, COMI, COM2, COM3, COM4 :integer;

begin

end;

number_of_COM:=mem[$40:$11]; {read number of parallel ports}

number of_COM:=(number_of_COM and (8+4+2)) shr I;

COMI:=0; COM2:=0; COM3:=0; COM4:=0;

COMl:=memw[$40:$00]; {Memory read procedure}

COM2:=memw[$40:$02];

COM3:=memw[$40:$04];

COM4:=memw[$40:$06];

case x of

0:

i:

2:

3:

4:

end;

RS232:=number_of_COM;

RS232:=COMI;

RS232:=COM2;

RS232:=COM3;

RS232:=COM4

(* --Resource Library No. A7 (to write to the interrupt enable register)-- *)

Function Write_interrupt_enable(RS232_address, Output_byte: integer):integer;Export;

begin

Port[RS232_address+l]:=Output_byte;

end;

(* --Resource Library No. A8 (to read from the interrupt identification register)-- *)

Function Read_interruptidentification(RS232_address:integer):integer; Export;

begin

Read_interrupt_identification:=Port[RS232address+2]

end;

(* --Resource Library No. A9 (write to data serialization register)-- *)

Function Write_data_format(RS232_address, Baudx, Parity, Data_bit, Stop_bit:integer):integer; Export;

var

bytel, byte2, output_byte: byte;

divisor: integer;

104 PC INTERFACING

SOFTWARE DRIVERS FOR THE EXPERIMENTAL BOARDS

begin

end;

baud:longint;

Baud:=baudx * 100 ;

divisor:=l15200 div Baud;

if divisor<=255 then begin bytel:=divisor; byte2:=0 end;

if divisor>255 then begin byte2:=divisor div 256; bytel:=divisor mod 256; end;

output_byte:=(data_bit-5) + 4*(stop_bit-l) + 8*(parity);

port[RS232_address+3]:=128;{Loading serial data format, first bit of the register is i}

port[RS232_address+0]:=Bytel; {LSB of the divisor is i}

port[RS232_address+l]:=Byte2; {MSB of the divisor is 0}

port[RS232_address+3]:=output_byte; {Load divisor and other parameters}

(* --Resource Library No. AI0 (to write to the transmit buffer register)-- *)

Function write_transmit_buffer(RS232_address, Outputbyte: integer):integer; Export;

begin

port[RS232_address]:=Output_byte;

end;

(* --Resource Library No. All (to write to the modem status register)-- *)

Function Write_modem_status(RS232_address, RTS, DTR:integer):integer; Export;

(* RTS and DTR = 0 or i, RTS and DRT are inverted by MAX238 on the experimental board *)

(* RTS=bit i, DTR=bit 0 of Modem control register, offset 04 *)

begin

RTS:=I-RTS;

DTR:=I-DTR;

Port[RS232_address+4]:=RTS*2 + DTR (* to output to the register 04 *)

end;

(* --Resource Library No. AI2 (to read data from receive buffer register)-- *)

Function Read_receive_buffer(RS232address:integer):integer; Export;

begin

Read_receive_buffer:=port[RS232_address];

end;

(* --Resource Library No. AI3 (to read modem status register)-- *)

Function Read_modem_status(RS232_address, x:integer):integer; Export;

(* X=I select DCD bit, x=2 select DSR bit, x=3 select CTS bit *)

(* DCD=bit 7, DSR=bit 5, CTS=bit 4 of Modem status register, offset 06h *)

(* All bits are inverted by the Max238 on the experimental board *)

PC INTERFACING 105

SOFTWARE DRIVERS FOR THE EXPERIMENTAL BOARDS

input_byte:byte;

begin

input_byte:=port[RS232_address+6];

case x of

I: Read_modem_status:=l-round((input_byte and 128)/128);

2: Read_modem_status:=l-round((input_byte and 32)/32);

3: Read_modem_status:=l-round((input_byte and 16)/16);

end;

end;

(* --Resource Library No. AI4 (to read Game port register)-- *)

Function Read_Game_port(Bitx:integer):integer;Export;

(* Game port address: 201H

Bitx selects status of AX, AY, BX, BY, BAI, BA2, BBI and BB2 *)

var

input_byte:byte;

begin

input_byte:=port[$201];

Read_game_port:=round((input_byte and bit_weight(bitx)/bit_weight(bitx)));

end;

(* --Resource Library No. AI5 (to write to Game port register)-- *)

Function Write_Game_port:integer;Export;

(* output byte 0 to the game port to start the multi-vibrators *)

begin

port[S201]:=0;

end;

(* --Resource Library No. AI6 (to get time interval of the multivibrator after one shot)-- *)

Function Interval_Game_port(x:integer):integer;Export;

(* x selects AX (x=l), AY (x=2), BX (x=3), BY (x=4) *)

var

Timel, Time2, dummy: integer;

Procedure init 8253; _

(* Initialize 8253 *)

begin

(* Control word = b6H = 10110111b

10 = select counter 2

Ii = read/write low count byte first then high byte

106 PC INTERFACING

SOFTWARE DRIVERS FOR THE EXPERIMENTAL BOARDS

end;

011 = mode 3

0 = binary counting with 16-bit *)

Port[$43]:=$b6; (* load control word to the control register of 8253 *)

Port[S42]:=255; (* load low count byte *)

port[S42]:=255; (* load high count byte *)

port[$61]:=port[$61] or I; (* disable speaker *)

port[$43]:=$80; (* 80H is the counter latch command for counter 3 *)

Function read_8253:integer;

(* read low order and high order bytes of the counters *)

var

low_byte, high_byte:byte;

begin

low byte:=port[$42];

high_byte:=port[$42];

read_8253:=low_byte + 256* high_byte;

end;

Var

begin

end;

i:integer;

init 8253; _

for i:=l to i0 do i:=i;

i:=0;

dummy:=bitweight(x);

port[S201]:=0;

Timel:=read 8253; _

r e p e a t i:=i+l until (port[S201] and dummy=0) or (i>=10000);

Time2:=read 8253; _

I n t e r v a l _ g a m e _ p o r t : = t i m e l - t i m e 2 ;

if i>=10000 then Interval_game_port:=0;

exports

Centronic Index i,

Bitweight Index 2,

Read_status_port Index 3,

Write_dataport Index 4,

Write_control_port Index 5,

RS232 Index 6,

Write_interrupt_enable Index 7,

Read_interrupt_indentification Index 8,

Write data format Index 9, _ _

PC INTERFACING 107

SOFTWARE DRIVERS FOR THE EXPERIMENTAL BOARDS

Begin

end.

Write transmit buffer

Write modem status

Read receive buffer _

Read modem status

Read_game_port

Write_game_port

Interval_game_port

Index i0,

Index II,

Index 12,

Index 13,

Index 14,

Index 15,

Index 16;

108 PC INTERFACING

EXPANDING THE CENTRONIC, RS232 AND GAME PORTS

Expanding the Centronic, RS232 and
game ports

In many applications, the number of I/O lines provided by the Centronic, RS232 and game port is
not enough. Expansion of the I/O lines is required.

4.1 Expanding the Centronic port

One method for expanding I/O lines of the port is to use the 74LS TTL or 4000 CMOS series logic
chips. The other is to use dedicated peripheral programmable interface (PPI) chips such as the 8255,
8155 or others. Using the logic chips is simple and economical. A huge number of inputs and outputs
can be expanded. The disadvantage is that the hardware is not configurable. Using interface chips
makes the expansion configurable. For example, the 8255 PPI provides 24 I/O lines which are
arranged in three groups, A, B and C. Each group has eight I/O lines and can be configured as an
input or an output port.

4.1.1 I/0 expansion using logic ICs

(a) Reading 8-bit data

Figure 4.1 shows an experimental circuit to allow the Centronic port to read 8-bit data using a
74LS241 octal buffer. The pin-out of the 74LS241 is shown in Figure 4.1. When pin 1 is taken low,
the four buffers on the left hand side are enabled (the outputs follow the inputs). Otherwise the
outputs are in the high the impedance state. When pin 19 goes high the four buffers on the right hand
side are enabled. If pins 1 and 19 are connected together to form a data selection line (DSL), by putting
it low and then high, you can read the four bits connected to the buffers on the left and then the other
four bits connected to the buffers on the right in turns. Operating in such a manner, 8-bit data can be
read into the computer via only four lines. The DSL line can be controlled by bit 0 of the data port.

Figure 4.1 also shows how the 74LS241 is connected to the Centronic experimental board. D1, $1
to $4 are terminals on the experimental board. Eight-bit input data is loaded into a computer in two
consecutive readings. When SEL is low, bit 0 to bit 3 of the input data are read into the computer.
When SEL is high, bit 4 to bit 7 are read into the computer. To get the original 8-bit byte (bit 0 to
bit 7), manipulation of the two bytes is performed. The TP6 and VB3 software drivers for the board
(see Chapter 3) can be used for testing the circuit.

PC INTERFACING 109

EXPANDING THE CENTRONIC, RS232 AND GAME PORTS

Figure 4.1 Circuit for expanding an 8-bit input port using a
74LS241

(b) Expanding outputs

The way to expand output lines is to use latches such as the 74LS373 or 74LS374 ICs. The pin-out
and an experimental circuit using the 74LS374 are shown in Figure 4.2. The inputs to the 74LS374
are connected to bit 0 to bit 7 of the DATA port. Latching data into the IC is controlled by the CLK
pin (pin 11). At the low-to-high transition, the input data is latched to the outputs. The CLK pin is
controlled by one output line of the CONTROL port. In Figure 4.2, D1 to D8 and C1 are terminals
on the Centronic experimental board. A TP6 software driver is listed below.

110 PC INTERFACING

EXPANDING THE CENTRONIC, RS232 AND GAME PORTS

Figure 4,2 Circuit for expanding an 8-bit output port
using 74LS374

TP6 program list of LS374.PAS

Program CentronicOutput_Expander_using_74LS374;

(* Software driver for expanding output ports using 74LS374 *)

uses

g r a p h , c r t , d o s ;

var

ch :char ;

(* include two included libraries: TPLIB0 and TPLIBI *)

{$I c:\ioexp\tplibl.pas}

PC INTERFACING 111

EXPANDING THE CENTRONIC, RS232 AND GAME PORTS

Procedure Load data to LS374; _ _ _

(* load data to 74LS374 *)

var

Output_byte :byte;

begin

end;

(* to output data to the Data port *)

write_control_port(P_address,0);

Write('Input the output data: '); readln(output_byte);

Write_data_port(P_address, Output_byte);

write('Press RETURN to load the input data to the output of 74LS374');

readln;

write_control_port(P_address,l);

writeln('ist line of the Control port goes from low to high to latch data);

delay(2000);

write_control_port(P_address,0);

(* Main program *)

begin

centronic address; _

repeat

clrscr;

load data to LS374; _ _ _

write('Continue (Y/N) :

until upcase(ch)='N'

end.

(* input centronic address *)

'); readln(Ch);

4.1.2 I/0 expansion using 8255 PPI chips

Figure 4.3 shows the pin-out and the internal block diagram of the 8255 PPI. It has 24 input/output
lines which are arranged in three 8-bit ports, ports A, B and C. The 8255 has four internal registers.
Three of them are called peripheral registers which are associated with the ports A, B and C. The
fourth one is the control register. The peripheral registers are used for data transfer through the port.
The control register is used to store the configuration parameters of the 8255. There is an 8-bit
bidirectional data bus (bits 0-7, pins 34-27) through which data are written to or read from the
8255 under the control of-WR (pin 36) and -RD (pin 5) lines. The address lines A0 (pin 9) and A1
(pin 8) are used to select a particular internal register.

A0-0, AI=0,
A0-1, A1-0,
A0=0, A1-1,
A0=I, A1=1,

select the register A
select the register B
select the register C
select the control register

112 PC INTERFACING

EXPANDING THE CENTRONIC, RS232 AND GAME PORTS

Figure 4.3 Pin-out and internal block diagram of the 8255

PC INTERFACING 113

EXPANDING THE CENTRONIC, RS232 AND GAME PORTS

-CS (pin 6) line must be taken low to enable the IC. RESET (pin 35) is active high. After reset all the
I/O lines of ports A, B and C are configured as inputs. In normal operations, The RESET line must
be held low. The 8255 has three operation modes:

�9 In Mode 1, the ports A can be configured as an 8-bit input or output port. Mixture of inputs and
outputs is not possible. Port B is the same as port A. Port C is split into two halves (the upper four
bits and lower four bits). Each half can be configured as either input or output. The mixture of
inputs and outputs within each half is not possible. All the outputs are latched.

�9 Mode 2 configures the 8255 PPI as strobed I/O ports. Ports A and B are configured as two
independent 8-bit input or output ports. Each of them has a 4-bit control port associated with it.
The control ports are formed by the lower and upper four bits of port C, respectively.

�9 In Mode 3, port A can be configured as a bidirectional port.

The modes of the 8255 are configured by writing an 8-bit control word to the control register. The
bit function of this control word is shown below:

bit 7 (mode set flag) always 1
bit 6, Bit 5 (mode selection b i t s) 00=Mode 1, 01=Mode 2, lx=Mode 3
bit 4 (mode of port A) 1=input, 0=output
bit 3 (mode of upper half of C) 1=input, 0-output
bit 2 (mode selection for Mode 3) 1-Mode 1, 0-Mode 0
bit 1 (Mode of port B) 1=input, 0=output
bit 0 (Mode of lower half of C) l=input, 0-output

A circuit diagram of an 8255 connected to a Centronic port is shown in Figure 4.4. The data port of
the Centronic port sends data to the 8255. Data transfer is facilitated by IC2 and IC3 (the 74LS241
and the 74LS244 tri-state buffers). The status port reads data from the 8255. Two lines of the control
port are connected to A0 and A1 of the 8255 and the other two lines are connected to -RD and
-WR.

To write data to an 8255 register, firstly the required data is written to the data port and A0 and
A1 are written to the control port, then a high-to-low-then-high pulse is issued from the -WR line.
This enables the data buffers of IC3. The low-going transition on -WR writes the data into the
selected register of the 8255. Reading data from the 8255 is accomplished by IC2 (the 74LS241). The
data selection line (DSL) is controlled by bit 0 of the data port. When reading data from an 8255
register, firstly an address (A0 and A1) is written to the control port and -RD line is held low. This
makes the 8255 output data onto its data bus. Then the DSL line is first set low and the status port
reads the first reading. Then the DSL line is set high, the port reads the second one. The two readings
are combined to reproduce the original 8-bit data.

A control software is written in Turbo Pascal 6. It configures all the ports as outputs (Mode 0,
control word-128). The program contains all the necessary procedures and functions which allow
users to develop their own software. Write_control(Control_word:byte) writes the control word into
the internal control register of 8255. Write_port (port_number, output_byte:byte) writes a byte to a
port A, B or C which has been configured as an output. Inputbyte (port_number :byte).byte reads
data from a port A, B or C which is configured as an input.

114 PC INTERFACING

EXPANDING THE CENTRONIC, RS232 AND GAME PORTS

Figure 4.4 Experimental circuit of the 8255

PC INTERFACING 115

EXPANDING THE CENTRONIC, RS232 AND GAME PORTS

TP6 Program list of 8255.PAS

Program Centronic_8255_interface;

(*Some useful control words: 128(decimal): Port A, B and C all as output

155(decimal): Port A, B and C all as input

144(decimal): Port A as input; Port B and C as output

146(decimal): Port A and B as input; Port C as output*)

crt,dos,graph;

var

command,output_byte,input_byte,bitnumber,portnumber,outputbyte:byte;

P_address,delaynumber:integer;

{$I c:\ioexp\tplibl.pas}

Procedure find_delaynumber;

(* Check pc speed and find the delaynumber for 1 ms*)

var

timel,time2,dt:real;

t,hl,ml,sl,sl001,h2,m2,s2,sl002:word;

begin

clrscr;

gotoxy(25,24); write('Checking computer speed');

gettime(hl,ml,sl,sl001);

timel:=3600*hl+60*ml+sl+s1001/100;

for t:=l to i000 do delay(l);

gettime(h2,m2,s2,sl002);

time2:=3600*h2+60*m2+s2+s1002/100;

dt:=time2-timel;

delaynumber:=round(1000/dt*0.001);

clrscr;

gotoxy(30,24); write('Finished...');

clrscr;

end;

Function convert(bytex:byte):byte;

(*CONVERT THE bytex INTO THE BYTE TO BE SENT INTO THE 8255 REGISTERS*)

(*byte received by the 8255: (byte into 8255 = B8 B7 B6 B5 B4 B3 B2 BI)

byte output from the Centronic port: (data from Centronic port = B8 B4 B7 B3 B6 B2 B5 BI)

The difference in bit sequence is due to hardware connection of the board. To sent a byte

into the 8255, data from the Centronic port should take the above form*)

begin

convert:= ((bytex and i) + ((bytex and 2) shl i)+

((bytex and 4) shl 2) + (bytex and 8) shl 3+

((bytex and 16) shr 3) + ((bytex and 32) shr 2) +

(bytex and 64) shr 1 + ((bytex and 128)));

end;

116 PC INTERFACING

EXPANDING THE CENTRONIC, RS232 AND GAME PORTS

Procedure write_control(Controlword:byte);

(*WRITE CONTROL_WORD INTO 8255 IC CONTROL REGISTER*)

(*Control_word is output by port [P_address], 8255 R/W is controlled by port [P_address+2]*)

(*Port [P_address+2] bit configuration, -l(-Read) -2(-Write) 3(A0) -4(AI)*)

begin

end;

Control_word:=convert(Control_word);(*Convert the word*)

port[P_address]:=Control_word; delay(delaynumber*10); (*Control word output from port [P_address]*)

port[P_address+2]:=0+0+4+0; delay(delaynumber*3); (*-Read=l, -Write=l, A0=I, AI=I, delay =I0 ms*)

port[P_address+2]:=0+2+4+0; delay(delaynumber*3); (*_Read=l, -Write=0, A0=I, AI=I, delay=10 ms*)

port[P_address+2]:=0+0+4+0; delay(delaynumber*3); (*_Read=l, -Write=l, A0=I, AI=I, delay=10 ms*)

Procedure write_port (port_number,output_byte:byte);

(*WRITE A BYTE (output_byte) TO A 8255 IC PORT SPECIFIED BY portnumber*)

(*Output byte is output by port [P_address], 8255 R/W is controlled by port [Paddress+2]*)

(*Port [P_address+2] bit configuration, -l(-Read) -2(-Write) 3(A0) -4(AI)*)

begin

Output_byte:=convert(Output_byte); (*Convert the word*)

port[P_address]:=output_byte; (*Output a byte from port [P_address]*)

if (port_number=0) then begin (*Output a byte to A register of 8255 IC*)

port[P_address+2]:=0+0+0+8; delay(delaynumber*3); (*_Read=l, -Write=l, A0=I, AI=0*)

port[P_address+2]:=0+2+0+8; delay(delaynumber*3); (*-Read=l, -Write=0, A0=I, AI=0*)

port[P_address+2]:=0+0+0+8; delay(delaynumber*3); (*-Read=l, -Write=l, A0=I, AI=0*)

end;

if (port_number=l) then begin (*Output a byte to B register of 8255 IC*)

port[P_address+2]:=0+0+4+8; delay(delaynumber*3);

port[P_address+2]:=0+2+4+8; delay(delaynumber*3);

port[Paddress+2]:=0+0+4+8; delay(delaynumber*3);

end;

if (port_number=2) then begin

port[P_address+2]:=0+0+0+0;

port[P_address+2]:=0+2+0+0;

port[P_address+2]:=0+0+0+0;

end;

(*Output a byte to C register of 8255 IC*)

delay(delaynumber*3);

delay(delaynumber*3);

delay(delaynumber*3);

end;

Function Inputbyte(port_number:byte):byte;

(*READ A BYTE (input_byte) FROM A 8255 IC PORT SPECIFIED BY port_number*)

(*Input byte is input from port [P_address+l], 8-bit byte is input into the Centronic

port in two stages. In the first stage, bits 1,2,3 and 4 are read and in the

second one bits 5,6,7 and 8 are read. This operation is controlled by bit 1

of port [P_address]. 8255 R/W is controlled by port [P_address+2]*)

(*Port [P_address+2] bit configuration, -l(-Read) -2(-Write) 3(A0) -4(AI)*)

PC INTERFACING 117

EXPANDING THE CENTRONIC, RS232 AND GAME PORTS

var

byte_Ist, byte_2nd:byte;

begin

if (port_number=0) then begin

port[P_address]:=0;

port[P_address+2]:=0+0+0+8;

port[P_address+2]:=l+0+0+8;

byte_2nd:= port[P_address+l];

port[P_address]:=l;

byte_Ist:=port[P_address+l];

port[P_address+2]:=0+0+0+8;

end;

(port_number=l) then begin

port[P_address]:=0;

(*Read a byte from port A of 8255*)

(*DSL=0, Prepare to read low 4 bits*)

delay(delaynumber*3); (*-Read=l, -Write=l, A0=0, AI=0 *)

(*-Read=0, -Write=l, A0=0, AI=0 *)

(*Read low 4 bits*)

(*DSL=I, Prepare to read high 4 bits*)

(*Read high 4 bits*)

(*-Read=l, -Write=l, A0=0, AI=0*)

(*Read a byte from port B of 8255*)

port[P_address+2]:=0+0+4+8; delay(delaynumber*3);

port[P_address+2]:=l+0+4+8;

byte_2nd:=port[P_address+l];

port[Paddress]:=l;

byte_ist:=port[P_address+l];

port[P_address+2]:=0+0+4+8;

end;

(port_number=2) then begin (*Read a byte from port C of 8255*)

port[P_address]:=0;

port[P_address+2]:=0+0+0+0; delay(delaynumber*3);

port[Paddress+2]:=l+0+0+0;

byte_2nd:=port[P_address+l];

port[P_address]:=l;

byte_Ist:=port[P_address+l];

port[P address+2]:=0+0+0+0; _

end;

(*Note: Byte_Ist =(x B8 B7 B6 B5 x x x)

Byte2nd =(x B4 B3 B2 B1 x x x)

x=don't care, B8 to BI: bit value 0 or i*)

byte_ist:=byte_ist and 120; (*x B8 B7 B6 B5 x x x and 01111000 = 0 B8 B7 B6 B5 0 0 0")

byte_ist:=byte_ist shl i; (*shift 1 bit left, byte lst =B8 B7 B6 B5 0 0 0 0")

byte_2nd:=byte_2nd and 120; (*x B4 B3 B2 B1 x x x and 01111000 = 0 B4 B3 B2 B1 0 0 0")

byte_2nd:=byte_2nd shr 3; (*shift 3 bit right, byte_2nd =0 0 0 0 B4 B3 B2 BI*)

Inputbyte:=byte_ist or byte2nd; (*byte_Ist or byte_2nd = B8 B7 B6 B5 B4 B3 B2 BI*)

end;

************************ ****--************************

begin

find_delay_number;

118 PC INTERFACING

EXPANDING THE CENTRONIC, RS232 AND GAME PORTS

clrscr;

Centronic address _

repeat

clrscr;

writeln(' Centronic port - 8255 card testing program');

writeln;

writeln(' Port A, B and C are all configured as Outputs');

writeln(' The control word sent to the 8255 PPI is 128 decimal');

write_control(128); (*Port A, B and C are configured as OUTPUTs*)

write_control(128);

writeln;

write(' Input the bit number to be tested (i to 8, 9 to quit)

readln(Bitnumber);

end.

:);

outputbyte:=bit_weigth(bitnumber)

writeln;

textcolor(yellow+blink);

write(' The selected bit of Port A, B and C will change from 0 to 1 to 0 repeatly');

write(' You need a logic probe to test the card!');

textcolor(white);

repeat

write_port(0, outputbyte);

write_port(l, outputbyte);

write_port(2, outputbyte); delay(delaynumber*300);

write_port(0,0);

write port(l,0);

wrlte_port(2,0); delay(delaynumber*300);

until keypressed or (portnumber=9);

readln;

until bitnumber=9;

4.2 Expanding the RS232 port

4.2.1 RS232/TTL line translators

The simplest way of converting the RS232 voltage level to the TrL voltage level is to use voltage
clamp circuits as shown in Figure 4.5(a). The circuit consists of one resistor and a +5.1V Zener diode.
When the input RS232 status is high, the output is § When the status is low, the output voltage
i s -0 .6V. The output can drive TTL or CMOS circuits. Another TTL/RS232 transceiver circuit is
shown in Figure 4.5(b). The circuit does not require any external power supplies. It 'steals' the power
from the RS232 port. It has an inverting action.

PC INTERFACING 119

EXPANDING THE CENTRONIC, RS232 AND GAME PORTS

Figure 4.5 TTIJRS232 voltage converter circuits

The TTL/RS232 transceiver ICs are widely used. The MAX232 (Maxim RS655-290) and the
MAX238 (Maxim RS655-313) are two examples. The pin-out of the two ICs is given in Figure 4.6.
The internal block diagram of the MAX232 is also shown in Figure 4.6. Both ICs require a signal
rail +5V power supply. The MAX232 contains an on-board dual charge-pump DC-DC voltage
converter, two RS232 drivers and two RS232 receivers. The dual charge-pumps convert the §
supply voltage to § and-10V. Care should be taken not to load V+ and V- to a point that it
violates the minimum RS232 (RS232C, Vmi n = 3V) voltage level. When a 20 mA current drawn from
V+ and V-, the voltage at V§ and V- will be around 7V and-7V. The receiver inputs withstand a
voltage up to e25V. The maximum data transfer rate is 120 kbyte/s. The supply current of the
MAX232 is 4 mA when the outputs have no load. The MAX238 has similar electrical characteristics
and has four drivers and four receivers.

120 PC INTERFACING

EXPANDING THE CENTRONIC, RS232 AND GAME PORTS

Figure 4.6 Pin-out of MAX232 and MAX238 and internal block
diagram of MAX232

For battery-powered applications, a low power version MAX3232 (Maxim RS189-1453)can be
used. It only consumes 250 laA. Other electrical characteristics are the same as those of the standard
MAX232.

Isolated RS232 drivers/receivers are used to achieve high noise immunity and electrical isolation.
A device such as the NM232DD (Newport RS264-412) provides two drivers and two transmitters
and requires a single +5V power supply. The pin-out of the chip is shown in Figure 4.7. The IC has
an isolated DC-to-DC converter and opto-isolators in one package. It provides an isolation of 1500V.

PC INTERFACING 121

EXPANDING THE CENTRONIC, RS232 AND GAME PORTS

Figure 4.7 Pin-out and typical application of the NM232DD

4.2.2 Expanding RS232 ports using UARTs

The CDP6402 (Harris Semiconductors, RS 630-689) is a CMOS Universal Asynchronous
Receiver/Transmitter for interfacing to asynchronous serial data channels. Its serial data format is
programmable. It can have 5, 6, 7, or 8 bit length. The parity check can be odd, even or none. Stop
bits can be 1, 1.5 or 2. The IC requires a power supply voltage 4 to 10 volts. The quiescent supply
current is 1.5 mA for a supply voltage of 5V.

The pin-out and the internal block diagram are shown in Figure 4.8. Pin 21 is the Master Reset
(MR), which should be at the logic low state in normal operations. Pins 35 through 39 control the
serial data format. To enable the control pins, pin 34 (Control Register Load, CRL) must be at logic

122 PC INTERFACING

EXPANDING THE CENTRONIC, RS232 AND GAME PORTS

Figure 4.8 Pin-out and internal block diagram of the 6402 UART

PC INTERFACING 123

EXPANDING THE CENTRONIC, RS232 AND GAME PORTS

high. A high level on pin 35 (Parity Inhibit, PI) inhibits parity generation and check. It also forces
the Parity Error (PE, pin 13) pin to stay low. When PI is low, a high level on Even Parity Enable (EPE,
pin 39) selects even parity. A low level on EPE pin selects odd parity. Pin 36 (Stop Bit Select) high
selects 1.5 stop bits for 5 character format and 2 stop bits for other data lengths. If it is low, 1 stop
bit is selected. Pins 37 (Character Length Selected, CLS2) and 38 (CLS1) select the data length:
CLS1-0, CLS2=0 for 5 bits; CLSI=I, CLS2=0 for 6; CLSI=0, CLS2=I for 7 and CLSI=I and
CLS2=I for 8.

Pins 17 (Receiver Register Clock) and 40 (Transmitter Register Clock) are the clock inputs for~the
receiver and transmitter. The two inputs are driven by a clock which runs at 16 times the required
baud rate. They are normally connected together.

Pin 20 (Receiver Register Input, RRI) is the serial data input. The received data is stored in the
receiver buffer registers which are accessed via pins 5 to 12 (Receiver Buffer Registers). Pin 4
(Receiver Register Disable, RRD) should be low. When data is successfully received and loaded into
the receiver buffer registers, pin 19 (Data Received) goes from low to high. It can be set to low by
making pin 18 (-Data Received Reset) low. This enables the UART to receive the new data. Pins 13
(Parity Error), 14 (Framing Error) 15 (Overrun Error) give the status of errors occurring during a
data transmission and they are all high active. To enable these status outputs, pin 16 (Status Flag
Disable, SFD) should be low.

Pin 25 (Transmitter Register Output, TRO) is the serial data output. Data to be sent is written into
the transmit buffer registers via pins 26 to 33 (Transmitter Buffer Registers). When pin 23
(-Transmitter Buffer Register Load,-TBRL) goes low, the data is loaded into the transmitter buffer
registers and when it goes from low to high, it loads the data into the transmitter register and initiates
the serial data transmission. Pin 22 is Transmitter Buffer Register Empty. A high level on this
indicates that transmitter buffer register has transferred data into the transmitter register and is ready
for new data. Pin 24 is Transmitter Register Empty. A high level on this pin indicates the completion
of a serial data transmission.

A receive timing sequence is shown in Figure 4.9(a). Data is received at the RRI input. When no
data is being received, RRI input must be high. At stage A, a low level on -DDR clears the DR line.
At stage B, during the first stop bit of the transmission, the data is transferred from the receiver
register to the receiver buffer registers. An overrun error occurs when DR has not been cleared before
the present character is transferred to the registers. At stage C, 1/2 clock cycle after B, DR goes high,
indicating that a new data is received. A logic high on FE indicates that an invalid stop bit has been
received and a logic high on PE indicates a parity error. If the UART operates in a continuous mode,
DDR can be pulled down to ground.

A transmit timing procedure is shown in Figure 4.9(b). At stage A, data is loaded into the
transmitter buffer register from the inputs TBR1 through TBR8 at the high- to-low transition on the
-TBRL input. Valid data must appear on TBR1-TBR8 before and after the rising edge of-TBRL. If
the data bit length is less than 8, only the least significant bits are used. At stage B, the rising edge of
-TBRL clears TBRE. After a short delay, data is transferred to the transmitter register and TRE is low.
TBRE goes to a logic high showing that the transmit buffer registers are empty. Output data is clocked
out by TRC. The clock rate is 16 times the data baud. At stage C, -TBRL goes from high to low then
high again. This loads the second data to the transmit buffer register. Data transfer to the transmitter
register is delayed until the transmission of the current character is complete. At stage D, data is
automatically transferred to the transmitter registers and the transmission of the second data begins.

124 PC INTERFACING

EXPANDING THE CENTRONIC, RS232 AND GAME PORTS

aal ~ 1 (input)

RBR 1-8
(output)

-DRR
(input)

DR
(output)

PE, FE, etc
(output)

,4

"1

-TBRL
(input)

TBRE
(output)

TRE
(output)

TRO
(output)

Beginning of 1st stop bit

Serial data

8 1/2 to 9 1/2 clock cycles

~ r a l l e l data
~

' 1/2 clock cycle

. / .
, ,

X
B e

(a) Receiver timing waveforms

I 4

~

' I ' , |

:'~-- 1 1/2 to 2 1/2 clock cycles

! I

1/2 clock cycJe

I
, ,

: n
End o~ last stop

A B C D

(b) Transmitting sequence

Figure 4.9 (a) Receive timing sequence and (b) transmit timing sequence

An experimental circuit of the 6402 connected to the RS232 experimental board is shown in
Figure 4.10. RRI, TRO and -TBRL of the 6402 are connected to TD, RD and DTR terminals on the
experimental board. The clock input to the UART is generated by a circuit using a CD4060 and a
2.4576 MHz crystal. From pins 7 of the CD4060, a clock signal at 153.6 kHz is generated, giving a
baud rate of 9600. The serial data format is: baud rate = 9600; data bit length = 8; stop bit length -
1 and parity = none. Pin 18 (-DRR) is pulled to logic low. This causes the 6402 to receive serial data
continuously.

The TP6 and VB3 software drivers for the RS232 experimental board (see Chapter 3) can be used
for experimenting with the circuit. Users can send data from a computer to the 6402. By changing
the status of DTR from high to low and then to high, the input data to the 6402 can be read into
the computer. The eight outputs from the 6402 can be connected to the inputs to the IC for a loop
test. In this case, the value of the received data should be equal to that of the output data.

PC INTERFACING 125

EXPANDING THE CENTRONIC, RS232 AND GAME PORTS

Figure 4.10 Experimental circuit diagram of the 6402 UART

4.2.3 New concepts for RS232 interfacing- ITC232-A
ITC232-A (Timely Technology, RS 213-7312) is a new peripheral chip which is designed for easy
interfacing with the RS232 port on computers. It is connected to the RS232 port via three lines, TD,
RD and ground. The IC has a powerful built-in control command set and a key stroke to machine
code translator. Users can input command key strokes from the keyboard of a computer. The IC
decodes the key strokes and performs the corresponding actions. This is advantageous over other I/O
interfacing schemes. Firstly, there is no need for users to learn complicated low-level languages and
hardware controls. Secondly, there is no need to compile the instructions.

126 PC INTERFACING

EXPANDING THE CENTRONIC, RS232 AND GAME PORTS

The internal block diagram of the ITC232-A and a typical application circuit are given in Figure
4.11. The device has a 40-pin DIL package. The device requires a +5V power supply and consumes
50 mA. The RS232 serial I/O command port operates with a baud rate from 300 to 115,200. The

Figure 4.11 The internal block diagram and an application of the
ITC232-A

PC INTERFACING 127

EXPANDING THE CENTRONIC, RS232 AND GAME PORTS

IC has 24 digital I/O lines arranged in three ports A, B and C. They can be configured individually
as input or output. Bits 4 to 7 of ports A, B and C can be used to drive three two-phase stepper
motors. The stepping speed is in the range 10 to 4000 steps per second. Bits 0 to 3 of ports A, B and
C can be used to measure resistance or capacitance. The device offers a pulse-width modulated
output with a frequency range from 10 Hz to 10 kHz and a duty cycle range from 1 to 100%. The
ITC232-A also equips a SPI bus from which various SPI compatible devices can be connected to the
IC. One example of the device is the MC145041 10-channel A/D converter.

The ITC232-A can be connected to the RS232 experimental board as shown in Figure 4.11. If you
send PWA254 followed by a return from the computer to the IC, you write 254 to port A. If you
send SAL100 followed by a return to the IC, a stepper motor connected to the port A will turn 100
steps to the left. The W1000 command will cause the device to produce a 1 kHz tone at the PWM
output. The full instruction set and application notes are available from the manufacturer.

Key stroke commands to the controller are typed at the command prompt of any terminal
program. They can be also sent to the ITC232 from programs written in TP6 or VB3 programs.

4.3 Expanding the game port

The game port has two (or four) digital inputs and two (or four) resistance inputs and it has no
output lines. The two digital input lines can read two digital inputs. The input can be serial encoded
data and a software decoder is used inside the PC to convert the serial data into parallel data. Some
application examples will be given later.

4.4 Serial-to-parallel interface

By using serial-in and parallel-out shift registers such as the 74LS164s, two output lines from a
computer can generate an unlimited number of outputs. Figure 4.12(a) shows how a 74LS164 is used
to generate eight output lines from two output lines of a PC. The 74LS164 has two gated serial data
inputs, pins 1 and 2 (A and B) and eight shift register outputs (Qa to Qh). At the low-to-high
transition of the CLOCK input, the serial data bit presented at the inputs A and B is shift to Qa. In
the same time the value on Qa is shift to Qb, Qb to Qc, etc. After eight clock cycles, the 8-bit byte
can be loaded into the outputs of the shift register with the first bit loaded to pin Qh. A logic low at
pin 9 (-CLEAR) sets the eight outputs low. The maximum input clock frequency is 25 MHz. Several
74LS164s can be cascaded to generate more outputs.

The connection of the circuit to the RS232 experimental board is given in Figure 4.12(a). We can
see that RTS is connected to the serial data in (pins 1 and 2) and DTR connected to the CLOCK (pin
8). When loading data into the 74LS164, first the serial data is present at the RTS and then a high-
to-low-then-high pulse is applied to the DTR terminal. The TP6 and VB3 software drivers for the
RS232 experimental board (see Chapter 3) can be used for experimenting with the circuit.

There are two problems associated with the serial-to-parallel interface. One is the data transfer
rate. A Pentium computer can output a software-controlled clock signal at a frequency in the range
from 0.1 MHz to 1 MHz. The period for loading 8-bit serial data can be calculated. The more
outputs you have in the circuit, the slower the loading speed is. This is not a problem for low and

128 PC INTERFACING

EXPANDING THE CENTRONIC, RS232 AND GAME PORTS

medium speed interfacing applications. The other problem is that during data loading, each output
changes status randomly. To solve this, data latches such as the 74LS374 can be used (see Figure
4.12(b)). After all data bits are loaded into the shift registers, they are loaded into the 74LS374 by
applying a low-to-high signal to the CLOCK of the 74LS374 (pin 11). The circuit, however, requires
another output line from the computer. For the RS232 port, TD line can be used.

Figure 4.12 Serial-to-parallel converter circuits using 74LS164 and 74LS374

PC INTERFACING 129

EXPANDING THE CENTRONIC, RS232 AND GAME PORTS

These circuits can be also used for the Centronic port. The three lines could be the output lines of
the data port or the control port.

4.5 Parallel-to-serial interface

Using a parallel-in and serial-out shift register such as the CD4021, the number of inputs to a
computer can be expanded. It requires two output lines from the computer (one to load parallel data
and one to shift the data) and one input line to the computer to read data. Figure 4.13 shows a circuit
for inputting eight bits of data. The pin-out of the CD4021 is also shown in Figure 4.13. The IC has
a CLOCK input (pin 10), a parallel-in/serial-in control input (P/-S, pin 9), a serial data I/O (pin 11),
eight parallel data inputs (DO to D7) and three serial data outputs (Q6 to Q8). In operation, 8-bit
data is present at the inputs. Then P/-S goes from low to high to load the 8-bit data into the internal
register (parallel-in operation) regardless of the status of the clock. Next, P/-S is brought low to

Figure 4.13 Parallel-to-serial converter using a CD4021 shift
register

130 PC INTERFACING

EXPANDING THE CENTRONIC, RS232 AND GAME PORTS

terminate the parallel-in operation and to start the serial-out operation. At the low-to-high transition
of the clock input, the input data bits are shift out from pin Q7. After eight clock cycles, the 8-bit
data is serially transmitted.

The connection of the IC to the RS232 experimental board is shown in Figure 4.13. CLOCK is
connected to terminal DTR. P/-S control is connected to terminal RTS. Output Q8 is connected to
CTS terminal. The TP6 and VB3 software drivers for the RS232 experimental board (see Chapter 3)
can be used for experimenting the circuit. This circuit can be used with the Centronic port as well.
Again there is a problem associated with the data transfer rate. It can be used only for medium to
low speed interfacing applications.

4.6 Data encoders/decoders

Another method for expanding digital I/O lines is to use digital encoder/decoder ICs such as the HT-
12 (Hotek) series or the MC1405XX (National Semiconductors) family. Encoders and decoders are
ICs specially designed for digital data communication applications. Encoders are parallel-to-serial
converters and decoders are serial-to-parallel converters. The link between the encoders and the
decoders can be simply a wire link or other types of links such as infra-red, fibre optic, ultra-sonic
and radio. Data transfer rate is low.

The pin-out and the internal block diagram of the HT-12E encoder are given in Figure 4.14. It
transmits a serially encoded data upon the receipt of a low-going signal at the Transmit Enable pin
(-TE, pin 14). The 12 bits of data consist of eight bits of address (A0 to A7, pins 1 to 8) and four
bits of data (DO to D3, pins 10 to 13). The total number of address combinations is 28. An external
oscillator resistor (5% tolerance) is connected between pins 15 and 16. By selecting different
resistance values, various rate of data transmission can be achieved. The serial data output is from
pin 17. It has a wide operating voltage from 2.4 to 12V with a typical stand-by current of I pA.

Initially the encoder is in the stand-by mode. Upon the receipt of a low-going transition on -TE, it
begins a four-word transmission cycle and repeats the cycle until -TE becomes high. Each word
contains two periods: the pilot period and code periods as shown in Figure 4.15(a). The pilot period
has a 12-bit length period and is at logic low. The code period also has a 12-bit length period. The
encoder detects the logic state of the 12-bit inputs (A0-A7 and D0-D3) and transmits the information
during the code period. The logic levels '0' and '1' are encoded in a manner as shown in Figure
4.15(b).

The pin-out and internal block diagram of the HT-12D decoder are given in Figure 4.16. The HT-
12D receives the 12 bit word and interprets the first eight bits as the address and the last four bits
as data. When the received address matches the decoder's preset address, the 4-bit data is stored in
the internal register. This condition is checked three times. If the newly received address or data is
different from that received previously, the HT-12D aborts the present process and resets itself. The
preset address for the encoder is determined by the logic states at pins 1 to 8. The latched data is
output from pins 10 to 13. The serial data is input at pin 14. An external oscillator resistor (5%
tolerance) is connected between pins 15 and 16. Pin 17 is the valid transmission indicator output.

The resistors required by the devices are 5 % resistors. The frequencies of the HT-12E and HT-12D
should follow the following relationship:

PC INTERFACING 131

EXPANDING THE CENTRONIC, RS232 AND GAME PORTS

Figure 4.14 HT-12E encoder and the internal block diagram

Fosc, HT-12D = 5 0 x Fosc, HT-12E

for a 3 kHz oscillation frequency of the encoder. The external resistor for the encoder is 1.1 MQ and
the resistor for the decoder (which should run at 150 kHz) is 62 kQ. For other frequencies, refer to
the manufacturer's data sheets.

The following TP6 program simulates the HT-12E to produce 12-bit serial encoded data. The data
is output from the DTR terminal of the RS232 experimental board with a clock frequency of I kHz.
The experimental circuit of the HT-12D is given in Figure 4.17. The external resistance is 220 k•,
which gives a system clock frequency of 50 kHz. The data input (pin 14) is connected to the DTR
terminal of the RS232 experimental board.

132 PC INTERFACING

EXPANDING THE CENTRONIC, RS232 AND GAME PORTS

Figure 4.15 Encoded serial data format

TP6 program list of HT_ 12E

Program HT 12 encoder;

(* software driver to transmit HT-12E signal *)

uses

graph ,c r t , dos ;

addressx,datax:integer;

bit:array [1..15] of byte;

i,Serial_input_byte, Baud_rate_byte, Data_length_byte, Stop_lengthbyte, Paritybyte

:integer;

Ch:char;

(* to load two included library files *)

{$I c:\ioexp\tplibl.pas}

Procedure transmit_serial_data(Portaddress, Bit, Original_data, Address, data:integer;

invert_flag:boolean);

(* transmit serial data in HT-12 format, transmitter frequency 1000 Hz *)

(* Port_address: port I/O address, Bit: bit used for transmitting data

Original data: data originally appear on that port

Address: 8-bit address to be transmitted

PC INTERFACING 133

EXPANDING THE CENTRONIC, RS232 AND GAME PORTS

Figure 4.16 HT-12D encoder and its internal block diagram

Data: 4-bit address to be transmitted

invert_flag: =i to invert the transmitted data *)

var

i,Transmittime:byte;

data_bit: array [1..73] of byte;

begin

(* HT-12 serial data format:

first 36 clock cycles for pilot period,

one 1/2 clock cycle for start bit,

24 clock cycles for address (A0 to A7) and

12 clock cycles for data (D0 to D3) *)

134 PC INTERFACING

EXPANDING THE CENTRONIC, RS232 AND GAME PORTS

Figure 4.17 HT-12D experimental circuit

(* assign data_bit *)

(* pilot data bits *)

for i:=l to 36 do if not Invert flag then data bit[i]:=original_data and

(255-bit_weight(bit))

else data_bit[i]:=original_data or bitweight(bit);

(* start bit *)

if not invert_flag then data_bit[37]:=original_data or bitweight(bit)

else data_bit[37]:=original_data and (255-bit_weight(bit));

(* address bits , A1 transmitted first and A8 last *)

for i:=l to 8 do

begin

if not Invert_flag then

begin

end

else

begin

data_bit[3*(i-l)+37+l]:=original_data and (255-bit_weight(bit));

data_bit[3*(i-l)+37+2]:=original_data or bit_weight(bit);

data_bit[3*(i-l)+37+3]:=original_data or bit_weight(bit);

PC INTERFACING 135

EXPANDING THE CENTRONIC, RS232 AND GAME PORTS

data_bit[3*(i-l)+37+l]:=original_data or bit_weight(bit);

data bit[3*(i-l)+37+2]:=original_data and (255-bit_weight(bit));

data_bit[3*(i-l)+37+3]:=original_data and (255-bit_weight(bit));

end;

If address and bit_weight(i) > 0 then

begin

if not invert_flag then data_bit[3*(i-l)+37+2]:=originaldata and

(255-bit_weight(bit))

else data_bit[3*(i-l)+37+2]:=original_data or bit_weight(bit);

end;

end;

(* data bits *)

for i:=l to 4 do

begin

if not Invert_flag then

begin

end

else

begin

data_bit[3*(i-l)+61+l]:=original_data and (255-bit_weight(bit));

data_bit[3*(i-l)+61+2]:=original_data or bit_weight(bit);

data_bit[3*(i-l)+61+3]:=original_data or bit_weight(bit);

data_bit[3*(i-l)+61+l]:=original_data or bit_weight(bit);

data_bit[3*(i-l)+61+2]:=original_data and (255-bit_weight(bit));

data_bit[3*(i-l)+61+3]:=original_data and (255-bit_weight(bit));

end;

If data and bit_weight(i) > 0 then

begin

if not invert_flag then data_bit[3*(i-l)+61+2]:=original_ data and

(15-bit_weight(bit))

else data_bit[3*(i-l)+61+2]:=original_data or bit_weight(bit);

end;

end;

(* transmit the code for 10 times *)

for Transmit time:=l to 10 do
_

begin

end;

for i:=l to 73 do

begin

port[Port_address]:=data_bit[i];

delay(ll); (* a delay to give a 1 ms delay, oscillation frequency: 1 kHz *)

end;

end;

136 PC INTERFACING

EXPANDING THE CENTRONIC, RS232 AND GAME PORTS

(* Main program *)

begin

COM address;

port[RS232_address]:=0;

repeat

clrscr;

write('Input the address of receiver HT-12D (0-255): ');readln(addressx);

write('Input the data to be transmitted (0-15) : ');readln(datax);

transmit_serial_data (RS232_address+4,0,0, addressx, datax, true) ;

write (' Quit the program [Y/N] : ') ; readln (ch) ;

until upcase(ch)= 'Y'

end.

The encoder, HT-12E, can be used as a 12-bit parallel-to-serial data converter. The serial data can be
read into a computer via one input line and software can be used to decode the serial data into a
parallel data. The following Turbo Pascal 6 program reads serial data from an HTo12E encoder via
the CTS line of the RS232 port, decodes the serial data and shows the parallel data (eight address
bits and four data bits) on the screen. The experimental circuit is given in Figure 4.18. The external
resistance is 2.5 MQ, which gives a system clock frequency of 1 kHz. The Dout (pin 17) is connected
to the CTS terminal of the RS232 experimental board. This circuit also works with the game port.
The Dout can be connected to one of the digital inputs to the game port.

Figure 4.18 HT-12E experimental circuit

PC INTERFACING 137

EXPANDING THE CENTRONIC, RS232 AND GAME PORTS

TP6 program list of HT-12D

Program HT 12 receiver;

(* Software driver for HT-12D series receiver *)

uses

graph,crt,dos;

var

Value, oldvalue:integer;

bit:array [1..15] of byte;

i,led_selected,Serial_input_byte, Baud_rate_byte,

Data_length_byte, Stop_length_byte, Parity_byte :integer;

(* to load two included library files *)

{$I c:\ioexp\tplibl.pas}

Function Serial_data(x:byte):byte;

{decode the signal issued by HT-12E. Input connected to CTS line}

{x=l for A0-A7, x=2 for D0-D3}

var

Sdata, Saddress,i:byte;

TimeI_0,TimeI_l,ClockI,TimeI:longint;

begin

(* Find the time period (software count) for high state *)

repeat delay(l) until Port[RS232_address+6] and 16=16;

repeat delay(l) until Port[RS232_address+6] and 16=0

transition};

ClockI:=0;

repeat

ClockI:=ClockI+l;

delay(l);

until Port[RS232_address+6] and 16=16;

{find the low state}

{find the low-to-high

(* Find the pilot period, long period low state *)

repeat

repeat delay(l) until Port[RS232_address+6] and 16=16;

TimeI 0:=0; _

repeat

TimeI 0:=TimeI 0+1; _

delay(l);

until Port[RS232_address+6] and 16=0;

until TimeI 0>12*clockI; _

ClockI:=0; (* find the clock period of start bit *)

138 PC INTERFACING

EXPANDING THE CENTRONIC, RS232 AND GAME PORTS

repeat delay(l) until port[RS232_address] and 16 = 0;

repeat

ClockI:=ClockI+l;

delay(l);

until port[RS232_address+6] and 16=16 {find the low going transition};

(* read the following 12 bits *)

for i:=l to 12 do

begin

TimeI i:=0;

repeat delay(l) until port[RS232address+6] and 16 = 0;

repeat

TimeI_l:=TimeI_l+l;

delay(l);

until port[RS232_address+6] and 16=16;

if abs(TimeI_l-ClockI)>clockI/2 then bit[i]:=0 else bit[i]:=l;

end;

Sdata:=0;

Saddress:=0;

for i:=l to 8 do Saddress:=Saddress+bit[i]*bit_weight(i);

for i:=9 to 12 do Sdata:=Sdata+bit[i]*bit_weight(i-8);

if x=l then Serial data:=Saddress;

if x=2 then Serial data:=Sdata;

end;

(* Main program *)

begin

COM address; _

repeat

write('Received serial address=

delay(300);

write('

readln;

until keypressed;

end.

',serial_data(l));

Received serial data = ',serial data(2)); _

4.7 12C bus

I2C stands for Inter-IC-Communication bus which is a data bus designed by Philips and allows
integrated circuits or modules to communicate with each other. The bus allows data and instructions
to be exchanged between devices via onlE t w o wires! This greatly simplifies the design of complex

of I ~-C electronic circuits. There is a family compatible devices available for various applications.
They include I/O expansion, AiD and D/A conversion, time keeping, memory and frequency

PC INTERFACING 139

EXPANDING THE CENTRONIC, RS232 AND GAME PORTS

synthesis, etc. By implementing an I2C bus to a computer, you can enjoy all the powerful features
offered by the bus and its support ICs. Both the Centronic port and the RS232 port can be used to
implement the I2C bus.

4. 7.1 Principles of the 12C bus

The I2C bus consists of two lines: a bi-directional data line (SDA) and a clock line (SCL). Both lines
are connected to the positive power supply via pull-up resistors. An I2C bus system is shown in
Figure 4.19. The device generating the message is a 'transmitter'. The device receiving the message is
the 'receiver'. The device that controls the bus operation is the 'master'. The devices which are
controlled by the master are the 'slaves'. The following communication protocol is defined: (1) a data
transfer may be initiated only when the bus is not busy and (2) during the data transfer, the data line
must remain stable whenever the clock line is high. Changes in the data line while the clock line is
high are interpreted as control signals. The following bus conditions can be defined (see Figure 4.20):

(i) Bus not busy: Both data and clock lines remain high.
(ii) Start data transfer: A change in the state of the data line from high to low while the clock is high,

defines the START condition.
(iii) Stop data transfer: A change in the state of the data line from low to high while the clock is high

defines the STOP condition.
(iv) Data valid: The state of the data line represents valid data after a start condition. The data line

is stable for the duration of the high period of the clock signal. The data on the line may be
changed during the low period of the clock signal. There is one clock pulse per data bit. Each
data transfer is initiated with a START condition and terminated with a STOP condition. The
number of data bytes transferred between the start and stop conditions is not limited. The
information is transmitted byte-wise and the receiver acknowledges with a ninth bit.

(v) Acknowledge bit: Each byte is followed by an acknowledge bit. The acknowledge bit is a high
level put on the bus by the transmitter whereas the master generates an extra acknowledge related
clock pulse. The acknowledge bit is a low level put on the bus by the receiver. A slave receiver
which is addressed is obliged to generate an acknowledge bit after the reception of each byte.

The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse in
such a way that the SDA line is at a stable low state during the high period of the acknowledge
related clock pulse. A master receiver must signal an end to the slave transmitter by not generating
an acknowledge on the last byte that has been clocked out of the slave.

4. 7.2 Operation of the 12c bus

Before any data is transmitted on the bus, the device which should respond is addressed first. This is
carried out with the 7-bit address byte plus R/-W bit transmitted after a start condition. A typical
address byte has the following format:

Fixed address bits + Programmable address bits + R/-W bit (in total 8 bits)

140 PC INTERFACING

EXPANDING THE CENTRONIC, RS232 AND GAME PORTS

Figure 4.19 System configuration of the Inter-IC-Communication bus

Figure 4.20 Bus conditions

PC INTERFACING 141

EXPANDING THE CENTRONIC, RS232 AND GAME PORTS

The fixed address depends on the IC and it can not be changed. The programmable address bits can
be set using the address pins on the chip. The last bit is the read/write bit which indicates the direction
of data flow. The byte following the address byte is the control byte which depends on the IC used.
Following the control byte are the data bytes. The serial data has the format shown in Figure 4.21.

4.7.3 Implementing 12C bus on the Centronic and RS232 ports

An experimental circuit showing a simple I2C bus on the Centronic port is given in Figure 4.22. The
circuit only implements the I2C bus standard with the computer being the master. Two transistors
provide the open collection output for the data and clock lines. The voltage of the I2C bus is 5V. The
transistors could be any general purpose npn transistors with a switching frequency of 100 kHz. SCL
is connected to D2 terminal of the Centronic experimental board (bit 1 of the data port). SDA is
connected to D1 terminal (bit 0 of the data port). SDA is read into the computer via $1 terminal of
the experimental board (bit 3 of the status port).The circuit can also use a 7407 open-collector buffer.

An experimental circuit of the I2C bus for the RS232 port is also shown in Figure 4.22. DTR and
RTS terminals on the experimental board control the SCL and SDA lines, respectively. SDA is read
into the computer via CTS terminal. Software examples will be given in Chapter 7.

4. 7.4 12c support chips

Some of the I2C bus compatible chips are listed below:
LCD drivers: PCF8466, PCF8576, PCF8577, PCF8578/79, SAA1064
Memories: PCF8570, PCF8572/8573, PCF8582A, PCF8598-2T
Time keeping: PCF8583, 41T56C, PCF8593, PCF8598
I/O interface: PCF8574, PCF8584, PCF8582, PCF82B715
8-bit 4 channel A/D and D/A converters: PCF8591
RC-5 infra-red transmitter: SAA3028
DTMF/modem/tone generator: PCD3311/3312
Speech synthesizer: PCF8200
PCM audio interface: SAAl136

4.8 Serial peripheral interface (SPI)

The SPI bus allows peripheral integrated ICs to be connected to a host computer using only three
wires. One is the system clock which is an input to the IC; another is the data input and the third is
the data output from the IC. A number of SPI compatible ICs can be connected to the same SPI bus.
The IC which is communicating with the computer should be selected. Ths is achieved by making the
chip select on that IC (-CS) low. Various ICs including A/D and D/A converters, analogue
multiplexers, etc. have the SPI bus.

Both the Centronic and RS232 port can be implemented with the SPI bus. By doing so, you can
connect various ICs to your computer easily. Some examples will be given in later chapters.

142 PC INTERFACING

EXPANDING THE CENTRONIC, RS232 AND GAME PORTS

Figure 4.21 Serial data format on the bus

Figure 4.22 Implementation of the bus on the Centronic and
RS232 ports

PC INTERFACING 143

EXPANDING THE CENTRONIC, RS232 AND GAME PORTS

4.9 MicroLAN bus

The MicroLAN bus was introduced by Dallas Semiconductor. It requires only one wire and a ground
reference. The cable could be an unshielded low-cost telephone wire. The bus has one master and
multiple slaves with 256 logical addresses. The maximum cable length is more than 300 meters
without using any repeaters. The bus allows various devices to be connected together. These include
data tags which store an identification number, EEPROMs, temperature sensors, real time clocks and
sensing and/or activating switches, etc. Every device has a unique network identification number. The
bus has the standard TTL/CMOS voltage level and all the devices in a network are powered by the
data line. A voltage from 0 to 0.8V is interpreted as logic 0 and a voltage above 2.2V is interpreted
as logic 1. A voltage of 2.8 is required to power all the devices. The data transfer rate is in the range
from DC to 16300 bits per second. The bus can be implemented on the RS232 port of a computer.
The computer is the master controller and all the devices are slaves.

4.10 Interfacing between TTL and CMOS gates

It is necessary to interface the output of TTL logic gates to the CMOS inputs and vice versa. Figure
4.23 shows the methods for connections. If the power supplies of the TTL and the CMOS gates are
the same, a CMOS gate can drive one LS-TTL gate directly without using any external components.
If more than one LS-TTL gates are to be driven, a CMOS buffer such as the 4049B should be used
to boost up the current. When an LS-T-[L gate drives a CMOS gate, a 2.2 kQ pull-up resistor should
be used.

4.11 Protecting digital I/0 lines

The simplest way to protect an I/O line is to use a voltage clamping circuit in which a resistor and a
Zener diode are used.

The ultimate protection of digital I/O lines is to use opto-isolators. A typical opto-isolator consists
of an infra-red LED and a photo-transistor or a photo-diode. The isolation between the input and
output could be as high as several kilovolts. A typical application is shown in Figure 4.24. There are
various types of opto-isolators in terms of their electrical characteristics of the inputs and outputs
and the number of opto-isolators. The input can be a standard LED type, low current LED type, AC
type or CMOS/TTL type. The output can be transistor type, Darlington transistor type, CMOS/TFL
type or Schmitt trigger type. The number of on-board opto-isolators pairs can be 1, 2 or 4.

An important parameter of the opto-isolator is the transfer ratio, which is the ratio of the output
current to the input current expressed as a percentage. A transfer ratio of 100 percent will provide
an output current of 1 mA for each 1 mA input current to the LED. The transistors type have a
transfer ratio of 20%. The Darlington transistor type can have a transfer ratio of 500%.

The PC817, PC827 and PC847 (Sharp, RS175-110, RS175-126 and RS175-132) are 1-channel, 2-
channel and 4-channel opto-isolators. The characteristics of the opto-isolators are the same. The
maximum isolation voltage is 5000V rms. The transfer ratio is between 50% and 600%. The typical

144 PC INTERFACING

F
ig

ur
e

4.
23

In

te
rf

ac
e

be
tw

ee
n

C
M

O
S

 a
nd

 T
T

L
ga

te
s

F
ig

ur
e

4.
24

A

pp
lic

at
io

ns
 o

f
op

to
-i

so
la

to
rs

EXPANDING THE CENTRONIC, RS232 AND GAME PORTS

forward voltage of the LED is 1.2V and the maximum forward current is 50 mA. The maximum
voltage applied across the c and e of the transistor must not exceed 35V and the maximum forward
current of the transistor is 50 mA. The rise and the fall time is typically 4 and 3 ps, respectively. The
maximum frequency is 150 kHz. The pin-out is shown in Figure 4.25(a). The PC815, PC825 and
PC845 (Sharp, RS175-198, RS175-205, RS175-211) are 1-channel, 2-channel and 4-channel
Darlington opto-isolators. The isolation voltage is 5000V rms. The transfer ratio is 600-7500%. The
typical forward voltage across the LED is 1.2V and the maximum forward current to the LED is 50
mA. The maximum voltage across c and e of the Darlington transistor is 35V and the maximum
collector current is 80 mA. The rise time is typically 60 laS and the fall time is 53 laS. The pin-out is
shown in Figure 4.25(b).

The HCPL-2630 (Toshiba, RS768-116) is a dual channel high speed TTL output compatible opto-
isolator. It has a maximum isolation voltage of 2500V rms. The forward voltage for the LED is
typically 1.5V and the maximum forward current is 15 mA. The IC requires a 5V power supply. The
output transistor has a maximum collector current 50 mA. The rise and fall time are 30 ns and 30
ns, respectively. The highest data transfer rate is 10 Mbd. The fan-out of the output is 5. The pin-
out and the internal block diagram is given in Figure 4.26(a) and (b).

Figure 4.25 Transistor and Darlington opto-isolators

146 PC INTERFACING

EXPANDING THE CENTRONIC, RS232 AND GAME PORTS

Figure 4.26 Other opto-isolators

The 74OL6000 series (Quality Technologies) are opto-isolators for TTL and CMOS logic circuits.
They have a data transfer speed of typically 15 MBd and an isolation voltage of 2500V rms. The
input and output are both TTL or CMOS compatible. The fan-out of the output is 10. The
74OL6000 (RS650-829) is an LSTTL to TTL buffer; the 74OL6001 (RS650-835) is an LSTFL to
TTL inverter; the 74OL6010 (RS650-841) is an LSTTL to CMOS buffer and the 74OL6011
(RS650-857) is an LSTTL to CMOS inverter. The pin-out is given in Figure 4.26(c) and (d).

Some opto-isolators have a Schmitt trigger output type. The H11L1 (Isocom Components, RS585-
292) and the H11N1 (Quality Technologies, RS577-875) are two examples. The former has a data
transfer rate of 1 MHz and the latter has 5 MHz. The forward voltage of the LED is 1.5V with a
maximum forward current of 60 mA for the H11L1 and 30mA for the H11N1. The maximum
collector current is 50 mA. The pin-out is shown in Figure 4.26(e).

PC INTERFACING 147

DRIVERS FOR EXTERNAL DEVICES

Drivers for external devices

In computer control applications, a computer must be able to drive various external devices. These
may be lights, heaters, DC or stepper motors, speakers, visual displays, etc.

5.1 Power drivers

Logic and peripheral interface ICs are not able to provide high current to drive external devices. In
digital control applications, power drivers are required to drive the devices.

5.1.10pto-isolator drivers

Opto-isolators can be used to drive low current external devices. They also provide electrical
isolation in the same time. The maximum driving current is limited by the photo-transistors. For
example the PC815 series Darlington opto-isolators (Sharp, RS175-198) have a maximum output
current of 80 mA. This will be enough to drive a small relay, which could then control devices
operating at higher voltages and currents (Figure 5.1). The PS2502 series Darlington opto-isolators

Figure 5.1 PC815 opto-isolator used for driving a relay

148 PC INTERFACING

DRIVERS FOR EXTERNAL DEVICES

(NEC, RS590-424 and RS590-430) can supply a current up to 160 mA. The transfer ratio is typically
2000%. The forward voltage of the LED is 1.1V and the maximum forward current is 80 mA. The
maximum voltage across c and e of the photo-transistor is 40V and the rise and fall time is typically
100 las.

5.1.2 Transistor drivers

Transistor drivers are the simplest and the most economical way of driving external devices. A typical
application is shown in Figure 5.2(a), in which a BC108C or a ZTX300 npn transistor is used. The
BC108C and ZTX300 have a maximum collector current of 100 mA and 500 mA with a maximum

Figure 5.2 Transistor, Darlington transistor and MOSFET
drivers

PC INTERFACING 149

DRIVERS FOR EXTERNAL DEVICES

power rating of 300 mW and 500 mW. The maximum voltage that can be applied across c and e is
20V for the BC108C and 25V for the ZTX300. The maximum operation frequency is 300 MHz for
the BC108C and 150 MHz for the ZTX300. Suppressor diodes must be used for inductive loads such
as relays or electric motors. It is not necessary if the load is resistive such as light bulbs or electronic
circuits.

5.1.3 Darlington drivers

Figure 5.2(b) shows a driver circuit using a Darlington power transistor, the TIP122 or TIP142. The
TIP122 controls a voltage up to 100V and a current of 5 A. The maximum power rating is 65 W.
Darlington transistors start to conduct for a base-to-collector voltage of 1.2V and have a typical
current gain of 5000, therefore a base voltage slightly higher than 1.2V will cause the transistor to
saturate in conduction. The base can be connected to a TTL gate via a resistor. The TIP142 is rated
at 10 A. Both of them have a maximum operation frequency of 5 MHz. Protection diodes should be
used for inductive loads.

5.1.4 MOSFET drivers

Figure 5.2(c) shows a circuit using VMOS transistors, the VN10KM or VN66AE A VMOS transistor
requires a forward gate-to-source bias voltage of about 0.8 volts before it starts to conduct. It is
biased hard into conduction by a forward bias of about 5V. The input impedance of a MOSFET
device is extremely high and the loading on the output port of the computer is negligible. Therefore,
it can be driven directly by a TTL/CMOS gate without using any resistors. The VN10KM allows a
maximum voltage of 60V and a current of 310 mA. The VN66AF can handle a maximum voltage
of 60V and a current of 2 A. The rise and the fall time are around 15 ns.

5.1.5 PROFET drivers

The PROFET power drivers are so-called 'intelligent MOS' drivers and provide power switching for
digital control applications. The input control is 5V logic level compatible. The driver features a
built-in thermal shutdown facility which protects the chip from over-temperature, short-circuit and
over-current conditions. The thermal protection turns off the MOS power output at a temperature
of 140~ When the temperature falls to 125~ the switch is turned on again. The devices also have
a status output to show the conditions of open circuit and over-temperature.

The BTS410 is an example. Its pin-out is shown in Figure 5.3. It could control voltages in the range
4.9 to 40V and the over-voltage protection level is 42-52V. The maximum operation temperature is
150~ and the maximum over-current level varies from 3.1 to 21 A depending on its temperatures.
It has a very small on-resistance over the full temperature range. The turn-on and turn-off periods
are 60 and 50 ps. The input voltage for switch on is 2 to 5V and that for switch off is 0 to 0.SV. The
input current is typically 25 pA for an input voltage of 3.5V.

150 PC INTERFACING

DRIVERS FOR EXTERNAL DEVICES

Figure 5.3 PROFET driver

The VN05N and VN20N are other two examples. The pin-out and a typical application circuit are
shown in Figure 5.3. The VN05N is able to switch 12 A continuously and the VN20N to switch 28 A.

5.2 LED drivers

5.2.1 Standard LEDs

Standard LEDs require a current of 10 to 20 mA at a 2V potential to illuminate. Several LED drivers
are shown in Figure 5.4. Figure 5.4(a) shows a driver using a transistor ZTX300. In the circuit, a
resistor R should be used in series with the LED and its value should be chosen according to the
voltage applied. LEDs can be also driven by TTL or CMOS gates directly (Figure 5.4(b) and (c)). An
LSTTL gate (not a buffer) can sink 7-10 mA and source 0.4 mA. An LSTFL buffer can sink 24 mA
and source 15 mA. The supply voltage for TTL ICs is 5V and the serial resistor R should be around
220 f~. For CMOS buffers, R should be chosen according to the supply voltage (see Figure 5.4).

5.2.2 Low current LEDs

Low current LEDs require only 2 mA at 1.8V to illuminate. The LEDs can be driven using the circuits
for the standard LEDs (Figure 5.4). The values of the serial resistor, however, should be changed. The
relationship between the supply voltage (VCC) and the resistor value is shown below:

PC INTERFACING 151

DRIVERS FOR EXTERNAL DEVICES

Figure 5.4 LED drivers

Vcc=3-4 V R=600R
Vcc=4-5 V R=IK6
Vcc=5-8 V R-3K1
Vcc=8-12 V R-5K1
Vcc-12-15V R-6K6

5.2.3 Multi-colour LEDs

There are two types of multi-colour LEDs. One is the bi-colour type which has one red and one green
LED packed in a single package. By changing the polarity, the colour can be changed from red to
green or vice versa. The other type is the tri-colour type. It has three terminals. One is common, the

152 PC INTERFACING

DRIVERS FOR EXTERNAL DEVICES

other two are connected to the anodes of a red LED and a green LED. It gives four statuses: all off,
red LED on, green LED on and two LEDs both on (which gives yellow). They can be driven using
the LED drivers shown in Figure 5.4.

5.2.4 Infra-red LEDs

Most infra-red LEDs are high current types and are mostly used for remote control and
communication applications. An example of these LEDs is the SFH485 series (Siemens). The
maximum forward current through the LED is 100 mA with a forward voltage of 1.5V. The SFH485
(RS585-242) has a beam angle of 40 ~ and the SFH485P (RS585-236) has an angle of 80 ~ The
radiant intensity is 16-32 mW/Sr for the SFH485 and 3.15-6.3 mW/Sr for the SFH485P. The LED
driver shown in Figure 5.4 can be used to drive the infra-red LEDs. Several LEDs can be connected
in parallel or in series to boost the power of the infra-red light emission. Figure 5.5(a) shows such a
driver circuit.

The OD880 series (Optek) offers higher light emitting power. The beam angles are 80 ~ for the
OD880W (RS195-439), 35 ~ for the OD880L (RS195-445) and 8 ~ for the OD880F (RS195-451).
The maximum forward voltage is 1.9V and a continuous forward current is 100 mA. If a pulsed
signal is used, the peak current would be as high as 3 A. The radiant power for these devices are 16,
50 and 135 mW/sr.

A pulsed infra-red emission scheme is often adopted for remote control applications. The electric
current passing through the LED is a train of pulses instead of a continuous current. When the LED
is switched on, a large current passes through the LED. Operating in such a manner, a large infra-
red radiant flux can be produced. Figure 5.5(b) shows a 38 kHz pulse train generator. The transistor
drivers with a suitable rating can be used to drive the LEDs.

5.3 Relay drivers

5.3.1 Dry reed relays

Low power dry reed relays operate with a voltage of about 3.7V and a current of 7.4 mA. They can
be driven directly by T-FL gates or buffers. Figure 5.6(a) shows such a circuit. The relay is energized
when the TTL gate sources the current (the logic high state). A suppressor diode must be used to
protect the TFL output. The maximum voltage of the relay contact is usually below 240V.

5.3.2 Transistor relay drivers

Medium and high power relays require a higher coil voltage and current. Figure 5.6(b) shows a
circuit using a ZTX300 transistor. The driver operates for a maximum supply voltage of 25V and a
maximum current of 0.5 A. The supply voltage is chosen according to the relay used.

PC INTERFACING 153

DRIVERS FOR EXTERNAL DEVICES

Figure 5.5 Drivers for infra-red LEDs in remote control
applications

154 PC INTERFACING

DRIVERS FOR EXTERNAL DEVICES

Figure 5.6 Relay drivers

5.4 Integrated power driver ICs

5.4.1 Multi-channel driver ICs

When a number of loads are required, integrated driver ICs such as the ULN2803A array (SGS-
Thomson) can be used. It has eight separate Darlington transistor drivers. The pin-out and an
application circuit are given in Figure 5.7. Each driver is capable of supplying 500 mA at up to 50V.
The inputs of the IC can be connected directly to TrL/CMOS gates. The ULN2003A (Allegro
Microsystems RS307-109) has seven drivers.

5.4.2 Latched drivers

The UCN5832A (Allegro Microsystems, RS426-755) is a 32-bit serial-input latched driver. The pin-
out and the internal logic diagram are shown in Figure 5.8. The device has 32 bipolar npn open-

PC INTERFACING 155

DRIVERS FOR EXTERNAL DEVICES

Figure 5.7 ULN2803 Darlington transistor array

collector drivers. Each is capable of driving 150 mA current with a maximum control voltage of 40V.
The IC consists of a data latch for each driver, two high speed 16-bit shift registers and control
circuitry. The device is controlled via four CMOS digital input lines, which can be driven directly by
outputs from a computer. If they are connected to TI'L outputs, pull-up resistors (4.7K) should be
used. The maximum data input rate is 3.3 MHz.

The timing sequence is shown in Figure 5.9. Serial data present at the input is transferred to the
shift register on the transition from 0 to 1 of the clock input. On the next clock pulses, the registers
shift data towards the serial data output. The serial data must be stable at the input prior to the rising
edge of the clock input. Information presented at any register is transferred to its respective latch
when the strobe is high. The latch will continue to accept new data as long as the strobe is high. Data
will be latched at the high-to-low transition of the strobe pulse. When the output enable input is low,
all of the output buffers are turned off. When the output enable input is high, the output status is
controlled by the content of the latches.

The experimental circuit using the Centronic experimental board is shown in Figure 5.10. The
serial data input, clock and strobe are connected to D1, D2 and D3 terminals. The TP6 software
driver is listed below:

156 PC INTERFACING

DRIVERS FOR EXTERNAL DEVICES

Figure 5.8 Pin-out and the internal block diagram of the UNC5832AF

PC INTERFACING 157

DRIVERS FOR EXTERNAL DEVICES

Figure 5.9 Timing sequence of the UCN5832A serial-input
latched driver

Figure 5.10 Experimental circuit of UNC5801AF

158 PC INTERFACING

DRIVERS FOR EXTERNAL DEVICES

TP6 program list of 5832.PAS

Program UCN5832A;

(* software driver for the UCN5832 serial input latched driver *)

(* connected to the Centronic experimental board

Serial data in connected to D1

Clock connected to D2

Strobe connected to D3 *)

uses

crt, dos;

{$I c:\ioexp\tplibl.pas }

var

bankl ,bank2,bank3,bank4:byte;

Procedure load_data(x:byte);

(* load a data bit into the UCN5833A *)

begin

write data_port(P_address,x);

write data_port(Paddress,x+2);

write_data_port(Paddress,x);

end;

(* data=x, clock=0, strobe=0 *)

(* data=x, clock=l, strobe=0 *)

(* data=x, clock=0, strobe=0 *)

Procedure strobe;

(* strobe the data *)

begin

write_data_port(P_address,4); (* strobe=l *)

write data_port(P_address,0);

end;

Procedure output control(bankl,bank2,bank3,bank4:byte);

(* bankl: lowest 8-bit byte, bank4: highest 8-bit byte *)

var

i:integer;

begin

for i:=l to 8 do load_data(round (bank4 and bit_weight(9-i) / bit_weight(9-i)));

for i:=l to 8 do loaddata(round (bank3 and bit_weight(9-i) / bit_weight(9-i)));

for i:=l to 8 do load_data(round (bank2 and bit_weight(9-i) / bit_weight(9-i)));

for i:=l to 8 do load_data(round (bankl and bit_weight(9-i) / bit_weight(9-i)));

PC INTERFACING 159

DRIVERS FOR EXTERNAL DEVICES

strobe; (* strobe the data into the UCN5833A *)

end;

(* Main program *)

begin

centronic address; _

writeln('UCN5832A demonstration program');

writeln('Outl, Out9, Outl7 and Out25 oscillating, other outputs = zero

repeat

inverted) *)

end.

);

output_control(l,l,l,l); (* first output in each bank=l, output stage enabled (output

delay(1000);

output_control(0,0,0,0); (* output stage off *)

delay(1000);

until keypressed

The UCN5810AF (Allegro Microsystems) is a 10-bit latched driver. Each driver has a 15 mA current
rating. For a 5V digital power supply, when the 10 outputs are all turned on or all off, the quiescent
current is 100 pA. The data loading procedure for the device is the same as for the UCN5832A. The
pin-out and the internal logic diagram are shown in Figure 5.11. Unlike the UCN5832A, the outputs
from the latches are not inverted.

Figure 5.11 Pin-out and the internal block diagram of the UNC5810AF

160 PC INTERFACING

DRIVERS FOR EXTERNAL DEVICES

5.50pto-isolated zero-crossing solid state relays

Zero-crossing solid state relays are suitable for AC switching applications. The input circuit is an
LED. The LED turns on when a current passes through it. The light from the LED is focused on to
a phototransistor connected to the triac control circuitry. Since the only connection between the
input circuit and the output is a beam of light, they could achieve a voltage isolation as high as
several thousand volts. The actual switching device is a triac. When it is triggered, the device
conducts on either half of an AC cycle. The zero-voltage detector makes sure that the triac is only
triggered when the voltage of the AC line is very close to zero.

The MOC3041 (ISOCOM Components, RS195-4122) incorporates an infra-red LED, a zero-
crossing unit and a triac. The block diagram and an application circuit are given in Figure 5.12. It
has a 400V rating and can handle a maximum current of 100 mA. A variety of high power solid state
relays are available. Figure 5.13 shows a high power zero-crossing solid state relay.

Figure 5.12 Opto zero-crossing triac for mains control
applications

PC INTERFACING 161

DRIVERS FOR EXTERNAL DEVICES

Figure 5.13 High power zero-crossing solid state relay

5.6 DC motor drivers

DC motors can be driven by relays (Figure 5.6) or transistors (Figure 5.2). The on/off as well as the
rotation direction of a motor can be controlled using a specially arranged relay driver. The circuit
requires a single rail power supply and the circuit diagram is shown in Figure 5.14. The SPDT (single

Figure 5.14 DC motor drivers using relays

162 PC INTERFACING

DRIVERS FOR EXTERNAL DEVICES

pole double throw) relay controls the power on/off and the DPDT (double pole and double throw)
relay controls the rotating direction of the motor.

Another method of controlling a DC motor is to use full-bridge drivers such as the L298N (SGS-
Thomson, RS636-384). It is a high voltage (up to 46V) and high current (2 A DC for each channel)
dual full-bridge driver which is designed to accept standard TTL logic levels. The pin-out and the
internal block diagram are given in Figure 5.15. Vs (pin 4) is the power supply for the motors and
Vss (pin 9) is the power supply for the logic circuitry which is +5V. Pins 6 and 11 enable the input
signals to the two drivers. IN1 and IN2 (pins 5 and 7) control the first full-bridge driver and IN3
and IN4 control the second driver. The emitters of the transistors are connected together and the
external terminals can be used for connecting an external sensing resistor.

A typical application is given in Figure 5.16. When ENA is low, the inputs are inhibited and the
motor stops rotation. When ENA is high, the inputs are enabled. The two inputs IN1 and IN2
control the modes of the motor.

IN1-1, IN2-0,
IN1-0, IN2=1,
INI=IN2,

motor turning clockwise
motor turning anti-clockwise
motor stop

Figure 5.15 Pin-out and block diagram of the L298N

PC INTERFACING 163

DRIVERS FOR EXTERNAL DEVICES

Figure 5.16 DC motor controller

5.7 Stepper motor drivers

There are two types of stepper motors: the uni-polar four phase and the two phase type (see Figure
5.17). Different driving schemes are required for these motors.

5. 7.1 Drivers for four-phase uni-polar stepper motors

Three stepping sequences can be used. They are the wave drive, the full-step drive and the half-step
drive. The sequences are shown in Figure 5.18.

The wave drive is the simplest way of driving stepper motors. Each winding is energized in
sequences. By energizing the windings in the reverse order, the rotor rotates in the opposite direction.
As only one winding is energized at a time, the torque of the motor is low. To improve this, the full
step drive is used. The full-step drive involves a similar four-step sequence, but two windings are
energized at a time. Because of this, the torque of the motor is improved. The half-step drive is a

164 PC INTERFACING

DRIVERS FOR EXTERNAL DEVICES

Figure 5.17 Two-phase and four-phase stepper motors

combination of the wave drive and the full-step drive, so as to double the number of steps available
for one revolution. In this mode, the torque of the motor varies with steps, but the motor runs much
smoother. Dedicated stepper motor control ICs are used to drive the motors.

The UCN5804 (Allegro Microsystems, RS653-531) can generate all three stepping sequences. The
pin-out, the internal block diagram and the typical application of the IC are shown in Figure 5.19.
The IC requires two power supplies, one for driving the logic circuits of the IC and one for driving
the stepper motors. Pin 16 is connected to the positive rail of the power supply for logic circuits. The
maximum voltage is 7V. Pin 2 and pin 7 are connected to the power supply of a motor. Pins 4, 5, 12
and 13 are the ground of the power supplies. The four outputs from the chip (pins 1, 3, 6 and 8) are
internally connected to four Darlington transistors which have a maximum rating of 35V at 1.5 A.

PC INTERFACING 165

DRIVERS FOR EXTERNAL DEVICES

Figure 5.18 Stepping sequences for the four-phase
stepper motors

Figure 5.19 Pin-out and application of the UCN5804

166 PC INTERFACING

DRIVERS FOR EXTERNAL DEVICES

The Output Enable (-OE, pin 15) controls the output of the IC. When it is at logic high, all outputs
are turned off. Pin 14 (Direction) sets the rotation direction of the motor. Pin 11 is the Step Input. A
high-to-low transition on the pin makes the stepper motor rotate one step. The stepping modes are
configured by pin 9 (One-Phase) and pin 10 (Half-Step).

pin 9=L pin 10-L:
pin 9=H pin 10=L:
pin 9=L pin 10-H:
pin 9=H pin 10=H:

to select the full step sequence
to select the wave driving sequence
to select the half-step driving sequence
step inhibit

In operation, pins 9, 10 and 14 should only be changed when the Step Input is at the logic high state.
Another popular stepper motor driver is the SAA1027 (Philips Semiconductor, RS300-237). It can

be used for driving four-phase motors. The supply voltage range is between 9.5 to 18V. The
maximum current of the output is 500 mA. The input is not TTL compatible. A logic high will be a
voltage above 7.5V and a logic low should be a voltage below 4.5V.

If high power stepper motors are used, high power Darlington transistors, such as the TIP122, can
be used. It is rated at 5 A at a voltage up to 100V. The driver circuit is shown in Figure 5.20. The

Figure 5.20 Stepper motor driver using high power Darlington
transistors

PC INTERFACING 167

DRIVERS FOR EXTERNAL DEVICES

inputs A, B, C and D can be connected to a computer port or connected to the UCN5804 or the
SAA1027 via an interfacing circuit.

5. 7.2 Drivers for two-phase stepper motors

A two-phase stepper motor driver is shown in Figure 5.21. The L298N full bridge driver is used as
the power driver of the motor. An L297 stepper motor controller (SGS-Thomson, RS636-362) is used
to generate the stepping sequences for the two-phase stepper motors.

Figure 5.21 Drivers for two-phase stepper motors

5.8 Driving sounders

5.8.1 Drivers for sounders, buzzers and sirens

Piezo-electric sounders are devices to generate sounds. They have a maximum input voltage of 50V
and a typical current of 10 mA. Figure 5.22(a) shows a circuit using a TI~L/CMOS buffer to driver
a sounder. Figure 5.22(b) shows a ZTX300 transistor driver. In order to give a sound, a pulse train

168 PC INTERFACING

DRIVERS FOR EXTERNAL DEVICES

Figure 5.22 Driver circuit for sounders

signal should be supplied to the input. Solid state buzzers are standalone sounders which could give
a single tone of sound at about 450 Hz. Figure 5.22(c) shows a transistor driver circuit using the
ZTX300. To generate sound, the input to the base of the ZTX300 should be high. Sirens can be
driven using the same circuit.

Ultrasonic transducers are used for generating ultrasonic sound, the frequency of which varies
from 40 kHz to several MHz. The transducers are widely used in remote control, remote sensing and
data communication applications. Ultrasonic range finders and object movement detectors are two
examples. A driver circuit producing a precise 38.4 kHz signal is shown in Figure 5.23. In the circuit,
when the Reset input is at the logic low state, an ultrasonic signal will be produced. When the Reset
input is high, the signal will not be produced.

PC INTERFACING 169

DRIVERS FOR EXTERNAL DEVICES

Figure 5.23 Tone burst for ultra-sonic transducers

5.8.2 Drivers for speakers

Figure 5.24(a) shows a speaker amplification circuit using a TBA820M. The IC requires a power
supply from 3 to 12 V and provides an output power of 2 W RMS using an 8 if2 speaker. Pin 2 is the
inverting input and there is an internal 6K resistor between the input and output of the IC. This
allows the voltage gain of the amplifier to be adjusted by an external resistor and the voltage gain is
equal to the value of the internal resistor divided by the external resistor. The resistor is
recommended to be in the range from 22 to 220 •. The input sound signal generated by D/A
converters is attenuated by a variable resistor RV2.

The LM380N-1 is another audio amplifier IC having a fixed gain of 50. The gain can be increased
to 200 by using external components. The IC incorporates output current limiting and thermal
shutdown. It needs a power supply 4 to 12V. The minimum load impedance is 8 ~2. A typical circuit
is shown in Figure 5.24(b).

5.9 Drivers for d isplays

5.9.1 LED multi-digit displays with on-board driver

The TSM6734T (Three Five System) is a four-digit, 0.3 inch height green LED display with an on-
board serial data input. The illumination current required by each segment is 2.0 mA. The pin-out

170 PC INTERFACING

DRIVERS FOR EXTERNAL DEVICES

Figure 5.24 Audio drivers using the TBA820 and LM380

and the internal block diagram are shown in Figure 5.25. Current through the LEDs is determined
by an external resistor and is typically 25 times greater than the current flowing through the
brightness control pin (pin 7). A 100 nF capacitor should be connected from the brightness control
pin to the ground. The device requires two power supplies, VDD and VLED. VDD is the power
supply to the on-board control circuit and should be between 4.75 to 12V. The supply current is 7
mA for a 12V power supply. V LED is typically 5V, which supplies the power to the LED displays.

Serial data transfer is achieved via three TFL compatible lines: DATA IN (pin 4), -ENABLE (pin
3) and CLOCK (pin 5). Figure 5.26 shows the timing sequence for loading data into the display

PC INTERFACING 171

DRIVERS FOR EXTERNAL DEVICES

Figure 5.25 Pin-out and internal block diagram of the TSM6234

module. The data format consists of a leading '1' followed by 35 data bits. At the low-to-high
transition of the clock, serial data presented at the data input is latched internally. -ENABLE should
be low to enable the data input. At the 36th low-to-high clock transition, a load signal is generated
internally, which loads the 35 bits in the shift registers into the latches. At the next high-to-low
transition of the clock, a reset signal is generated which clears all the shift registers. When the chip
is powered on, an internal power on reset is generated which resets all the registers and all latches.
The start bit and the first clock return the chip to its normal operation. To clear the display, you
should load a 1 followed by 35 zeros. This also resets the IC.

The function of the 35 bits of serial data is shown below. Bit 1 is the first bit following the start
bit and determines the on/off state of the segment A of digit 1 (see Figure 5.25).

172 PC INTERFACING

DRIVERS FOR EXTERNAL DEVICES

Figure 5.26 Timing sequence of the TSM6034

bits 1-8:
bits 9-16:
bits 17-24:
bits 25-32:

segments A to DP for digit 1
segments A to DP for digit 2
segments A to DP for digit 3
segments A to DP for digit 4

An experimental circuit using the RS232 experimental board is shown in Figure 5.27. The DATA IN
and CLOCK are connected to RTS and DTR terminals of the board. -ENABLE is connected to GND
to permanently enable the display module.

TP6 program list of TSM6234

program TSM6234;

(* software driver for the TSM6234 4 digits LED display *)

(* connected to the RS232 experimental board

DATA connected to RTS

CLOCK connected to DTR *)

uses

crt, dos;

{$I c:\ioexp\tplibl.pas}

Procedure start;

(* load start bit: data bit high, clock from low to high *)

PC INTERFACING 173

DRIVERS FOR EXTERNAL DEVICES

Figure 5.27 Experimental circuit

begin

end;

write_modem_status(RS232_address,l,0);

w r i t e _ m o d e m _ s t a t u s (R S 2 3 2 _ a d d r e s s , l , l) ;

write modem status(RS232 address,l,0); _ _

Procedure load_bit(bitx:byte);

(* load a data bit, bitx *)

begin

write_modem_status(RS232_address,bitx,0);

write_modem_status(RS232_address,bitx,l);

write_modem_status(RS232_address,bitx,0);

end;

174 PC INTERFACING

DRIVERS FOR EXTERNAL DEVICES

Function segment_data(charx:char):byte;

(* charx is character to be displayed, 0,1, to 9, A,B, to F *)

(* this function calculates the binary value for the display *)

(* display binary data: segment a,b,c,d,e,f,dp = DB0,DBI,DB2...DB7 *)

begin

if charx= 0 then segment_data:=$3F;

if charx= 1 then segment_data:=$06;

if charx= 2 then segment_data:=$5B;

if charx= 3 then segment_data:=$4F;

if charx= 4 then segment_data:=$66;

if charx= 5 then segment_data:=$6D;

if charx= 6 then segment_data:=$7D;

if charx= 7 then segment_data:=$07;

if charx='8 then segment_data:=$7F;

if charx='9 then segment_data:=$6F;

if upcase(charx)='A' then segment_data:=$77;

if upcase(charx)='B

if upcase(charx)='C

if upcase(charx)='D

if upcase(charx)='E

if upcase(charx)='F

if upcase(charx) =~

then segment_data:=$7C;

then segment_data:=$39;

then segment_data:=$5E;

then segment data:=$79;

then segment_data:=$71;

then segment_data:=$00;

end;

Procedure load_digits(strx:string);

(* load 34 bits of data *)

(* total clock pulses: 35 *)

var

i,j:integer;

bitvalue:byte;

begin

end;

for j:=l to 4 do

for i:=l to 8 do

begin

load_bit(round(segment_data(strx[j]) and bit_weight(i) / bit_weight(i)));

end;

for i:=l to 2 do load bit(0); _

l o a d _ b i t (0) ;

Procedure loaddata test; _

PC INTERFACING 175

DRIVERS FOR EXTERNAL DEVICES

i:integer;

digit string:string[4];

begin

write_transmit_buffer(RS232_address,0);

repeat

clrscr;

start;

writeln('Input Q or q to quit the program ');

write('Input four digits (0,1,2..9,a,b..f): '); readln(digitstring);

load_digits(digit_string);

until upcase(digit_string[l])='Q';

end;

(* main program *)

begin

COM address; _

loaddata_test;

end.

5.9.2 LED dot matrix displays with on-board driver

The RS590-935 and RS590-941 are 2-inch 5 x 7 dot matrix displays which can be used to generate
large display characters. The former is red and the latter is green. The pin-out is given in Figure 5.28.
The built-in CMOS integrated circuit contains memory, ASCII character generator, LED
multiplexing and drive circuitry. This allows the display to display 96 ASCII characters without the
need of additional circuitry.

The I/O lines are T-FL compatible and allow a number of displays to be connected together. The
power supply is typically 5V and the device consumes 80 mA when all the LEDs are on at full
brightness. The brightness can be reduced by half and by a quarter. Pin 3 is the -CHIP ENABLE and
it is low active. This pin must be at low state when writing data into the display. Parallel data DO to
D6 should be present at pins 8 to 14 first. Then a high-to-low-then-high pulse is applied to the -WR
input (pin 4). At the low-to-high transition, the data is latched to the display. The input digits DO to
D6 determine one of the 96 characters to be displayed. The characters are ASCII characters. No
synchronization is necessary and each character will continue to display until it is replaced by
another. BL0 and BL1 determine the brightness of the LED.

BLI=0, BL=0: display blank
BLI=0, BL=I: LEDs having 1/4 brightness
BLI-1, BL=0: LEDs having 1/2 brightness
BLI=I, BL=I: LEDs having full brightness

176 PC INTERFACING

DRIVERS FOR EXTERNAL DEVICES

Figure 5.28 Pin-out and an experimental circuit of the
matrix display

Pin 2 is the lamp test input (-LT). When it is low, all dots on the display illuminate at the quarter
brightness. The lamp test function does not affect the character displayed previously.

An experimental circuit diagram is shown in Figure 5.28. DO to D6 of the display are connected
D1 to D7 terminals on the Centronic experimental board. -WR of the display is connected to the C1
terminal. Pins 2, 5 and 6 are all connected to the logic high state. Because the character set of the
display board is the ASCII character set, which is also used in the computer system, an ASCII
character can be converted into its binary code using a Turbo Pascal instruction: ORD(char). A TP6
software driver is shown below:

TP6 program list of RS590935.PAS

Program LED590935_Dot_metrix_display;

(* Driver for the RS590-935 2 inch intelligent dot matrix displays.

Display connected to the Centronic experimental board

D1 to D7 connected to DO to D6 of the display

PC INTERFACING 177

DRIVERS FOR EXTERNAL DEVICES

Cl connected to -WR of the display *)

uses

crt, dos;

var

character:char;

{$I c:\ioexp\tplibl.pas }

Procedure display(character:char);

(* display the character on the display *)

var

i:integer;

begin

end;

write_dataport(P_address,ord(character)); (* output binary data *)

writeln('Output value for the character is : ', ord(character));

write_control_port(P_address,l); (* -WR high *)

write_control_port(P_address,0); (* -WR low *)

write_control_port(P_address,l); (* -WR high again, data latched at low-to-high transition *)

begin

end.

centronic address;

repeat

Write('Input the character to be displayed: '); readln(Character);

display(character);

until ord(character)=13;

5.9.3 LED multi-digit dot matrix character displays with on-board driver

The DLR1414 (Siemens, RS589-301) is a four digit, 5 x 7 dot matrix display module with a built-in
CMOS driver circuitry. The on-board integrated circuit contains memory, ASCII ROM decoder,
multiplexing circuitry and drivers. Inputs are TI~L compatible and a single 5V supply is required. The
device is stackable enabling a display system to be built using any number of the modules. The character
size is 3.66 mm. The pin-out and the internal block diagram are shown in Figure 5.29. In operation,
the data (DO to D6) and digit address (A0 and A1) are held stable at the inputs. It is followed by a high-
to-low pulse at -WR input. Digit 0 is defined as the right hand digit with A0 = A1 = 0.

An experimental circuit is shown in Figure 5.30. DO to D6 on the display module are connected
D1 to D7 terminals of the Centronic experimental board. -WR of the display is connected to the C1
terminal of the board. A0 and A1 are connected to C2 and C3 terminals. Because the character set
of the display board is the ASCII character set, which is used in the computer system as well, an
ASCII character can be converted into its binary code using the TP6 instruction: ORD(char). A
software driver written in TP6 is shown below:

178 PC INTERFACING

DRIVERS FOR EXTERNAL DEVICES

Figure 5.29 Pin-out and internal block diagram of the DLR1414

TP6 program list of 1414.PAS

Program RSl414_Dot_metrix_display;

(* Driver for the 1414 intelligent 4 digit dot matrix displays.

Display connected to the Centronic experimental board

D1 to D7 connected to D0 to D6 of the display

Cl connected to -WR of the display

A0 and A1 connected to C2 and C3 *)

crt, dos;

chl,ch2,ch3,ch4:char;

PC INTERFACING 179

DRIVERS FOR EXTERNAL DEVICES

Figure 5.30 Experimental circuit of the display

{$I c:\ioexp\tplibl.pas }

Procedure display(character:char;digit:byte);

(* display the character on the display *)

var

i:integer;

begin

write_data_port(P_address,ord(character)); (* output binary data *)

writeln('Output value for the character is : ', ord(character));

write_control_port(P_address,l+digit*2); (* -WR high *)

write_control_port(P_address,0+digit*2); (* -WR low *)

write_control_port(P_address,l+digit*2); (* -WR high again, data latched at low-to-high

transition *)

end;

Procedure Load_digits(chl,ch2,ch3,ch4:char);

(* display four digits *)

begin

display(chl,3);

display(ch2,2);

display(ch3,1);

display(ch4,0);

end;

180 PC INTERFACING

DRIVERS FOR EXTERNAL DEVICES

begin

end.

centronic address; _

repeat

Write('Input four character to be displayed (from left to right):

readln(Chl,ch2,ch3,ch4);

load_digits(chl,ch2,ch3,ch4);

until ord(chl)=13;

') ;

5.9.4 L CD dot matrix character display modules

The HD44780 (Hitachi) is a liquid crystal character display module which can display two rows of
characters. Each character can have 5 • 10 dots of matrix or 5 • 7 which is software selectable. The
display has an instruction set which enables it to perform various display functions.

The pin-out and the internal block diagram of the module are shown in Figure 5.31. The I/O lines
consist of an 8-bit bidirectional data bus, Register Select (RS), Read/-Write (R/-W) and -Enable

Figure 5.31 Pin-out and internal block diagram of LCD character
display

PC INTERFACING 181

DRIVERS FOR EXTERNAL DEVICES

inputs (-EN). RS indicates whether the data sent to the module is an instruction or data to be
displayed (RS=0 for instruction, RS=I for data). R/-W indicates whether the operation is a read or a
write operation (R/-W=I to read, R/-W =0 to write). Loading data into or reading data from the
module are controlled by -EN. When writing data to the module, RS, R/-W, DB0 to DB7 are all
stable. Then a high-to-low-then-high pulse is applied to the -EN pin. Data is latched at the high-to-
low transition (Figure 5.32). The instruction set is summarized in Figure 5.33 and is explained in
detail in the manufacturer's data sheet.

An experimental circuit diagram is shown in Figure 5.34. In this circuit, the 8-bit data operation
mode is used. DO to D7 of the display are connected to D1 to D8 terminals on the Centronic
experimental board. -EN is connected to the C1 terminal of the board. RS and R/W are connected
to C2 and C3 terminals. Because the character set of the display board is the ASCII character set,
which is also used in the computer system, an ASCII character can be converted into its binary code
using the TP6 instruction: ORD (char). A TP6 software driver is shown below.

TP6 program list of LMO16L.PAS

Program LM016L_Dot_matrix_display;

(* Driver for the LCD character display.

Display connected to the Centronic experimental board

D1 to D8 connected to D0 to D7 of the display

Cl connected to E of the display

RS and R/W connected to C2 and C3 *)

uses

crt, dos;

Figure 5.32 Timing sequence of the LCD matrix display module

182 PC INTERFACING

DRIVERS FOR EXTERNAL DEVICES

Instructions RS

Clear display 0

Return home 0

Entry mode set 0

Display on/off 0

Cursor shift 0

Function set 0

Set CGRAM
0

address
| �9

i Set DDRAM
address 0

i =

I Read busy flag

and address 0
| �9

Write data to
L CG or DD RAM 1

= l

Read data from
1

CG or DD RAM
�9

R/VV
DB DB DB DB DB DB DB DB

7 6 5 4 3 2 1 0 I

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0

0 0 0 0 0 1 D C

0 0 0 0 1 S/C R/L 0

0 0 0 1 DL N

0 0 1 A CG

Description

..,

1 I clear displays and retums the cursor to home =
0 return cursor to home. No change in DD RAM

0 1 I/D S set the display mode (IK) and S to be selected)
�9 .,

B �9 on/off, D:all display, C:cursor, B:cursor blink
:

0 move cursor and shift display. DD RAM unchanged

F 0 0 configure interface I/O

set CGRAM address, data sent or received after

0 1 A DD set DDRAM address, data sent or received after
�9 , , �9

1 BF AC read busy flag and address counter

0 write data write data into DD or CG RAM

read data read data from DD or CG RAM
. i

I/D=1: increment; I/D=0: decrement
S=l : accompany display shift
S/C=1: display shift; S/C=0: cursor move
R/L: shift to the right; R/L: shift to the left
DL=I : 8 bit; DL=0:4 bit
N=I: 2 lines; N--0:1 line
F=I: 5 by 10 matrix; F=0:5 by 7 matrix
BF=I: internally operating
BF=0: accept instruction

DD RAM: display data RAM
CG RAM: character generator RAM

A CG: address of CG RAM
ADD: Address of DD RAM, cursor address
AC: address counter used for DD and CG RAMs

Figure 5.33 Instruction set

var

s e n l , s e n 2 : s t r i n g [1 6] ;

{$I c:\ioexp\tplibl.pas }

Procedure control(command:byte);

(* output a control byte to the display *)

var

i:integer;

begin

write_data_port(P_address,command);

write_control_port(P_address,0+0+0);

write_control_port(P_address,l+0+0);

write_control_port(P_address,0+0+0);

(* output binary data *)

(* E high, RS bit = 0, R/W bit = 0 *)

(* E low, 0=RS bit, 0=R/W bit *)

(* E high again, data latched at low-to-high transition

PC I N T E R F A C I N G 1 8 3

DRIVERS FOR EXTERNAL DEVICES

Figure 5.34 Experimental circuit of the LCD module

end;

delay(lO0);

Procedure clear;

(* clear all digits *)

begin

control(l);

end;

Procedure home;

(* move cursor to home position *)

184 PC INTERFACING

DRIVERS FOR EXTERNAL DEVICES

begin

end;

control(2);

Procedure linel;

(* move cursor to the first display line *)

begin

control(128);

end;

Procedure line2;

(* move cursor to the second display line *)

begin

control(128+64);

end;

Procedure data(ch:char);

(* display a character on the display *)

var

i:integer;

begin

write_data_port(P_address,ord(ch));

write_control_port(P_address,0+2+0);

write_control_port(P_address,l+2+0);

write_control_port(P_address,0+2+0);

end;

delay(10);

(* output binary data *)

(* E high, RS bit =i, R/W bit = 0 *)

(* E low, 2 = RS bit, 0=R/W bit *)

(* E high again, data latched at low-to-high transition

Procedure initialization;

begin

control(16+32);

control(16+32);

control(16+32);

(* function set, 8-bit data length, 2 line, 5*7 dots *)

(* function set, as above *)

(* function set, as above *)

control(16+32+8+4);(* function set, 8-bit data length, 2 line, 5"10 dots *)

control(8+4+2+l); (* 8=control bit, 4=digits on, 2=cursor on, l=cursor character blink *)

clear; (* clear all digits *)

control(4+2+0); (* entry mode set, 4=contrl bit, 2=increment, 0=cursor display not shift

PC INTERFACING 185

DRIVERS FOR EXTERNAL DEVICES

end;

Procedure test;

(* a simple test program *)

var

i:integer;

begin

senl:='

sen2:='

write('Input the first sentence (max 16 char):

readln(senl);

write('Input the second sentence (max 16 char):

readln(sen2);

(* display the first line *)

linel;

for i:=l to 16 do

begin

data(senl[i]);

end;

(* display the second line *)

line2;

for i:=l to 16 do

begin

data(sen2[i]);

delay(lO);

end;

end;

begin

end.

centronic address; _

initialization;

test;

') ;

') ;

5.10 Drivers for muscle wires

Muscle wires are made from shape memory alloys. Flexinol alloy is one of the most common
materials used. These special metals undergo changes in shape when heated or cooled. Muscle wires
pull with a large force. They are capable of lifting thousands of times of their own weight and operate

186 PC INTERFACING

DRIVERS FOR EXTERNAL DEVICES

smoothly and silently just by heating up the wire above a certain temperature. The heating can be
caused by passing electricity through the wire. It can be used to generate a wide range of motions.
The shape memory alloys have already been used in numerous applications.

The Flexinol muscle wires are available in various diameters: 25, 50, 100, 150 and 250 lam. Let
us take an example of the 100 pm diameter wire. It has a linear resistance of 150 g2 per meter. The
recommended current through the wire is 180 mA (the wire is in still air). It is capable of pulling a
load of 150 g continuously without losing its shape memory functions. Depending on the local
heating and cooling conditions, the typical cycle rate is about 30 cycles per minute. The temperature
at which the wire starts to change its length is 68~ At 78~ the wire has its maximum deformation.
The maximum deformation ratio is 8%. This means that the wire is 8% shorter than its cold length.

When controlling the muscle wires, the current that goes through the wire should be limited below
the recommended level. Any transistor drivers or relay drivers (Figures 5.2, 5.6 and 5.7) can be used
to power the wire. A load resistor which is connected in series with the wire may be needed. A simple
experiment (a muscle wire stepper motor) using the muscle wire is shown in Figure 5.35. The

Figure 5.35 Muscle wire 'stepper motor' controlled by the
Centronic port

PC INTERFACING 187

DRIVERS FOR EXTERNAL DEVICES

experiment shows how a muscle wire is used to generate a rotational movement under the control
of a computer. It is controlled by the Centronic experimental board.

5.11 Drivers for other devices

Using the drivers as described above, any devices you can think of can be controlled by a computer.
Relays and the opto-isolated solid state relays can drive mains operated devices. Water pumps,
solenoid valves, air extractors and high power lamps can all be controlled by computers.

188 PC INTERFACING

GATHERING INFORMATION FROM THE EXTERNAL WORLD

Gathering information from the
external world

6.1 Analogue-to-digital converters

An analogue-to-digital converter outputs a binary code to represent a voltage which is as near as
possible to the applied input analogue voltage. It is one of the fundamental devices which enables
a computer to read analogue signals from the external world. There are mainly three types of
A/D converters: flash, successive approximation and dual-slope integrating converters. The flash
converters offer the highest conversion rate, while the dual-slope converters have the highest conver-
sion accuracy but a slow conversion rate. A good compromise on speed and accuracy is given by the
successive approximation converters. The I/O interface between converters and external circuits can
be one of two types: parallel and serial. For the parallel interface, the converted data is output from
the converter via a parallel bus which consists of a number of data lines. For the serial interface, the
data is output via one data line. In both cases, some control lines are required.

6.1.1 AJD converters with parallel I /0 interface

(a) CA3306 flash converter

The principle of flash converters is that the input signal is compared with all possible subdivisions of
a reference voltage at the same time (see Figure 6.1). The reference voltage (V ref) is divided by a
series of resistors. The smallest step is 1 LSB in the middle and 1/2 LSB at the two ends. The reference
input to the bottom comparator is 1/2 and the second one from the bottom is 1.5 LSB. An input
signal of zero results in no comparator switching. An input of between 1/2 and 1.5 LSB causes the
lowest comparator to switch. The code generated by the comparators is converted to a binary code
by an encode circuit. The number of comparators grows rapidly with the number of bits. An n-bit
converter requires 2 n comparators!

The CA3306CE (Harris Semiconductor, RS648-652) has a conversion rate of 15 MHz and a 6-bit
conversion accuracy. It has 64 comparators and requires a power supply from 3 to 7.5V. The power
consumption is about 50 mW. The pin-out of the chip is given in Figure 6.2. B1 through to B6 output
the conversion data. Pin 2 is the overflow indication pin and is high active. There are two enable
pins: CE2 (pin 5) and-CE1 (pin 6). When CE2-1 and -CE1-0, the conversion data appears on B1

PC INTERFACING 189

GATHERING INFORMATION FROM THE EXTERNAL WORLD

Figure 6.1 Principle of 6-bit flash A/D converters

to B6 outputs, Otherwise the outputs are in the high impedance state. Pin 7 is a Clock input and pin
8 (Phase) controls the sequential operation of A/D conversion. When Phase is high, the rising edge
of the clock starts a sampling cycle. When the clock is at the high state, comparators compare the
input signal with the reference. At the falling edge of the clock, the converted data from the
comparators is latched into the comparator latches. During the low state of the clock, the data
propagates through the encode circuit and the encoded data appears at the input of the output
latches. At the next rising edge of the clock, the data is latched into the output latches and appears
on the pins. At the same time, it initializes a new sampling cycle. Therefore, the output of the
converted data is for the previous clock cycle. V ref- (pin 10) and V ref+ (pin 9) are the voltage
reference to the converter. V ref- is connected to the ground and V ref+ is connected to a voltage
from 1 V to the power supply voltage.

The experimental circuit is given in Figure 6.2. It is connected to the Centronic experimental
board. The circuit uses a 74LS241 buffer IC which allows the computer to read the 6-bit conversion
data via four input lines. C1 from the Centronic experimental board is connected to the Clock input
of the CA3306. To read the previous A/D conversion result and to start a new conversion, a low-to-
high-then-low pulse is output from C1. After this, the previous conversion data appears at the output
pins. The 74LS241 splits the 6-bit data into two parts: the upper two bits and the lower four bits.

190 PC INTERFACING

GATHERING INFORMATION FROM THE EXTERNAL WORLD

Figure 6.2 Pin-out and experimental circuit of the CA3306

The two parts are read into the computer in turns using the Data Select Line (DSL). The DSL is
controlled by C2. The control program is written in TP6.

TP6 program list of CA3306C.PAS

Program Centronic CA3306; _

(* Software driver for the flash A/D CA3306 test circuit. CA3306 is connected to the Centronic experimental board

uses

c r t , graph;

var

by te_h igh ,by te_ low, t rueby te :byte;

PC INTERFACING 191

GATHERING INFORMATION FROM THE EXTERNAL WORLD

(* include two included libraries: TPLIB2 and TPLIBI *)

{$I c:\ioexp\tplibl.pas}

{$I c:\ioexp\tplib2.pas}

Function voltage:real;

(* function to read the analogue voltage *)

(* write_control_port, readstatus_port are procedures in the TPLIBI.PAS library *)

begin

(* start A/D conversion *)

write_control_port(P_address,0);

delay(l);

write_control_port(P_address,l);

write_control_port(Paddress,0);

(* CLOCK=0, SEL=0 *)

(* delay a short time *)

(* CLOCK=I, SEL=0, previous data appears on the data bus

and a new conversion is started *)

(* CLOCK=0, SEL=0 *)

end;

(* read flash A/D conversion results *)

byte_low:=readstatus_port(P_address);

write_control_port(P_address,2);

Byte_high:=read_status_port(P_address);

truebyte:=bytehigh*16+byte_low;

Voltage:=truebyte/63*5.00;

(* SEL=0, read low byte *)

(* CLOCK=0, SEL=I *)

(* SEL=I, read high byte *)

(* high and low bytes are combined *)

(* convert a binary value into a voltage,

Reference voltage=power supply voltage=5.00 V *)

(* B0-B6, 6 bit, maximum value=63 *)

{ --main program }

begin

repeat

clrscr;

Centronic address; (* assign Centronic port address *)

gotoxy(20, i0); write('Voltage at the Input:

delay(1000);

until keypressed

end.

',Voltage:5:2, ' [V]');

The experimental circuit can be simplified if the data port of the Centronic port is a bi-directional
port. The 6-bit data from the CA3306 can be read into the computer in one go. This also increases
the A/D conversion rate. Unfortunately, some Centronic ports do not allow the data port to read
data.

A conversion rate of several hundred kHz can be achieved using the circuit. This is because of the
fact that the data transfer between the CA3306 and the computer is too slow. A solution to this
problem is to allow the flash A/D converter to write data temporally into memory buffers. The A/D
conversion results can be stored in the buffer at a much higher speed. When the buffer is full, the
data are downloaded into the computer.

1 [}2 PC INTERFACING

GATHERING INFORMATION FROM THE EXTERNAL WORLD

(b) ZN449 successive approximation A/D converter

A successive approximation analogue-to-digital converter consists of the following parts: a digital-
to-analogue converter, a comparator and a successive-approximation register. Figure 6.3 shows the
internal block diagram of a typical 8-bit successive approximation converter. Each bit is brought to
logic high successively to test if the output voltage from the D/A converter is higher or lower than
the input voltage. If the DAC voltage is higher than the input voltage, the value of the tested bit
should return to zero. If the DAC voltage is lower than the input, the value of the tested bit is 1. By
testing each bit in such a manner, a value can be established. For an n-bit converter, one conversion
needs n clock cycles.

Figure 6.3 Successive approximation ADC

The ZN449 or ZN448 (GEC Plessey, RS301-729) is an 8-bit successive approximation A/D
converter. It has a minimum conversion time of 9 l~s. An on-board clock generator and a 2.5V
bandgap voltage reference are provided on the chip. The pin-out of the converter is given in Figure
6.4. When the -CONVERT input (pin 4) receives a low-going signal, the MD converter begins an
A/D conversion and the -BUSY output (pin 1) becomes low. The -BUSY output will go high at the
end of the conversion indicating that the conversion is completed. The -RD input (pin 2) is the data
enable line which is taken low to enable the data on the output lines (DB0 to DB7, pins 18 to 11)
which otherwise are in the high impedance state.

PC INTERFACING 193

GATHERING INFORMATION FROM THE EXTERNAL WORLD

Figure 6.4 Pin-out of the ZN449 and experimental circuit

A clock capacitor (C2) is connected between pin 3 and the ground (pin 9) which enables the on-
board clock generator to generate a clock signal. The maximum clock frequency is obtained with a
capacitor value of 100 p E A negative power supply ranging f rom-3V to -30V can be supplied to
pin 5 (-V) via a resistor, the value of which has to be chosen according to the negative voltages. When
the negative voltage is-5V, the resistor value is 82 K.

Pin 8 is the output of the on-board 2.5V reference Vref,ou t. A resistor (R1) and a decoupling
capacitor (C1) are required. Vref, out (pin 8) is connected to Vref, in (pin 7). The input voltage to be
measured is fed to Vin (pin 6) via a 4K resistor. A 2.5V input voltage will produce a byte of 255
decimal at the output of the MD converter. The decimal values for other input voltages are calculated
using the following equation:

194 PC INTERFACING

GATHERING INFORMATION FROM THE EXTERNAL WORLD

Decimal value = Input voltage x 255
2.5

The experimental circuit is shown in Figure 6.4. The circuit is connected to the Centronic
experimental board. The -CONVERT is connected to C1 terminal; Data Select Line for the 74LS241
is connected to C2 terminal of the experimental board. The data is read into the computer via $1 to
$4. T h e - 5 V negative voltage is generated by the 7660 voltage converter circuit as described in
Chapter 2. The software driver is written in TP6.

TP6 program list of ZN449.PAS

Program Centronic_ZN449;

(* Software driver for the ZN449 test circuit. ZN449 is connected to the Centronic experimental board *)

uses

c r t , graph;

var

by te_h igh ,by te_ low, t rueby te :byte;

(* include two included libraries: TPLIBI and TPLIB2 *)

{$I c:\ioexp\tplib2.pas}

{$I c:\ioexp\tplibl.pas}

Function voltage:real;

(* function to read the analogue voltage *)

(* write_control_port, read_status_port are procedures in the TPLIBI.PAS library *)

begin

(* start A/D conversion *)

write_control_port(P_address,0); (* -Conversion=0, SEL=0 *)

delay(l); (* delay a short time to wait for completion of A/D conversion

write_control_port(P_address,l);

delay(l);

(* -Conversion=l, SEL=0, stop a conversion *)

(* delay a short time *)

end;

(* read A/D conversion results *)

byte_low:=read_status_port(P_address);

write_control_port(P_address,3);

Byte_high:=read_statusport(P_address);

truebyte:=byte_high*16+byte_low;

Voltage:=truebyte/255*2.50;

(* SEL=0, read low byte *)

(* -Conversion=l, SEL=I *)

(* SEL=I, read high byte *)

(* high and low bytes are combined *)

(* convert a binary value into a voltage, Reference voltage=2.50V

(* on-board voltage reference = 2.50 V *)

PC INTERFACING 195

GATHERING INFORMATION FROM THE EXTERNAL WORLD

{ main program }

begin

repeat

clrscr;

Centronic address; (* assign Centronic port address *)

gotoxy(20, i0); write('Voltage at the Input:

delay(lO00);

until keypressed

end.

',Voltage:5:2, ' [V]');

(c) ICL7109 12-bit integrating A/D converter

The working principle of an integrating AfD converter is described in Figure 6.5. The technique
involves an integrator and a negative reference voltage. The conversion is in two phases: the signal
integration phase and reference de-integration phase. In the first phase, $1 is closed ($2 open) to
supply the input voltage to the integrator for a fixed period of time, TIN T. After this, the reference
de-integration phase starts. $1 is open and $2 is closed. This action supplies the input of the
integrator with the negative reference. The capacitor of the integrator starts to discharge at a rate
determined by the reference voltage. After a period of TDEINT, the output of the integrator crosses
the zero volt level. Knowing the two time periods, the input voltage can be calculated using the
following equation:

TDEINT
Input voltage = Vre f TINT

An advantage of using a dual-slope converter is that the accuracy is unrelated to the accuracy of the
values of the integrating resistor and capacitor as long as their values are stable during the

ntegrator

C int

Clock

$1
V in O~~2~

$2

mE V ref

R int

[
Comparator

Control
" c ~ 1 7 6 1 7 6 1 7 6

US

Binary
c o d e

ECounter l~tput

Figure 6.5 Dual-slope integrating A/D converter

196 PC INTERFACING

GATHERING INFORMATION FROM THE EXTERNAL WORLD

conversion. It offers high noise immunity. Random noise can be averaged to zero during the signal
integration phase. It also provides noise rejection automatically. Interference signals with a fixed
frequency can be removed by choosing the right integrating period. The integrating converters often
have an integration period to reject 50/60Hz mains frequency interferences.

The ICL7109ACPL (Telcom, RS207-0203) is a low-power, 12-bit integrating A/D converter. The
pin-out is given in Figure 6.6. REF IN+ (pin 36) and REF IN- (pin 39) are connected to a bandgap
voltage reference. The ICL7109 provides an on-board voltage reference which is normally 2.8V
below V+. This reference voltage is output from the REF OUT (pin 29). IN HI (pin 35) and IN LO
(pin 34) are pins for the input signal.

The analogue section of the ICL7109 needs four external components. They are the reference
capacitor, CREF, the auto-zero capacitor, CAZ, the integrating capacitor Ciy r and the integrating
resistance Rn, zr. The values should be chosen according to the manufacturer's data sheet. The on-
chip oscillator operates with a 3.5795 MHz TV crystal giving 7.5 conversions per second. The device
could work with a conversion rate of 30 samples per second. The IC also provides a reference voltage
(pin 29) which is nominally 2.8V below VCC and has a typical temperature coefficient of __.80
ppm/~ External high quality reference sources can be used when high-accuracy measurements are
required.

Figure 6.6 Pin-out of the ICL7109 and a typical connection

PC INTERFACING 197

GATHERING INFORMATION FROM THE EXTERNAL WORLD

If RUN/-HOLD (pin 26) is unconnected (the pin is pulled to high state internally), the MD
converter performs conversions continuously. If it is low, the conversion is one shot. The conversion
results appear at the 14 tri-state outputs B1 to B12, OR and POL. B1 through B12 give the
conversion data, OR indicates whether the input signal is over range and POL indicates the polarity
of the signal.

Data can be read from the MD converter in one of the two modes: the direct mode and the
handshake mode. Data transfer mode is configured using the Mode (pin 21) input, MODE-0 to
select the direct mode and MODE-1 to select the handshake mode. In the direct mode, the 12-bit
conversion data is accessible from the output pins under the control of-CE/LOAD, -LBEN and
-HBEN. All the pins are active low. The chip enable -CE/LOAD is low to enable the IC. When -LBEN
is low, B1 to B8 output the data. When -LBEN is high, B1 to B8 are in the high impedance state.
-HBEN controls B9 to B12, OR and POL. During a conversion, the STATUS goes high. It goes low
after the converted data is latched into the output latches. ICL7109 can be connected to a 6402
UART in the handshake mode. This is described in detail in the manufacturer's data sheet.

When the ICL7109 operates in the direct mode, it can be connected to a computer via an 8255
PPI or a 16-to-1 data selector circuit. An experimental circuit diagram using two 4051 analogue
switches is shown in Figure 6.7. The circuit is connected to the Centronic experimental board. The
software driver is written in TP6.

TP6 program list of 7109PARA.PAS

Program ICL7109_parallel_centronic;

(* Centronic ICL7109 test circuit *)

(* ICL7109 works in direct mode. Analogue switches are used for data transfer *)

uses

d o s , c r t ;

var

du_~ly:real;

(* Include the TPLIBI.PAS files *)

{$I c:\ioexp\TPLIBl.pas}

Function Read_voltage:real;

(* get data from the 7109 and calculate the input voltage *)

var

Low_byte, high_byte,i:byte;

polarity:integer;

begin

Low_byte:=0;

high_byte:=0;

for i:=l to 8 do

198 PC INTERFACING

GATHERING INFORMATION FROM THE EXTERNAL WORLD

Figure 6.7 Experimental circuit of the ICL7109

begin

end;

Write_control_port(P_address,i-l); (* select a particular data output bit from the 7109 *)

delay(l);

low_byte:=low_byte+bit_weight(i)*(read_status_port(P_address) and i);

high_byte:=high_byte+bit_weight(i)*round((read_status_port(Paddress) and 2)/2);

if high_byte and 32 = 32 then polarity:=l else polarity:=-l; (* find the polarity *)

high_byte:=high_byte and (1+2+4+8); (* this contains 4 upper bits of the A/D conversion data *)

Read_voltage:=(high_byte*256+low_byte)/2049*2*polarity;

PC INTERFACING 199

GATHERING INFORMATION FROM THE EXTERNAL WORLD

if (high_byte and 16)=16 then read_voltage:=999;

end;

(* Main Program *)

begin

Centronic address;

repeat

gotoxy(20,10);

write('Measured input voltage [V]

delay(9000);

until keypressed

end.

',read_voltage:6:4);

(d) ICL7135 digital voltmeter chips

The ICL7135CPI-2 (Maxim, RS427-483) is a precision A/D converter that combines dual-slope
conversion reliability with _+1 count in 20,000 counts accuracy and is ideal for visual display digital
voltmeters. It also features auto-zero and auto-polarity. It has multiplexed BCD outputs and requires
LED display drivers to form a DVM. The outputs can be also interfaced to a computer. The pin-out
is shown in Figure 6.8. The device requires _+5V power supplies. The supply currents to the positive
and the negative power rail are 1.1 mA and 0.8 mA, respectively.

The analogue section of the ICL7135 requires four external components. They are the reference
capacitor, CREF, the auto-zero capacitor, CAZ, the integrating capacitor CIN T and the integrating

Figure 6.8 Pin-out of the ICL7135 and a typical connection

200 PC INTERFACING

GATHERING INFORMATION FROM THE EXTERNAL WORLD

resistance RIN T. They have to be chosen to suit a particular application. The details are given in the
manufacturer's data sheet.

The data output sequence is given in Figure 6.9. There are five digit drivers D5 to D1. It is a
positive going signal and the scanning sequence is from D5, D4, D3, D2 and D1. The binary coded
decimal bits appear at B8, B4, B2 and B1 pins in phase with the digit driver signals.-STROBE (pin
26) is a negative going output signal that can be used for transferring data to external circuits.

When RUN/-HOLD is high (or left open) the A/D converter will continuously run with equally
spaced measurement cycles for every 40002 clock pulses. If it is low, the converter carries out the
present measurement cycle and then holds the reading as long as the pin is held low. A short positive-
going pulse on the pin (greater than 300 ns) will initiate a new measurement cycle.

BUZY (pin 21) goes high at the beginning of the signal integrate and stays high until the first clock
pulse after the zero crossing. The line can be used for a single wire measurement. The number of clock
cycles when the BUZY is high is measured. Then it is subtracted by 10001 to get the clock count
during the reference de-integration. The input voltage can be calculated using the following equation:

10000
Vin = Clock count during reference deintegration Vref

integration of a full measurement
output

Auto
zero

10001
counts

End

I_ Signal Reference I
! integrati~ rote gratiOn I
1 1 0 0 0 0 20001 I

counts counts, max I

; /---

Busy I I_ ,
L. Full measurement cycle (40,002 counts) ---I
I~ ~ I ~ 201 clock cyc

Waveform not shown

D4 II ' " ' II--

D3 " // ' '

o2 ,I/

D1 ~/ - ,,

-Strobe
'H

;/----

200 clock cycles

N 17 "//---

.... N
~ P u l s e width: 1/2 clock period

__~ I1~01 clocks after the end of the measurement

Figure 6.9 Timing sequence of the ICL7135 A/D converter

PC INTERFACING 2 0 1

GATHERING INFORMATION FROM THE EXTERNAL WORLD

The first experiment shows how the ICL7135 is connected to a computer via only two wires and the
Centronic experimental board is used. BUZY and the clock input to the 7135 are connected to $1
and $2 terminals on the experimental board. The ICL7135 is configured as a continuously running
converter. A program is written to count the number of clock cycles when BUZY is high. In this
experiment, the clock frequency is below 50 kHz.

TP6 program list of ICL7135S.PAS

Program ICL7135_single_wire;

uses

dos,crt;

{$I c:\ioexp\TPLIBl.pas}

Function Count_clock:integer;

var

Clock:integer;

clock_status_old,value:byte;

begin

end;

clock:=0;

clock status old:=16; _

repeat until port[P_address+l] and 8 = 0;

repeat until port[P_address+1] and 8 = 8;

repeat

value:=port[P_address+l] and 16;

if (clock_status_old=16) and (value = 0) then

clock:=clock+1;

clock_status_old:=value;

until port[P_address+l] and 8 = 0;

Count clock:=clock-10001; _

(* Main Program *)

begin

Centronic_address;

repeat

writeln(Countclock);

delay(1000);

until keypressed

end.

The second experiment shows how the ICL7135 is connected to a computer via a 6402 UART. The
circuit diagram is given in Figure 6.10. B4 to B1, POL, OVER, UNDER and D5 are connected to the

202 PC INTERFACING

GATHERING INFORMATION FROM THE EXTERNAL WORLD

Figure 6.10 Experimental circuit of the ICL7135

transmit buffer register inputs (TBR0 to TBR7) of the 6402 UART. RUN/-HOLD on the 7135 is
connected to DB0 of the receiver buffer register. In operation, serial data is transmitted from the
computer to the 6402 UART to make DB0 of the receiver buffer register go from low to high and
then low. At the positive going edge of the signal, the 7135 starts the A/D conversion. After the A/D
conversion is completed, the five strobe signals from the -STROBE pin trigger the UART to transmit
the data. The computer reads five times to get the conversion data. The clock to the converter is
153.6 kHz and is produced by the CD4060 crystal generator (see Chapter 2). The UART must
transmit the data within 1.3 ms. If the UART operates at a 9600 baud rate with an 8-bit data length,
one stop bit and no parity check, the transmitting time will be just over 1 ms. Therefore, such a
UART configuration can be used. The software driver is written in VB3.

PC INTERFACING 203

GATHERING INFORMATION FROM THE EXTERNAL WORLD

Visual Basic program list, 7135.FRM

'declare functions in DLL, WLIBI.DLL

'declared functions: RS232(), Bit_weight(), Write_interrupt_enable()

' Read_interrupt_indentification()

' write_data_format(), write_transmit_buffer(), write_modem_status()

' write_receive_buffer(), read_modem_status()

Declare Function RS232 Lib "C:\Ioexp\Wlibl.dll" (ByVal X As Integer) As Integer

Declare Function Bit_weight Lib "C:\Ioexp\Wlibl.dll" (ByVal X As Integer) As Integer

Declare Function Write_interrupt_enable Lib "C:\Ioexp\Wlibl.dll" (ByVal address As Integer, ByVal datax As

Integer) As Integer

Declare Function Read_interrupt_identification Lib "C:\Ioexp\Wlibl.dll" (ByVal address As Integer) As Integer

Declare Function write_data_format Lib "c:\IOEXPkWlibl.dll" (ByVal address As Integer, ByVal Baud As Integer,

ByVal parity As Integer, ByVal Data_byt As Integer, ByVal Stop_bit As Integer) As Integer

Declare Function Write_transmit_buffer Lib "C:\Ioexp\Wlibl.dll" (ByVal address As Integer, ByVal datax As Integer)

As Integer

Declare Function Write_modem_status Lib "C:\Ioexp\Wlibl.dll" (ByVal address As Integer, ByVal RTS As Integer,

ByVal DTR As Integer) As Integer

Declare Function Read_receive_buffer Lib "C:\IoexpkWlibl.dll" (ByVal address As Integer) As Integer

Declare Function Read_modem_status Lib "C:\IoexpkWlibl.dll" (ByVal address As Integer, ByVal X As Integer) As

Integer

Sub Commandl_Click ()

DoEvents

dummy = Read_receive_buffer(RS232_address)

timedelay

dummy = Write_transmit_buffer(RS232_address, 128)

timedelay

dummy = Write_transmit_buffer(RS232_address, 0)

For i = 1 To 5

Do While (Read_interrupt_identification(RS232_address) And i) = 1

Loop

digit(6 - i) = Read_receive_buffer(RS232_address)

Next i

count_voltage = 0

For i = 1 To 5

count_voltage = count_voltage + i0 ^ (i - I) * (digit(i) And 15)

Next i

Label3.Caption = count_voltage

End Sub

204 PC INTERFACING

GATHERING INFORMATION FROM THE EXTERNAL WORLD

Sub Commandl_MouseMove (Button As Integer, Shift As Integer, X As Single, Y As Single)

label7.Caption = " Read data from 7135-UART"

End Sub

Sub Command3_Click ()

'configure the selected RS232 port

baud_rate = Val(text2(0).Text) 'assign baud rate

parity = Val(text2(1).Text) 'assign parity

data_bit_length = Val(text2(2).Text)'assign length of data bits

stop_bit_length = Val(text2(3).Text) 'assign length of stop bits

dummy = write_dataformat(RS232_address, baud_rate, parity, data_bit_length, stop bit_length)'write the

configuration to the seial data format register

End Sub

Sub Command3_MouseMove (Button As Integer, Shift As Integer, X As Single, Y As Single)

label7.Caption = "Change the configuration of RS232 port"

End Sub

Sub Command4Click ()

End

End Sub

Sub Command4_MouseMove (Button As Integer, Shift As Integer, X As Single, Y As Single)

label7.Caption = "Quit the program"

End Sub

Sub Command5_Click ()

're-select the RS232 port

dummy = MsgBox(Str(RS232(0)) & " RS232 ports (COMs) are installed on your computer. Their base addresses

are: " & Format$(RS232(1), "###") & & Format$(RS232(2), "###") & & Format$(RS232(3), "###") & "

" & Format$(RS232(4), "###") & "Decimal", 48, "RS232 ports (COM) on your computer") 'show RS232 information

RS232_number = Val(InputBox$("Input I, 2, 3 or 4 to select a RS232 port (COM) for the Mini-Lab Data Logger/

Controller", "Select COM ports")) 'select a RS232 port

RS232_address = RS232(RS232_number) 'get the base address of the selected COM port

Label2.Caption = "Selected COM port : " & Format(RS232_number) 'show information of the selected port

Label4.Caption = "Base address of COM: " & Format(RS232address)

End Sub

Sub Command5_MouseMove (Button As Integer, Shift As Integer, X As Single, Y As Single)

label7.Caption = "Change RS232 port number"

End Sub

Sub Form_Load ()

PC INTERFACING 205

GATHERING INFORMATION FROM THE EXTERNAL WORLD

For i = 0 To II

status(i) = 0

Next i

dummy = MsgBox(Str(RS232(0)) & " RS232 ports (COMs) are installed on your computer. Their base addresses

are: " & Format$(RS232(1), "###") & & Format$(RS232(2), "###") & " " & Format$(RS232(3), "###") & "

" & Format$(RS232(4), "###") & "Decimal", 48, "RS232 ports (COM) on your computer")

RS232_number = Val(InputBox$("Input i, 2, 3 or 4 to select a RS232 port (COM) for the RS232 Experimental

board", "Select COM ports"))

RS232_address = RS232(RS232number)

Label2.Caption = "No of installed COMs:

Label4.Caption = "Base address of COM:

baud rate = 96 _

parity = 0

data_bit_length = 8

stop_bit_length = i

" & Format(RS232 number) _

" & Format(RS232_address)

text2(0).Text = FormatS(baud_rate)

text2(1).Text = FormatS(parity)

text2(2).Text = FormatS(data_bit_length)

text2(3).Text = FormatS(stop_bit_length)

dummy = write_dataformat(RS232_address, baud_rate, parity, data_bit_length, stop_bit_length)

dummy = Write_interrupt_enable(RS232_address, i) ' configure interrupt, received data ready interrupt

End Sub

Sub Label3_MouseMove (Button As Integer, Shift As Integer, X As Single, Y As Single)

'show the received serial data

label7.Caption = "Value of the serial input data"

End Sub

Sub Label6_MouseMove (index As Integer, Button As Integer, Shift As Integer, X As Single, Y As Single)

Select Case index

Case 0

label7.Caption = "Baud rate = 115200, 19200, 9600, 2400, etc."

Case 1

label7.Caption = "0 = No Parity, 1 = Odd Parity, 3 = Even Parity"

Case 2

label7.Caption = "Input 5, 6,7 or 8 to select the data bit length"

Case 3

label7.Caption = "Input 1 or 2 to select Stop bit"

End Select

End Sub

2(}6 PC INTERFACING

GATHERING INFORMATION FROM THE EXTERNAL WORLD

Sub Text2_Change (index As Integer)

Select Case index

Case 0:

Case i:

Case 2:

Case 3:

End Select

End Sub

Sub timedelay ()

For i = 1 To i00

i = i

Next i

End Sub

6.1.2 AJD converters with serial I /0 interface

(a) TLC548 8-bit successive approximation A/D converter

The TLC548CP/TLC549CP (Texas Instruments, RS200-6757) is an 8-bit switched-capacitor
successive-approximation MD converter. It has an on-board sample-and-hold circuit, a 4 MHz
system clock generator and a serial I/O interface. The TLC548 is able to sample 45,500 times per
second and the TLC549 samples 40,000 times per second. It can be replaced by a TLC1540
converter, which has a 10-bit conversion accuracy and is hardware compatible to the former. The
pin-out of the converter is shown in Figure 6.11. Pin 8 (VCC) and pin 4 (GND) are connected to the
positive and negative rails of the power supply. The range of the power supply voltage is between 3
and 6V with a typical current assumption of 1.9 mA. Pins 1 and 3 (REF+ and REF-) are connected
to an external band-gap voltage reference. REF- and GND are normally wired together.

The serial interface consists of two TYL-compatible input lines, the I/O Clock Input (I/O CK, pin
7) and Chip Select Input (-CS, pin 5) and one 3-state Data Output line (DATA OUT, pin 6). The
system clock and the I/O clock are used independently. The operational sequence is explained below
and is shown in Figure 6.12.

1 When -CS is high, the data output line is at high-impedance state. It also disables the clock input,
I/O CLK. -CS goes low to start a read cycle. To reduce errors caused by noise at the -CS input, the
internal circuitry waits for two rising edges and then a falling edge of the internal system clock
after a high-to-low transition is detected on the -CS pin. Then it is accepted. The MSB of the
previous conversion result (DB7) automatically appears on the DATA OUT pin.

2 The falling edges of the first four I/O CLKs shift out DB6, DB5, DB4 and DB3 of the previous
conversion result on the DATA OUT pin. The on-chip sample-and-hold begins sampling an
analogue input after the fourth falling edge of the I/O CLK.

3 Three more clock cycles are applied to the I/O CLK, DB2, DB1 and DB0 of the previous
conversion result are shifted out on each falling edge of the I/O CLK.

PC INTERFACING 207

GATHERING INFORMATION FROM THE EXTERNAL WORLD

Figure 6,11 Pin-out of the TLC548 and its internal block diagram

Figure 6.12 Operation sequence of the TLC548/549 serial A/D converter

208 PC INTERFACING

GATHERING INFORMATION FROM THE EXTERNAL WORLD

4 The final (eighth) clock cycle is applied to the I/O CLK. The falling edge of this clock terminates the
sample process and initiates the hold function. The hold function continues for the next four internal
system clock cycles. After that the hold function terminates and A/D conversion is carried out during
the next 32 system clock cycles. A complete MD conversion takes 36 internal system clock cycles.
During the conversion, -CS must go high or the I/O CLK remains low for at least 36 system clock
cycles. -CS can be kept low during multiple conversion, however special care must be taken to prevent
noise from getting into the I/O CLK, which otherwise causes the device and the external interface
circuit to lose synchronization. If-CS is taken high, it must remain high until the end of the conversion.
A valid falling edge of-CS will cause the device to reset and to abort the conversion in progress.

The experimental circuit in Figure 6.13 shows how it is connected to the Centronic experimental
board. The reference voltage to the TLC548 is a 2.5V voltage supplied by a TLE2425 voltage
reference. The I/O CLOCK and -CS of the device are connected to C1 and C2 terminals on the
Centronic board. The DATA OUT is wired to the $1 on the board. The software driver is written in
TP6 and is listed below.

TP6 program list of TLC548.PAS

Program TLC548;

(* driver for TLC548 serial I/O A/D converter. It is connected to the Centronic experimental board *)

(* CLOCK connected C1, -CS connected to C2, DATA OUT connected to S1 *)

u s e s

DOS, Crt;

Figure 6.13 Experimental circuit of the TLC548

PC INTERFACING 209

GATHERING INFORMATION FROM THE EXTERNAL WORLD

var

i : i n t e g e r ;

{$I c:\ioexp\tplibl.pas }

Function AD_converter:real;

(* A/D conversion procedure *)

var

data: array [1..8] of byte;

ii,ij,addx:byte;

begin

(* two reads are performed to obtain the present A/D conversion result *)

for ij:=l to 2 do

begin

(* -CS is brought low to start A/D *)

Write_data_port(Paddress, 0+2); (* Clock=0, -CS=I *)

write_data_port(P_address, 0+0); (* Clock=0, -CS=0 *)

end;

for ii:=l to 8 do begin (* read the previous result *)

data[ii]:=read_status_port(P_address) and i; {read digit}

write_data_port(P_address, 0+0); (* Clock=0, -CS=0 *)

write_data_port(P_address, I+0); (* Clock=l, -CS=0 *)

write_data_port(P_address, 0+0); (* Clock=0, -CS=0 *)

end;

end;
4

(* calculate input voltage, reference voltage=2.5V *)

AD_converter:=(128*data[l] + 64*data[2] + 32*data[3] + 16*data[4] +

8*data[5] + 4*data[6] + 2*data[7]+l*data[8])*2.5/256;

(* Main Program *)

begin

Centronic_address;

repeat

gotoxy(25,10); write('Input voltage [V]:

delay(2000);

until keypressed;

end.

',AD_converter:6:3);

(b) TLC541 12-channel A/D converter

The TLC541IN/TLC540IN (Texas Instruments, RS649-289) is an 8-bit successive-approximation
A/D converter. It has an on-board sample-and-hold circuit, a 12-channel analogue multiplexer and a
serial I/O interface which enables it to perform simultaneous read and write operations. The TLC540

210 PC INTERFACING

GATHERING INFORMATION FROM THE EXTERNAL WORLD

is able to sample 75,180 times per second and the TLC541 40,000 times per second. These
converters can be replaced by TLC1540/TLC1541 converters, which have a 10-bit conversion
accuracy and are fully compatible to the former. They are able to sample 32,258 times per second.
The pin-out of the IC is shown Figure 6.14. Pin 20 (VCC) and pin 10 (GND) are connected to the
positive and negative rails of the power supply. The range of the power supply voltage is between
4.75 to 6.5V with a typical power dissipation of 6 mW. Pins 14 and 13 (REF+ and REF-) are
connected to an external band-gap voltage reference. REF- and Ground (pin 10) are normally wired
together.

Figure 6.14 Pin-out of the TLC541

Amongst the 12 analogue multiplexers, the first 11 inputs could be accessed at pins 1 to 9, 11 and
12, corresponding to analogue inputs from 0 to 11. The twelfth input is connected internally to a
'self test' voltage reference. To select an analogue input, a 4-bit address should be written into the IC
via the serial interface.

The serial interface consists of five T'FL-compatible I/O lines: the System Clock input (SYS CK, pin
19), the I/O Clock input (I/O CK, pin 18), Chip Select input (-CS, pin 15), Address Input (ADD IN,
pin 17) and Data Output (DATA OUT, pin 14). The SYS CK is the clock for A/D conversion
operation. A maximum 4 MHz system clock can be applied for the TLC540 and 2.1 MHz for the
TLC541, giving 75,180 and 40,000 samples per second respectively. For TLC1540/TLC1541
converters the maximum system clock is 2.1 MHz, giving 32,258 samples per second. The I/O CLK
is used for synchronizing I/O operations. ADD IN is the serial address input for selecting the
analogue multiplexers. DATA OUT is the serial data output. -CS is the chip enable. It must be at logic
low to enable the IC. When -CS is high, the DATA OUT pin is three-state, The ADD IN and I/O CLK
are all disabled. This allows several such devices to be used in a shared bus.

PC INTERFACING 211

GATHERING INFORMATION FROM THE EXTERNAL WORLD

The SYS CLK and I/O CLK are used independently. The writing and reading sequences of the IC
are explained as follows (see Figure 6.15).

1 -CS goes low to start read/write cycle. To minimize errors caused by noise at the -CS input, the
internal circuitry waits for two rising edges and then a falling edge of the SYS CLK after the high-
to-low transition is detected on the CS pin. Then it is accepted. The MSB of the previous
conversion result (DB7) automatically appears on the DATA OUT pin.

2 A new multiplexer address (ADO, AD1, AD2 and AD3) is shifted into the IC on the first four rising
edges of the I/O CLK. The MSB of the address (AD3) is shifted in first. The negative edges of the I/O
CLK shift out DB6, DBS, DB4 and DB3 of the previous conversion result. The on-chip sample-and-
hold begins sampling the newly addressed analogue input after the fourth falling edge of the I/O CLK.

3 Three clock cycles are further applied to the I/O CLK, DB2, DB1 and DB0 of the previous
conversion result are shifted out on each negative edge of the I/O CLK.

4 The final (eighth) clock cycle is applied to the I/O CLK. The falling edge of the clock completes
the sample process and initiates the hold function. Data conversion is then carried out during the
next 36 SYS CLK cycles. After this I/O CLK, either -CS must go high or the I/O CLK remains low
for at least 36 SYS CLK cycles to allow for the data conversion. -CS can be kept low during
multiple conversions. However special care must be taken to prevent noise from getting into the
I/O CLK, which otherwise will cause the device and the external interface circuit to lose
synchronization. If-CS is taken high, it must remain high until the end of the conversion. A valid
falling edge of-CS will cause the device to reset and to abort the conversion in progress.

:1. :2 :3 :4 :s :6 :7 : 8 ' - - - - ' 1 : 2 : 3 : 4 : s : 6 : 7 : 8 '
I /O i i 1 i i i ~ i i I r ; i 1 r i I ~ i i ~ ~ '

C L O C K I ' ~
~.ACCESS ~ '-W-- SAMPLE __.~ ~.. ACCESS ~ '~1-- SAMPLE __),,;

CYCLE B CYCLE B ' CYCLE C CYCLE C .
, , ~ ,

cs - [4 t . , . i . :

' , ' , ,
, ,

,

A D D R E S S ~ ' . r ' ~ ~ ~
INPUT " ~ ~

. . . .

, , ,

0 , , ,
. . . ~

,
, ~ ,
, , , ,
, ,

,
DON'T CARE I

�9 , , ,

' !
, ,

, ~
, ~ ~

~ , ,
, , ,
o

DON 'T CARE

, , ,

DATA M~ ~ ~ ~ ~ ~ ~ , ~ Hi-Z STATE ~ Hi -Z STATE

OUT ~ (.

. , ,

PREVIOUS CONVERSION DATA A CONVERSION DATA B

Figure 6.15 Operation sequences of the TLC541 serial AJD converter

The experimental circuit in Figure 6.16 shows how it is connected to the Centronic experimental
board. The reference voltage to the device is 2.5V produced by a TLE2425 voltage reference. The
clock signal can be generated by a circuit built around a 555 timer IC (see Chapter 2). The I/O
CLOCK, -CS and DATA IN of the TLC541 are connected to D1, D2 and D3 terminals on the
experimental board. The DATA OUT is wired to the $1 terminal on the board. The software driver
is written in TP6 and is listed as follows:

212 PC I N T E R F A C I N G

GATHERING INFORMATION FROM THE EXTERNAL WORLD

Figure 6.16 Experimental circuit of the TLC541

TP6 program list of TLC541.PAS

Program TLC541;

(* driver for TLC541 serial I/O A/D converter. It is connected to the Centronic experimental board *)

(* CLOCK connected DI, -CS connected to D2, ADD connected to D3

DATA OUT connected to S l *)

uses

Dos, Crt;

i:integer;

dummy:real;

{$I c:\ioexp\tplibl.pas }

PC INTERFACING 213

GATHERING INFORMATION FROM THE EXTERNAL WORLD

Function AD_converter(address:byte):real;

(* A/D conversion procedure. Addresses: 0 to ii *)

var

add,data: array [1..8] of byte;

ii,addx:byte;

begin

(* find the address bits *)

for ii:=l to 8 do add[ii]:=0;

if address>=8 then begin add[l]:=l; address:=address-8 end;

if address>=4 then begin add[2]:=l; address:=address-4 end;

if address>=2 then begin add[3]:=l; address:=address-2 end;

if address>=l then begin add[4]:=l; end;

(* -CS, bit 2, is brought low to start A/D *)

write_data_port(P_address,4);

write_data_port(P_address,0);

delay(l);

for ii:=l to 8 do begin (* read the previous result *)

addx:=add[ii]*2;

data[ii]:=read_status_port(P_address) and I;

write_data_port(P_address,addx);

write_dataport(P_address,l+addx);

write_data_port(P_address,addx);

delay(l);

end;

AD_converter:=(128*data[l] + 64*data[2] + 32*data[3] + 16*data[4] +

8*data[5] + 4*data[6] + 2*data[7]+l*data[8])*2.5/255;

end;

(* read digit *)

(* address bit loaded and I/O clock low *)

(* I/O clock goes to high *)

(* I/O clock goes to low again *)

(*

begin

end.

Main Program *)

Centronic_address;

repeat

for i:=0 to ii do

begin

dummy:=AD_converter(i); (* run the A/D converter the first time *)

delay(l);

gotoxy(20,5+i); write('Input voltage [V] to Channel [',i:2,']: ',AD_converter(i):6:3);

(* AD_converter will read the previous A/D conversion results *)

end;

delay(2000);

until keypressed;

214 PC INTERFACING

GATHERING INFORMATION FROM THE EXTERNAL WORLD

(c) LTC1288 12-bit serial I/O converters

The LTC1288CN8 (Linear Technology, RS197-1795) is a micropower successive approximation A/D
converter with a 12-bit conversion accuracy. The pin-out and the internal block diagram of the IC
are shown in Figure 6.17. It requires a power supply of 2.7 to 6V. Pin 8 and pin 4 are connected to
the positive and negative rail of the power supply. Pin 8 also serves as the voltage reference input.
The supply voltage must be free of noise and ripples. The typical supply current is 260 laA at a
sampling rate 6.6 kHz and supply voltage of 2.7V. When the IC is in the standby mode, the supply
current drops to several nA. It has two analogue inputs (pin 2 and pin 3) which can be configured
in two modes. In the first mode, an input voltage can be applied to each input with respect to the
ground (single-ended mode). In the other, an input voltage is applied across the two inputs
(differential mode). The analogue input leakage current is typically 1 laA.

Figure 6.17 Pin-out and the internal diagram of LTC1288CN8

PC INTERFACING 215

GATHERING INFORMATION FROM THE EXTERNAL WORLD

The LTC1288 communicates with other external circuitry through a 4-wire serial interface.
-CS/SHDN (pin 1) selects the chip when it is held low. When it is at logic high, the IC is in the
standby mode. CLK (pin 7) is the shift clock. It synchronizes the serial data transfer and determines
the conversion speed. At the falling edge of the CLK, each bit of the A/D conversion result is
transmitted. At the rising edge, data input to the IC is captured. Din (pin 5) is the digital data input
which is used to shift in the address of the selected analogue input. Dout (pin 6) is the digital data
output. The MD conversion result is shifted out from this output.

The operating sequence of the LTC1288 is shown in Figure 6.18. Data transfer is initiated by a
falling edge of the chip select (-CS/SHDN, pin 1). Then the IC looks for a start bit. A start bit is a
logic 1 on Din (pin 5) and it is shift into the LTC1288 at the rising edge of CLK. Next, a 3-bit input
word (bit 1, bit 2, bit 3) is shifted into the IC to configure the input mode and the serial data output
format. At the falling edge of the fourth clock, an MD conversion starts. Immediately after this
falling edge, a null bit (logic 0) appears on the Dout (pin 6). At the next 12 falling edges of the clock
input, the 12 bits of the MD conversion result appear on Dout. Bits appearing on Din do not have
any effects on the converter.

Figure 6.18 Timing sequence (SGIJ-DIFF=0, differential input, ODD/-SIGN=I)

The bit function of the 3-bit input word is shown as follows. Bits 1 and 2 configure the analogue
input mode. Bit 3 selects the output data format.

bit 1=1, bit 2=0
bit 1=1, bit 2=1
bit 1=0, bit 2=0
bit 1=0, bit 2= 1
bit 3-1
bit 3-0

voltage between Channel 0 to GND (single-ended input)
voltage between Channel 1 to GND (single-ended input)
voltage between Channel 0 to 1 (differential input)
voltage between Channel 1 to 0 (differential input)
bits of the converted result shift out from MSB to LSB (Bll to B0)
bits of the converted result shift out from LSB to MSB (B0 to Bl l)

216 PC INTERFACING

GATHERING INFORMATION FROM THE EXTERNAL WORLD

The experimental circuit using the Centronic experimental board is shown in Figure 6.19. CLOCK,
-CS, DATA IN and DATA OUT are connected D1, D3, D2 and $1. The software driver is written in
TP6 and is listed below.

Figure 6.19 Experimental circuit of the LTC1288

TP6 program list of LTC1288.PAS

Program LTC1288;

(* driver for LTC1288 serial I/O A/D converter. It is connected to the Centronic experimental board *)

(* CLOCK connected DI, -CS connected to D3, DATA IN connected to D2, DATA OUT connected to S1 *)

uses

Dos, Crt;

{$I c:\ioexp\tplibl.pas }

Function AD_converter(mode:integer):integer;

(* Mode i, Single mode, Channel 0

Mode 2, Single mode, Channel 1

Mode 3, Differential mode, Channel 0 positive, Channel 1 negative

mode 4, Differential mode, Channel 1 positive, Channel 0 negative *)

PC INTERFACING 217

GATHERING INFORMATION FROM THE EXTERNAL WORLD

ii, Single_differential, Odd_sign, dummy_byte:byte;

IO_data: array[l..12] of byte;

data:array[l..12] of integer;

Digital_data:array[l..12] of byte;

binary_weight, dummy:integer;

Procedure delay;

{A short delay}

var

ij:integer;

begin

for ij:=l to 6 do ij:=ij;

end;

Procedure AD_control(datax:byte);

{output control bit to control A/D converter}

begin

end;

Write_data_port(P_address,0+2*datax); {CLK=0, Dout=datax, start bit=l}

Write_data_port(P_address,l+2*datax); {CLK=I, Dout=datax, start bit is clocked into the A/D converter}

delay;

Write_dataport(P_address,0+2*datax); {CLK=0, Dout=datax}

delay;

Procedure Configure mode;

{assign values for Odd_sign, Single_differential}

begin

case mode of

I:

2:

3:

4:

else

end;

begin Odd_sign:=0; Single_differential:=l; end;

begin Odd_sign:=l; Single_differential:=l; end;

begin Odd_sign:=0; Single_differential:=0; end;

begin Odd_sign:=l; Single_differential:=0; end;

begin Odd_sign:=0; Single_differential:=l; end;

end;

begin

configure_mode; (* find the Single_differential and Odd_sign bits *)

Binary_weight:=4096;

Write_data_port(P_address,l+2+4); (* Clock=l, Data=l, -CS=I *)

218 PC INTERFACING

GATHERING INFORMATION FROM THE EXTERNAL WORLD

delay;

Write_data_port(P_address,l+2+0); (* Clock=l, Data=l, -CS=0, A/D conversion cycle initiated *)

(* output control bits to the A/D converter *)

AD_control(1); (* output start bit *)

AD_control(Single_differential); (* output single_differential control bit *)

AD_control(Odd_sign); (* output channel selection bit *)

AD_control(1); (* output MSB first control bit *)

(* read serial data bits from BII down to B0 *)

for ii:=l to 12 do

begin

Binary_weight:=binary_weight div 2;

Write_data_port(P_address,l+2); (* Clock=l, Dout=l, -CS=0 *)

delay;

Write_data_port(P_address,0+2); (* Clock=0, Dour=l, -CS=0 *)

delay;

data[ii]:=(read_status_port(P_address) and I) * binary_weight; (* read the serial data bit *)

end;

(* the 12 bits A/D conversion data all received *)

write_data_port(Paddress,l+2+4); (* after a complete A/D conversion, Clock=l, Data=l, -CS=I *)

dummy:=0;

for ii:=l to 12 do dummy:=dummy+data[ii];

AD_converter:=dummy;

end;

(* Main Program *)

begin

end.

Centronic_address;

repeat

gotoxy(20,10); write('Input voltage [V] to Channel [0]: ',ADconverter(1)*5.06/4096:6:4);

gotoxy(20,11); write('Input voltage [V] to Channel [i]: ',AD_converter(2)*5.06/4096:6:4);

(* reference voltage = power supply = 5.06V *)

delay(2000);

until keypressed;

6.1.3 TSC500 AJD converter analogue processor

The TSC500ACPE (Telcom, RS656-697) contains all the analogue circuits needed to construct a
dual-slope integrating A/D converter. It allows 16-bit A/D conversion to be performed. High

PC INTERFACING 2 1 9

GATHERING INFORMATION FROM THE EXTERNAL WORLD

conversion rates can be achieved for lower resolution. The converter uses time to quantize the
analogue input signal. A software driver in the computer performs the digital function of 'counting
clocks' for the dual-slope integrating converter process. Users can control the resolution and the
conversion speed purely from the software. The pin-out of the TC500 is given in Figure 6.20. It has
two digital inputs, A (pin 12) and B (pin 13), and one digital output, COMP OUT (pin 14). A and
B select one of the four phases of the operation of the TC500.

A=0 B=0
A=0 B=I
A= 1 B=0
A=I B=I

zero integrator output phase
auto-zero phase
analogue signal integration phase
reference voltage deintegration phase

Figure 6.20 Pin-out of the TC500A

Pin 14 is the digital output of the TC500, which indicates a completion of a deintegration operation.
The device requires several external components: a reference capacitor, an integration capacitor, an
auto-zero capacitor, an integration resistor and an external voltage reference. A typical connection
of components to the TC500 is given in Figure 6.22. The analogue voltage inputs are connected to
Vin+ (pin 11) and Vin- (pin 10). The IC needs a dual power supply. For __.5 V operations, the digital
inputs and output are TEL compatible and the supply current is 1 mA.

The operation phases are selected in the following order. The timing sequence is shown in Figure
6.21.

1. Auto-zero phase
2. Signal input voltage integration phase
3. Reference voltage deintegration phase
4. Integrator output zero phase

The auto-zero phase is used to compensate errors due to buffer, integrator and comparator offset
voltages. After the auto-zero phase, the analogue input signal integration phase begins. This phase

220 PC INTERFACING

G A T H E R I N G I N F O R M A T I O N F R O M T H E E X T E R N A L W O R L D

Integrator
output

Comparator
output

Signal Reference
integrate integrate

, _ . . . = , , . . . _ , _ . , , = ,

,

' T INT,..=I,, T DEINT '

. Zero-crossing

,/

(a) Positive input signal

Integrator
output

Comparator
output

' S i g n a l Reference
integrate in tegra te Zero-crossing

I /
(b) Negative input signal

Figure 6.21 Timing sequence of the TC500A

integrates the differential voltage between the Vin+ and Vin- inputs. The integration capacitor is
charged to a certain voltage. The polarity of the input signal can be indicated by the COMP
OUTPUT (pin 14). If the input differential voltage is positive, the COMP OUTPUT becomes high
immediately after the signal integration phase is entered. If the input voltage is negative, the COMP
OUTPUT remains low until the reference voltage deintegration phase is entered. The integration
period is TIN T. The reference voltage deintegration phase ramps the voltage of the output of the
integrator back to zero by connecting the charged reference capacitor with the proper polarity. In this
phase, the COMP OUT stays at logic high. When the zero-crossing of the output of the integrator
occurs, the COMP OUT goes to logic low. The time period of the deintegration phase is measured.
This period is TDEIN T. The input voltage can be calculated using the following equation:

Input voltage = Vre f TDEINT
TINT

The values of the external components should be chosen according to the manufacturer's data sheet.

PC INTERFACING 221

GATHERING INFORMATION FROM THE EXTERNAL WORLD

Figure 6.22 shows an experimental circuit diagram of the TC500 using the Centronic experimental
board. A and B are connected to the D1 and D2 terminals of the experimental board. COMP
OUTPUT is connected to $1 terminal of the board. The computer first selects the auto-zero phase
for a period of time (50 ms). Then it selects the input voltage integration phase and causes the TC500
to integrate the input signal for a period of 40 ms precisely. The computer does this using the on-
board 8253 timer/counter which are available on every computer. The polarity of the input signal
can be determined by polling the status of the COMP OUTPUT from $1. Next, the computer selects
the reference voltage deintegration phase. As soon as the computer performs this action, it counts the
time period until the COMP OUTPUT goes from high to low. This period, together with the 40 ms
integration period, is used to find the input voltage. Values of the components are chosen according
to the manufacturer's recommendation.

Figure 6.22 Experimental circuit of the TC500A

TP6 program list of TC5OOA.PAS

Program TC500A;

(* driver for TC500A integrating converter analogue processor.

++ It is connected to the Centronic experimental board

A (pin 12) connected DI, B (pin 13) connected D2 *)

222 PC INTERFACING

GATHERING INFORMATION FROM THE EXTERNAL WORLD

(* A connected to DI, B connected to D2, COMP OUTPUT connected to Sl *)

uses

Dos, Cr t ;

i,polarity:integer;

dummy:real;

{$I c:\ioexp\tplibl.pas }

Procedure init_8253(low_count_byte, highcountbyte:byte);

(* load the low_byte and high_byte into the 3rd timer of 8253 *)

(* clock frequency to the 8253:2 * 1,193,180 = 2386360 Hz clock period i/f = 0.419 us *)

begin

(* Control word= b6H = 10110111b

I0 = select counter 2

ii = read/write low count byte first then high byte

011 = mode 3

0 = binary counting with 16-bit *)

Port[$43]:=$b6; (* load control word to the control register of 8253 *)

Port[$42]:=low_count_byte; (* load low count byte *)

port[$42]:=high_count_byte; (* load high count byte *)

port[$61]:=port[$61] or i; (* disable speaker *)

port[$43]:=$80; (* 80H is the counter latch command for counter 3 *)

end;

Procedure delay_8253(low_bytex, high_bytex:byte);

(* time delay using the 3rd timer of the 8253 *)

(* delay period is specified by low_bytex and high_bytex *)

var

low_byte, high_byte:byte;

begin

init_8253(low_bytex,highbytex);

repeat dummy:=port[$42] until (port[S42]=0) ;

repeat low_byte:=port[$42]; high_byte:=port[$42]; until (low_byte<5);

end;

Function deintegration_counts:real;

(* find the deintegration period (number of counts of the 3rd timer of 8253 *)

var

counts,low_byte, high_byte:byte;

finished_flag:boolean;

begin

counts:=0;

PC INTERFACING 223

GATHERING INFORMATION FROM THE EXTERNAL WORLD

repeat

init8253(255,255); (* load 255 into the high and low counter registers of the 8253 *)

repeat

low_byte:=port[$42];

high byte:=port[$42];

if port[P_address+l] and 8 = 0 then finished flag:=true

else finished_flag:=false;

until (low byte<25) and (high_byte=0) or finished_flag;

if not finished flag then counts:=counts + I;

until finished_flag;

deintegration_counts:=counts*(255*256+255) + (255.0-high_byte)*256 + (255-1ow_byte);

end;

Function Voltage:real;

(* find the input voltage *)

var

add,data: array [1..8] of byte;

ii,addx:byte;

begin

write_data_port(P_address,0+2); (* zero the processor for i00 ms*)

delay(500);

write_data_port(P_address,l+0); (* signal integrating for 40 ms *)

delay8253(llT,186);

polarity:=read_status_port(P_address) and i;

delay8253(l17,186); (* delay 186"256+117 counts = 20 ms *)

write data_port(P_address,l+2); (* reference integrating *)

dummy:=deintegration_counts;

if polarity=0 then polarity:=-l;

voltage:=polarity*dummy/(186*256+l17)/2*l.5; (* reference voltage = l.SV *)

delay(100);

write data_port(P_address,0); (* integrator output zero for 5 ms *)

delay(50);

end;

(* Main Program *)

begin

Centronic address; _

write data_port(P_address,0+2); (* zero the processor *)

write(' Press RETURN to start sampling');readln;

224 PC INTERFACING

GATHERING INFORMATION FROM THE EXTERNAL WORLD

end.

clrscr;

repeat

gotoxy(20,10); write('Input voltage to the TC500: ',voltage:6:4);

delay(1000);

until keypressed;

6.2 Voltage-to-frequency converters

A voltage-to-frequency converter is a device which converts a voltage into a pulse train with its
frequency precisely proportional to the input voltage. The digital pulse train can be transmitted from
the converter to a computer through various means such as opto-isolators, pulse transformers, radio
links or fibre-optic links, etc.

6.2.1 Principles of V/F conversion

The principle of a voltage-to-frequency converter is shown in Figure 6.23. It consists of a switched
current source, an input comparator and a one-shot timer. The voltage comparator compares a
positive input voltage V1 to the voltage Vx. If V1 is greater than Vx, the comparator triggers the one-

Figure 6.23 Principle of frequency-to-voltage converter

PC INTERFACING 225

GATHERING INFORMATION FROM THE EXTERNAL WORLD

shot timer. The output of the timer turns on the frequency output transistor and the switched current
source for a period of t - 1.1 Rt Ct. During this period, the current i flows out of the switched current
source and provides a fixed amount of charge into the capacitor, CI. This normally charges Vx up to
a higher level than V1. At the end of the timing period, the current i turns off and the timer resets
itself. Next, the capacitor C1 will gradually discharge via R1 until Vx falls to the level of V1. Then
the comparator will trigger the timer and start another cycle.

6.2.2 LM331 V/F converter

The pin-out and a typical application of the LM331 (National Semiconductor, RS411-652) are given
in Figure 6.24. The linearity between the output frequency and the input voltage is 0.01% of the full
scale of frequency which ranges from 1 Hz to 100 kHz. The pulse train output is compatible with
TTL and CMOS when it operates at the +5V power supply. It can drive three TTL loads. Pin 4 and
pin 8 are connected to the negative and positive rails of the power supply. The power supply is in the

i i

Current output

Reference current

Frequency output

GND

VCC

Comparator input

Threshold

R/C

+5V

T
i ,Rt i

100K 8 I I 5K8 ~ -] Ct 10K

-i0

1--'----6 Digital outpt

100K 12K

4 1000 nF

"r

RI

I=~47R

I __ GND

4

_L ~ 5K

+5V

GND

Terminals on the
Centronic experimental

board

Figure 6.24 Experimental circuit of the LM331

226 PC INTERFACING

GATHERING INFORMATION FROM THE EXTERNAL WORLD

range 4 to 40V. The supply current is typically 3 mA for a 5V power supply. Pin 2 is a 1.9V reference
voltage. A current setting resistor Rs is connected between pin 2 and the ground. The reference
current flowing through Rs is 1.9/Rs. This current flows out of pin 1 if the internal switch is switched
to pin 1. Pin 5 is the R-C summing junction of the one-short timer. Pin 7 is the voltage signal input
pin and pin 6 sets the threshold. Pin 3 is the open-collector output. The current flowing through the
output driver is internally limited below 50 mA.

An experimental circuit is shown in Figure 6.24. The circuit is connected to the Centronic
experimental board. The frequency output is connected to $1 terminal of the board. A software
driver is used to measure the frequency of the output signal from the LM331. The sample program
is written in TP6 and is listed below. The 8253 timer/counter chip inside the computer is used for
measuring the frequency.

TP6 program list, LM331.PAS

Program LM331_Voltage_Frequency;

(* Software driver for LM331 V/F*)

uses

graph,crt,dos;

var

time_period:real;

(* to load three included library files *)

{$I c:\ioexp\tplibl.pas}

Procedure init_8253(low_countbyte, high_countbyte:byte);

(* load the low_byte and high_byte into the 3rd timer of 8253 *)

(* clock frequency to the 8253:2 * 1,193,180 = 2386360 Hz clock period i/f = 0.419 us *)

begin

(* Control word= b6H = 10110111b

10 = select counter 2

ii = read/write low count byte first then high byte

011 = mode 3

0 = binary counting with 16-bit *)

Port[$43]:=$b6; (* load control word to the control register of 8253 *)

Port[$42]:=low_count_byte; (* load low count byte *)

port[$42]:=high_count_byte; (* load high count byte *)

port[$61]:=port[$61] or i; (* disable speaker *)

port[$43]:=$80; (* 80H is the counter latch command for counter 3 *)

end;

Function read_8253:integer;

(* read the two 8-bit counter registers *)

var

low_byte, high_byte:byte;

PC INTERFACING 227

GATHERING INFORMATION FROM THE EXTERNAL WORLD

begin

end;

low_byte:=port[$42];

high byte:=port[$42];

read8253:=low_byte + 256* high_byte;

Function find_period(Address:integer; Bit_weight:integer):real;

(* find the period of an input digital signal.

Input signal is specified by Input port address (Address) and bit.

Bit 0, Bit_weight=l

Bit i, Bit_weight=2

.....

Bit 7, Bit_weight=128 *)

count, Average_number,timel,time2:integer;

begin

end;

(* Testing the period of low state of a digital signal. This will be used

for calculating Averagenumber *)

repeat until port[Address] and Bit_weight=Bit_weight; (* signal state high *)

repeat until port[Address] and Bit_weight=0; (* signal state low *)

timel:=read_8253; (* read counts in 8253 first time*)

repeat until port[Address] and Bit_weight=Bit_weight; (* signal state high again *)

time2:=read_8253; (* read counts in 8253 the second time *)

Average_number:=round(100/(Timel-Time2)); (* find Average_number *)

if Average_number=0 then Average_number:=l;

repeat until port[Address] and Bit_weight=Bit_weight; (* signal state high *)

repeat until port[Address] and Bit_weight=0;

timel:=read 8253;

for count:=l to Average_number do

begin

repeat until port[Address] and Bit_weight=Bit_weight;

repeat until port[Address] and Bit_weight=0;

end;

Time2:=read 8253; _

(* signal state low *)

(* read counts in 8253 first time *)

(* find low going edge of a digital signal *)

(* signal state high *)

(* signal state low *)

(* read counts in 8253 the second time *)

Find_period:=((Timel-time2)*I/(2*l193180)*le6/Average_number);

(* Main program *)

begin

Centronic address;

init_8253(255,255); (* initialize 3rd timer of 8253 *)

repeat

time_period:=find_period(P_address+l, 8); (* P_address+l is the address of the status port,

8 is the bit weight of DB3 *)

228 PC INTERFACING

GATHERING INFORMATION FROM THE EXTERNAL WORLD

end.

gotoxy(15,10); write('Time period of output signal [us]:

gotoxy(15,11);write('Frequency of the output signal [Hz]:

delay(5000);

until keypressed

', time_period:8:l);

',i/timeperiod*le6:8:l);

6.3 Digital sensors for measuring light intensity

6.3.1 TSL220 digital opto-sensor

Conventional opto-sensors convert light to a current, voltage or resistance signal. Amplification
circuits are required to make the level of the signal high enough to be measured. If such a system is
interfaced to a computer, an A/D converter is used. Light-to-frequency converters convert light
intensity into a frequency signal and the signal can be fed into a computer.

The TSL220 (Texas Instruments, RS194-278) is a light-to-frequency converter. A 4 mm 2 silicon
photodiode and a current-to-frequency converter are housed in one package. The output is a fixed-
width pulse train signal with its frequency proportional to the light intensity falling on the
photodiode. The pin-out and the internal block diagram of the IC are shown in Figure 6.25. The

Figure 6.25 TLS220 and internal block diagram

PC INTERFACING 229

GATHERING INFORMATION FROM THE EXTERNAL WORLD

current-to-frequency converter circuit consists of an op-amp integrator, transistor reset switches, a
level detector and a one-shot pulse generator.

Since the output frequency of the TSL220 is determined by the current generated by the
photodiode and the value of the external integration capacitor, the frequency range can be set to suit
different applications by choosing different capacitors. A selection guide for the component values is
provided in the manufacturer's data sheet. The capacitor is connected to the cathode of the
photodiode (pin 4) and the op-amp output (pin 6). The output signal is 5V CMOS compatible. If it
is connected to T/'L logic circuits, an external 3.3 K pull-down resistor should be used. The device
requires a supply voltage of 4 to 10V. At 5V supply voltage, the supply current is 7.5 mA.

An experimental circuit is shown in Figure 6.26. The circuit is connected to the Centronic
experimental board. The output from the TSL220 is connected to $1 terminal of the board. A
software driver is used to measure the frequency of the output signal. It is written in TP6 and utilizes
the on-board 8253 timer/counter chip inside the PC.

Figure 6.26 Experimental circuit using the TSL220

TP6 program list of TSL220

Program TSL220;

(* Software driver for TSL220 light-to-frequency converter*)

(* capacitor used for the TSL220: 10 nF, 1% *)

(* this software does not work if the light intensity is too low *)

(* output from the TSL220 is connected to Sl of the Centronic experimental board *)

u s e s

graph,crt,dos;

230 PC INTERFACING

GATHERING INFORMATION FROM THE EXTERNAL WORLD

var

time_.period:real;

(* to load three included library files *)

{$I c:\ioexp\tplibl.pas}

Procedure init_8253(low_count_byte, high_count_byte:byte);

(* load the lowbyte and high_byte into the 3rd timer of 8253 *)

(* clock frequency to the 8253:2 * 1,193,180 = 2386360 Hz clock period i/f = 0.419 us *)

begin

(* Control word= b6H = 10110111b

10 = select counter 2

ii = read/write low count byte first then high byte

011 = mode 3

0 = binary counting with 16-bit *)

Port[$43]:=$b6; (* load control word to the control register of 8253 *)

Port[$42]:=low_count_byte; (* load low count byte *)

port[$42]:=high_countbyte; (* load high count byte *)

port[$61]:=port[$61] or I; (* disable speaker *)

port[$43]:=$80; (* 80H is the counter latch command for counter 3 *)

end;

Function read_8253:integer;

(* read the two 8-bit counter registers *)

var

low_byte, high_byte:byte;

begin

low_byte:=port[$42];

high_byte:=port[$42];

read_8253:=low_byte + 256* high_byte;

end;

Function find_period(Address:integer; Bit_weight:integer):real;

(* find the period of an input digital signal.

Input signal is specified by Input port address (Address) and bit.

Bit 0, Bit_weight=l

Bit i, Bit_weight=2

.....

Bit 7, Bit_weight=f28 *)

var

count, Average_number,timel,time2:integer;

begin

(* Testing the period of low state of a digital signal. This will be used

for calculating Averagenumber *)

PC INTERFACING 231

GATHERING INFORMATION FROM THE EXTERNAL WORLD

end;

repeat until port[Address] and Bit_weight=Bit_weight; (* signal state high *)

repeat until port[Address] and Bit_weight=0; (* signal state low *)

timel:=read_8253; (* read counts in 8253 first time*)

repeat until port[Address] and Bit_weight=Bit_weight; (* signal state high again *)

time2:=read_8253; (* read counts in 8253 the second time *)

Average_number:=round(10/(Timel-Time2)); (* find Averagenumber *)

if Average_number=0 then Average_number:=l;

repeat until port[Address] and Bit_weight=Bit_weight; (* signal state high *)

repeat until port[Address] and Bit_weight=0;

timel:=read_8253;

for count:=l to Average_number do

begin

repeat until port[Address] and Bit_weight=Bit_weight;

repeat until port[Address] and Bit_weight=0;

end;

Time2:=read 8253;

(* signal state low *)

(* read counts in 8253 first time *)

(* find low going edge of a digital signal *)

(* signal state high *)

(* signal state low *)

(* read counts in 8253 the second time *)

Find_period:=((Timel-time2)*i/(2*l193180)*le6/Average_number);

(* Main program *)

begin

end.

Centronic_address;

init_8253(255,255); (* initialize 3rd timer of 8253 *)

repeat

time_period:=find_period(P_address+l, 8); (* P_address+l is the address of the status port,

8 is the bit weight of DB3 *)

gotoxy(10,10); write('Time period of output signal from TSL220 [us]: ', time_period:8:l);

gotoxy(10,11);write('Frequency of the output signal [Hz]: ',I/time_period*le6:8:l);

delay(2000);

until keypressed

6.3.2 TSL215 linear light detector array

The TSL215 (Texas Instruments) opto-sensor consists of two sections of 64 charge-mode pixels
arranged in a 128 by 1 linear array. Each pixel is 120 pm by 70 pm with a 125 pm centre-to-centre
spacing. The operation of the sensors involves two periods: an integration period and an output
period. During the integration period, charge, which is induced by the incident light, is accumulated
in each pixel. A pixel receiving a higher intensity of light results in a higher charge voltage. During
the output period, the charge voltage from each pixel is clocked out from the analogue output. The
voltage can be measured by A/D converters.

The pin-out of the TSL215 and its internal block diagram are shown in Figure 6.27. Pins 1 and 7
are VDD and they are connected to +SV. Pins 5 and 12 are GND pins and connected to the ground.

232 PC INTERFACING

GATHERING INFORMATION FROM THE EXTERNAL WORLD

Figure 6.27 Pin-out of TSL215 and internal block diagram

AO1 (pin 4) and AO2 (pin 8) are analogue outputs for the first and second sections. CLK (pin 3) is
the clock input. SI1 and SI2 (pins 2 and 10) are serial inputs for the two sections. They are used for
controlling the integration period and the pixel output sequence. SO1 (pin 13) is the serial output of
the first section and SO2 is the serial output of the second section.

The device has two output modes. One is the parallel mode and the other is the serial mode. In the
parallel mode, the pixel voltages for the two sections are output from AO1 and AO2 under the
control of CLK, SI1 and SI2 inputs. SI1 and SI2 are connected together. Two A/D conversion
channels are required to read the two analogue signals. In the serial mode, AO1 and AO2 are
connected together. The pixel voltages from the first section are output first and the voltages from
the second section are output next. Only one AiD converter channel is required. The connection for
the serial mode is shown in Figure 6.28. SO1 is connected to SI2. The external control signal is
supplied to SI1. SI1 goes from low to high first. At the low-to-high transition of the clock input, the

PC INTERFACING 233

GATHERING INFORMATION FROM THE EXTERNAL WORLD

Figure 6.28 Timing sequence for the serial output mode

pixel integration period is terminated and the data output sequence is initiated. This also starts a new
integration. Immediately after the clock transition, the voltage from the first pixel of the first section
appears at AO1. Before the falling edge of the clock, SI should be set low. The next 63 clock cycles
shift out all the pixel voltages of the first section. At the rising edge of the 64th clock cycle, SO 1 goes
from low to high which makes SI2 go from low to high. At the rising edge of the 65th clock, AO1
goes to a high impedance state. The integration period for the second section is terminated and the
output sequence for the second section is initiated. The next 64 clock cycles shift out the pixel
voltages of the second section. At the rising edge of the 129th clock cycle, SO2 goes high and AO2
goes to a high impedance state.

Figure 6.29 shows an experimental circuit in which a TSL 215 is configured in the serial output
mode. The TSL215 is connected to the Centronic experimental board. CLK is connected to D1 and
SI1 is connected to D2 terminals on the board. The pixel voltage output is fed to an oscilloscope
which shows the pattern of the light intensity experienced by the sensor array. A TP6 program
generates the CLK and SI1 signals. Some application ideas for the TSL215 sensor are shown in Figure
6.30.

234 PC INTERFACING

GATHERING INFORMATION FROM THE EXTERNAL WORLD

Figure 6.29 Experimental circuit of the TSL215

Figure 6.30 Application ideas for the TSL215

PC INTERFACING 235

GATHERING INFORMATION FROM THE EXTERNAL WORLD

TP6 program list of TSL215.PAS

Program TSL215;

(* CLK connected to D1, SI connected to D2 *)

uses

Dos, Crt;

var

i,polarity:integer;

dummy:real;

{$I c:\ioexp\tplibl.pas }

Procedure time_delay;

var

ij:integer;

begin

for ij:=l to i do ij:=ij;

end;

Procedure Read_pixel;

begin

write_data_port(P_address, 0+2);

write_data_port(P_address, 1+2);

end;

for i:=1 to 128 do

begin

write_dataport(P_address,0+0);

time_delay;

write_data_port(P_address,l+0);

time_delay;

end;

(* main program *)

begin

end.

Centronic address; _

repeat

read pixel;

delay(3);

until keypressed

236 PC INTERFACING

GATHERING INFORMATION FROM THE EXTERNAL WORLD

6.3.3 Other digital opto-sensors

The ISIU60 (Sharp, RS577-897) is an infra-red receiver for remote controllers. It is housed in a 3-
pin plastic package and incorporates a circuitry capable of receiving a modulated 38 kHz infra-red
signal and converting it to a logic pulse train output. The pin-out and the internal block diagram of
the IC are shown in Figure 6.31. The voltage supply is +5V and the current consumption is 3 mA.
Digital signals which can be received reliably should have a high and low level pulse width less than
400 ps to 800 ps, respectively. The minimum operation distance is 5 metres and the receiving angle
is _+30 ~ .

Figure 6.31 Pin-out and internal diagram of the ISIU60

The IS485/IS486 (Sharp, RS197-031) is an opto-Schmitt trigger detector housed in a side looking
plastic package with an integral daylight cut-off filter. The device consists of a photodiode, an
amplifier, a voltage regulator, a Schmitt trigger and a buffered output which is compatible with the
TTL/LSTTL and CMOS logic. The pin-out and the internal block diagram of the IC are shown in
Figure 6.32. It accepts a power supply from 4.5 to 17V. A load resistor (500 Q to 50 kQ) should be
used at the output pin. When the load resistor is 1K, the rise time is 100 ns and the fall time is 50
ns. The receiving angle is __.20 ~

PC INTERFACING 237

GATHERING INFORMATION FROM THE EXTERNAL WORLD

Figure 6.32 Pin-out and internal diagram of IS485/IS486

6.4 Digital sensors measur ing temperatures

Reading temperature into a digital system requires a temperature sensor, a signal conditioning and
A/D conversion circuits. Latest temperature sensors combine all these on a single chip.

6.4.1 DS 1620 thermometer

The DS1620 (Dallas RS218-3810)digital thermometer and thermostat provides a 9-bit temperature
reading to indicate the temperature of the device. It has three temperature alarm outputs which can
be used for thermostat applications. The alarm setting can be programmed and stored in the on-
board non-volatile RAM. It measures temperatures f rom-55~ to 125~ in 0.5~ increments.
Conversion takes about one second.

The pin-out and the internal block diagram of the device are shown in Figure 6.33. Data is transferred
between the device and external circuits via a three-wire serial bus: CLK/-CONV (pin 2), DQ (pin 1) and
RESET (pin 3). These pins are TIZ compatible. THIGH (pin 7) is the high temperature trigger. It goes
high when the measured temperature exceeds the high temperature limit stored inside the chip. It remains
high until the temperature is less than the stored value. TLOW (pin 6) is the low temperature trigger. It
goes high when the temperature falls below the low temperature limit stored inside the chip. It remains
high until the temperature is higher than the stored value. TCOM (pin 5) is a high/low combination
trigger. It goes high when the measured temperature exceeds the high temperature limit and becomes low
when the temperature falls below the low temperature limit. Pin 4 and pin 8 are connected to the ground
and +5V rails of the power supply. The standby current is about 1 ~lA and the active supply current
(when the device is performing the temperature measurement) is 1 mA.

236 PC INTERFACING

GATHERING INFORMATION FROM THE EXTERNAL WORLD

Figure 6.33 Pin-out and internal block diagram of the SD1640

The control sequence of the device has two stages. In the first stage, a control command is sent to
the DS1620 serially via the bus. In the second stage, the temperature data (9 bits) is either read from
the device or written to it via the bus. There are nine commands.

�9 Read temp (AAh): reads the register containing the last temperature conversion result. After
executing the command, the 9-bit temperature data will be read from the device.

�9 Start conversion T (EEh): initializes temperature conversion. There is no further data transfer after
this.

�9 Stop convert T (22h): stops a temperature conversion. There is no further data transfer after this.
�9 Write TH (01h): writes the high temperature limit into the TH register. After the command, the 9-

bit temperature data is written to the device.
�9 Write TL (02h): writes the low temperature limit into the TL register. After the command, the 9-

bit temperature data is written to the device.
�9 Read TL (Alh): reads the TH register. After the command, the device outputs the 9-bit

temperature data.
�9 Read TL (A2): reads the TL register. After the command, the device outputs the 9-bit temperature

data.
�9 Write configuration (0Ch): writes the configuration data to the configuration register. An 8-bit

data should follow the command.
�9 Read configuration (ACh): reads the control data from the configuration register. After the

command, the device outputs the 8-bit data.

PC INTERFACING 239

GATHERING INFORMATION FROM THE EXTERNAL WORLD

The configuration word controls the operation mode of the DS 1620. It is stored in the configuration
register. The bit functions from bit 7 to bit 0 are shown below:

DONE THF TLF XXX C P U / S H O T

X don't care
DONE 1 - conversion completed, 0 = conversion in progress.
THF Temperature high flag. The bit is set to 1 when the temperature is greater than or equal to the high temperature

limit. It will remain 1 until reset by writing 0 into it or by removing power from the device.
TLF Temperature low flag. The bit is set to 1 when the temperature is less than or equal to the low temperature limit.

It remains 1 until reset by writing 0 into it or by removing the power from the device.
CPU If CPU-0, the CLK/-CONV pin acts as a conversion start control. If CPU is 1, the DS1620 will be used with a

CPU communicating to it over the 3-wire port.
1SHOT One-shot mode, if 1SHOT is 1, the DS1620 will perform one temperature conversion upon the reception of the

start conversion command. I f / S H O T is 0, the DS1620 will continuously perform temperature measurement.

Temperature readings have a 9-bit two's complement format. The relationship between temperature
and the DS1620's data output is given below:

+125~ 0 11111010 (00FA)
+25~ 0 00110010 (0032)
1/2~ 0 00000001 (0001)
O~ 0 00000000 (0000)
-1/2~ 1 11111111 (01FF)
-25~ 1 11001110 (O1CE)
-55~ 1 10010010 (0192)

The timing sequence for data transfer is given in Figure 6.34. A data transfer is initiated by supplying
a high-to-low pulse to the -RESET (pin 3). Bringing pin 3 to the low state terminates the data transfer.
Writing data to the device and reading data from the DS1640 are controlled by the clock input. A
clock cycle is a sequence of a falling edge followed by a rising edge. When writing data into the device,
data bits must be stable at the rising edge of the clock cycle. When reading data from the device, data
bits are output from the device at the falling edge of the clock. The data bits remain valid until the
rising edge of the clock. The DQ pin goes to the high-impedance state when the clock is high. Data
bits are communicated via the bus with the LSB first. DQ pin outputs data and inputs data as well.

An experimental circuit using the Centronic experimental board is shown in Figure 6.35. As DQ
is an input and an output, the interface between the IC and the experimental board must be able to
cope with this. A transistor can be used for this purpose. The base of the transistor is connected to
D1 terminal. When D1 is at the high state, the transistor conducts which brings DQ pin low. When
D1 is at the low state, the transistor is switched off and DQ is pulled to +5V. The status of the DQ
is controlled by the IC. DQ is connected to the $1 terminal of the Centronic experimental board and
the status of DQ is then read into the computer. CLK/-CONV and -RST pins of the DS1620 are
connected to C1 and C2 terminals of the experimental board. After -RST goes high from low, the
DS1620 is set to receive the command bits. D1 will output the required data to the IC (note that the
D1 is inverted due to the transistor circuit) under the control of the clock. If the DS1620 is to output
data, after the command data bits are sent to the DS1620, D 1 goes low. The serial data bits are then
clocked out from the IC under the control of the clock. If the DS1620 is to receive data, the serial
data will be clocked into the DS1620 under the control of the clock input. A TP6 program is used
to perform various operations.

240 PC INTERFACING

GATHERING INFORMATION FROM THE EXTERNAL WORLD

Figure 6.34 Timing sequence of the DS1620

TP6 program list of DS1620.PAS

Program DS1620_temperature_sensor;

(* software driver for the DS1620 temperature sensor *)

(* DQ data I/O connected to Sl (when read) and to D1 when write

CLK/-CONV connected to C1

-RST connected to C2 *)

uses

crt, dos;

{$I c:\ioexp\tplibl.pas}

Procedure Write_protocol(datax:byte);

(* write protocol to DS1620 *)

PC INTERFACING 241

GATHERING INFORMATION FROM THE EXTERNAL WORLD

Figure 6.35 Experimental circuit of DS1620

begin

i:byte;

write_control_port(P_address,l+0); (* -RST at low, CLK at high *)

delay(l);

write_control_port(P_address,l+2); (* -RST brought high to start I/O cycle *)

(* CLK at logic high *)

delay(l);

(* send protocol bits to the DSI620 *)

for i:=l to 8 do

begin

write_control_port(Paddress,0+2);

delay(l);

write_data_port(P_address,l - round((datax and bit_weight(i))/bit_weight(i)));

(* output protocol bits to D1 terminal of the experimental board, the line is inverted *)

delay(l);

write_control_port(P_address,l+2);

delay(60);

942 PC INTERFACING

GATHERING INFORMATION FROM THE EXTERNAL WORLD

end;

end;

delay(50);

Procedure Write_temperature(temp:byte);

(* write temperature (temp) after protocol, temp = 0 - 250. -temp not supported *)

var

i,datax:byte;

begin

end;

datax:=temp*2;

(* send protocol bits to the DSI620 *)

for i:=l to 9 do

begin

write_controlport(P_address,0+2);

delay(l);

if i<=8 then write_data_port(P_address,l - round((datax and bit_weight(i))/bit_weight(i)))

else write_data_port(P_address,0);

(* output protocol bits to D1 terminal of the experimental board, the line is inverted *)

delay(l);

write_control_port(P_address,l+2);

delay(60);

end;

delay(90);

Function Temperature:real;

var

i,tempx:integer;

bitx:array[l..9] of byte;

begin

write_data_port(P_address,0);

for i:=l to 9 do

begin

write_control_port(P_address,0+2);

delay(l);

bitx[i]:=read_status_port(P_address) and i;

write_control_port(P_address,l+2);

delay(l);

end;

write_control_port(P_address,l+0);

delay(10);

tempx:=0;

for i:=l to 8 do tempx:=tempx + bit_weight(i)*bitx[i];

PC INTERFACING 243

GATHERING INFORMATION FROM THE EXTERNAL WORLD

Temperature:=(tempx + 0*bitx[9] * 256)/2;

end;

Procedure Examplel;

(* An example shown how to set high and low temperature limit and read the

set temperature back to the computer *)

begin

end;

writeln('Example I, TH and TL are loaded with 35 and 25 deg C');

writeln('Reading TH and TL temperature values from the DS1620 ');

write protocol(12); (* 0Ch= Write configuration command*)

writeprotocol(0); (* 00h= continuous configuration, not CPU mode *)

write_protocol(l); (* 01h= Write high temp to TH command *)

write temperature(35);(* 85D= high temperature limit in deg C *)

write protocol(2); (* 02h = write low temp to LH command *)

write temperature(25);(* 20D= low temperature limit in deg C *)

write_protocol(161); (* Alh= CPU read content in TH command *)

writeln('High temperature limit: ',temperature:5:l,' ~ (* read TH temperature from the DS1620 *)

write_protocol(162); (* A2h = CPU read content in TL command *)

writeln('Low temperature limit: ',temperature:5:l,' ~ (* read TL temperature from the DS1620 *)

Procedure Example2;

(* Testing other features *)

begin

write_protocol(12);

write_protocol(00); (* CPU mode and 1 shot mode *)

write_protocol(34); (* 22h= stop the CPU *)

writeln;

repeat

write_protocol(170); (* AAh= read temperature command *)

gotoxy(8,10);

write('DS1620 stopped, Old temperature measured by DS1620 [deg C]:

(* As DS1620 stopped, one the old temperature is read *)

delay(5000);

until keypressed;

readln;

write_protocol(238); (* EEh= start temperature conversion *)

repeat

write_protocol(170); (* AAh= read temperature command *)

gotoxy(5,12);

write('DS1620 active, present temperature measured by DS1620 [deg C]:

(* new temperature is continuously measured *)

delay(5000);

',temperature:5:l);

',temperature:5:l);

244 PC INTERFACING

GATHERING INFORMATION FROM THE EXTERNAL WORLD

until keypressed;

end;

(* Main Program *)

begin

Centronic_address;

examplel;

example2;

end.

6.4.2 Single wire digital temperature sensor

The SMARTEC (LJK Technology) temperature sensor allows temperature to be measured digitally
by a computer via a single wire. A 4 kHz TTUCMOS compatible square wave with a modulated
temperature-dependent duty cycle is output from the wire. By measuring the duty cycle of the square
wave, the temperature can be measured. The sensor eliminates the use of AfD converters and utilizes
one wire for I/O interfacing. The operating temperature range is from -45~ to 130~ The total
measurement accuracy is less than 2~ over the whole temperature range. It requires a power supply
from 4.75 to 7V with a typical supply current of 200 laA.

The pin-out of the sensor is given in Figure 6.36. Pin 1 is the signal output; pin 2 and pin 3 are
connected to the positive and ground rails of the power supply. The duty cycle of the output signal
is linearly related to the temperature measured according to the equation:

Duty cycle (%) = 0.320 + 0.00470 x Temperature (~

The output pin is connected to one line of an input port of the computer. A computer program counts
the time period when the output is high and the period when the output is low.

Figure 6.36 shows an experimental circuit using the sensor and the Centronic experimental board.
The software driver is written in TP6.

Figure 6.36 Experimental circuit diagram of the SMARTEC sensor

PC INTERFACING 245

GATHERING INFORMATION FROM THE EXTERNAL WORLD

TP6 program list of SMT.PAS

Program Temperature SMT_sensor;

(* Serial data load (pin I) connected to Sl *)

uses

Crt, dos;

{$I c:\ioexp\TPLIBI.PAS }

Var

C_or_F,i:byte;

Datax:array[l..12] of byte;

unitx:char;

Function temperature:real;

(* calculate duty cycles and then find the temperature *)

vat

ip,hp,i,total_scan:longint;

begin

ip:=0; (* input low status counter reset *)

hp:=0; (* input high status counter reset *)

total scan:=300000; (* total scanning number *)

end;

for i:=l to Total scan do

begin

if port[P address+l] and 8 =0 then Ip:=ip+l;

if port[P address+l] and 8 =8 then hp:=hp+l;

end;

temperature:=(hp/Total_scan-0.32)/ 0.0047

(* if input = 0, low_count +i *)

(* if input = I, high_count +I *)

(* Main Program *)

begin

Centronicaddress; (* select a Centronic interface *)

repeat

gotoxy(10, i0);

write('Temperature from the SMT temperature sensor:

until keypressed

end.

',temperature:5:2,' ~

246 PC INTERFACING

GATHERING INFORMATION FROM THE EXTERNAL WORLD

6.4.3 LCD thermometer modules

The temperature module (Maplin FE33L) has an on-board temperature sensor and a liquid crystal
display. They are mounted on a small PCB board with a 16-way solder edge connection and the PCB
is fixed to a small plastic bracket that houses a 1.5V battery. The module not only measures and
displays the temperature, but also displays time. It draws 15 pA from the battery. This makes the
battery life longer than a year. Some features of the module are summarized as follows:

Thermometer:

Clock:

Power supply:

312 digits display with ~ or with ~ indicator.
Measurement f rom-20~ to +70~ with a resolution of 0.1~
Accuracy: •176 from 0~ to 40~ and •176 for other ranges.
Sampling rate: 10 or 1 second selectable.
Alarm at highest and the lowest temperature.
Serial BCD data output for temperature measurement.
3�89 digits display showing HOUR and MINUTE.
Accuracy: 0.5 second per day.
One 1.5V battery with a life of over a year.

The pin-out and the typical connection are given in Figure 6.37. The module has a serial BCD data
output, the format of which is shown in Figure 6.38. An experimental circuit is shown in Figure 6.37.
Pins 10 and 9 are connected to $1 and $2 terminals of the Centronic experimental board via two
transistor voltage translators. A Turbo Pascal 6 program reads the serial data and converts it into a
temperature value.

TP6 program list of TMODULE.PAS

Program Temperature_LeD_module;

(* Serial data load (pin i0) connecs to Sl. The line is inverted

Serial data output (pin 9) connected to S2. The line is inverted *)

uses

Crt, dos;

{$I c:\ioexp\TPLIBi.PAS }

Var

C_or_F,i:byte;

Datax:array[l..12] of byte;

unitx:char;

Function Temperature:real;

(* read temperature reading from the LCD temperature module *)

begin

write_data_port(Paddress,l); (* power the two voltage translation transistors *)

(* find the header, the header is an ims high pulse *)

repeat

PC INTERFACING 247

GATHERING INFORMATION FROM THE EXTERNAL WORLD

Figure 6.37 LCD temperature module and application

repeat until read_status_port(P_address) and 1 = i; (* find logic 0. the line inverted *)

repeat until read_status_port(P_address) and 1 = 0; (* find logic i. the line inverted *)

delay(3); (* delay 0.8 ms *)

C_or_F:=round(read_status_port(P_address) and 2/2); (* get deg C (=i) or deg F (=0) *)

if C or F=I then unitx:='C' else unitx:='F';

until read_status_port(P_address) and 1 = 0;

248 PC INTERFACING

GATHERING INFORMATION FROM THE EXTERNAL WORLD

Figure 6.38 Format of the serial data output

end;

(* read BCD data. read sequence: 80,40,20,10,8,4,2,1,08,04,02,01 *)

for i:=l to 12 do

begin

repeat until read_status_port(P_address) and 1 = i; (* find logic 0 *)

repeat until read_status_port(P_address) and 1 = 0; (* find logic 1 *)

repeat until read_status_port(P_address) and 1 = i; (* find logic 0 *)

datax[i]:=l-round(read_status_port(P_address) and 2/2); (* read data bit. bit inverted *)

end;

(* generate temperature *)

Temperature:=10*(8*datax[l] + 4*datax[2] + 2*datax[3] + l*datax[4]) +

i*(8*datax[5] + 4*datax[6] + 2*datax[7] + l*datax[8]) +

0.i*(8*datax[9] + 4*datax[10] + 2*datax[ll] + l*datax[12]);

begin

Centronic_address; (* select a Centronic interface *)

repeat

PC INTERFACING 249

GATHERING INFORMATION FROM THE EXTERNAL WORLD

gotoxy(20, i0);

write('Temperature from the module:

delay(5000);

until keypressed

end.

',temperature:5:l,' ~

6.5 Digital humidity sensors

The LCD humidity module (Maplin, ZA38R) has the same style as the temperature/clock module
described above. The module and a typical application are shown in Figure 6.39. It measures the
relative humidity (RH) in the range from 25% RH to 96% RH and records the minimum and
maximum humidity levels measured at any time since the last reset. The humidity sensor is on the
board. Normally, the LCD shows the present humidity value. But the minimum and maximum
humidity can be displayed under the control of two push buttons which are identified by the MIN
and MAX on the display. Both memories can be cleared by pressing down both buttons.

There are four pins to output the relative humidity values in a packed 4-bit BCD format. The
format is shown in Figure 6.40. Each output line begins with a pair of sync pulses. It is followed by
4-bit data indicating the key press conditions. Then the two digits (MSB first) of the humidity are
output.

An experimental circuit is shown in Figure 6.39. The module is connected to the Centronic
experimental board and the four outputs are connected to $1 to $4 terminals of the experimental
board via four transistor voltage translators. A TP6 program is used to read the data and to convert
the data into the humidity reading.

TP6 program list of HMODULE.PAS

Program Humidity_LCD_module;

(* M1 (pin 4) connected to Sl. The line is inverted

M2 (pin 5) connected to S2. The line is inverted

M3 (pin 6) connected to S3. The line is inverted

M4 (pin 7) connected to S4. The line is inverted *)

uses

Crt, dos;

{$I c:\ioexp\TPLIBI.PAS }

Var

C or F,i:byte;

Datax:array[l..12] of byte;

unitx:char;

Function Input_data:byte;

250 PC INTERFACING

GATHERING INFORMATION FROM THE EXTERNAL WORLD

Figure 6.39 LCD humidity module and its application

(* All inputs to the status port are inverted *)

begin

input_data:=15 - read_status_port(P_address);

end;

Function Humidity:real;

(* read humidity reading from the humidity module *)

var

keypressed_data, digit_Ist, digit_2nd:byte;

PC INTERFACING 251

GATHERING INFORMATION FROM THE EXTERNAL WORLD

M1

M2

M3

M4

Synchronization
pulses Keypressed

_1-I I-I o I]

BDC data output Not used
~ ,,

o n o n . II ~_IL,_~_6~~

_N : ,. %LLLIJ~L

_1-I I-I o I] o r[_lAj] .. n . ~ _ L _ L _ L J L , I / _

__1- l l7~

keypressed data

[I ~
First
digit

M1 M2 M3 M4 Description

0 1 0 0 pin 2 pressed
0 0 1 0 pin 1 pressed
0 1 1 0 pins 1 and 2 pressed

0

Second
digit

BCD bits

M1

M2

M3

M4

n. ,.LLLLI~+L

Figure 6.40 Timing sequence of the serial data output

begin

(* find logic 0 before the header *)

repeat until input_data = 15; (* find logic 1 on all inputs *)

delay(500); (* delay 50 ms *)

(* after delay, it is the logic low *)

(* skip the header, two high pulses *)

repeat until input_data = 15; (* find logic 1 *)

repeat until input_data = O; (* find logic 0 *)

repeat until input_data = 15; (* find logic 1 *)

repeat until input_data = O; (* find logic 0 *)

(* read keypressed data *)

repeat until input_data <> 0 ;

Keypressed_data:=input_data;

if keypressed_data < 15 then

begin

(* skip one sync. pulse *)

repeat until input_data = 15;

repeat until input_data = 0 ;

(* input the keypressed data *)

(* find logic 1 *)

(* find logic 0 *)

252 PC INTERFACING

GATHERING INFORMATION FROM THE EXTERNAL WORLD

end

else repeat until input_data = 0;

(* read the Ist digit *)

repeat until input_data <> 0;

digit_Ist:=input_data;

(* input the keypressed data *)

(* skip one sync. pluse *)

repeat until input_data = 15;

repeat until input_data = 0 ;

(* find logic 1 *)

(* find logic 0 *)

(* read the 2nd digit *)

repeat until input_data <> 0; (* input the keypressed data *)

digit_2nd:=input_data;

if digit_2nd = 15 then digit_2nd := 0;

end;

(* generate humidity *)

Humidity:=(digit_ist)*10 + (digit_2nd);

begin

Centronic_address; (* select a Centronic interface *)

repeat

gotoxy(20, 10);

write('Humidity from the module: ',humidity:5:l,' %');

delay(5000);

until keypressed

end.

6.6 Digi tal s e n s o r s for f luid f low

The digital flow sensor (UCC International, RS185-9982) is a 3-terminal flow cell (Figure 6.41). It
has a nylon rotor on a stainless steel shaft. The rotor is situated in the centre of the flow passage.
When a fluid is flowing in the passage, the rotor spins. The rotation is detected by an infra-red
emitter and a detector arrangement. When the rotor spins, it interrupts the infra-red light beam
incident on the detector. The change in light intensity is converted to the change in voltage. After the
signal is amplified and conditioned, a square wave signal is generated at the output terminals. All
electronic circuits are housed inside the sensor. The frequency is proportional to the flow rate of
fluids. For every litre of water passing through the sensor, approximately 752 pulses will be
produced. It can measure a flow rate of water from 1 to 20 litres per minute.

Figure 6.41 also shows an experimental circuit in which the sensor is connected to the Centronic
experimental board. The pulse train is fed into the $1 terminal of the board. A flow rate can be
calculated by counting the number of pulses in a fixed period of time. This can be done easily in the

PC INTERFACING 253

GATHERING INFORMATION FROM THE EXTERNAL WORLD

Figure 6.41 Flow sensor and experimental circuit

program. The program reads the start time first, then it counts the pulses from the sensor. After the
count reaches a certain level, the program reads the time again. Finally, the program calculates the
number of pulses per second and from this the flow rate of water can be calculated.

254 PC INTERFACING

GATHERING INFORMATION FROM THE EXTERNAL WORLD

6.7 Digital sensors measuring magnetic field

6.7.1 FGM-3 digital magnetic field strength sensor

Reading the field strength of a magnetic field into a digital system requires a magnetic sensor, a signal
conditioning circuit and an analogue-to-digital converter. The latest sensor developments combine all
these on a single package. This significantly simplifies the process of reading the magnetic field into
digital systems and improves the quality of the measurement.

The FGM-3 (Speake & Co.) is a three-terminal device. Two terminals are connected to the power
supplies and the third terminal is the output. The pin-out is given in Figure 6.42. It is capable of
measuring a magnetic field of 10 nT. The output is a digital signal with frequencies varying from 50
to 120 kHz. The period of the signal is proportional to the strength of the magnetic field experienced
by the sensor. It also features a low temperature coefficient of 0.003% per ~ Due to its extreme
sensitivity, the device can measure the strength of the earth's magnetic field. It can be used for
detecting direction.

The device requires a power supply of +5V. The power supply can be generated using a 78L09 and
a 78L05 in series. Such a supply provides a very stable voltage output. The measurement technique
is to count the number of pulses for a fixed period of time to determine the frequency of the signal.
The field strength can then be calculated. An experimental circuit is shown in Figure 6.42.

Figure 6.42 FGM-3 magnetic sensor and its experimental circuit

PC INTERFACING 255

GATHERING INFORMATION FROM THE EXTERNAL WORLD

6. 7.2 Digital magnetic field detector

The UCN3121 (Allegro, RS307-446) is an integrated Hall-effect open-collector switch. It contains a
Hall-effect element, an amplifier, a Schmitt trigger, a voltage regulator and an open-collector
follower. The pin-out and the internal block diagram are shown in Figure 6.43. It has a switch-on
point of 350 G and a release point of 260 G. The output of the device is low when the magnetic field
at the Hall sensor exceeds the threshold. When the strength is below the release point threshold, the
output goes high. It requires a power supply of 4.5 to 24V with a typical supply current of 5 mA.
The output stage is an open collector and can source 25 mA. To connect the output to a TI'L/CMOS
circuit, a 10K pull-up resistor should be connected across VCC and OUTPUT.

Figure 6.43 Pin-out and the internal block diagram of the UCN3121

6.8 Radio time bases

Radio time signal receivers allow access to a standard time which is accurate to a second in a million
years. The radio signal is generated in Britain by the National Physics Laboratory. Every minute the
NPL transmits a binary time code which contains the time, the date and the calendar day. NPL is
part of an international network which allows world-wide clocks to agree to the nanosecond. MSF
is the call sign of the NPL time code transmitter which is located in Rugby.

Every minute, the MSF transmitter broadcasts a data stream containing time information. The first
second of every minute contains a fast code. The remaining 59 seconds contain a slow code which
contains the time information. The format of the MSF time-code is shown in Table 6.1.

256 PC INTERFACING

GATHERING INFORMATION FROM THE EXTERNAL WORLD

Table 6. 1 Time binary code of the MSF transmitter

Second Description BCD format I Description
i |

E 0 Fast code
| ! :

1 DUT1 code i

2-,6 : - : i
17 year (tens) , 80

18 year (tens) 40

19 year (tens) i 20
20 year (tens) 10

, ,

21 year (units) , 8

22 year (units) 4

23 year (units) ' 2

24 " 1 1
25 i 10

give year 001o 99

year (units)

I month (tens)
26 month 8

27 month 4

28 month 2

29 month 1

give month 01 to 12

30 day of month (tens) 20

31 day of month (tens) 10

32 day of month 8

33 day of month 4

34 day of month 2
,. i |

35 1 day of month
i

36 day of week

37 day of week

L 38 , day of week

39 L hour (tens) 20

40 1 llour (tens) 10

41 hour 8

42 hour 4

43 hour 2

44 hour 1

give day of month 01 to 30

give day of week 1 to 7

give hour 01 to 24

45
i

minute (tens) 40
, | , , |

46 minute (tens) 20
i 47 ' minute (tens) 1 1 0

i 48 ' minute i 8 '

t49 ' m,nute ' 4 "
450 m,nute 2

51 , m~nute 1

' 5 2 I always"'O" ' 0
| i |

53-58 a l w a y s "1" 1
! ! !

59 a lways "'0" 0
i i •

give minute 00-59

PC INTERFACING 257

GATHERING INFORMATION FROM THE EXTERNAL WORLD

The MSF radio transmission signal is shown in Figure 6.44. The carrier frequency of the code is 60
kHz. It is transmitted at the beginning of each second for 100 ms and 200 ms. The 100 ms period
corresponds to a zero and the 200 ms period corresponds to 1. Transmissions from 52 to 59 seconds
are set permanently to 10000001. The sequence is unique and is used to synchronize the receiver.

80 40 20 10 8
, , ,

,

1 I]o rio
. . . .

.

Year, 1st digit = 9

4 2 1 10 8
. , .

. , ,

I L d 3
, ,

, .

Month Month
Year, 2nd digit = 7 1st digit 2nd digit

= 0 =1

Figure 6.44 Format of MSF transmission data

The EM2 MSF receiver module (Maplin MK68Y) and the MSF antenna (Maplin MK72P) forms
a complete time code receiver. It produces a serial digital output for external decoding. The EM2
contains a very sensitive radio receiver with a very tight bandwidth of 10 Hz. The module has a low-
power standby mode and an active mode under the control of PON input. In the standby mode,
maximum current consumption is 1 laA. In the active mode the current is 500 laA. The power supply
voltage is a 1.5 to 3.5V single-rail supply. UB and GND are connected to the positive and ground
rails of the supply. To reject the mains interference, a 1 kf2 resistor and a 10 laF electrolytic are used.
The MSF data output is connected internally with an active low open collector npn transistor with
a maximum current of 15 mA and a maximum collector voltage of 5.25V. An external 330 kf2 pull-
up resistor is suitable for use with +3V and 470 kf2 at +5V. The MSF antenna is a pre-aligned LC
tuned ferrite antenna which is specifically designed for the EM2 receiver module.

An experimental circuit using the Centronic experimental board is shown in Figure 6.45(a). The
digital output from the MSF receiver is connected to the $1 terminal on the experimental board. The
voltage level on the MSF receiver is converted to the T-I'L logic using a transistor voltage translator.
A software decoder written in TP6 is shown below.

TP6 program list of MSF_RES.PAS

Program MSF receiver;
_

(* MSFreceiver software driver, data connected to S1 of the Centronic experimental board *)

258 PC I N T E R F A C I N G

GATHERING INFORMATION FROM THE EXTERNAL WORLD

Figure 6.45 Application of MSF receiver

PC INTERFACING 259

GATHERING INFORMATION FROM THE EXTERNAL WORLD

crt, dos;

{$I c:\ioexp\tplibl.pas}

Function Period:byte;

(* find 1 or 0 for every second data transmission *)

begin

repeat until read_status_port(P_address) and 1 = I; (* find logic 1 *)

delay(150*ll); (* delay 150 ms *)

if read_status_port(P_address) and 1 = 1 then period:=l else period:=0;

(* if it is still logic high, the data transmission is 1

if it is logic low, the data transmission must be 0 *)

delay(700*ll); (* delay 700 ms *)

end;

Procedure get_time_bit;

(* get time data *)

var

count,i:byte;

Year,Month,Day_of_month,Day_of_week,hour,minute:integer;

Tbit: array [1..60] of real;

begin

(* find the data transmitted from 3 to 16 seconds, all zero *)

count:=0;

repeat

if period=0 then count:=count + 1 else count:=0;

until Count>=14;

(* get the first date transmitted *)

repeat until period=l;

TBit[l]:=l; (* Year data, bit 3 *)

(* get the next 35 data *)

for i:=2 to 36 do TBit[i]:=period;

(* form the time information *)

Year:= round((8*Tbit[l] + 4*Tbit[2] + 2*Tbit[3] + Tbit[4]) * i0 +

(8*Tbit[5] + 4*Tbit[6] + 2*Tbit[7] + Tbit[8]));

Month:=round(Tbit[9]*10 + (8*Tbit[10] + 4*Tbit[ll] + 2*Tbit[12] + Tbit[13]));

Day of Month:=round(10*(2*Tbit[14] + Tbit[15]) + (8*Tbit[16] + 4*Tbit[17] + 2*Tbit[18] + Tbit[19]));

Day of week :=round(4*Tbit[20] + 2*Tbit[21] + Tbit[22]);

hour :=round(10*(2*Tbit[23] + Tbit[24]) + (8*Tbit[25] + 4*Tbit[26] + 2*Tbit[27] + Tbit[28]));

Minute :=round(10*(4*Tbit[29] + 2*Tbit[30] + Tbit[31]) + (8*Tbit[32] + 4*Tbit[33] + 2*Tbit[34] +

Tbit[35]));

writeln('Year : ',year);

260 PC INTERFACING

GATHERING INFORMATION FROM THE EXTERNAL WORLD

end;

Writeln('Month : ',Month);

Writeln('Day of month: ',Day_of_month);

writeln('Day_of_week : ',Day_of_week);

writeln('Hour : ',Hour);

writeln('Minute : ',minute);

begin

centronic address ; _

repeat

clrscr;

get_time_bit;

until keypressed;

end.

The output of the MSF receiver can be fed into the MCM-RS232 microcontroller decoder module
(Maplin MK73Q). The latter provides time information in a standard RS232 data format via a serial
interface. External buffering to full RS232 level is required. The RS232 module provides the exact
time information all the time. The host computer does not need to decode the data itself. The module
also has a control output. The output can be connected to a suitable power switch for timed control
applications. An application circuit is shown in Figure 6.45(b). A communication command set is

R-0

+5V

a - 1

R-2

R-3

T A .,,. . , .

4K7

w

1
"1

v

C O L U M N

.....

�9

yc)

;I
�9

C-0 C -1 C -2

y()
0

o

y()
0

y ,
�9

7'(
o

7',
O

Figure 6.46 3 x 4 matrix keyboard

PC INTERFACING 2 6 1

GATHERING INFORMATION FROM THE EXTERNAL WORLD

provided by the module for communications between the module and the computer. The details of
the command are described in the manufacturer's data sheet.

6.9 Keys and keyboards

There are two ways of connecting a keyboard to a computer. One is the scanning keyboard type and
the other is the encoded keyboard type.

The principle of a 12-key scanning keyboard is shown schematically in Figure 6.46. The keys are
arranged in a 4 x 3 matrix. It has four rows and three columns. The three lines in the column are
normally high and one of them is brought to low for a short period of time in turns. When one of
the lines is in the low state, the status of the four rows lines are monitored. If there is no key pressed,
these four lines will be high (note that four resistors are used for pulling up the row lines to +5V). If
there is a key pressed and the column corresponding to the key is also at the low state, the row line
is at the low state. Knowing the column and row numbers, the position of the pressed key is
obtained.

The encoded keyboard involves a dedicated integrated IC or a circuit. The IC or the circuit detects
the pressed keys and outputs a parallel encoded data. The computer reads the data and finds out
what is the pressed key. An example of the keyboard detection IC is the MM74C922 (National
Semiconductors).

262 PC INTERFACING

CONNECTING OTHER DIGITAL DEVICES

Connecting other digital devices

7.1 Digital-to-analogue converters

A digital-to-analogue converter converts a binary code into an analogue voltage or current. It has
wide applications in process control, speech/music synthesis and computer-controlled experiments.

7.1.1 A simple R-2R D/A converter

A simple D/A converter can be constructed using several resistors arranged in an R-2R ladder
network as shown in Figure 7.1. This converter can only be used in less critical applications.
Dedicated D/A converter ICs should be used to achieve high conversion quality.

Figure 7.1 A simple R-2R network

PC INTERFACING 263

CONNECTING OTHER DIGITAL DEVICES

7.1.2 Parallel I/0 D/A converter, ZN428

The ZN428 (GEC-Plessey) is an 8-bit D/A converter with input data latches. It contains an R-2R
ladder network and fast switches to give a conversion time of 800 ns. It provides a 2.5V voltage
reference and requires a power supply of 5V with a quiescent current of 20 mA.

Figure 7.2 gives the pin-out and the internal block diagram of the device. Eight-bit data is placed
on the data bus first. Then a high-to-low-then-high pulse is applied to the-ENABLE input (pin 4).
The data is loaded into the registers and is converted to the analogue voltage.

DBI E

(LSB) DB 0

NC 17-

ENABLE 17

ANALOGUE OUTPUT E

V REF IN ~-

V REF OUT E

ANALOGUE GND ~-

v REF
7 OUT

16"• DB 2

15"~ DB 3

14"~ DB 4

13"~ DB 5

12"~ DB 6

DB 7 (MSB)

10"~ VCC

DIGITAL GND

2 0 1 1 3 0 . , , . .
r

1 DB1 . .
= . -

15 DB3
14 DB4

12 DB6 ..=
11 DB7 ..=

2.5V voltage

reference

4
, . L
=,.-

D/A converter

input data
latches

R-2R resistor
ladder network

8 9

ANA GND DIG GND

10

VGG

V FIEF IN 6

ANA
OUT 5

Figure 7.2 Pin-out and the internal diagram of the ZN428

The experimental circuit using the Centronic experimental board is given in Figure 7.3. The eight
digital inputs are connected to D1 to D8 terminals of the board. -ENABLE is connected to C1
terminal. The waveform of the analogue output is monitored by an oscilloscope. The demonstration
program is written in Turbo Pascal 6. The program sends 1 to 255 to the D/A converter continuously
and the waveform of the output, therefore, is a saw-tooth wave.

2 6 4 PC INTERFACING

CONNECTING OTHER DIGITAL DEVICES

Figure 7.3 Experimental circuit of the ZN428 D/A converter

TP6 program list of ZN428.PAS

Program ZN428_DAC;

(* software driver for ZN428 D-A converter - signal generator *)

(* this driver shows how the ZN428 is used to produce a triangular wave *)

uses

c r t , dos ;

var

i : i n t e g e r ;

{$I c:\ioexp\tplibl.pas}

Procedure V_out(data:byte);

(* output a binary byte to change the voltage output*)

begin

Write_data_port(P_address,data); (* put data on the data bus *)

PC INTERFACING 265

CONNECTING OTHER DIGITAL DEVICES

end;

write_control_port(P_address,0); (* -Enabled pulled down to logic 0. data latched to ZN428 *)

write_control_port(P_address,l); (* -Enabled logic high. data not latched to the ZN428 *)

(* Main Program *)

begin

Centronic_address;

i:=0;

repeat

V_out(i); (* output 0,1,2,3...255 = triangular wave output *)

i:=i+l; (* I increased by 1 *)

if i=255 then i:=0;

until keypressed

end.

7.1.3 Serial I/0 D/A converter, DAC0854

The DAC0854BIN (National Semiconductor, RS853-315) is a quad 8-bit D/A converter with a serial
I/O interface. The pin-out and the internal block diagram are given in Figure 7.4. It requires a §
power supply with a typical supply current of 14 mA. Six digital I/O lines (-AU, CLK, -CS, -INT, DI
and DO) control all operations of the converter. The DAC0854 contains four D/A converters, each
having a reference voltage input (VREF) and an analogue voltage output (VouT). The D/A section also
has two bias voltage inputs (VBIAS 1 and VBIAS2) and a power supply input (AVcc). A 2.65V internal
voltage reference (VRE F OUT) is provided by the DAC0854.

The DAC0854 has two I/O operations: a write and read mode. In the write mode, 8-bit digital
data is written to the D/A converter and is converted to an analogue voltage. In the read mode, the
data that was written to the D/A converters is read back. Writing or reading can be performed with
one D/A converter or with all D/A converters. The mode is set by a control word which is written to
the control register. The control word is a stream of bits that is clocked into the DAC0854 from the
Data Input. The bit functions of the word are given below.

bit 1

bit 2

bit 3

bit 4

bit 5

bit 6

start bit = 1

R D / - W R = 0 for write operation, R D / - W R = 1 for read operation
global operation: 1 = access all DACs, 0 = access to a single DAC
update control: 1 = update the analogue output, 0 = no update
address, A1 for selecting D/A channels
address, A0 for selecting D/A channels

When accessing to a single DAC channel, A0 and A1 select one of the four channels. When the global
operation is selected (bit 3 - 1), bit 5 and bit 6 are omitted (the control word only has four bits).
When the update bit is 1, the input digital data is converted into an analogue voltage at the rising
edge of-CS. -AU (asynchronous update) should be pulled high or left open. All operations are
initiated by a low-going transition on -CS. Then the bits of the control word are placed on the DI
pins. Each bit is clocked into the DAC at the rising edge of the clock. Figure 7.5 gives the timing
sequence of the write operation.

266 PC INTERFACING

CONNECTING OTHER DIGITAL DEVICES

Figure 7.4 Pin-out of DAC0854 D/A converter and its internal block diagram

The range of the output voltage of the D/A converter can be varied. If the internal 2.65V reference
is used as the voltage reference and a voltage divider network is used to provide a 1.4V voltage to
the VBAIS, the voltage range from 0.31 to 2.81V can be achieved. The relation between the output
voltage (VouT) and the input digital data (DATA in decimal) is expressed by the following equation.

PC INTERFACING 267

CONNECTING OTHER DIGITAL DEVICES

Figure 7.5 Timing sequence of the write command

Figure 7.6 Experimental circuit of DAC0854

268 PC INTERFACING

CONNECTING OTHER DIGITAL DEVICES

Votrr(volts) = 2.500
DATA

+ 0.310
256

An experimental circuit using the Centronic experimental board is shown in Figure 7.6. D1, D2 and
D3 on the board are connected to the CLK,-CS and DI. $1 terminal is connected to the DO. The
software driver is written in Turbo Pascal 6. ALL_DAC (DATA:byte) writes DATA to all D/A
converters. ONE_DAC(ADDRESS, DATA: byte) writes DATA to one D/A converter specified by the
ADDRESS. The program causes the DAC0854 to generate a saw-tooth signal at the fourth D/A
channel. The waveform can be observed using an oscilloscope.

TP6 program list of DACO854.PAS

Program DAC0854_driver;

(* Software driver for DAC0854 4 channel D/A converter*)

(* Connection to the Centronic experimental board:

-CS-chip select D2

C -clock D1

DI -data in to ic D3

DO -data out Sl *)

uses

crt, dos;

{$I c:\ioexp\TPLIBl.pas}

var

command,i:byte;

D: array[l..130] of byte;

procedure Init;

(* initialize control lines *)

begin

write_data_port(P_address,l+2+0); (* Clock = -CS = 1 *)

end;

Procedure load_data(data:byte);

(* load procedure, -CS: low, Data: stable, Clock: low to high *)

begin

write_data_port(P_address,0+0+4*data); (* output data *)

write_data_port(P_address,l+0+4*data); (* Clock from low to high to load data *)

write_data_port(P_address,0+0+0); (* clock low *)

end;

PC INTERFACING 269

CONNECTING OTHER DIGITAL DEVICES

Procedure All_DAC(data:byte);

var

i:integer;

begin

end;

load_data(l); (* load start bit *)

load_data(0); (* load RD/-WR bit, 0, write operation *)

load_data(l); (* load Global enable bit, i, global enabled *)

load_data(l); (* load Updating enable bit, i, update when -CS changing from low to high *)

(* load data *)

for i:=l to 8 do load_data(round (data and bit_weight(i) / bit_weight(i)));

write_data_port(Paddress, 0+2+0); (* -CS pin from low to high to update data *)

Procedure One_DAC(address, data:byte);

i:integer;

begin

end;

load_data(l); (* load start bit *)

load_data(0); (* load RD/-WR bit, 0, write enable *)

load_data(0); (* load Global enable bit, 0, singal DAC operation *)

load_data(l); (* load updating enable bit, I, update when -CS changing from low to high *)

load_data(round(address and 2 / 2)); (* load address A1 *)

load_data(address and i); (* load address A2 *)

(* load data *)

for i:=l to 8 do loaddata(round (data and bit_weight(i) / bit_weight(i)));

write_data_port(Paddress, 0+2+0); (* -CS pin from low to high to update *)

(* main program *)

begin

end.

Centronic_address;

init;

repeat

for i:=l to 255 do one_DAC(3,i);

until keypressed;

7.2 Digital potentiometers

Digital potentiometers allow resistance to be changed digitally. Their applications include volume
controls in digital audio equipment and in digitally-controlled variable gain amplifiers.

270 PC INTERFACING

CONNECTING OTHER DIGITAL DEVICES

The X9C103 (Xicor) series is a CMOS non-volatile potentiometer. The series contains several
devices: X9C103 (RS299-480), X9C503 (RS299-496) and X9C104 (RS299-503) which have a
maximum resistance of 10 kQ, 50 k~ and 100 kQ respectively. The resolution of the resistance is
equal to the maximum resistance divided by 99. The power supply is +5V and the typical supply
current is 1 mA in the active mode and 0.5 mA in the standby mode.

The pin-out and the internal block diagram of the IC are shown in Figure 7.7. The x g c series
consists of an input control section, a counter and a decoder section, a non-volatile memory and a
resistor array consisting of 99 resistors. Between each resistor and at both ends are tap points. Each
point is connected to the wiper pin (Vw) via a transistor gate. The two ends of the resistor array Vh
and VI are equivalent to the fixed terminals of a mechanical potentiometer and can be connected to
a voltage f rom-5V to +5V. Vw is the wiper terminal which is equivalent to the movable terminal of
the potentiometer.

Figure 7.7 Pin-out and the internal block diagram of the X9C
series

PC INTERFACING 271

CONNECTING OTHER DIGITAL DEVICES

The position of the wiper is controlled by three control inputs: -CS (Chip select), U/-D (Up and
down) and -INC (Increase). U/-D (1: Up, 0: Down) controls whether the counter is incremented or
decremented. At the high-to-low transition of the -INC, the wiper position is moved up or down by
one step. -CS is low to enable the device. The counter value is stored in the on-board non-volatile
memory when -CS is high while the -INC input is high. After this, the IC is in the low power standby
mode until the device is selected again.

An experimental circuit using the Centronic experimental board is shown in Figure 7.8. The -INC,
U/-D and -CS pins are connected to D1, D2 and D3 terminals of the experimental board. The
resistance value between the V1 and Vw is measured using a muhimeter. The demonstration software
is written in TP6.

Figure 7.8 Experimental circuit of X9C103

TP6 program list of X9ClO4.PAS

Program X9C104;

(* software driver for X9CI04 digital resistor network *)

(* connections to the Centronic experimental board:

-INC (increase): D1

U/-D (up/down): D2

-CS (chip enable): D3 *)

uses

c r t , d o s ;

{$I c:\ioexp\tplibl.pas }

272 PC INTERFACING

CONNECTING OTHER DIGITAL DEVICES

var

up_down, s tep :by te ;

Procedure INC_R(step,up_down:byte);

(* increase or decrease the resistance between Vl and Vw for steps *)

(* direction controlled by up_down *)

var

i:byte;

begin

for i:=l to step do

begin

write_data_port(P_address, l+2*(up_down)+0); (* Clock = 1 *)

delay(100);

write_dataport(P_address, 0+2*(up_down)+0); (* Clock = 0 *)

delay(100);

write_data_port(P_address, l+2*(up_down)+0); (* Clock = 1 *)

delay(100);

end;

write_dataport(P_address, l+2*(up_down)+4); (* remember position *)

end;

Procedure test;

begin

end;

write('Increase [i] or decrease [0] resistance between Vl and Vw : ');

readln(up_down);

write('Input steps (I to i00): ');

readln(step);

INC_R(step, updown);

(* main program *)

begin

centronic address;

repeat

clrscr;

test;

readln;

until keypressed

end.

PC INTERFACING 273

CONNECTING OTHER DIGITAL DEVICES

7.3 Memories

Memories are used to store digital data. RAMs are random access memories which allow data to be
read or written at any time. When the power supply is switched off, the data is lost. ROMs are read-
only memories which can only be read. Data can be programmed into the ROM. For PROMs, data
can be programmed only once, while EPROMs can be programmed many times. EPROMs come in
two types: the ultra-violet light erasable type (UVEPROMs) and the electrically erasable type
(EEPROMs). The I/O interface of memories can be parallel or serial. A parallel I/O interface consists
of eight bi-directional data I/O lines, several address lines and control lines. A serial I/O interface
only requires three control lines and one data output line. Chips with an I2C bus have two I/O lines.
Memory chips with a MicroLan bus (Dallas Touch Memories) only have one I/O line.

7.3.1 ST93C56C serial I /0 2K EEPROM

The ST93C56C (SGS-Thomson) is a CMOS non-volatile, serial I/O 2048-bit EEPROM. The 2K bits
of the memory can be organized in two configurations: the 128 register mode (16 bits per register)
and the 256 register mode (8 bits per register). Each memory location can be written or erased up to
1,000,000 times.

The pin-out of the ST93C56C is given in Figure 7.9. VCC (pin 8) and VSS (pin 5) are connected
to the +5V and GND rails of the power supply. The supply current is typically 2 mA in the active
mode and 50 laA in the standby mode. Pin 1 is the chip select input; pin 3 is the Data input and pin
2 is the Clock input. There are seven instructions which control all operations of the ROM.

1. Read a byte or a word from the ROM, READ
2. Write a byte or a word to, WRITE
3. Erase and write enable, EWEN

Figure 7.9 Pin-out and the logic diagram of the ST93C56

274 PC INTERFACING

C O N N E C T I N G OTHER DIGITAL DEVICES

4. Erase and write disable, DWDS
5. Erase a byte or a word, ERASE
6. Erase all, ERAL
7. Write all, WRAL

The timing sequences consist of three or four steps and are shown in Figure 7.10. The first step is to
tell the ROM to respond to an instruction by generating a start condition. This is followed by a 2-
bit op-code which specifies an operation. The next step is to send address bits to the ROM and the
final step is to transfer data. All instructions are initiated by a rising edge of S. Then a logic high on
D is sampled at the rising edge of C. It is considered as the start condition (step 1). After this, the
two op-code bits are clocked into the ROM at the rising edge of the clock (step 2). Next, the address
bits are clocked into the ROM at the rising edge of the clock (step 3). If the ROM is configured to
have a 16-bit register length, the number of the address bits is eight. These eight bits are clocked into
the ROM with MSB bit first (step 3). Step 4 only exists for data read and write operations. The
actual data bits (MSB bit first) are clocked into the ROM or out of the ROM at the rising edge of
the clock. The instruction sets are summarized below:

Start condition Rising edge to latch data'

CLK

s ,1 i : i :
Op-code

I !
R ' ' A7 ' A6 '

D OP 1 OP 2 . OP 3' OP 4'
. . , ,
I I

Address bits Data bits (when writing to the ROM)
I! I

.

A5 A4 A3 A2 A1 A0 ' D15 D14 D13 D12 D l l D 1 0 '
.

O p - ~ < l e for s o m e

instructions Data bits (when reading from the ROM)
! i

hi-z state I ,0 D15 D14 D13. D12 . D l l , D10,,,

Figure 7.10 Timing sequence of the ST93C56C

R E A D

W R I T E

E W E N

E W D S

ERASE

E R A L

W R A L

op-code=10 a d d r e s s = A 7 - A 0

o p-code=01 a d d r e s s = A 7 - A 0

op-code=00 address= 1 1 X X X X X X

op-code=00 address=00XX X X X X

op-code= 11 address=A7-A0
op-code=00 address= 1 0 X X X X X X

op-code=00 a d d r e s s = 0 1 X X X X X X

d a t a = D 1 5 - D 0
data=D 1 5 - D 0

no data
no data
no data
no data
data=D 1 5 - D 0

PC INTERFACING 275

CONNECTING OTHER DIGITAL DEVICES

The EEPROM is connected to the Centronic experimental board as shown in Figure 7.11. D1, D2
and D3 terminals are connected to the S, C and D. $1 terminal is connected to Q. The ROM is
configured in 16-bit register mode (ORG pin is left open). A TP6 software driver is listed below:

Figure 7.11 Experimental circuit of the ST93C56C

TP6 program list of 9356.PAS

Program EEPROM_93C56_driver;

(* Software driver for 93C56N 128 * 16 EEPROM *)

(* Connection to the Centronic experimental board:

S-chip select D2

C-clock D1

D-data in to ic D3

Q-data out S1 *)

uses

crt, dos;

{$I c:\ioexp\TPLIBl.pas}

command:byte;

D: array[l..130] of byte;

276 PC INTERFACING

CONNECTING OTHER DIGITAL DEVICES

procedure Init;

(* all control lines to the ic low *)

begin

write_data_port(P_address,0+0+0);

end;

Procedure load_data(data:byte);

(* load procedure, Select: high, Data: stable, Clock: low to high *)

begin

end;

write_data_port(P_address,0+2+4*data); (* Select and Data = high *)

delay(1);

write_data_port(P_address,l+2+4*data); (* Clock from low to high to load data *)

delay(1);

write_dataport(P_address,0+2); (* Select = high, Clock = Data = low *)

delay(l);

Procedure Start;

(* generate a start condition, Select high, Data high, Clock from low to high *)

begin

write_data_port(P_address,0+0+0); delay(l); (* Select, Clock and Data = low *)

write_data_port(P_address,0+2+4); delay(l); (* Select, Data = high; Clock = low *)

write_data_port(P_address,l+2+4); delay(l); (* All inputs high *)

write_data_port(P_address,0+2+0); delay(1); (* Select high; Data and Clock low *)

end;

Procedure Erase(enable_flag:boolean);

(* Erase enable and disable commands *)

var

i:byte;

begin

Start; (* generate start condition *)

load_data(0); (* load first op-code 0 *)

load_data(0); (* load second op-code 0 *)

if enable_flag then

(* load 1 and i, erase enable command *)

begin

load_data(l); load_data(l);

end

else

(* load 0 and 0, erase disable command);

PC INTERFACING 2'~T

CONNECTING OTHER DIGITAL DEVICES

begin

end;

load_data(l); load_data(l);

for i:=l to 6 do load_data(0); (* load 6 dummy address bits *)

delay(l);

write_data_port(P_address,0); (* all inputs low to terminate the command *)

delay(10);

end;

Procedure Erase_all;

(* erase all memory locations, put 1 to all memory locations *)

var

i:byte;

begin

Start; (* generate start condition *)

load_data(0); (* load first op-code 0 *)

load_data(0); (* load second op-code 0 *)

load_data(l); (* load 1 and 0 *)

load_data(0);

for i:=l to 6 do load_data(0); (* load 6 dummy address bits *)

write_data_port(P_address,0+0+0); (* Select = low *)

delay(l);

write_data_port(P_address,0+2+0); (* Select = high to check status *)

delay(l);

repeat until read_status_port(P_address) and 1 = i; (* wait until ready state *)

write_data_port(P_address,0+0+0); (* Select = 0 to terminate the operation *)

end;

Procedure Write_all(byte_low, byte_high:byte);

(* write all memory locations with bytehigh and byte_low *)

var

i:byte;

begin

Start; (* generate start condition *)

load_data(0); (* load first op-code 0 *)

load_data(0); (* load second op-code 0 *)

load_data(0); (* load 0 and 1 *)

load_data(l);

for i:=l to 6 do load data(0); (* load dummy address bits *)

(* load byte_high, MSB first *)

for i:=8 downto 1 do load_data(round ((byte_high and bit_weight(i)) / bit_weight(i)));

278 PC INTERFACING

CONNECTING OTHER DIGITAL DEVICES

end;

(* load byte_low, MSB first *)

for i:=8 downto 1 do load_data(round ((byte_low and bit_weight(i)) / bit_weight(i)));

write_data_port(P_address,0+0+0);

write_data_port(P_address,0+2+0);

repeat until read_status_port(Paddress) and I = I;

write_data_port(P_address,0+0+0);

Procedure WriteROM(address, byte low, byte_high:byte);

(* write byte high and byte_low to two 8-bit memory locations*)

var

i:byte;

begin

Start; (* generate start condition *)

load_data(0); (* load first op-code 0 *)

load_data(l); (* load second op-code 1 *)

(* load address *)

for i:=8 downto 1 do

begin

load data(round(address and bit_weight(i) / bit_weight(i)));

end; (* load address 0 *);

(* load byte_high, MSB first *)

for i:=8 downto 1 do load_data(round ((byte_high and bit_weight(i)) / bit_weight(i)));

(* load byte_low, MSB first *)

for i:=8 downto 1 do load_data(round ((byte_low and bit_weight(i)) / bit_weight(i)));

end;

write_data_port(P_address,0+0+0);

write_data_port(P_address,0+2+0);

repeat until read_status_port(P_address) and i = i;

write_data_port(P_address,0+0+0);

Function readROM(address,x:byte):byte;

(* read two 8-bit bytes in the 128 memory locations, x=0 to read low byte, x=l to read high byte *)

var

i,high_byte,low_byte,dummy:byte;

begin

start; (* Start *)

load_data(.l); (* load opcode 1 *)

load_data(0); (* load opcode 0 *)

PC INTERFACING 279

CONNECTING OTHER DIGITAL DEVICES

(* load address *)

for i:=8 downto 1 do

begin

load_data(round(address and bit_weight(i) / bit_weight(i)));

end; (* load address 0 *);

dummy:=0; (* start to read high byte *)

for i:=8 downto 1 do

begin

write_dataport(P_address,0+2); delay(i); (* Clock low, Select high *)

write_dataport(P_address,l+2); delay(l); (* Clock high, Select high *)

dummy:=dummy + read_status_port(P_address) and 1 * bit_weight(i); (* read the data bit,

MSB first *)

write_dataport(P_address,0+2);

end;

high byte:=dummy;

dummy:=0; (* start to read low byte *)

for i:=8 downto i do

begin

write_dataport(P_address,0+2); delay(i);

write_dataport(P_address,l+2); delay(i);

dummy:-dummy + read_status_port(P_address) and i * bit_weight(i);

write_dataport(P_addres8,0+2);

end;

low_byte:-dummy;

end;

(* assign the data *)

if x-0 then readROM:-low_byte;

if x-1 then readROMz-high_byte;

Procedure Program_ROM;

(* a test program *)

var

strxzstring[250];

i:byte;

begin

writeln('Thi8 is the message originally stored in the EPROM');

writeln;

for i:-I to 125 do

begin

write(chr(readROM(i,0)),chr(readROM(i,l)));

280 PC INTERFACING

CONNECTING OTHER DIGITAL DEVICES

end;

writeln;

write('Press RETURN to continue...'); readln;

for i:=1 to 250 do strx[il: =' ';

writeln('Input the message which will be programmed into the EEPROM: ');

readln(strx);

for i:=1 to 125 do writeROM(i,ord(strx[2*i-l]),ord(strx[2*i]));

writeln('The EEPROM has been programmed ');

writeln('This is the message stored in the EPROM now');

for i:=l to 125 do

begin

write(chr(readROM(i,0)),chr(readROM(i,l)));

end;

readln;

end;

(* main program *)

begin

end.

Centronic address;

init;

erase(true);

program_rom;

7.3.2 EEPROM with an 12C bus

The 24LC16B (Microchip,'equivalent to X24C16P, Xicor, RS125-1401) is a 16K bit electrically
erasable EEPROM with an I2C bus. It operates as a slave device on the bus. The detailed description
of the I2C bus was given in Chapter 4. The memory is organized as 2k 8-bit memory locations. The
erase and write cycles could be up to 1,000,000 times. It requires a power supply of 2.5 to 5V with
typical current consumptions of about lmA in active mode and 10 laA in the standby mode.

The pin-out and the internal block diagram of the chip are given in Figure 7.12. A0, A1 and A2
have no functions and can be left open. WP is the write protection (high active) and is normally tied
to the ground to enable the write operation. SCL and SDA are the clock and data lines of the I2C
bus.

Data can be written to and read from the ROM via the I2C bus. The write operation has two
modes: the byte write mode and page write mode. The former writes a single byte to a memory
location. The latter writes 256 bytes to a block in one go. The read operation has the current address
read mode and the random read mode.

Following a start condition on the I2C bus, an 8-bit slave address byte is clocked into the ROM
from the master transmitter. The slave address from bit 7 to bit 0 is 1, 0, 1, 0, B2, B1, B0 and R/-W.

PC INTERFACING 281

CONNECTING OTHER DIGITAL DEVICES

Figure 7.12 Pin-out and the internal block diagram of the
24LC16B

Bits 7 to 4 are the permanent address of the ROM. B2, B1 and B0 specify one of the four memory
blocks. R/-W bit specifies whether the operation will be a read operation (R/-W = 1) or a write
operation (R/-W =0). After the slave address bits are transferred, an address byte is transmitted to
the ROM which specifies a memory location in the selected memory block. The address is written to
the address pointer of the ROM and the value ranges from 0 to 255. If the operation is a write
operation, the eight bits of the data are sent to the ROM next. In the random read mode, after
writing to the address pointer, a start condition is generated again and it is followed by sending the
slave address bits with the R/-W bit set to 1 (to read). Then data stored in the memory will be sent
out bit by bit. The timing sequences for write and read operations are given in Figure 7.13.

A circuit diagram of the 24LC16B connected to the Centronic experimental board is given in
Figure 7.14. D1 terminal controls the SDA lines. $1 reads data from the SDA line. C1 controls the
SCL line. The demonstration software is written in Turbo Pascal 6 and is listed below.

282 PC INTERFACING

CONNECTING OTHER DIGITAL DEVICES

Figure 7.13 Timing sequences for write and read operations

Figure 7.14 Experimental circuit of 24LC16B

PC INTERFACING 283

CONNECTING OTHER DIGITAL DEVICES

TP6 program list of 2416.PAS

Program IIC_memory;

(* I squared C software driver resource *)

(* PC is the master receiver or transmitter. Other ICs or modules are slave receiver or transmitter *)

(* Connections to the Centronic experimental board:

DI = SDA, Ci = SCK, $I = SDA. This can be altered *)

(* IIC bus conditions:

SCL=I, SDA=I : bus not busy

SCL=I, SDA=I to 0: start condition

SCL=I, SDA-0 to 1: stop condition

valid data : data stable when SCL=I.

data change: when SCL=0*)

uses

c r t , d o s ;

{$I c~\ioexp\tplibl.pas}

i,ijzinteger;

block,address,data: byte;

(* TP 6 IIC software library #1, BCD conversion *)

Function BCD(data~byte)~byte;

(* convert a binary type data into binary BCD type data *)

begin

BCDz- round((data div i0) * 16 + 10 * frac(data/10));

end;

(* TP 6 IIC software library #2, put data on SDA line *)

Procedure SDA(data:byte);

(* put data on SDA *)

begin

write_data_port(P address, 1-data);

end;

(* TP 6 IIC software library #3, SCL control *)

Procedure SCL(data~byte);

(* put data on SCL *)

284 PC INTERFACING

CONNECTING OTHER DIGITAL DEVICES

begin

end;

write_control_port(P_address, 1-data);

(* TP 6 IIC software library #4, Initialize IIC bus *)

Procedure INIT;

(* generate initial condition, SDA = SCL = I *)

begin

SDA(1);

SCL(1);

delay(100);

end;

(* TP 6 IIC software library #5. Generating START condition *)

Procedure START;

(* generate START condition *)

begin

SDA(1); SCL(1); SDA(0); SCL(0);

end;

(* TP6 IIC software library #6. Generating acknowledge related clock *)

Procedure ACK;

(* generate ACK, a acknowledge related clock *)

begin

SCL(1); SCL(0);

end;

(* TP6 IIC software library #7. Transmit data on IIC bus *)

Procedure TRANSMIT(data=byte);

(* Transmit data via the bus *)

var

izbyte;

begin

for iz-8 downto 1 do

begin

SDA(round(data and bit_weight(i) / bit_weight(i)));

SCL(1);

SCL(0);

end;

SDA(1); (* SDA is made logic high *)

ACK; (* generate a ACK related clock *)

end;

(* put data on SDA while SCL low *)

(* SCL brought from low to high *)

(* SCL brought from high to low *)

PC INTERFACING 285

CONNECTING OTHER DIGITAL DEVICES

(* TP 6 IIC software library #8. Receive data from IIC bus *)

Function receive(stopflag:boolean):byte;

(* receiver data via the bus *)

var

i,dmmmy:byte;

begin

dummy:=0;

for i:=8 downto I do

begin

SCL(1); (* SCL brought high *)

delay(l);

dummy:=dummy + (readstatus_port(P_address) and I) * bit_weight(i);

delay(l);

SCL(0); (* SCL brought from high to low *)

end;

if stop_flag then

begin

SDA(1); (* if the received is the last, SDA has logic high *)

ACK;

end

else

begin

SDA(0);

ACK;

SDA(1);

end;

receive:=dummy;

end;

(* read data from SDA *)

(* if the received is not the last, SDA has logic low to acknowledge *)

(* generate a ACK related clock *)

(* TP 6 IIC software library #9. Generating STOP condition *)

Procedure STOP;

(* generate STOP condition *)

begin

SDA(0); (* SDA line low *)

SCL(1); (* SCL line high *)

SDA(1); (* SDA line from low to high *)

end;

Procedure Write_ROM_byte(block,Address,data:byte);

(* program a rom byte, block and address specify a memory location *)

begin

start; (* generate a start condition *)

286 PC INTERFACING

CONNECTING OTHER DIGITAL DEVICES

transmit(128+32+2*block);

write mode)*)

transmit(address);

transmit(data);

stop;

delay(50);

end;

(* transmit control bits and block address and RD/-WR (=0, configure into

(* transmit memory address in a block *)

(* transmit data *)

(* generate stop bit *)

Function Read_ROM_byte(block,Address:byte):byte;

begin

start;

transmit(128+32+2*block);

write mode) *)

transmit(address); (* transmit memory address in a block *)

start; (* generate a start condition *)

transmit(128+32+2*block+l); (* transmit control bits and block address and RD/-WR (=I, configure into

read mode) *)

Read_ROM_byte:=receive(true); (* receive data *)

stop; (* generate stop condition *)

end;

(* generate a start condition *)

(* transmit control bits and block address and RD/-WR (=0, configure into

Procedure test write read;

begin

end;

write('Select a memory block (0,1,2 and 3) : '); readln(block);

wr~te('Select an address in the block (0-255): '); readln(address);

wrlte('Input the data to be written to ROM : '); readln(data);

wrlte_ROMbyte(block,address,data);

wr~teln;

wr~teln('The data written to the ROM : ',read_ROM_byte(block,address));

writeln('Press one RETURN to continue and two RETURN to stop');

readln;

delay(4000);

(* Main Program *)

begin

centronic address;

repeat

clrscr;

Test write read;

until keypressed

end.

PC INTERFACING 287

CONNECTING OTHER DIGITAL DEVICES

7.4 Real time clocks

Real time clock ICs enable microcontrollers to track time. The IC consists of a standalone
clock/calendar circuit and an interfacing circuit. Traditional devices are connected to a
microcontroller via a parallel bus which contains a hi-directional 8-bit data bus and several control
lines. The HD146818 and MSM6242 are two examples. There are newer types which have an I2C
bus to reduce the number of I/O lines required in the hardware wiring. The MK41T56 and PCF8573
are two examples.

The MK41T56 (SGS-Thomson) is a low-power timekeeper which contains a 512-bit static CMOS
RAM or~ganized in 64 words by eight bits. The first eight bytes are used for storing time and date. It
has an I~C bus and operates as a slave device on the bus. The MK41T56 continually monitors Vcc.
If Vcc falls below a certain value, the device terminates data transfer. This is to prevent erroneous
data from being written to the device. The battery could be a 3V 30mAh lithium cell and the typical
data retention period is in excess of 10 years.

The pin-out and the internal block diagram of the MK41T56 are shown in Figure 7.15. Pins 8 and
4 are connected to +5V and the ground rails of the power supply. It consumes 3 mA when the device

Figure 7.15 Pin-out and internal block diagram of the
MK41T56

288 PC INTERFACING

CONNECTING OTHER DIGITAL DEVICES

is active. The standby current (SDA and SCL are both high) is 1 mA. OSC0 and OSC1 are connected
to a 32.768 MHz crystal. SCL is the clock line of the I2C bus and SDA is the bi-directional data line.
FT/OUT is the frequency test output. After writing a suitable control word to the internal control
register of the MK41T56, the pin outputs a 512 Hz square wave signal. It can be used also as a
software controlled output.

The functions of the 64 bytes memory locations are shown below:

address=0 seconds register (bits 0-6, 00-59, BCD format)
address=l minutes register (bits 0-6, 00-59, BCD format)
address=2 hours register (bits 0-5, 00-23, BCD format)
address=3 day register (bits 0-2, 01-07, BCD format)
address=4 date register (bits 0-5, 01-31, BCD format)
address=5 month register (bits 0-4, 01-12, BCD format)
address=6 years register (bits 0-7, 00-99, BCD format)
address-7 control register (see later)
address=9-64 RAM

Bit functions of the control register from bits 7 to 0 are defined:

bit 7 output control, 0 or 1
bit 6 frequency test bit (bit 6=4, output test frequency)
bit 5 sign bit
bits 4-0 no functions

Data can be written to or read from the MK41T56 via the I2C bus. Writing operation sets up the
time and date. Read operation retrieves the time. Following a start condition on the I2C bus, an 8-
bit slave address is clocked into the ROM from the master transmitter. The slave address from bit 7
to bit 0 has the following format: 1, 1, 0, 1, 0, 0, 0, R/-W. Bit 7 to bit 1 are the permanent address
of the timekeeper on the bus. R/-W bit specifies whether the present operation is a read operation
(R/-W = 1) or a write operation (R/-W =0). After the slave address bits are transmitted, an 8-bit
address byte is transmitted to the IC to specify a particular memory location. The address is written
to the address pointer of the IC and the value ranges from 0 to 64. In the write operation, the eight
bits of the data are transmitted to the MK41T56 next. In the read mode, after writing the address to
the address pointer, a start condition is generated again and is followed by sending the slave address
bits with the R/-W bit set to 1. Then the data stored in the memory is sent out. The timing sequences
are given in Figure 7.16.

The circuit diagram of the MK41T56 connected to the Centronic experimental board is given in
Figure 7.17. D1 controls the SDA lines. $1 reads data from the SDA line. C1 controls the SCL line.
The demonstration software is written in TP6.

TP6 program list of 4156.PAS

Program IIC_timer;

(* I squared C software driver resource *)

(* PC is the master receiver or transmitter. Other ICs or modules are slave receiver or transmitter

*)

(* Connections to the Centronic experimental board:

D1 = SDA, C1 = SCK, S1 = SDA. This can be altered *)

PC INTERFACING 289

CONNECTING OTHER DIGITAL DEVICES

Figure 7.16 Timing sequences of the MK41T56

Figure 7.17 Experimental circuit of the MK41T56

290 PC INTERFACING

CONNECTING OTHER DIGITAL DEVICES

(* IIC bus conditions:

SCL=I, SDA=I : bus not busy

SCL=I, SDA=I to 0: start condition

SCL=I, SDA=0 to i: stop condition

valid data : data stable when SCL=I.

data change: when SCL=0*)

uses

c r t , d o s ;

{$I c:\ioexp\tplibl.pas}

i,ij:integer;

second,minute,hour, day,date,month,year,control_word:byte;

(* TP 6 IIC software library #I, BCD conversion *)

Function BCD(data:byte):byte;

(* convert a binary type data into binary BCD type data *)

begin

BCD:= round((data div I0) * 16 + i0 * frac(data/10));

end;

(* TP 6 IIC software library #2, put data on SDA line *)

Procedure SDA(data:byte);

(* put data on SDA *)

begin

write_data_port(P_address, 1-data);

end;

(* TP 6 IIC software library #3, SCL control *)

Procedure SCL(data:byte);

(* put data on SCL *)

begin

write_control_port(P_address, 1-data);

end;

(* TP 6 IIC software library #4, Initialize IIC bus *)

Procedure INIT;

(* generate initial condition, SDA = SCL = 1 *)

begin

SDA(1);

SCL(1);

PC INTERFACING 291

CONNECTING OTHER DIGITAL DEVICES

delay(100);

end;

(* TP 6 IIC software library #5. Generating START condition *)

Procedure START;

(* generate START condition *)

begin

SDA(1); SCL(1); SDA(0); SCL(0);

end;

(* TP6 IIC software library #6. Generating acknowledge related clock *)

Procedure ACK;

(* generate ACK, a acknowledge related clock *)

begin

SCL(1); SCL(0);

end;

(* TP6 IIC software library #7. Transmit data on IIC bus *)

Procedure TRANSMIT(data:byte);

(* Transmit data via the bus *)

var

i:byte;

begin

for i:=8 downto 1 do

begin

SDA(round(data and bit_weight(i) / bit_weight(i)));

SCL(1);

SCL(0);

end;

SDA(1); (* SDA is made logic high *)

ACK; (* generate a ACK related clock *)

end;

(* put data on SDA while SCL low *)

(* SCL brought from low to high *)

(* SCL brought from high to low *)

(* TP 6 IIC software library #8. Receive data from IIC bus *)

Function receive(stopflag:boolean):byte;

(* receiver data via the bus *)

var

i,dummy:byte;

begin

dummy:=0;

for i:=8 downto 1 do

begin

SCL(1); (* SCL brought high *)

delay(l);

~9~ PC INTERFACING

CONNECTING OTHER DIGITAL DEVICES

SDA *)

end;

dummy:=dummy + (read_status_port(Paddress) and i) * bit_weight(i);

delay(l);

SCL(0); (* SCL brought from high to low *)

end;

if stop_flag then

begin

end

else

begin

SDA(1); (* if the received is the last, SDA has logic high *)

ACK;

SDA(0);

ACK;

SDA(1);

end;

receive:=dummy;

(* read data from

(* if the received is not the last, SDA has logic low to acknowledge

(* generate a ACK related clock *)

(* TP 6 IIC software library #9. Generating STOP condition *)

Procedure STOP;

(* generate STOP condition *)

begin

SDA(0); (* SDA line low *)

SCL(1); (* SCL line high *)

SDA(1); (* SDA line from low to high *)

end;

Procedure Init time;

(* initialize time *)

begin

end;

wrlte('Input

write('Input

write('Input

write('Input

write('Input

write('Input

write('Input

write('Input

initial second: '); read(second);

initial minute: '); read(minute);

initial hour : '); read(hour);

initial day : '); read(day);

initial date : '); read(date);

initial month : '); read(month);

initial year : '); read(year);

initial control word: '); read(control_word);

Procedure init 41T56(second,minute,hour,day,date,month,year,control_word:byte); _

(* set the timer's second, minute, hour, day, date, month and year *)

PC INTERFACING 293

CONNECTING OTHER DIGITAL DEVICES

begin

end;

start;

transmit(208);

transmit(0);

transmit(BCD(second));

transmit(BCD(minute));

transmit(BCD(hour));

transmit(BCD(day));

transmit(BCD(date));

transmit(BCD(month));

transmit(BCD(year));

transmit(control_word);

stop;

(* generate Start condition *)

(* send slave address, R/-W = 0 *)

(* move pointer to address 9 *)

(* transmit second *)

(* transmit minute *)

(* *)

Function MK41T56(x:byte):real;

var

data:array[l..500] of byte;

begin

Start; (* generate start condition *)

transmit(208); (* send slave address, R/-W = 0 *)

transmit(0); (* set the pointer address = 0 (second register) *)

start; (* generate start condition again for reading *)

transmit(208+l); (* send slave address 208 + 1 D, R/-W = 1 *)

for i:=l to 6 do data[i]:=receive(false); (* read data with acknowledgement *)

data[7]:=receive(true); (* read data without acknowledgement *)

(* when reading, register address automatically

added *)

(* converter data into time format *)

if x=l then MK41T56:= data[l] and (64+32+16)/16"10 + data[l] and (8+4+2+1);

if x=2 then MK41T56:= data[2] and (64+32+16)/16"10 + data[2] and (8+4+2+1);

if x=3 then MK41T56:= data[3] and (32+16)/16"10 + data[3] and (8+4+2+1);

if x=4 then MK41T56:= data[4] and (4+2+1);

if x=5 then MK41T56:= data[5] and (32+16)/16"10 + data[5] and (8+4+2+1);

if x=6 then MK41T56:= data[6] and (32+16)/16"10 + data[6] and (8+4+2+1);

if x=7 then MK41T56:= data[7] and (128+64+32+16)/16"10 + data[7] and (8+4+2+1);

end;

Procedure show time; _

begin

writeln('

writeln;

write('

write('

Inter IC bus 41T56 Timer');

Input initial second : '); writeln(MK41T56(1):5:0);

Input initial minute : '); writeln(MK41T56(2):5:0);

294, PC INTERFACING

CONNECTING OTHER DIGITAL DEVICES

end;

write(' Input initial hour : '); writeln(MK41T56(3):5:0);

write(' Input initial day : '); writeln(MK41T56(4):5:0);

write(' Input initial date : '); writeln(MK41T56(5):5:0);

write(' Input initial month : '); writeln(MK41T56(6):5:0);

write(' Input initial year : '); writeln(MK41T56(7):5:0);

begin

centronic address; _

init time;

INIT; (* intialize SCL and SDA lines *)

init_41T56(second, minute, hour, day, date, month, year, control_word);

end.

repeat

clrscr;

show_time;

delay(10000);

until keypressed

7.5 Digitally-controlled signal generators

Digitally-controlled signal generators allow digital or analogue signals to be generated with their
frequencies controlled digitally. The 8253/8254 is a popular programmable timer/counter IC and is
widely used for generating digital signals. The HSP45102 and the ML2036 are programmable sine
wave generators.

7.5.1 8254 programmable timer~counter

The pin-out and the internal block diagram of the 8254 are shown in Figure 7.18. The device
contains three 16-bit programmable counters. Each counter has three I/O lines: CLK, GATE and
OUTPUT. The CLK is fed with a clock signal of a frequency from DC to 8 MHz. GATE controls the
counter to start or stop counting. If GATE is high, the counter is enabled. The output signal from the
counter appears at the OUTPUT. The IC is controlled via an 8-bit bi-directional data bus and five
control lines (A0, A1 , -WR, -RD and -CS). Data can be written into four internal registers: the
control register and counter registers for counter 1, 2 and 3. Writing data to or reading data from a
particular register is controlled by A0, A1, -WR and -RD. The relation between a register and its
address bits is shown as follows:

A0=0, AI=0, to select the counter register 1
A0=I, AI=0, to select the counter register 2
A0=0, A1=1, to select the counter register 3
A0=I, AI=I, to select the control register

PC INTERFACING 295

CONNECTING OTHER DIGITAL DEVICES

Figure 7.18 Pin-out and the Internal block diagram of the 8253/8254

Before a counter can be used, it is configured first. This is achieved by writing a control word into
the control word register. The bit functions of the control word are shown below. Bit 7 (SC1) and
bit 6 (SC0) select the counter to be initialized.

bit 7=0 bit 6=0 to configure counter 0
bit 7=0 bit 6=1 to configure counter 1
bit 7=1 bit 6=0 to configure counter 2
bit 7=1 bit 6=1 to read-back command

296 PC INTERFACING

CONNECTING OTHER DIGITAL DEVICES

Bit 5 (RW1) and bit 4 (RW0) control the format of the read and write for each counter register.

bit 5=0 bit 4=0
bit 5=0 bit 4=1
bit 5=1 bit 4=0
bit 5=1 bit 4=1

counter latch command
read/write least significant byte only
read/write most significant byte only
read/write least significant byte first, then the most significant byte.

Bit 3 (M2), bit 2 (M1) and bit 1 (M0) control the output modes. There are six output modes:

bit 3=0, bit 2=0, bit 1=0
bit 3=0, bit 2=0, bit 1=1
bit 3=x, bit 2=1, bit 1=0
bit 3-x, bit 2=1, bit 1-1
bit 3=1, bit 2=0, bit 1=0
bit 3=1, bit 2=0, bit 1=1

Mode 0 - interrupt on terminal count
Mode 1 - hardware one-shot
Mode 2 - timed interrupt generator
Mode 3 - square wave generator
Mode 4 - software triggered strobe
Mode 5 - hardware triggered strobe

Bit 0 configures the data format in the counter registers.

bit 0 0=16-bit binary counter, 1=4 decades BCD format

To write data to the 8254, firstly the 8-bit data A0 and A1 are present at the inputs to the 8254.
Then a high-to-low-then-high pulse is supplied to the -WR. After this, the data is written into the
selected register. -CS must be at low state to enable the IC during this operation.

Each counter of the 8254 has six output modes (see Figure 7.19). The interrupt on terminal count
mode (Mode 0, Figure 7.19(a)) is used to generate an interrupt at the output after an interval of time
has elapsed. After a control word (CW=10d) is written to the control register, the output pin of the
counter 0 will go low. After the counter value (N) is written to the counter, the output will go high
after N+I clock pulses. The hardware one-shot mode (Mode 1, Figure 7.19(b)) is that when a pulse
is applied to the trigger of a counter, its output goes low. After a fixed amount of time the output
will automatically go high. The time period of the low state is determined by the frequency of the
applied clock and a count number loaded into the counter. If a counter value N is loaded, the output
will be low for N clocks. When a counter is configured in the timed interrupt mode (Mode 2, Figure
7.19(c)), the 8254 counter operates as a pulse generator the frequency of which is the clock frequency
divided by N. N is the counter value loaded into the IC. If an 8254 counter is programmed in the
Mode 3, the square wave mode (Figure 7.19(d)), and an even number is written to its counter
register, the waveform of the output pin is a 50% duty cycle square wave. The frequency of the
square wave equal to the frequency of the input clock divided by the number written to the counter
register. If an odd number is written to a counter, the output waveform will be high for one more
clock pulse than it is low.

Mode 4 is the software triggered strobe (Figure 7.19(e)). In this mode, the counter automatically
begins to decrement upon loading with its initial counter value. It then decrements at a rate
determined by the clock. When 0 count is reached, the counter generates a single low-going strobe
pulse with a duration equal to one clock pulse at its output. Therefore, a counter produces a low-
going strobe pulse of N+I clock cycles after the counter value is written to the register.

The hardware triggered strobe (Mode 5, Figure 7.19(f)) is similar to Mode 4, except that counting
is initiated by a high-going pulse at the Gate input. A rising edge of GATE starts the countdown
process. When the trigger input is high, the counter value is transferred to the counter on the next
clock pulse. The next clock pulse decrements the counter. When the counter reaches 0, OUT goes

PC INTERFACING 297

CONNECTING OTHER DIGITAL DEVICES

-WR

CLK

GATE

OUT

CW=10 LSB=4

- l _ j - b i -
~

, ,

, , , ,

J : :
I

~

[' .
'4 3 2 '1 0

(a) interrupt on terminal count

-WR

CLK

GATE

OUT

CW=16 LSB=4

-Li-L_I~ '

J - : i : .

. . I v-2_

(d) s q u a r e w a v e generator

-WR

CLK

GATE

OUT

cw=12 LSB--3 CW=18 LSB=3
,

- L_R_I w . - I _ ~
�9 ~

. . ; ; : : '. : .

,-L__21 1 . : i ~ ! i i : :
.

(b) hardware one-shot (e) software-triggered strobe

-WR

CLK

GATE

OUT

cw=14 LSB=3 . CW=IA LSB_3

. . . . ' ~ ' i

J i : : : : : : ~,~ ll
. , , ' ,

(c) timed interrupt generator (f) software-triggered strobe

Figure 7.19 Output modes of the 8254

low for one clock pulse. Hence after the trigger input goes high, OUT goes low after N+I clock
pulses.

Figure 7.20 shows an experimental circuit of the 8254 using the Centronic experimental board. In
this circuit, D1 and D2 terminals on the experimental board are used to load data serially into a
74LS164 shift register. The 8-bit parallel outputs of the 74LS164 supply data to the 8254. D5, D6,
D7 and D8 are connected to -WR, A1, A0 and -CS inputs of the 8254. The counter 2 is used for

2 9 8 PC INTERFACING

CONNECTING OTHER DIGITAL DEVICES

Figure 7.20 Experimental circuit of the 8254

experimenting, CLK2 is fed with a clock signal and GATE 2 is pulled to logic high to enable the
counter. The software configures the counter 2 in the square wave generator mode. The frequency of
the signal is controlled by the software.

TP6 program list of 8254.PAS

Program mini_sig_generator;

(* software driver for the 8254 timer/counter *)

(* Centronic data port connections:

DBl=data, DB2=clock for 74LS164

DB5=-WR, DB6=AI, DB7=A0 and DB8=-CS for 8253 *)

PC INTERFACING 299

CONNECTING OTHER DIGITAL DEVICES

uses

dos, c r t ;

{$I c:\ioexp\tplibl.pas }

Const

base_frequency=2457600;

(* The clock signal input to the 8254 *)

command:byte;

output_frequency:longint;

Procedure setbit(bitnumber,bitvalue:byte);

(* set the status of a particular bit of the con~nand, bitnumber: 1-8; bitvalue: 0 or i *)

begin

if bitvalue-1 then command:-command or bit_weight(bitnumber);

if bitvalue-0 then command~-command and (255-bit_weight(bitnumber));

end;

Procedure initialization;

(* set all the lines to high status *)

begin

command:-127;

write data_port(P_address,co~mand); (* output command to the data port *)

output_frequency:-1000;

end;

Procedure loaddata(address,data:byte);

(* load data to the shift register 74LS164 and write data to 8253

address selecting Counter 0 to 2 and control register

data being the data written to the registers

During loading, (1) DB0 is loaded with the data sw[i],

(2) DB1 (CLOCK) goes low-to-high-then-low

(4) DB7 (-CS) must be low to enable the 8254

(5) DB6 and DB5 (A0 and At) must be set to a proper address

(6) DB4 (-WR) goes from high-to-low-then-high after loading

DB4 should be high all other time *)

var

dzarray[1..8] of byte;

i,A0,Alzbyte;

300 PC INTERFACING

CONNECTING OTHER DIGITAL DEVICES

begin

end;

if address=0 then begin A0:=0; AI:=0; end;

if address=l then begin A0:=I; AI:=0; end;

if address=2 then begin A0:=0; A1:=I; end;

if address=3 then begin A0:=I; A1:=1; end;

(* find the serial data bits to be sent to the 74LS164 *)

for i:=8 downto I do

begin

d[i]:=0;

if data>=bit_weight(i) then begin

end;

end;

data:=data-bit_weight(i);

d[i]:=l;

(* load data into the 74LS164 registers *)

for i:=1 to 8 do

begin

setbit(1,d[i]);

setbit(2,0);

setbit(2,1);

setbit(2,0);

end;

write_data_port(Paddress,command);

write_dataport(Paddress,command);

write_data_port(Paddress,command);

write_data_port(Paddress,command);

(* strobe the data to the 8253 IC *)

setbit(?,A0);

setbit(6,A1); write_data_port(Paddress,command);

setbit(5,0); write_dataport(P_address,com~and);

setbit(5,1); write_data_port(Paddress,command);

Procedure signal_generator(Base_frequency, frequency:longint);

(* Configure counter 2 in mode 3, signal generator *)

var

divisorzlongint;

high byte_0, low_byte_0:byte;

begin

divisor=-round(base_frequency/frequency);

high_byte_0z-divisor div 256;

low_byte_0 :-divisor mod 256;

if divisor>65000 then writeln('Error in delay time');

loaddata(3,$b6); (* load control word *)

PC INTERFACING 301

CONNECTING OTHER DIGITAL DEVICES

end;

loaddata(2,1ow_byte_O); (* load low order 8-bit byte *)

loaddata(2,high_byte_O);(* load high order 8-bit byte *)

Procedure test_8253;

begin

write('Input output frequency [Hz] (0 to quit); ');

readln(output_frequency);

signal_generator(base_frequency, output_frequency);

end;

{************Main program**********}

begin

end.

Centronicaddress;

initialization;

repeat

if output_frequency>O then test 8253 _

until output_frequency=O;

7.5.2 Numerically controlled oscillator HSP45102

The HSP45102 (Harris Semiconductor, RS284-977) is a numerically controlled oscillator which
produces a 12-bit sine wave whose frequency and phase are controlled digitally. The frequency of the
sine wave is determined by one of two pre-loaded 32-bit frequency words. A control pin selects
which word is used to determine the output frequency. The phase of the sine wave is controlled by
two inputs P0 and P1, which select a phase offset of 0, 90, 180 and 270 ~

The pin-out and the internal block diagram are shown in Figure 7.21. VCC (pins 8 and 22) and
GND (pins 7, 15 and 21) are connected to the positive and GND rail of the power supply. The supply
voltage is 5V. The supply current is typically 99 mA in the active mode and the standby current is
500 pA. CLK (pin 16) is the clock input. The maximum frequency is 33 MHz.

SCLK (pin 14), SD (pin 13), MSB/-LSB (pin 11) and -SFTEN (pin 10) are control inputs for the
frequency control section. SCLK and SD are clock and serial data inputs. Data bit present at SD is
shifted into the internal registers at the rising edge of the SCLK input. -SFTEN is the shift enable
inputs. This pin must be low to enable data shifting. When MSB/-LSB is high, the MSB bit is shifted
first. When it is low, the LSB bit is shifted first.

Output frequency (Hz) = N * FCLK/232

In which N is the value of the selected frequency word and FCL K is the frequency of the clock signal.
-LOAD (pin 18), -TXFR (pin 17), -ENPHAC (pin 12) and SEL_IdM (pin 9) are control inputs for

the phase accumulator. -ENPHAC enables the phase accumulator, SEL_Id- M selects the two
frequency words. When it is high, it selects the least significant 32 bits of the 64-bit frequency
register. When it is low, it selects the most significant register. When -TXFR is low, the frequency

302 PC INTERFACING

CONNECTING OTHER DIGITAL DEVICES

Figure 7.21 Pin-out and internal block diagram of the HSP45102

word selected by SEL_L/-M is transferred from the frequency register to the phase accumulator's
input register. P0 (pin 20) and Pl (pin 19) are phase modulation inputs. A phase shift of 0, 90, 180
and 270 ~ can be selected. The 12 outputs (pins 1-6 and pins 23-28) are the data outputs. The value
ranges from 000h to FFFh, centred around 800h. D/A converters can be used to convert the 12-bit
data into a sine signal.

An experimental circuit using the Centronic experimental board is shown in Figure 7.22. D1 and
C1 on the board are connected to SD and SCLK of the HSP45102. The CLK (pin 16) is fed with a

PC INTERFACING 303

CONNECTING OTHER DIGITAL DEVICES

Figure 7.22 Experimental circuit of HSP45102

clock signal. The eight outputs (OUTPUT 11 to OUTPUT 4) are connected to an 8-bit D/A converter
ZN428E. The other four outputs are not used. The control pins are either tied to the ground or §
supply rail. The control software is written in Turbo Pascal 6. The output signal from the D/A
converter is a sine wave which can be observed using an oscilloscope.

TP6 program list of 45102.PAS

Program HSP45102;

(* software driver for digitally control oscillator HSP4512 *)

(* Centronic experimental board connection:

DI: SD, CI: SCLK *)

304 PC INTERFACING

CONNECTING OTHER DIGITAL DEVICES

uses

crt, dos;

{$I c:\ioexp\tplibl.pas}

var

output_f requency: rea l ;

Procedure load_frequency(frequency:real);

(* load frequency into the 45102 frequency register *)

(* frequency measured in Hz *)

var

i,j,k:byte;

bytex:array[l..4] of byte;

n:longint;

begin

n:=round(frequency * 256*256*256*256 / 2.4576e6);

(* convert number n into four 8-bit byte bytex[l] to bytex[4] *)

bytex[4]:=round(n/256/256/256);

n:=n - bytex[4] * 256 * 256 * 256;

bytex[3]:=round(n/256/256);

n:=n - bytex[3] * 256 * 256;

bytex[2]:=round(n/256);

n:=n - bytex[2] * 256;

bytex[l]:=round(n);

(* load first 32 bits of data *)

for i:=l to 4 do

begin

for j:=l to 8 do begin

write_dataport(P_address,round((bytex[i] and bit_weight(j))/bit_weight(j)));

write_control_port(P_address,0);

write_control_port(P_address,l);

write_control_port(P_address,0);

end;

end;

(* load second 32 bits of data *)

for i:=l to 4 do

begin

for j:=l to 8 do begin

write_data_port(P_address,round((bytex[i] and bit_weight(j))/bit_weight(j)));

write_control_port(P_address,0);

PC INTERFACING 305

CONNECTING OTHER DIGITAL DEVICES

end;

end;

write_control_port(P_address,l);

write_control_port(P_address,0);

end;

Procedure test_45102;

begin

write('Input output frequency [Hz] (0 to quit); ');

readln(output_frequency);

load_frequency(output frequency);

end;

begin

end.

Centronic_address;

repeat

Test_45102;

until output_frequency=0;

7.5.3 ML2036 programmable sine wave generator

The ML2036 (Micro Linear) is a sine wave generator capable of producing a sine wave signal with
a frequency from DC to 50 kHz and it only needs a few components. Data can be input serially in
phase with the positive-going clock. After 16 data bits are loaded, a rising edge on the latch pin loads
the data into a 512 point sine wave look-up table. The values obtained are then fed to an 8-bit D/A
converter and then into a low pass filter to smooth the output to achieve a pure sine wave signal.
The signal is buffered on chip and has an amplitude of +_Vre f or _+0.5 Vre f depending on pin
configuration. If a 4.1943 MHz crystal is used, an output frequency from 0.5 Hz to 32.768 kHz is
yielded. The output frequency is calculated by using the following equation:

Output frequency (Hz) = Crystal frequency * N/8388680

in which N is the counter number sent to the ML2036.

306 PC INTERFACING

COMPUTER REMOTE CONTROL AND NETWORK APPLICATIONS

Computer remote control and
network applications

8.1 Telecommunication ICs

The PCD3311C (Philips Semiconductors, RS273-545) produces dual-tone multi-frequency (DTMF)
and modem frequencies. It requires a 5V power supply and the operating current is 0.9 mA. The
standby current is only 3 pA. The pin-out and the internal block diagram of the IC are shown in
Figure 8.1. The timebase for the IC is an on-board crystal controlled oscillator which requires an
external 3.58 MHz crystal connected between OSC1 and OSC0. It interfaces to a computer via a
parallel I/O port or an I2C bus. When the MODE input is connected to the logic high state, parallel
data loading is selected. When it is left open or connected to the logic low, the I2C bus operation is
selected. The signal output from the TONE output is filtered by an on-chip switched-capacitor filter
followed by an active RC low-pass filter. An on-chip reference voltage ensures that the output signal
has an rms value from 150 to 190 mV.

In the parallel data loading mode, the operation of the PCD3311 is controlled by a control word
which is written into the chip from DO to D5. The data must be stable before the positive-going edge
of the STROBE pulse. The input data is latched into the device at the negative-going edge of the
STROBE pulse and the output signal is produced at the TONE output. The output signal remains
unchanged until the next negative-going edge of the STROBE pulse is received. The timing sequence
is shown in Figure 8.2.

D5 and D4 of the control word select operation modes. D3 to DO select frequency combinations
of DTMF or frequencies of modern tones. The details can be found in the manufacturer's data sheet.

The PCD3311C can be connected to the Centronic experimental board to form a PC-based
telephone dialling system. DO to D5 are connected to the D1 to D6 terminals. STROBE is connected
to the C1 terminal.

8.2 Modem IC

The TCM3105 (Texas Instruments) is a frequency shift keyed (FSK) voiceband modem. It contains
a transmitter and receiver channel which can work in the same time. The transmitter is a
programmable frequency synthesizer which produces two frequencies at the output representing the

PC INTERFACING 307

COMPUTER REMOTE CONTROL AND NETWORK APPLICATIONS

Figure 8.1 Pin-out and internal block diagram of the PCD3311C

logic status 0 or 1. The receiver demodulates the input analogue signal and outputs either logic 0 or
logic 1 depending on the frequency of the signal.

The pin-out and the internal diagram of the IC are shown in Figure 8.3. The supply voltage is 5V
and the supply current is 5.5 mA. A 4.4336 MHz crystal is connected to OSC1 and OSC2. TXR1
and TXR2 select the baud rate and TRS selects a telecommunication standard. TXD and TXA are
digital input and analogue output of the transmitter channel. RXA and RXD are analogue input and
digital output of the receiver channel. CDT is the carrier detect output. A low level on this pin
indicates that the receiver fails to receive the analogue signal. The carrier detect threshold can be
adjusted by CDL input.

The transmitter consists of an FSK modulator which is a programmable frequency synthesizer
which derives the output frequencies by a variable division of the 4.4336 MHz clock frequency. The

3(}8 PC INTERFACING

C O M P U T E R R E M O T E C O N T R O L AND N E T W O R K A P P L I C A T I O N S

Strobe

Tone

Loading Loading Loading

I

!

I
, \

D1 J I

I

i

I

t
�9 ~ I ["

D 4

I '" \ , / , , -

!

I Oscillator O F F

I

,. = i

I

I

,

I
, /
I
I

i

I

i

I

I
\ ' / \

I

I Oscillator ON
I No output tone

i
I

/

/
Oscillator ON
Output tones

Figure 8.2 Timing sequence of the parallel data loading mode

division ratio is set by TRS, TXR1 and TXR2. If TRS = TXR1 = TXR2 = 0, the output frequency is
1300 Hz for logic high. It is 2100 Hz if the input is at logic low. The receiver section performs
demodulation of the input analogue signal.

The IC can be connected to the RS232 experimental board to form an RS232 modem. The
transmitter and receiver can be linked by various means such as radio, infra-red or sound.

8.3 Radio l inks

8.3.1 TMX/SILRX FM radio links

These are 418 or 433 MHz surface acoustic wave controlled FM radio transmitters and receivers and
are specially designed for radio telemetry and telecommand applications. They are type-approved to
the Radio Communications Authority in the UK. This implies that if the customized circuits complie
to the RA requirements, there is no need to submit the final product for further type approval.

(a) TMX transmitter

The pin-out and the internal block diagram of the TMX transmitter (Radiometrix, RS740-290) are
given in Figure 8.4. The transmitter requires a power supply at pin 3. Pins 1 and 4 are connected

PC INTERFACING 3 0 9

COMPUTER REMOTE CONTROL AND NETWORK APPLICATIONS

Figure 8.3 Pin-out and internal block diagram of the TCM3105

together internally and form the ground. The transmitter operates over a wide voltage range from 6
to 12V DC with a typical current sink of 6 mA at 6V. Available frequencies are 418 MHz and 433
MHz. Pin 5 is the data modulation input which requires a CMOS logic level at the same supply
voltage. An antenna is connected to pin 2. The serial digital data is fed into the DATA IN pin. It first
passes through an R/C low-pass filter, which restricts the bandwidth of the modulation signal below
10 kHz. It is then fed into a wideband frequency modulator. The modulator drives a varicap diode,
the changing capacitance of which modifies the frequency of the next stage, a radio frequency
oscillator. The central frequency of the oscillator is precisely set by a surface acoustic wave resonator

310 PC INTERFACING

COMPUTER REMOTE CONTROL AND NETWORK APPLICATIONS

Figure 8.4 Pin-out and internal diagram of the TXM-418-A

in the 418 MHz band (417.90 to 418 MHz). The final filtered RF output appears on pin 2 and is
connected to an antenna.

The antenna for the transmitter have three versions, the helical type, the loop type and the whip
type (see Figure 8.6). The helical antenna is small (17 mm length and 2.5 mm diameter). It has a high
'Q' factor and therefore needs to be optimized for the exact wavelength in use. The loop antenna
consists of a loop of PCB track, which is tuned by a variable capacitor. The whip-type antenna is a
wire, rod, PCB track or a combination of these. The optimum total length should be 16.5 cm.

The radio transmitter module is type-proved to the RA MPT1340 for licence exempt use within
the UK for telemetry, telecommand and in-building security, provided the following requirements are
m e t .

1. The transmitting antenna must be one of the three variants given above.
2. The transmitter module must be directly and permanently connected to the transmitting antenna

without the use of an external feed. Increasing the rf power level by any means is not permitted.
3. The module must not be modified nor used outside its specification limits.
4. The module may only be used to send digital data. Speech or music is not permitted.
5. The equipment in which the module is used must carry an inspection mark located on the outside

of the equipment and clearly visible; the minimum dimensions of the inspection mark shall be
10 x 15 mm and the letter and figure height must be not less than 2 mm. The wording shall read:
'MPT 1340 W.T. LICENCE EXEMPT'.

6. The trimmer control on the module must not be easily accessible to the end user. This control is
factory set and must never be adjusted.

PC INTERFACING 311

COMPUTER REMOTE CONTROL AND NETWORK APPLICATIONS

(b) SILRX receiver

The pin-out and the internal block diagram of the SILRX receiver (Radiometrix, RS740-304) are
shown in Figure 8.5. The receiver requires a power supply at pin 5. The radio signal input is at pin
1. Pins 2 and 4 are the ground. The module operates over a voltage range from 4.5 to 9V DC with
a typical current of about 13 mA. Available frequencies are 418 MHz and 433 MHz. The incoming
radio frequency signal, picked up by the antenna, goes to a 418 MHz band pass filter via a capacitor.
A radio frequency pre-amplifier boosts the signal before it enters the first mixer stage. The first local
oscillator runs at a frequency of 433.92 MHz, which is produced by a surface acoustic wave
resonator. The signal is mixed with the received 418 MHz signal to produce the first intermediate
frequency signal at 15.92 MHz, This is then fed to the second mixer, where a second local oscillator
running at 16 MHz produces the final intermediate frequency at a frequency of 80 kHz. Then it is
amplified and demodulated to produce an audio frequency signal. A carrier detect signal is also
produced. To improve the signal-to-noise performance, the audio signal is processed by a third order
lower pass filter. The signal is finally converted into a digital signal and is output from pin 7. The
signal has a CMOS logic level. Any types of the antenna described above can be used.

Figure 8.5 Pin-out and internal diagram of the SILRX-418

312 PC INTERFACING

COMPUTER REMOTE CONTROL AND NETWORK APPLICATIONS

I I

8

8.3.2 AM-TX1/AM HHR3 AM radio link pairs

The AM-TX1 (RF Solutions) is a miniature hybrid RF transmitter providing on-off modulation. It
can be used to transmit data from any standard CMOS/TTL source with a baud rate of 1200. The
pin-out and the application circuit are given in Figure 8.7. It is also very simple to operate, requiring
only two connections. The module is very efficient, using only 2.3 mA. The output is connected to
an antenna which could be a tuned loop or a whip antenna. The transmitting range is up to 100
metres. Available frequencies are 418 MHz and 433 MHz. It is type approved to MPT1340 for use
in telemetry and telecommunications products when the antenna shown in Figure 8.6 is used.

Figure 8.6 Various types of antenna for the TXM-418 radio
transmitter

PC INTERFACING 313

COMPUTER REMOTE CONTROL AND NETWORK APPLICATIONS

Figure 8.7 Pin-out and a typical application of the AM-TX1

The AM HHR3 (RF Solutions) is a compact modular RF receiver, which can be used to capture
data transmitted from the AM transmitter. The pin-out is shown in Figure 8.8. The output is
TTL/CMOS compatible. It requires a supply voltage of 5V and consumes 2.5 mA.

8.3.3 Experimenting with the radio link

Figure 8.9 shows a circuit which converts 12 parallel bits into a serial data format. The serial data
can then be transmitted using the TXM-418 or the AM-TX1 transmitter module. The HT-12E is
used as the parallel-to-serial data converter. The 12 bits of data can be supplied by the Centronic
experimental board. The address bits A0 to A6 are connected to D1 to D7 of the board and the data

314 PC INTERFACING

COMPUTER REMOTE CONTROL AND NETWORK APPLICATIONS

Figure 8.8 Pin-out of the AM-HRR3

Figure 8.9 Circuit diagram of the radio digital data transmitter

PC INTERFACING 315

COMPUTER REMOTE CONTROL AND NETWORK APPLICATIONS

bits DO to D3 are connected to C1 to C4 of the board. -TE is connected to D8 of the Centronic
experimental board. A7 is pulled down to the ground permanently.

Figure 8.10 shows a circuit which receives the radio digital data and decodes the serial data into
a parallel data. The SILRX-418 or the AM-HRR3 receiver module and the HT-12D are used.

Such a system allows one transmitter connected to the Centronic port to transmit 4-bit data to any
one of 127 receivers. It has a potential application in radio remote control. The radio transmitter and
receiver pairs can be also used for non-contact data reading applications. Serial I/O A/D converters
can also be used to form such a system.

Figure 8.10 Circuit diagram of the radio digital data receiver

316 PC INTERFACING

COMPUTER REMOTE CONTROL AND NETWORK APPLICATIONS

8.4 Radio transceiver modules

8.4.1 BiM-418-F radio transceiver

The BiM-418-F radio transceiver module has two versions, BiM-418-F and BiM-433-F
(Radiometrix). The first one operates at 418 MHz frequency band and is type-approved to the Radio
Communication Authority in the UK (MPT1340). The latter is for European uses in the 433.92 MHz
frequency band. They allow a bi-directional half-duplex data transmission at a speed up to 40
kbyte/s over a distance of 30 metres inside buildings and 120 metres in the open field.

The pin-out is of the BIM-418-F (Radiometrix) shown in Figure 8.11. The working principle of
the transmitter and the receiver part of the transceiver are similar to the TMX series radio transmitter
and SILRX series receiver modules as described above. Pins 9, 10 and 18 are the ground pins (0
Volts) which are connected to the negative rail of the power supply. Pin 17 is the positive supply pin
(Vcc). A DC supply voltage between 4.5 and 5.5V should be connected. When the module is in
transmit and receive modes, the current assumption is about 12 mA. When it is in the standby mode,
the current reduces to 1 ~A. Pin 14 is the transmit data input pin (TXD). It can be driven directly by
CMOS logic running on the same supply voltage as the module. Analogue signals generated by
modems or DTMF encoders can be also fed into this pin. Pin 12 is the output of the received data.
It can be connected directly to CMOS logic. Pin 13 is the output of the analogue signals. It can be
used with modems or DTMF decoders. Pin 11 (-CD) is the carrier detect. When the module is in the
receive mode, a low state indicates a signal above the detection threshold is being received. Pins 15
(-TX) and 16 (-RX) are used for selecting operation modes of the module.

Pin 15=1 Pin 16=1 standby mode
Pin 15=1 Pin 16=0 receive mode
Pin 15=0 Pin 16=1 transmit mode
Pin 15=0 Pin 16--0 self loop test mode

Figure 8.11 Pin-out of the BiM transceiver

PC INTERFACING 317

COMPUTER REMOTE CONTROL AND NETWORK APPLICATIONS

Pins 1 and 3 are the RF ground. They are internally connected to pins 9, 10 and 18 and should be
connected to the ground plane of the user's PCB board against which the antenna radiates. Pin 2 is
connected to the antenna. Three types of integral antenna are recommended and approved for use
with these modules. The configuration of the antenna and selection chart are given in Figure 8.6.

8.4.2 Requirement for serial data to be transmitted

The data path through a pair of BiMs is AC coupled. Several constraints are placed for a successful data
transfer. The pulse with time (i.e. the time between any two consecutive transitions) in the serial code
must be within 25 lJs and 2 ms. The receiver BiMs require at least 3 ms of 10101010 preamble to be
transmitted before the actual data is transferred. The receiver is optimized for data waveforms with
50:50 mark-to-space averaged over any 4 ms period. It will work reliably for sustained asymmetry up
to 30/70 either way, but this will result in pulse width distortion and a decreased noise tolerance.

The radio transceiver modules can be used for transmitting RS232 signals between two computers.
The experimental circuit is given in Figure 8.12. The RS232 serial data can be transmitted at 4.8 to

Figure 8.12 Experimental circuit diagram of an
RS232 radio modem

318 PC INTERFACING

COMPUTER REMOTE CONTROL AND NETWORK APPLICATIONS

38.3 kb/s baud rate between a pair of BiMs. In order to send an RS232 serial data through the BiMs,
the data should be packetized in order to meet the requirements by the BiMs. The packetized data
includes the following parts: (1) 3 ms of preamble data (55H or AAH) to allow the receiver BiM to
settle; (2) 1 or 2 byte of FFH; (3) 1 byte of 01H to show the start of data; (4) data bytes and (5)
check bits. In practice, the format of the packetized data may vary according to users' situations.

There are three methods to improve the mark-space ratio of the serial data to be transmitted. The
first method is to divide each byte into two. The first half is the bit to be sent and the second half is its
compliment. Each byte has a guaranteed mark-to-space ratio of 50:50. Amongst the 256 possible 8-bit
codes, 70 codes contain 4 zeros and 4 ones which have a 50:50 mark-to-space ratio. For example, 17H,
1BH, 27H, E8H, etc. They can be transferred between two RS232 ports using an RS232 format of one
start bit and one stop bit with no parity check bit. The actual data to be sent will be translated to these
codes. This is the second method. For the third method, each byte is sent twice. The first one is the true
data and the other is its compliment. This will give 50:50 mark-to-space ratio.

8.5 Mains line modem LM1893

The LM1893 (National Semiconductors) Bi-line Carrier Current Transceiver is specially designed for
transferring a serial data amongst remote locations utilizing the mains lines. The pin-out of the IC is
shown in Figure 8.13. The typical application is shown in Figure 8.14. The IC requires a power supply
of 14-30V. V+ (pin 15) and GND (pin 14) are connected to the positive and negative rails of the power
supply. The transmitting (Tx) and receiving (Rx) modes are selected by Tx/Rx input (pin 5). When the
Tx/Rx pin is held high the chip is in the transmitting mode (Tx). The input digital data up to 5 kHz is
fed into the DATA IN input (pin 17) to generate a switched 0.9871/1.0221 control current to drive a
current-controlled oscillator (ICO). The central modulation frequency is between 50 to 300 kHz and is
determined by R3, VR1 and C8. The signal passes through a sine-wave shaper which delivers a current
sinusoid through an automatic level control (ALC) circuit to a current output amplifier. The ALC circuit
is used to provide a stable output signal with changing mains impedance. C4 and R2 control the

Figure 8.13 Pin-out of the LM1893

PC INTERFACING 319

COMPUTER REMOTE CONTROL AND NETWORK APPLICATIONS

Figure 8.14 Circuit diagram of LM1893 used as a receiver and a transmitter

dynamic characteristics of the ALC circuit. Drive current from the carrier I/O (pin 10 which is an output
when the IC is in the transmitting mode and is input when in the receiving mode) develops a voltage
swing on the resonant tank coil T1. This voltage then passes through T1 and coupling capacitors C1
and C2 onto the mains lines. The tank coil serves as a further isolation and matches the impedance of
the power line so as to produce the maximum carrier signals on the mains. C3 is chosen so that the
tank resonant frequency is equal to the internal modulation frequency. R1 and D1 are used for
protecting the IC during the transient voltage surges which are frequently present on the power lines.

When Tx/Rx (Pin 5) is low, the chip is configured as a receiver. The transmitting section is disabled.
The signal picked up by the receiver is the sum of various signals present on the mains lines. The
signal is fed into the receiver's input high pass filter consisting of C1, C2 the tank coil T1 and the
band pass filter made up of C3 and T1. These filters allow the carrier signal to pass and attenuate
heavily on the 240V AC and transient spike. The signal is fed into the carrier I/O receiver input (pin
10). The amplifier removes DC offsets, attenuates line frequency, acts as a band pass filter, and limits
the signal to drive the phase lock loop (PLL) phase detector. The output signal from the phase
detector containing AC and DC data signals, noise, system DC offset, and other frequency
components passes through an RC low pass filter and finally passes through a noise filter to produce
serial data at the open collector output data out (pin 12). C7, C6 and C5 are the components
determining the characteristics of the receiving circuit.

320 PC INTERFACING

COMPUTER REMOTE CONTROL AND NETWORK APPLICATIONS

8.6 RS485 interface

The RS485 interface is an improved version of RS232 interface. It is widely used in implementing
control systems and data distribution. It uses a twisted pair link to reduce noise and to improve the
performance of data transfer. The maximum data rate on the bus is 10 Mb per second and the
maximum transmitting distance is 1200 m.

The RS485 interface uses the differential inputs on the receiver. The signals on the two wires are
always in anti-phase. Noise induced in the two wires is always in phase. Therefore the noise is
automatically cancelled at the receiver's differential inputs. Data transmission over the RS485
interface is best protected by ensuring that the cable is terminated with the characteristic impedance.
In practice, this impedance is the same as the output impedance of the transmitter.

A device which could implement an RS485 easily is the SN75176B (Texas Instruments, RS 630-
904). The pin-out and the internal diagram of the IC are shown in Figure 8.15. A single RS485 driver
can drive 32 receivers. All transmitters and receivers are connected to the two wires. This means that
the bus is only suitable for half-duplex connections. Only one transmitter can talk at a time. Others
are either in the high-impedance state or in the listening mode. Figure 8.11 shows a simple RS485
local network. It uses the RS232 experimental board.

Figure 8.15 Pin-out and the internal diagram of the SN75176B

8.7 The infra-red data l ink - IrDA standard

IrDA stands for Infra-Red Data Association. The association united the forces of several
manufacturers involved in optical data transmission technology. The aim is to set a standard for data
exchanges via infra-red light. The data exchange scheme is particularly suitable for data exchanges
between laptop/desktop PCs and printers, telephone sets and fax machines. The biggest advantage is
the total absence of cable connections.

PC INTERFACING 321

COMPUTER REMOTE CONTROL AND NETWORK APPLICATIONS

Figure 8.16 Circuit for converting an RS232 port into an RS485 port

The IrDA specifies a relatively short communication range of 1 metre to ensure a low current
consumption and to prevent interference between different IrDA devices. The point angle is 30 ~ The
IR diodes transmit in the spectrum range 850 to 900 nm. IrDA-1 specifies a data exchange rate of
115.2 kb/s in half-duplex mode. Since then, a standard with 4 Mb/s has been issued.

The IrDA link extends the RS232 interface (or UARTs). A light emitting diode is connected to the
serial output of the RS232 via an infra-red emitter interface. A photodiode is connected to the
receiver via an infra-red receiver interface. The emitter interface reduces the length of pulses from the
RS232 interface to a maximum of ~ of the original bit length. This is to reduce the driving power
to the LEDs. At the receiver side, the infra-red receiver interface restores the pulses to their original
length, allowing them to be processed in the normal way by an RS232 interface.

Modules are available for IrDA applications. They consist of a light emitting diode and a driver, a
photodiode and an amplifier, etc. The HDSL-1000-101 (Hewlett Packard, RS 193-4780) is an
example. The pin-out, the internal diagram and a typical application of the device are given in Figure
8.17. The input of the module is driven by the shortened serial pulses. They are converted into infra-
red light pulses by the light emitting diode. The infra-red light pulses, which are detected by the
photodiode, are converted into TI'L pulses at the output. The infra-red emitter and receiver
interfaces for the pulse length shaping are not included in the module. To implement the IrDA link

322 PC INTERFACING

COMPUTER REMOTE CONTROL AND NETWORK APPLICATIONS

Figure 8.17 Pin-out and internal diagram of the HSDL-IO00

to an existing RS232 interface, an HSDL-7000 (Hewlett Packard RS233-2242) infra-red emitter and
receiver interface can be used. Figure 8.18 shows the circuit.

The CS8130 (Crystal Semiconductor RS207-2473) is an infra-red transceiver integrated circuit.
The receive channel includes on-chip high gain PIN diode amplifier, IrDA, HPSIR, 500 kHz ASK and
38 kHz TV remote compatible decoder and data pulse stretcher. The transmitter channel includes
IrDA, HPSIR, ASK and TV remote compatible encoder and LED driver. It accepts data from UART
with a baud rate from 1200 to 115200. External PIN diode and LED are required. The supply
voltages to the IC are from 2.7 to 5.5V. The IC draws a 2.5 mA current.

The pin-out and a typical application of the IC are shown in Figure 8.19. It provides four infra-
red transmission modes: IrDA/HPSIR, 500 kHz ASK, 38 kHz TV remote control and direct access
mode. In the IrDA/HPSIR mode, a pulse of infra-red energy indicates a logic 0. No IR energy

PC INTERFACING 323

COMPUTER REMOTE CONTROL AND NETWORK APPLICATIONS

Figure 8.18 Experimental circuit for RS232 serial data
transmission

indicates a logic 1. The pulse width can be from 1.6 las (for 115200 baud rate) to 78 las (1200 baud
rate). The width of the pulse may be fixed at 1.6 las for all baud rates. The initial baud rate for IrDA
is 9600 and this can be set to baud rates from 1200 to 115200. In the ASK mode, when a carrier
wave of 500 kHz is present, it indicates a logic 0. The absence of a carrier is treated as a logic 1. The
baud rates are 9600, 19200 and 38400. The TV remote control is similar to the ASK mode, except
that the carrier frequency is 38 kHz. The baud rate is 2400. In the direct access mode, the IR
transmitter tracks what is present on the TXD pin. Logic 1 means that the LED is off. Logic 0 means
that the LED is on. For the receiver, a logic 1 at the output (RXD) means that no infra-red energy is
detected. Logic 0 indicates that infra-red energy is detected.

To transmit data, the data is written to the CS8130 via the TXD pin first. The selected modulation
scheme is then applied to the data to be transmitted. The transmission modes are selected by writing
a control word into an appropriate internal control register. There are various control registers in the
CS8130 to control the operation modes. The receiver modes can be also selected by writing the
control word into the CS8130 registers. Data is written into the control registers by taking D/-C low.
The details of the functions of the registers are described in the manufacturer's data sheet.

324 PC INTERFACING

COMPUTER REMOTE CONTROL AND NETWORK APPLICATIONS

Figure 8.19 Pin-out and a typical application of the CS8130

PC INTERFACING 325

FURTHER READING

Further reading

Owen Bishop (1983) Easy Add-on Projects for Spectrum, ZX81 and Ace, ISBN 0859340996,
Bernard Babani Publishing Ltd.

Roger G. Gilbertson (1994) Muscle Wires Project Book, ISBN 1-879896133, Mondo-tronics, Inc.
Hans-Peter Messmer (1993) The Indispensable PC Hardware Book, ISBN 0201624249, Addison-

Wesley.
Mustafa A. Mustafa (1994) Microcomputer Interfacing and Applications, Second edition, ISBN

0750617527, Butterworth-Heinemann.
Que Corporation (1995) Using Visual Basic 3, ISBN 156529763X.
Michael Tooley (1990) Electronic Circuits Handbook, ISBN 0434919683, Butterworth-Heinemann.
Data sheets for components from various manufacturers.

326 PC INTERFACING

INDEX

Index

AM radio link, 313
Analogue signal generators, 50
Analogue-to-digital converters

analogue to digital processor, 219
converters with serial I/O, 207
digital voltmeter chip, 200
flash MD converter, 189
integrating A/D converter, 196
successive approximation MD converter, 193

Antenna, 313
Audio amplifiers, 170

Base address of
centronic port 6,7
game port 29
RS232 port, 20

Baud rate, 14
BIOS, 6,9,20
Bit manipulation, 12
Buffers, 109

Centronic experimental board, 51
Centronic port, 1
Charge mode light detector, 232
CMOS to TTL interface, 144
Crystal-controlled signal generator, 45
Current transfer ratio (CTR), 144

Darlington transistor drivers, 150
Decoder, 131
Digital potentiometers, 270
Digital-to-analogue converters:

with parallel I/O port, 264
with serial I/O port, 266

Direct I/O access, 10

DLLs, 102
Dot matrix LCD display, 181
Dot matrix LED display, 176
DPDT relay, 163
DTMF generators, 307

Encoders, 314

Flash A/D conversion, 189
Flow sensors with digital output, 253
FM radio link, 309
FM radio link transceiver, 317
FSK, 307
Full bridge driver, 163

Game port, 28
Game port experimental board, 55

Helical type antenna, 313
Humidity sensor, 250

I2C bus, 139
I2C bus compatible ICs, 142
I2C bus implementation on:

centronic port, 142
RS232 port, 142

Infrared light detectors:
38kHz demodulation detector, 237
Schmitt detector, 238

Initialise RS232 port, 23
INP(), 10
Input data from:

centronic port 9,10
game port, 31
RS232 port, 25

PC INTERFACING 327

INDEX

Integrating A/D converter, 196
IrDA infrared communication, 321
Isolated voltage supply, 44
ITC232-A, 126

Joysticks, 28

Key and keyboard, 262

Latches, 110
light array sensors, 232
Light emitting diodes 151

standard, 151
low current, 151
multicolour, 152
infra-red, 153

Light-to-frequency sensors, 229
Logic probes, 45
Logic status generators, 47
Loop type antenna, 313

Magnetic sensors with frequency output, 255
Magnetic switch, 256
Mains line modem, 319
Measurement of time intervals using PC, 32
MEM(), MEMW(), 7
Memories:

EEPROM with three wire I/O interface, 174
EEPROM with I2C bus, 281

Micro-LAN bus, 144
Modem ICs, 307
MOSFET transistor drivers, 150
Motor drivers, 162
MSF time base, 256
Multi-channel Darlington drivers, 155
Multi-digits dot matrix LED display, 178
Multi-digits seven segment LED display, 170
Multi-standard infrared transceiver, 323
Muscle wire driver, 186

Opto-isolated zero-crossing solid state relays,
161

Opto-isolator drivers, 148
Opto-isolators 144,

Transistor, 144
Darlington, 146
TYL/CMOS compatible, 145
Schmitt trigger, 147

OUT()command, 10
Output data from:

Centronic port, 9,10
RS232 port, 25

Packetized data, 319
Parallel to serial interface, 130
PEEK(), 7
Peripheral programmable interface, 112
Pizero electric sounders, 168
PLL, 320
Port[] command, 10
Power supply, 35
Print circuit boards, 58,59
Printer operation, 9
PROFET drivers, 150
Programmable digital signal generator, 295
Programmable sine wave generators, 302, 306
Pulse train generators, 154, 170

R-2R network, 263
Radio regulations, 311
Radio time base 256
Radio transceiver, 317
Radio transmitter and receiver modules, 309,

313
Read data from PC's memory, 7
Real time clock with IZc bus, 288
Relay drivers, 153

Dry-reed relay, 153
Transistor relay, 153

Remote control Infrared light receiver, 237
RS232 experimental board, 54
RS232 port, 13
RS232 port connection, 16
RS232/TTL converters, 119

ICs, 120
isolated, 121
simplex, 120

RS485 bus, 321

328 PC INTERFACING

INDEX

Serial data transmission, 13
Serial loading drivers, 155
Serial to parallel interface, 128
Shift registers, 128, 130

serial-in and parallel-out, 128
parallel-in and serial-out, 130

Shunt voltage reference, 40
Siren drivers, 169
Sounder drivers, 168
SPDT relay, 162
Speaker drivers, 170
SPI bus, 142
Stepper motors:

stepping sequence, 166
two phase, 164
unipolar four phase, 164

Stepper motor drivers:
two phase, 168
unipolar four phase, 164

Successive approximation MD conversion,
193

Temperature sensors:
with digital I/O port, 238
with temperature-dependent duty cycle, 245
with LCD display, 247

Thermostat, programmable, 238
Time keeping ICs 288
Transistor drivers, 149
TTL to CMOS converter 144
TTL/RS232 converter (see RS232/TIZ

converter)

Turbo Pascal 6 drivers for:
centronic port experimental board, 63
game port experimental board, 85
RS232 port experimental board, 73

Turbo Pascal 6 programming, 63,73,85
Turbo Pascal 6 programming resource libraries,

92

Ultrasonic sound generator, 170
Universal asynchronous receiver and
transmitter (UART), 17, 122

Variable voltage power supply, 39
Variable voltage reference generators, 43
Visual Basic drivers for:

centronic port experimental board, 68
RS232 port experimental board, 78
game port experimental board, 89

Voltage doubler, 43
Voltage inverter, 43
Voltage reference, 40

Voltage regulators:
low drop, 38
low drop and low power consumption, 39
standard, 36

Voltage-to-frequency conversion, 225
Voltage-to-frequency converters, 226

Whip type antenna, 313
Windows programming library, DLLs, 102
Windows programming, 68,78,89

Zener diode, 36

PC INTERFACING 329

	Bibliographic_details
	01-Preface
	02-Acknowledgments
	03-Trademark notice
	04-Ch1-Centronic, RS232 and game ports
	05-Ch2-Tools for experimenters
	06-Ch3-Software drivers for the experimental boards
	07-Ch4-Expanding the Centronic, RS232 and game ports
	08-Ch5-Drivers for external devices
	09-Ch6-Gathering information from the external world
	10-Ch7-Connecting other digital devices
	11-Ch8-Computer remote control and network applications
	12-Further reading
	13-Index

