

Inside the EISA Computers

Inside the
EISA Computers

TONY DOWDEN

...
Addison-Wesley Publishing Company, Inc.
Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn
Sydney Singapore Tokyo Madrid San Juan

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this
book and Addison-Wesley was aware of a trademark claim, the designations
have been printed in initial capital letters.

Library of Congress Cataloging-in-Publication Data

Dowden, Tony
Inside the EISA computers/ Tony Dowden.

p_. cm.
ISBN 0-201-52397-3
1. EISA (computer bus) 2. Computer architecture. I. Tide.

TK7895.B87D69 1990
621.39'16--dc20

Copyright © 1990 by Tony Dowden

90-14
CIP

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written
permission of the publisher. Printed in the United States of America.
Published simultaneously in Canada.

Cover design by Doliber Skeffington
Text design by Total Concept Associates
Set in 11-point Century Schoolbook by Impressions Publishing Services

ISBN 0-201-52397-3
ABCDEFGHIJ-Wl--9543210

First Printing, February 1990

This book is dedicated to the hundreds of hard-working
engineers in the EISA consortium. They had a challenge: to
forge on in the face of adversity and create a new bus,
computers, and accessories that can answer the needs of
computer users for years to come. They did it.

I Acknowledgments

Making acknowledgments in this book is a difficult task, because
I am grateful to so many. I can only hope to acknowledge almost
everyone and sincerely apologize to anyone I have omitted. None
of you will ever be forgotten, and you will always be remembered
with gratitude. The list is in no particular order for it is difficult
to say that any one did any more than any other. Thanks to:

My wife, Patty, who tolerated the long hours required to
do this book. Her suggestions were invaluable; without them this
book would be far less than it is.

Gayle Dolby of Hewlett-Packard, who went far out of her
way to assist me in securing clearance from the corporate powers
to do this book.

Rich Archuletta, who first saw the value of a book like this.
It was he who championed it through the EISA consortium, and
acted as a buffer from the politics that accompanies an effort of
this nature.

Alan VanWinkle and especially Eric Behnke of Hewlett­
Packard, programmers of the highest caliber, who provided a great
deal of assistance in the software sections of this book.

viii Acknowledgments

Jon M. Greenwood and others of Micrografx, Inc. Their
contribution of Micrografx Designer version 2.0 allowed me to do
the artwork in this book far faster and better than I could have
otherwise.

Behind every successful book is a publisher's staff, editors,
and assistants, who make the book so much better with their efforts.
To Julie Stillman, Carole McClendon, Beth Burleigh, Colleen Jen­
sen, and so many others ... thanks.

And last but not least, I must acknowledge the assistance
of Gato (Attila the Fun), my Maine Coon cat. A gentle giant, he
kept me company long after the rest of the family went to bed. It
was he who always had praise, showing it with a purr at every
opportunity. If only I could get him to sleep someplace other than
the top of the laser printer.

Contents

Preface xvu

1 Introduction 1

Notation and Conventions 4
The History of EISA 5
EISA Providers 8
Summary 10

2 Inside the EISA Computer 11

Central Processing Unit 14
The Binary Numbering System 15
The Hex Numbering System 16

Back to the CPU 18
RAM and ROM 19

X

3

4

1/0 20
EISA Computer Hardware

The EISA Connector
Card Size 27

21
22

The EISA Component Interface
82358 EISA Bus Controller 29
82357 Integrated System Peripheral
82352 EISA Bus Buffer 29

28

29

82355 Bus Master Interface Controller 30
Summary 30

The Operating System

Software Architecture 33
BIOS 34
Operating System
Application Software

DOS 4 Overview 38

37
37

DOS 4 File Structures 39
DOS 4 Enhancements 39
DOS 4 Commands and Programs
Other File Types 48

config.sys 49
Autoexec.bat 51
Batch Files 51

Summary 53

The EISA Bus

Bus Differences 57
Address and Data Bus Signals 59
Data Transfer Control Signals 60
Bus Arbitration Signals 62
Utility Signals 62
Signal Use 63

EISA Signals 63
ISA Signals 64

41

Contents

31

55

Contents

5

6

Connector Specifications 65
Summary 65

The EISA Interrupts, DMA, and 1/0
Structures

Interrupts 69
Interrupt Controller 1/0 Addresses 70
Interrupt Sequence 70
Non-Maskable Interrupts 71
Interval Timers 71

Direct Memory Access (DMA) 72
ISA-Compatible Cycles 72
Type A Cycles 72
Type B Cycles 73
Burst DMA Cycles 73

Input/Output (1/0) 73

EISA Software

EISA Configuration 85
Configuration Utility 85
System Configuration Menu 86

Nonvolatile Memory 89
Configuration (CFG) Files 90

CFG Filename Format 90
CFG File Format 90
Brief CFG Description 91
CFG File Examples 93

ISA Serial Board 93
EISA Serial/Parallel Board 95
EISA VGA Video Board 98

Overlay (OVL) Files 99
OVL File Structure 100
OVL Example 101
OVL Functions 106

OVL Function INIT 106

xi

67

83

xii

7

OVL Function CHANGE
OVL Function UPDATE

OVL Memory Allocation
OVL Summary 114

Summary 118

106
112

112

The VGA Video Interface

VGA General Description
Compatibility Standards
VGA Video Connector

Modes of Operation 123
VGA Components 123

121
121

122

Programming the VGA 124
Register Definitions 124

External Registers 125
Miscellaneous Output Register
Feature Control R~gister 126
Input Status Register O 126
Input Status Register 1 126

Sequencer Registers 127

125

Sequencer Address Register 127
Reset Register 127
Clocking Mode Register 128
Map Mask Register 129
Character Map Select Register 129
Memory Mode Register 130

CRT Controller Registers 130
Address Register 130
Horizontal Total Register 131
Horizontal Display Enable End Register
Start Horizontal Blanking Register 131
End Horizontal Blanking Register 131
Start Horizontal Retrace Pulse Register
End Horizontal Retrace Pulse Register
Vertical Total Register 132
CRT Controller Overflow Register
Preset Row Scan Register 133

132

Contents

131

132
132

119

Contents

Maximum Scan Line Register 133
Cursor Start Register 134
Cursor End Register 134
Start Address High Register 134
Start Address Low Register 134
Cursor Location High Register 135
Cursor Location Low Register 135
Vertical Retrace Start Register 135
Vertical Retrace End Register 135
Vertical Display Enable End Register
Offset Register 136
Underline Location Register 136
Start Vertical Blanking Register 137
End Vertical Blanking Register 137
Mode Control Register 137
Line Compare Register 138

Graphics Controller Registers 138
Graphics Address Register 138
Set/Reset Register 138
Enable Set/Reset Register 139
Color Compare Register 139
Data Rotate Register 139
Read Map Select Register 140
Mode Register 140
Miscellaneous Register
Color Don't Care Register
Bit Mask Register 142

141
141

Attribute Controller Registers
Attribute Address Register

142
142

Palette Registers 142
Mode Control Register
Overscan Color Register

143
144

Color Plane Enable Register
Horizontal Pel Panning Register
Color Select Register 144

Using VGA BIOS Functions 145
Set Mode 145
Get Video State
Set Active Page

145
146

144
144

xiii

136

Set Cursor Type 146
Set Cursor Position 146
Read Cursor Position 147
Write Text Functions 147

Write Character and Attribute 147
Write Character Only Function 147
Read Character and Attribute Function 148
Write TTY Function 149
Write String Function 149

Scroll Up 150
Scroll Down 150
Read Dot Function 150
Write Dot Function 151
Set Color Palette Function 151

Programming Examples 152
Display a Character Using MS-DOS 152
Display a Character String Using MS-DOS 152
Display a Character Using BIOS 154
Display a Character String Using BIOS 155

Summary 156

8 Serial Data Communications 157

The Serial Connector 160
RS-232C Signals 162

PG-Protective Ground 164
TXD-Transmit Data 164
RXD-Receive Data 164
RTS-Ready To Send 164
CTS-Clear To Send 164
DSR-Data Set Ready 165
SG-Signal Ground 165
DCD-Data Carrier Detect 165
DTR-Data Terminal Ready 165
RI-Ring Indicator 165

Typical Communications 166
Connector Configurations 167
Serial Data Format 171

Contents

9

Serial 1/0 Ports and Interrupts 173
Serial Port Registers 173

Transmit Buffer Register 173
Receive Buffer Register 17 4
Divisor Latch Registers 17 4
Interrupt Enable Register 175
Interrupt Identification Register 176
Line Control Register 176
Modem Control Register 177
Line Status Register 178
Modem Status Register 180

Serial Port BIOS Routines 180
INIT 181
XMIT 183
RECV 183
STATUS 184
EXTENDED_INIT 184

Programming Examples 185
Initialize Serial Port 185
Read Serial Port Status 186
Send/Receive Character From Serial Port

Summary 189

The Parallel Printer Connector

The Parallel Port Connector
Parallel Printer Signals
Signal Timing 195

193
195

Parallel Port Addresses/Registers
Data Register 198
Printer Control Register
Printer Status Register

Parallel Port BIOS Routines
PUT _CHAR 200
INIT 201
STATUS 201

198
199

200

Programming Examples 201
Send Character to Printer 201

195

xv

187

191

xvi Contents

Send String to Printer 204
Summary 206

10 The 80486 (i486) CPU 207

Compatibility 211
Segmentation Architecture 212
Coprocessor 212
Summary 213

Glossary 215

Appendix 221

Index 227

Preface

Today's personal computer is almost a decade old, a quite signif­
icant age in a time when changes and new technology pop up over­
night, continuously replacing last week's innovations with newer
and better innovations. The personal computer is just such a
creature, with manufacturers announcing newer and faster ver­
sions, seemingly on a weekly basis. Indeed, it is doubtful that any­
one can claim to have seen or used one of every model of personal
computer that has been marketed in the last ten years.

Through this decade of change, one thing seemed to remain
constant-the bus connectors inside the computer where accessory
cards could be installed. These accessory cards enhanced the power
of the computer, allowing it to use more and more peripherals,
contain more memory (RAM and disk drives), and display more
lines of more colors.

Over time, the bus went from a single connector with 8 data
bits to a double connector with 16 data bits. This allowed more
data to flow faster, and with that came the newer 16-bit processors
with their faster clock speeds. Finally, IBM decided that the orig­
inal bus was no longer serviceable and came out with a new com-

xviii Preface

puter using their MCA (Micro Channel Architecture) bus. This bus
used entirely different connectors and, in fact, had an entirely dif­
ferent concept in accessory card implementation.

However, there were other companies who had large in­
vestments in the old bus and were not ready to abandon it. They
felt it needed only an enhancement to bring it up to, and perhaps
exceed, the performance of the MCA bus. Thus the EISA bus was
born, a bus which fulfills the hope of performance exceeding the
MCA bus while retaining the ability to use all of the existing cards.

Detractors from the EISA bus were against the enhanced
standard, saying it was a "new" standard and the interests of the
users would not be well served by yet another standard. The EISA
bus is not a new standard that renders anything obsolete; it is a
significant enhancement of the old standard.

Although this is one of its benefits, it is by no means the
most significant benefit. When new computers are announced, there
is often a lag of a year or more before significant numbers of ex­
pansion cards or compatible software are available for the new
computer. With the EISA computer, the announcement of the first
computers presents no such problem. Over 1,000 expansion cards
are already available that are compatible with the EISA bus!

At the same time, the new EISA computers have room for
expansion well beyond their present configurations. They are de­
signed to accommodate processors currently available, such as the
Intel 80486, and processors as yet unannounced or even conceived.

In writing this book, I became aware that the first of the
EISA computers is not representative of the full power of the bus,
but merely an introduction-a glimpse-into the incredible power
that EISA-based computers will provide in the next decade.

CHAPTER

1

Introduction

Welcome to EISA, the computer architecture "for the rest of us."
This book will guide you through the EISA computer from the
perspective of a user, an engineer, and a programmer. A lot of
information is contained in this book, some of it introductory-for
the newcomer, and some of it technical-for the engineer. This book
dissects the EISA computer, probing some of its secrets and learn­
ing about the source of its power.

And powerful it is. The EISA bus is an enhancement that
will serve the computer community for many years, providing the
platform upon which to build machines with as yet undreamed of
power. It supports Intel processors from the 8086 to the 80486 and
beyond. It also supports processors from other sources, such as the
Motorola 68000 family. It can even run different processors si­
multaneously as multiple bus masters, and allow multiple users to
simultaneously run different software packages and different op­
erating systems, such as 08/2 and UNIX.

This book is your first step toward understanding the power
of the EISA bus and the operation of EISA-based computers. From
here, you can move on to learning more about computer architec­
ture, hardware and software, or using applications programs. This
book also serves as a basis for understanding the differences in the
EISA architecture as offered by different manufacturers.

This book assumes that you have at least a small knowledge
of computers. The more you know about computers in general, the
easier it will be for you to grasp the concepts presented here. How­
ever, if you are a computer novice, you will still get a great deal of
understanding and appreciation of the world of EISA.

Throughout this book, you will find terms like "usually" or
"typically." I am not trying to be vague-that wouldn't be nice and
authors are supposed to be nice. What I am doing, however, is to
warn you that although the information presented in that specific
area is both typical and accurate, different manufacturers may de­
viate in an effort to distinguish their equipment from the offerings
of other manufacturers.

This book begins with a history of the EISA organization
and then turns to an overview of the workings of an EISA computer,
both hardware and software. The discussion is of a general nature,
and a newcomer to the world of computers should have little trouble
with the section. From there it jumps into the heart of the computer

3

4 Introduction

with a more technical discussion, revealing the workings of the
EISA bus, the operation of associated hardware and software rou­
tines, and then on to EISA software. Following that, the loose ends
are tied with a discussion of video and peripheral interfaces and
the 80486 processor. A glossary, some handy reference tables, and
an index round it out. Programming examples are included to help
you understand some of the concepts presented, and you are free
to use any of them in any way that may help you. Modifications
may be required for them to execute on a particular system.

If you are looking for in-depth engineering information, this
book is just a starting point. In-depth information can be obtained
only from the EISA specification itself (at this time, over 430 pages
of detailed and complex information). Note that EISA is not all
that complex: the specification is just that complete.

Notation and Conventions

In this book, some forms of notation may be new to you or may
not be consistent with what you are accustomed to seeing. They
are defined below.

• Signal names are shown in their active state. When a
signal is active high, it is represented by its mnemonic
name. When it is active low, its mnemonic name is fol­
lowed by a tilde n. (This technique allows the computer
to sort the names properly on signal name lists.)

In addition, some signal names may differ from
manufacturer to manufacturer. The signal names used
here are provided in the EISA specification.

• Some signal lines are slot specific. The slot number is
shown by a lower case x that, in some references, may be
replaced by the number of the slot.

• A bus name is identified by its mnemonic name, followed
by the range of bits the bus covers enclosed in angle brack­
ets and separated by a colon. For example, D<15:8> covers
the data lines from D15 to D8.

The History of EISA 5

• Program listings are shown in a fixed-width typeface,
and follow the conventions of the Microsoft Assembler.

• Hexadecimal numbers are shown with a lowercase let­
ter h suffix. Any numbers without the h suffix are decimal
values.

• Logic levels are represented as high (1) or low (O). Spe­
cific voltage level equivalents are a function of the source
component and should be obtained from the manufac­
turer's specification sheet.

The History of EISA

On September 13, 1988, a group of computer industry leaders an­
nounced that they had joined their engineering forces to create a
major enhancement to the ISA (Industry Standard Architecture)
bus. This group, a consortium of over 50 leading manufacturers,
was led by a core of nine member companies: Hewlett-Packard,
Compaq, Zenith, Wyse, Epson, AST, Olivetti, NEC, and Tandy.
They called their concept the EISA (Extended Industry Standard
Architecture) bus, and provided a full 32-bit enhancement for the
16-bit ISA standard as used in the AT-class computers. In part an
answer to the announcement by IBM of their MCA (Micro Channel
Architecture), the EISA bus standard was to provide an entirely
different approach to the solutions required by the problems of the
ISA bus. The ISA bus had served well, but the requirements of the
industry, primarily data transfer rates between bus peripherals,
could no longer be met by the ISA standard.

IBM's answer to the limitations of the ISA bus was the
MCA bus, a complete redesigning of the bus to make it 32 bits,
and a redesigning of the computer as a whole. The new IBM com­
puters used the latest technology available at the time, from low­
power components to surface-mount components, to offer a series
of desktop and deskside computers. A big disadvantage of the new
MCA bus was the lack of accessories for the MCA-based machines,
something that numbered in the thousands for the old ISA stan­
dard.

6 Introduction

The companies who announced the new EISA architecture
took a very different approach. Their solution to the problem of
bus throughput was also to expand the data bus to 32 bits, but they
did it using a modified version of the ISA connector. Their mod­
ifications essentially added a second row of contacts above the ISA
connection pins, and by putting in some blocks to keep the ISA
cards from being inserted too far, they could accommodate all of
the earlier ISA designs in addition to any of the new 32-bit cards
to be provided by members of the consortium or outside vendors.

Among the many advantages cited by the consortium was
that all of the expansion cards available at the time were still fully
functional in the new computer design. This was often misunder­
stood, for many of those who questioned the standard thought that
the motivation was that people could simply pull the cards out of
their old computers and plug them into the new computer. Although
this is indeed possible, it is an unlikely possibility. People usually
pass on their computers whole to the next owner when they acquire
a new computer. The real advantage of the EISA configuration is
that, at the time the first EISA computers became available, over
1,000 already existing cards could plug right in and work. This
provides complete functionality for any configuration that a user
might want, using the components of today. It also provides the
basis of an enhanced system using cards that take full advantage
of the power of the 32-bit EISA bus. This includes features such
as automatic configuration of the cards (no more DIP switches to
set), and the power that comes with a 32-bit data bus, such as data
transfer rates up to 33MB per second.

After the initial announcement in September, 1988, the in­
dustry began buzzing with rumors about the EISA bus, especially
the connector. Many magazine articles were written about it, some
of them claiming it would be an additional connector in front of
the other two original connectors. Others claimed it would be an
additional connector next to the original connector. The only ones
who were not speculating were the actual engineers working on the
connector, and they had something much better in mind. They
were working with several connector manufacturers on a design
that would provide all the signal lines required, but would require
no additional insertion forces, no additional real estate on the
mother board, and would provide an increase in reliability. In the

The History of EISA 7

end, the Burntly Corporation, a well-known and respected industry
leader working with the mechanical engineers, came up with just
the right combination of contact designs, connector molding, pin
locations, and other factors that made the EISA bus what it is
today. Other connector companies will be supplying the connector
as well.

The EISA consortium was picking up momentum, and new
companies were joining almost daily. In fact, as of this writing, the
number of companies on the roster is over 200, and still growing.
As each of the new companies joined, they received a copy of the
EISA specification and access to any information they required to
design computers, accessories, or software for the EISA system. As
the specification was refined, updates were sent out to each of the
member companies.

At the same time as the connector was being finalized, Intel
was busy working on a chip set to complement the EISA bus. The
result of their efforts is the 82350 EISA chip set, four integrated
circuits that replace most of the components found in the IBM
AT-style computers. The EISA chip set was designed to be com­
patible with both the 80486, the 80386, and the 30386SX CPUs.
The 82350 EISA chip set uses CHMOS technology for low power
operation and fully supports the ISA bus as well as the EISA bus.

Simultaneously with the development of the connector and
the chip set, several of the companies, notably Hewlett-Packard
and Compaq, were busy developing the DMA and interrupt con­
cepts and the configuration software. The DMA and interrupt
concepts that resulted provided speed and power that were un­
dreamed of in the earlier ISA bus. The configuration software, a
package that would eventually find its way into the hands of all
developers, was designed to allow each manufacturer to customize
it for a particular system. Both of the main software packages that
were developed, one for configuring the computer's nonvolatile
memory, and one for creating configuration files for accessories,
required a great deal of cooperative interaction on the part of Hew­
lett-Packard and Compaq. The result, however, is a software pack­
age that provides all the necessary functionality, and has been
translated by the creating companies into a number of foreign lan­
guages for the markets in the rest of the world.

8 Introduction

On October 10, 1989, Hewlett-Packard announced the first
of the EISA computers. Significant in the announcement was not
only the 25 MHz 80486 computer, but the fact that the H-P Apollo
workstation division would also be using the EISA bus in some of
its products. Other announcements followed, and the number of
EISA computers keeps growing on a weekly basis.

The result of this historic cooperation is a computer system
that is fully compatible among the different manufacturers. And
because the specification is the result of cooperation among these
companies, the EISA computers represent the best thinking of all
these engineering departments, and a stability that comes from an
agreement between the top engineering departments of companies
who are truly concerned about the needs of their customers.

EISA Providers

Through October 10, 1989, the following companies have publicly
stated that they intend to provide EISA products. Of these, there
are nine core members, often referred to as the "gang of nine,"
shown here in bold print. In addition to these companies, there are
a number of additional companies (about 50) who prefer to have
their names withheld until a future date.

3COM Corporation
ACC Microelectronics Corp.
Acer Technology
Adaptec, Inc.
Adra Systems, Inc.
Advanced Hardware

Architecture
American Megatrends, Inc.
Amp, Inc.
Amstrad Plc
Apollo Computer, Inc.
Arche Technologies Inc.
Arnet Controls, Inc.
ASEM S.P.A.
Ashton Tate

AST Research, Inc.
Atlas Computer Systems
AT&T Computer Systems
Austek Microsystems
Autocomputer Co., Ltd.
Autodesk, Inc.
Banyan Systems Inc.
Borland International
Burntly Corporation
Bustek
Chase Research Limited
Chicony Electronic Co., Ltd.
Chips & Technologies, Inc.
Cirrus Logic, Inc.
Clone Computers

EISA Providers

Codenoll Technology Corp.
Communication Mach. Corp.
Compaq Computer Corp.
Computer Associates Micro

Products
Computone Systems, Inc.
Compu-Shack Electronic

GmbH
Comtrol Corporation
Conner Peripherals, Inc.
Control Systems, Inc.
Cordata Technologies, Inc.
Corollary, Inc.
CSS Laboratories, Inc.
Datamedia Corporation
Datatronic
Digital Communication

Associates, Inc.
Digital Equipment Corp.
Digital Research, Inc.
Donatec Company
DPT
DTK Computer, Inc.
Epson America, Inc.
Everex Systems, Inc.
Excelan, Inc.
Future Domain Corporation
Hauppauge Computer Works
Headland Technology Inc.
Hewlett-Packard Company
HMC Technology Ltd.
IMC Networks
Information Builders, Inc.
Infotronic S.P .A.
Intel Corporation
Interactive Systems Corp.
Interphase Corporation
IOMEGA
ltausa Informatica S/ A

ITT Cannon
I-Bus
Kaypro Corporation
Kayser Threde GmbH
Kontron Electroniks
Laguna Systems
Laser Computer, Inc.
Leukhardt Systems
Lotus Development
Lucid, Inc.
Madge Networks Ltd.

9

Matrox Electronic System
Medidata Informatica S/ A
Methode Electronics, Inc.
Micro Computer Systems, Inc.
Micronics, Inc.
Micronyx, Inc.
Microsoft Corp.
Miniscribe
Mitac
Molex, Inc.
National Instruments
National Semiconductor Corp.
NEC Information Systems,

Inc.
Nixdorf Computer AG
Nixdorf Computer Corp.
Nokia
Novell, Inc.
Oak Technologies, Inc.
Olivetti
Oracle Corporation
Parallax Computer Corp.
PC Cale Ltd.
Peter Norton Computing
Phoenix Technologies
Procomp USA, Inc.
Proteon, Inc.
Quantam Corporation

10

Summary

Quarterdeck Office Systems
QUME Corporation
Racal Interlan
Racore Computer Products
RC International
Renaissance-GRX, Inc.
Samsung
Santa Cruz Operation, Inc.
Scopus Technologia S/ A
SMT Goupil
Souriau
Southwest Microsystems Inc.
Standard Microsystems Corp.
Star Gate Technology
Symantec Corporation
Symbolics, Inc.
Sytron Corp.
Tandon Corporation
Tandy
Tatung International
Tecmar, Inc.
Televideo Systems, Inc.

Introduction

Texas Instruments
The Software Link
Thomas-Conrad Corp.
Tidewater Associates, Inc.
TMC Research Corporation
Torus Systems, Ltd.
Trident Computer, Inc.
Truevision, Inc.
Tulip Computer Intl. B.V.
Twinhead Corporation
Unisys Corporation
VIA Technologies
VLSI Technology, Inc.
Wang Laboratories
Wells America Corp.
WIPRO Information

Technology, Ltd.
Wyse Technology
Zenith Data Systems Corp.
Zeos International
Zymos Marketing & Sales

As is obvious by the number and caliber of members, the EISA
specification consortium is a powerful and committed force. Al­
though their history is unusual in the level of cooperation that has
been shown among otherwise competing companies, they have all
made a commitment to the success of EISA, and with the com­
puters announced so far from companies such as Hewlett-Packard
and Compaq, that success appears assured.

CHAPTER

2

Inside the EISA
· Computer

Disk
Drives

This chapter discusses the architecture of the EISA computer: the
relationship of the CPU, RAM memory, ROM memory, 1/0, and
related concepts. It also discusses the function of the BIOS and
how it relates to the computer hardware and the software such as
the operating system and applications programs.

Figure 2-1 shows the structure of a typical computer in very
general form. Note that it consists of only three parts: the CPU,
the memory, and the 1/0. The CPU, or Central Processing Unit,
provides the "brains" of the computer. This may be an Intel 80486,
a Motorola 68020, or one of many dozens of other processors. The
memory stores programs and data while the computer is operating.
When the power is turned off, most of the contents of this memory
is lost. The 1/0, or Input/Output functions, includes everything
from the video display and keyboard interface to the operation of
hard and floppy disk drives and the external ports for connecting
printers, modems, and so forth.

The following paragraphs look at each of these areas in more
depth. Although this discussion is geared towards the EISA com-

CPU

Memory

I
I
I
I
I
I
I ..

Video
(keyboard)

Printers
and Modems

FIGURE 2-1 General Computer Architecture

13

14 Inside the EISA Computer

puter, it applies equally to any of the PCs based on the Intel 8086,
80286, 80386, 80486, among others.

Central Processing Unit

The CPU consists of a number of registers (places that store and
manipulate data) and a lot of logic circuitry to control what happens
and when. Figure 2-2 shows a simplified functional block diagram
of a CPU. In this case the CPU has 16 data lines and 32 address
lines coming out of it. This means that it can read or write two
bytes (2 X 8 bits) of data at a time and address 232 memory ad­
dresses. A number of control lines also come out that control what
the address and data lines do and when they do it.

Before going any further, a little detour into the world of
computer numbering schemes is in order. Computers are binary
devices, which means that all numbers are represented by binary
numbers. In order to understand many aspects of computer oper­
ation, you need to understand the binary and hexadecimal num­
bering systems.

Data
Lines

Address
Lines

Control
Lines

....

-~

-~

Registers .~
' .

..

Processor
~

Logic -

~

~

FIGURE 2-2 General CPU Architecture

Control
~

~ Memory

Central Processing Unit 15

Decimal
Number

0
1
2
3
4
5
6
7
8
9

10
11
20
40

350

The Binary Numbering System

Binary numbers are represented by ls and Os. For example, a O in
binary is a O in decimal numbers. A 1 in binary is a 1 in decimal
numbers. But there the similarity ends. A decimal 2 is too big to
be represented by either a O or a 1, so we need a second digit. Figure
2-3 shows the decimal-binary relationship for some small numbers.
For example, a decimal 2 is written in binary as 10. This means
there is one unit of 2 and no unit of 1. An examination of Figure

Binary
Number

0
1

10
11

100
101
110
111

1000
1001
1010
1011

10100
101000

101011110

~
How
many
1's
2's
41s
81s
16's
32's
641s
12s•s
2561s

FIGURE 2-3
Basic Binary Numbering

16

Decimal
Number

0
14
40
80

100
127
128
200
250
255

Inside the EISA Computer

2-3 shows how the binary numbering system expands to cover larger
numbers.

Longer binary strings represent larger numbers. For ex­
ample, Figure 2-4 shows an assortment of numbers that can be
represented by 8 bits. As shown, 8 binary bits can represent decimal
numbers from O to 255. Adding more bits increases the size of
number that can be represented. Figure 2-4 also adds the leading
Os that are used in typical computer binary notation, thus showing
a full byte.

The Hex Numbering System

Computers normally use a numbering system that is neither binary
nor decimal. It is the hexadecimal numbering system, or hex, rep-

Binary
Number

00000000
00001110
00101000
01010000
01100100
01111111
10000000
11000110
11111010
11111111

~
How
many
1's
21s
41S
S's
16's
32's
64's
128's

FIGURE 2-4
Expanded Binary Numbering

Central Processing Unit 17

resented by the digits 0-9 and the letters A-F. Figure 2-5 shows
the decimal and hex numbering systems with equivalents from 0
to 15 (0 to F hex) and some larger numbers that require two hex
digits. Note that if you compare the hex numbers with their binary

Decimal
Numbers

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
20
40
80

100
127
128
200
250
255
350

Hex Binary
Numbers Numbers

0 00000000
1 00000001
2 000000-10
3 00000011
4 00000100
5 00000101
6 00000110
7 00000111
8 00001000
9 00001001
A 00001010
B 00001011
C 00001100
D 00001101
E 00001110
F 00001111

10 00010000
11 00010001
14 00010100
28 00101000
50 01010000
64 01100100
7F 01111111
80 10000000
C6 11001000
SA 11111010
FF 11111111

100 101011110
FIGURE 2-5 Basic Hex Numbering

18 Inside the EISA Computer

equivalents, the larger digits are simply four binary digits per hex
digit.

As with the binary and decimal numbering systems, larger
numbers are represented with more digits. In EISA computers,
data, addresses, and 1/0 locations are usually represented with the
hex numbering system. It is common to encounter addresses like
0C32FBh, which equals 799483 decimal, or 11000011001011111011
binary.

Back to the CPU

This detour into numbering is relevant since the CPU's addresses
and data are all represented in the hex numbering system. You first
need to master this system if you are planning to learn or under­
stand the concepts of programming.

Next, you will need to understand the operating concepts
behind the CPU. They are best understood by tracing the operation
of a typical CPU when the power is first applied.

Once the power is applied to all the electronics, a reset signal
is sent to the CPU. This reset signal is generated by an external
source, either a digital pulse generator or some type of RC network.
(An RC network is a resistor/capacitor network that causes a time
delay.)

The CPU responds to the reset signal by clearing out all its
registers and setting the address lines to a specific address. In the
case of the 80486, this address is FFFFFFF0h. (Here's where the
hex numbering system is used. If you convert this to a binary
number, you'll find that since each F equals 4 bits, the address bus
contains 28 bits set to 1 and the last 4 set to 0.)

With the address lines set to a specific address, the CPU
then reads the data lines to read in the data at that address. The
typical EISA computer will have the first part of a boot routine at
that address. As it reads the instruction at address FFFFFFF0h
and up, it is instructed to jump to another address in the ROM.
The program that the computer needs to run in order to start will
be at this new address. These routines usually set up the serial and
parallel ports, test the memory, and determine the hardware con­
figuration of the system.

RAM and ROM 19

At this point, the CPU is instructed to read in the operating
system software from a disk drive. Typically this will be from a
hard drive, though the computer first checks to see if the floppy
drive (usually drive A) contains a disk; if so, it boots from the
floppy drive instead of the hard drive. This allows the user to boot
a different version of the operating system than that which is on
the hard disk, or to boot special operating systems or programs
that contain their own operating systems. The EISA computers
themselves are a good example, since many of them will boot up
from a floppy disk during the initial setup procedure or at certain
times when reconfiguring the system.

Once the system has booted up, the operating system, along
with the programs and overlays called in by the CONFIG.SYS and
AUTOEXEC.BAT files, determines the final configuration of the
system. Let's now look at some of the other hardware aspects of
an EISA computer system.

RAM and ROM

RAM (Random Access Memory) is the main memory of the com­
puter. As programs are run, they first load into RAM from the disk
drive, and the operating system then "jumps" to the beginning of
the program to begin executing the program. Program data, such
as the data in a spreadsheet or the text of a word processor, also
loads into the computer's RAM. As changes are made in the data,
the contents of the RAM are altered, and when the user finishes
with the application, the revised data is copied back to the disk
drive.

ROM (Read Only Memory) is the part of memory where,
normally, the BIOS of the computer resides. The BIOS is the in­
terface between the computer's hardware and the operating system
and applications software. ROM is a "read only" device; you can
read program information from it but you cannot write to it under
most circumstances.

The size of the RAM and ROM, and the locations of various
components, is shown with a memory map. This is a table (or
graphic) representation of the memory locations. Table 2-1 shows
a memory map of a typical EISA computer system.

20

1/0

Inside the EISA Computer

TABLE 2-1 EISA Computer System Memory Map

Address Description

00000000-0009FFFF This area is the main system memory, and
consists of 640K of RAM. Some systems may
have only 512K, in which case their upper ad­
dress will be 0008FFFF instead of 0009FFFF.

000A0000-00OBFFFF This 128K memory area is reserved for use by
the video card.

000C0000-000DFFFF This 128K memory area is reserved for addi­
tional ROMs normally used to expand the sys­
tem's BIOS ROMs. This is usually a ROM on
an EGA card.

000E0000-000FFFFF This 128K memory area is reserved for option
and BIOS ROMs.

00100000-03FFFFFF This area is the rest of addressable memory
up to 64MB. Some systems have the ability to
address only 32MB of RAM and will end at
address 0lFFFFFF.

The remainder of the system's memory map is dependent
on the particular requirements of the individual manufacturers.

1/0 (Input/Output) is a mapped area similar to the memory map.
Different addresses, or groups of addresses, are assigned to specific
functions. However, the 1/0 map is much more extensive and com­
plex, with different functions assigned to each of the addresses
through 04FFh (1,280 addresses). If you need detailed information
on the 1/0 map, you should obtain a copy of the EISA specification
that details this information. A word of warning-this is technical
engineering material and not casual reading for most people. Table
2-2 shows a summary of the 1/0 addresses.

EISA Computer Hardware 21

TABLE 2-2 EISA Computer System 1/0 Map Summary

Address

0000-00FF

0100-03FF

0400-04FF

0800-0SFF

0C00-0CFF

1000-lFFF

2000-2FFF

3000-3FFF

4000-4FFF

5000-5FFF

6000-6FFF

7000-7FFF

8000-SFFF

9000-FFFF

Description

ISA main system board components.

ISA expansion cards.

Reserved for main system board controllers.

Reserved for the system board.

Reserved for the system board.

Dedicated to expansion slot 1.

Dedicated to expansion slot 2.

Dedicated to expansion slot 3.

Dedicated to expansion slot 4.

Dedicated to expansion slot 5.

Dedicated to expansion slot 6.

Dedicated to expansion slot 7.

Dedicated to expansion slot 8.

Continuation of the address range from 1000-SFFF for
additional expansion slots. Most EISA computers will
have 8 slots.

EISA Computer Hardware

The EISA computers now coming on the market and those yet to
be developed will come in a large variety of configurations. Models
currently in development by a number of companies will sit on the
desktop or at the deskside (on the floor). Both of these configu­
rations offer nothing radically new in their packaging other than
enhancements that the individual manufacturers may offer, such
as the convenient front-panel power switches of the Hewlett-Pack­
ard versions. And in the not-too-distant future, it is possible that
there will be portable models with an EISA slot or slots that will
accommodate all of the new EISA boards soon to be announced.

The big difference between the current ISA computers and
the new EISA computers will be the inside of the computers. They

22 Inside the EISA Computer

will contain a full complement of EISA connectors, and quite prob­
ably an Intel 80486 processor. Although the EISA bus is not re­
stricted to a specific CPU, manufacturers are sure to continue to
develop computers to the latest Intel CPU. One of the strengths
of the EISA bus is its flexibility; it will be able to handle the
processors of the future, in addition to the processors of today.

In fact, the only significant change will be the bus connector.
Remember, one of the important advantages of the EISA bus it its
ability to accommodate any of the over 1,000 cards currently avail­
able as well as cards yet to be developed.

The EISA Connector

The connector is truly innovative: it is fully compatible with all of
the old cards and is designed to absolutely prevent damage if an
old card is plugged into the EISA bus connector. Figure 2-6 shows
a cutaway section of the new style of connector and how the con­
nector fingers are staggered.

When an EISA card is plugged into the connector, the card
goes past the top row of contacts and into the lower row. As the
lower row of contacts on the EISA card goes past the upper contacts

D18

,11~
Access
~ Key

H16

H19

FIGURE 2-6 EISA Connector Finger
Locations

EISA Computer Hardware 23

in the connector, contact is not made since the connector contacts
are centered between the connector fingers on the EISA card. As
the card is pushed further into the connector, the lower row of
contacts makes contact with the lower row of fingers on the card.
At the same time, the upper row of contacts makes contact with
the upper row of fingers on the card.

Insertion force, the difficulty of pushing the card into the
connector, is not increased as a result of the additional number of
contacts because most of the insertion force comes from pushing
the connector contacts aside as the card is inserted, as shown in
Figure 2-7. Once the contacts have been moved away to allow the
board to slide in, the friction of the fingers is nominal. In fact,
testing has shown that the insertion force is virtually the same for
standard ISA connectors as it is for the standard EISA connector.

An ISA card cannot be pushed all the way into an EISA
connector. As an ISA card is pushed into an EISA connector, small
access keys prevent the card from being pushed further into the
connector than is necessary, as shown in Figure 2-8. EISA cards
can be pushed all the way in since the card is notched to allow it
to get past the access keys, as shown in Figure 2-9.

FIGURE 2-7
EISA Connector Finger Contacts

24

•

Standard ISA
Expansion Card

EISA Access Keys
(block insertion of

ISA expansion card)

Inside the EISA Computer

• I

Back
Panel

~EISA
Connector

FIGURE 2-8 EISA Connector ISA Card Blocks

EISA
Expansion Card

EISA Access Keys
(malch notches In

EISA expansion card)

FIGURE 2-9 EISA Board Connector Notching

Back
Panel

Figure 2-10 shows the signals appearing on the connector
for an ISA card as dark pins that make up the upper row of con­
nections on the connector. Note that the upper row of connector
fingers is numbered exactly the same as the old ISA standard.
Figure 2-11 shows the signals appearing on the connector for an
EISA card as dark pins that make up the lower row of connections
on the connector. Chapter 4, The EISA Bus, contains a complete
discussion of the signals on the connector.

EISA Computer Hardware

DACK1*

DREQ1

REFRESH*

EISA Access Keys

FIGURE 2-10 EISA Connector ISA
Pins

25

26

.-Mid

.-Mid

.-Mid

.-Mid

MACK*

GND

SD30
S031

MREOx*

EISA Access Keys

FIGURE 2-11 EISA Connector
EISA Pins

Inside the EISA Computer

EISA Computer Hardware 27

I<

Beyond the new connectors there are few surprises in the
new EISA computers. For example, some of the EISA computers
will have the video circuitry, such as an EGA or VGA interface,
built into the computer and others will have the video circuitry on
a plug-in card. Some of the EISA computers will have one or two
serial ports and one or two parallel ports built into the computer.

Card Size

Due to the freedom of defining a new standard, the EISA standard
allows some fairly large cards to be plugged into the system. As
shown in Figure 2-12, the area available for mounting components
on the card measures 4.50 by 13.21 inches, which makes over 59
square inches of board area that can contain components. In ad­
dition, because of the advances made in a technology called SMT,
or surface-mount technology (as opposed to the conventional
method called through-hole mounting), components can now be
mounted on both sides of the card. The EISA specification allows
0.525 inches on one side of the board (the side where components
are normally mounted) and 0.150 inches on what is now called the
solder side of the board. This 0.150 allows room for most of the
surface-mount components, such as integrated circuits, capacitors,

~!i~- .1601nches
for caJd guide

4.481nc:hes

FIGURE 2-12 EISA Expansion Card Dimensions

28

80386
or

80486
CPU

80387
Coprocessor

RAM/
Control

Inside the EISA Computer

and resistors, to be mounted. This yields a total usable board area
of almost 120 square inches in a single card.

The EISA Component Interface

So far we've looked only at the architecture of a typical computer
and at the EISA card and connector. The EISA hardware interface,
a set of chips designed by Intel for the EISA computer bus, ties
these together. This interface is called the 82350 EISA Chip Set
and consists of an 82358 EISA Bus Controller, an 82357 Integrated
System Peripheral, an 82352 EISA Bus Buffer, and an 82355 Bus
Master Interface Controller. Figure 2-13 shows a functional block
diagram of a typical EISA computer using the Intel 82350 chip set.

As shown in Figure 2-13, the CPU of most of the EISA
computers will be either an 80386 or 80486. If the 80386 processor
is used, a socket will normally be provided for the addition of a
coprocessor such as the 80387. If an 80486 processor is used, the

82357
Integrated

System
Peri heral

82358
EISA
Bus

Controller

82352
Data Swap

Buffer

82352
Address

Buffer

EISA Bus

D tJ D

Floppy and
Hard Disk
Controller ,.______ These may be

____ __. expansion cards

.--------. • .,,,- or part of the
VGA .a- main computer

Video board ·

Interface

82355
Bus

Master
Interface

EISA
Add-In

Expansion
Card

FIGURE 2-13 Typical EISA Computer Simplified Block Diagram

EISA Computer Hardware 29

coprocessor socket is not required since the coprocessor is built
into the processor. The functionality of each of the Intel chips is
covered in more detail in the following sections.

82358 EISA Bus Controller

The EISA bus controller is the main component of all EISA sys­
tems. It provides an interface between the CPU and the EISA bus
and an interface among the different buses of the EISA system. It
provides translations among the cycles of the CPU, the ISA cards,
the EISA cards, and generates ISA signals where necessary for the
EISA bus masters. It provides an interface among multiple bus
masters, and provides the timing functions that allow communi­
cations among the different buses. It provides EISA/ISA bus cycle
compatibility in the EISA/ISA standard memory or 1/0 cycle, the
EISA/ISA no wait-state cycle, the EISA compressed cycle, and the
EISA burst cycles. It also provides control signals for the address
buffers.

82357 Integrated System Peripheral

The integrated system peripheral chip works with the EISA bus
controller to provide the system functions required in EISA ap­
plications. Most of these functions are similar to existing functions
provided by a large number of components on existing systems,
plus the addition of EISA-specific functions. These functions in­
clude a 7-channel DMA controller with full timing control for 8-,
16-, and 32-bit DMA transfers with up to 33MB per second data
transfer rate, a bus arbitrator for bus sharing among multiple mas­
ters, a 15-level interrupt controller with the functionality of two
8259 controllers, refresh address generation and control functions,
and five 16-bit counter/timers (8254 compatible) for interrupts and
bus time-outs, DMA refresh requests, and other timing require­
ments.

82352 EISA Bus Buffer

The EISA bus buffer operates in three modes for use as data swap
buffer logic, address buffers, and data parity buffers. It combines

30

Summary

Inside the EISA Computer

the functions typically provided by up to 17 separate components
in previous designs, reducing the chip count, board complexity, and
design complexity. By reducing the chip count, radio frequency
interference generated by computer signals is reduced.

82355 Bus Master Interface Controller

The bus master interface controller is often located on each of the
EISA add-in cards. It provides an interface among the functions
of the add-in card and the address, data, and control lines of the
EISA bus. It includes full support of burst mode for data transfer
rates up to 33MB per second, and a 32-bit address bus which allows
addressing 4GB as provided in the EISA specification. It also sup­
ports the EISA automatic configuration functions. There are two
data transfer channels, which allows the processor to set up one
data transfer while another is currently being performed.

The basic architecture of the EISA computers differs little from
the ISA computers that have gained acceptance and familiarity
over the past decade. The improvements are in the EISA bus con­
nector, the new EISA chip set, and the software that is discussed
in later chapters.

CHAPTER

3

The Operating
System

This chapter covers the operating system of a typical EISA com­
puter. Although there are a number of operating systems that will
no doubt be used, among them DOS 3.3, OS/2, and UNIX, DOS
4 will be by far the most common. DOS 4 has the advantage of
requiring less memory than operating systems such as OS/2 or
UNIX, and it costs significantly less than either. Users requirlhg
multitasking capability are likely to turn to additional programs
such as Quarterdeck's Desqview or Microsoft's Windows running
under DOS 4. Both provide excellent solutions to multitasking re­
quirements, and each is best suited to specific applications.

In order to understand the operation and concepts of the
operating system, we first need to look at the organization and
structure of all the different types of software in the system.

Software Architecture

There are two structures in a personal computer, the software struc­
ture and the hardware structure. Chapter 2, Inside the Computer,
discusses the hardware aspects of the computer and this chapter
discusses the software structure.

Figure 3-1 shows the general relationship of the three func­
tional areas of software in the computer. You are probably most
familiar with the application programs. These are the programs
you use to perform work on the computer, and might be anything
from a word processing program, a database program, a spreadsheet
program, a drawing or graphics program, to a game. These programs
are the only kind that most computer users ever know or care about.
An application program interface consists of its information on the
screen and the keystrokes and mouse movements required to use
the program. However, two other levels of software are also being
run, and they are very important.

The next level down from the application program is the
operating system (in this case, DOS). DOS accepts the commands
from the keyboard or from the application software and causes
things to happen, such as saving a file on disk or displaying the
information on the screen. The third level is the BIOS (Basic
Input/Output System). This software contains the hardware-spe­
cific instructions that tell DOS how to perform the requested task.

33

34 The Operating System

r--
1
I
I
I

Applications Programs

1-----.. I
I i Word
: Processor

Data
Base Spreadsheet

I
I

l _______ t-------------------- l -----------------t , ____ _
l ' l t s0ottware Interrupts

OS Calls
Operating

System

j I

,

BIOS

, '
Computer
Hardware

FIGURE 3-1 Software Structure

t Software Interrupts
BIOS Calls

t Hardware Level Interrupts
BIOS System Calls

Communication among the various software entities takes
place through program structures called "calls" and "interrupts."
Figure 3-1 shows the communications paths among the various
software system entities.

Each of the pieces shown in Figure 3-1 is seen in more detail
in Figure 3-2.

BIOS

The BIOS software (often called firmware since it is not normally
accessible or alterable) resides in a ROM (Read Only Memory).

Software Architecture

Software Interrupts
Tells the application 1 program that the data
is now available for

processing.

Software Interrupts
Tells the operating 1 system that the file

has been found and
is loaded at the

specified location.

Hardware Level Interrupts
Tells the BIOS that 1 the hardware has

located the specified
file (or parts of the

file).

Applications
Program

j

, '

Operating
System

a

, '
BIOS

j l

, '

Computer
Hardware

35

I DOS Calls Processing

t Tells the operating
1/0 system to retrieve

a specified file.

BIOS Calls t Tells the BIOS to get
a file and load it into
a specified block of

memory.

BIOS System Calls t Tells the disk controller
to go to a specific track
and read the data there
into a specified block

of memory.

FIGURE 3-2 Software Structure Interface

The function of the BIOS is to provide an interface between the
hardware and the software. In a sense, it translates the software
commands and requirements into hardware commands. The BIOS
is provided by the computer manufacturer and contains informa­
tion that is particular to the specific hardware. In addition to this
ROM BIOS, additional cards that plug into the computer may
include BIOS extensions (additional software pertaining to those
specific cards). Usually these would be cards such as a hard disk
controller or an EGA card.

Using the example of a parallel printer output port, we will
look at this in more detail. The component that interfaces the
computer processor to the outside world has eight data lines that
are connected to the data bus of the computer. In addition, there
are other lines connected to the address lines and some of the

36 The Operating System

control lines. When the control lines and address lines (under con­
trol of the microprocessor) tell the parallel interface to send a char­
acter out to the printer, the parallel interface looks at the data bus,
gets the data, and sends it out to the printer. The instructions that
tell the parallel interface to do this are contained in the ROM BIOS.
Typically, these instructions are received from the operating system
through BIOS calls. After completing the task, the BIOS responds
through a software interrupt. An example of this technique is given
in Chapter 9, The Parallel Interface.

The computer hardware accesses the BIOS through a
scheme called hardware interrupts. When a signal comes in through
one of the hardware interfaces (for example from the keyboard, a
serial port, or a parallel port), it causes one of the hardware signal
lines to change state. This change in state is called a hardware
interrupt, and the system microprocessor responds to this interrupt
as follows:

1. The interrupt causes the system microprocessor to pause
and determine where the interrupt is coming from.

2. The system microprocessor then, through what is re­
ferred to as a system call, determines what the hardware
wants. Usually, the hardware has a byte of information
and wants the system microprocessor to accept it and
do something with it, such as place it in memory.

3. The system microprocessor reads the byte of data, and
sends it wherever it should go. The system micropro­
cessor then returns to the previous task in progress before
the interrupt occurred.

The ROM BIOS also provides a number of functions other
than hardware interface and definition. When the computer is in­
itially turned on (or reset), the CPU goes to the BIOS for operating
instructions. The BIOS first verifies the proper operation of the
system. This process, called a power-on test, provides a quick test
of the computer's memory. Depending on the extent of the test and
the amount of memory in the system, this process can take up to
several minutes, though the typical test takes about 10 seconds.
After the RAM is tested, the BIOS verifies a part of memory called

Software Architecture 37

CMOS RAM. This is a special block of memory where the system
configuration is stored. CMOS RAM is normally kept "alive" with
a battery in the computer and is not lost when power is removed
from the computer. Next, the BIOS determines what equipment is
in the system. This information is contained in the CMOS RAM,
and includes small programs which may need to be run to initialize
some of the accessory cards plugged into the system.

After the testing and initializing is complete, the BIOS at­
tempts to load the operating system from one of the disk drives.
Normally, this is from a hard disk assigned as drive C, though it
can be from any other hard disk or even from a floppy disk. Once
the operating system is loaded in, the BIOS "jumps" to the op­
erating system and the DOS prompt appears on the screen. The
system is now ready to run programs.

Operating System

The middle level of software is the operating system, in this ex­
ample MS-DOS 4.0, also called DOS. One of the functions of DOS
is to provide a basic level of commands that allow the user to:

• examine information, such as displaying the directory of
a disk (DIR)

• request file management functions, such as erasing some
of the files (ERASE or DEL), or copying a file from one
location (drive or subdirectory) to another (COPY).

The operating system also provides a standard software in­
terface that can be accessed by application software.

The interface between DOS and the BIOS is handled
through a standard set of software interrupts and BIOS calls. When
the operating system wants a function performed, such as writing
a file to disk, it first loads certain registers with information about
the file, such as where it is and how big it is. It then jumps to a
routine in the BIOS to read the registers and write the file to disk.

Application Software

Application software is the final level in the software structure. It
includes applications like word processing and spreadsheet pro-

38 The Operating System

grams, as well as utilities such as the configuration program that
all EISA computers use to initially set up the computer and later
make changes to the system configuration. In addition to these
programs, a large number of utility programs are provided with
DOS and from other sources. These utility programs do things like
display the directory in different formats, back up the hard disk,
or alter display characteristics.

Virtually all of the processing takes place through appli­
cation software. For every instruction sent to the operating system
or BIOS, hundreds are used within the application program to
calculate what should be done. For example, if you are running a
spreadsheet program and the program recalculates some of the cells,
it is the spreadsheet program that is doing all the work. The only
time the processor goes out to the operating system (or sometimes
directly to the BIOS) is when it is actually updating the video
screen.

DOS 4 Overview

This section describes the DOS 4 operating system in greater detail.
DOS 4 is similar to DOS 3.3 in many areas, enough so that

a person familiar with DOS 3.3 will not need to learn anything new
to be both comfortable and productive. However, DOS 4 does add
some nice features. For example:

• Hard disks greater than 32MB are supported without par­
titioning. For example, this means that you can have a
hard disk of 150MB partitioned as drive C with 30MB
and drive D with 120MB. Also, because of the expansion
of the 16-bit logical sector numbers to 32-bit size, DOS 4
can handle disk sizes of up to 2GB (2000MB).

• DOS 4 provides an optional shell program that operates
in a menu style. For many users, the DOS command line
is difficult to use, and they prefer an icon or menu type
user interface. Now users have a choice between a menu,
a command line, or both.

• The Expanded Memory Specification (EMS) written to
the Lotus/Intel/Microsoft (LIM 4.0) standard is fully sup-

DOS 4 Overview 39

ported by DOS 4. This means the computer will easily
handle much more memory, (depending on the imple­
mentation, from 4MB to 64MB of additional memory).
The INT 67H interface, defined by the LIM 4.0 specifi­
cation, provides access to the memory. This maximizes
compatibility with existing products designed for com­
patibility with LIM 4.0 specification. The LIM 4.0 em­
ulator is provided with the file memm.sys.

• Installation of the DOS 4.0 operating system is performed
through a menu-style interface, the select program, mak­
ing installation easier for the novice user.

• The video support has been improved to allow the printing
of graphics screens and displaying more lines of text.

• Many of the programs (commands) that come with DOS
have been enhanced.

DOS 4 File Structures

Files, and the way they are stored on disk, are often compared to
a row of filing cabinets containing a number of drawers, each drawer
containing a number of folders, and each folder containing a num­
ber of documents. Although this comparison can be confusing, it
effectively shows how DOS starts with a single undivided storage
area (the root directory), and expands by adding subdirectories.
Figure 3-3 shows the organization of a possible system.

The files begin at the left with the root directory. This is
usually the point where all the directories are located and, typically,
very few files are stored here.

Usually, each of the directories is dedicated to a particular
function, such as all the EISA files, or word processing, or a spread­
sheet, or games. Going into the directory for games, for example,
you might find chess, checkers, and poker. In fact, the games di­
rectory could contain subdirectories that contain different versions
of chess games or poker games.

DOS 4 Enhancements

DOS is an evolutionary operating system. It has come from its
original version (nominally 1.0) to its present version of 4.01. There

40 The Operating System

DOS
~ Subdirectory

Contains the programs
which come with DOS.

Utility
Subdirectory
Contain additional - utility pr~rams for
viewing directories,
recovering files, or

Root other general-purpose

Directory
applications.

Contai~rimarily -
AUTO C.BAT,
CONAG.SYS, and

subdirectories. Data Base
Subdirectory Data Flies

- Contains the main Contains the data
~rogram and all of files for the Data Base.

t e related overlays
and utilities.

Word Processing
Data Files Subdirectory

- Contains the main Contains the text
program and all of files for the Word
the related overlays Processor.

and utilities.

FIGURE 3-3 File Organization

will, no doubt, be another version of DOS to succeed version 4,
probably version 5. There are also variations on the theme, such
as Presentation Manager, OS/2, and Windows. However, this book
will concern itself with DOS version 4 and comparison with its
popular predecessor, DOS 3.3. The following sections discuss the
benefits of the new version of DOS, and discuss in general terms
the command set of DOS 4. A complete discussion of DOS 4 is

DOS 4 Overview 41

beyond the scope of this book, and I recommend you obtain a copy
of Expert Advisor: DOS by Jonathan Kamin (Addison-Wesley,
1989). However, a summary of the commands is presented here
along with the enhancements in DOS 4.

The select command provides an enhanced installation
program that makes installation and system configuration simple.
It also creates the required config.sys and autoexec.bat files. Using
select, the user can install DOS 4 either on an existing system
using an earlier version of DOS, or on a new system with an empty
formatted disk.

The mem command is new and provides complete infor­
mation on the memory being used, how it is configured, and what
programs are loaded.

The tree command is more graphical, making the structure
of the disk easier to understand.

The del command can be told to display a prompt before
it deletes a file.

Graphics support is provided for EGA and VGA displays,
and the graphics support also includes a number of printers for
screen dumps. Video support in DOS 4 covers everything from the
original monochrome and CGA modes to the VGA modes. els, dir,
more, edlin, con and ansi.sys are now sensitive to the video mode
and will display properly according to the current screen length. In
addition, graphics has been extended to support the graphics.
modes for the EGA and VGA display.

A number of other commands have been enhanced to pro­
vide additional functions. Most of these enhancements provide
compatibility with the new video displays and the larger hard disk
formats.

Certain manufacturers, such as Hewlett-Packard and Com­
paq, have provided additional features that apply primarily to their
own machines. These include features like disk caching (allows the
computer to get to frequently accessed files faster) and more ad­
vanced and sophisticated memory management (allowing the use
of RAM as a disk drive, or the use of larger amounts of memory,
ranging from 1 to 64MB).

DOS 4 Commands and Programs

DOS 4 provides a number of commands that are used for manip­
ulating files, data, and system configuration. These commands are

42 The Operating System

in two formats, programs that reside on the disk and are loaded
and executed every time they are used, and commands which are
a part of DOS and reside in the operating system when it is loaded
in memory. In the following descriptions the term "command" will
refer to memory resident (DOS) commands and the term "pro­
gram" will refer to programs which, though a part of DOS, reside
on a disk and are loaded each time they are used.

This is not a complete description of the commands, but
rather a summary of the commands highlighting the elements that
are new for DOS 4. Refer to the documentation that came with
DOS 4 for a complete description of the commands.

append program

assign program

attrib program

Allows the user to define the search path
for data files. This is often used with word
processing, database, and spreadsheet pro­
grams to tell programs where to search for
data files, much like the path command
defines where to look for executable files.
Also see the path command for a similar
function.

Reassigns the disk requests. For example,
when a program has been told to look for
files on drive C:, the assign command can
make the computer look for the files on
drive A: instead.

Changes the status of the archive and
read-only status bits for a file or group of
files. This is often used with batch-type
backup programs or when write-protect­
ing or hiding files.

DOS 4 Overview

backup program

break command

cd or chdir
command
chkdsk program

comp program

copy command

ctty command

43

Allows the user to make a backup copy of
files. Typically this command is used to
back up files from a hard disk to floppy
disks for archiving in the event of a hard
disk failure. Also see the program restore
for a complementary function. In the DOS
4 version of backup, the program will de­
fault to the /f switch mode (formats the
destination floppy disk). Also, the DOS 4
version allows the user to place the
backup.log file on the target drive.
Makes Ctrl-Break and Ctrl-C operate at
all times, rather than just during keyboard,
video, and printer input/output opera­
tions.
Allows the user to move around between
the different directories on a drive.
Tests the condition of a disk or files on a
disk. If any files, or the disk itself, are
found to have a problem, it is reported.
Note that this is not a complete disk
check, though it provides a reliable check
of the integrity of the files and directory
on the disk.
Compares two files and displays the dif­
ferences between the files. comp is nor­
mally only used to compare executable
files and not data. Also see the f c program
for a similar function.
Copies from one disk (source) to another
(destination). Also see the program xcopy
for a similar but more enhanced function.
Allows the user to change the console from
the normal keyboard and display to an­
other 1/0 device. This is often used to al­
low the computer to be run from another
location over a modem connected to one
of the serial ports.

44

date command

debug program

del or erase
command

dir command

diskcomp program

diskcopy program

edlinprogram

exe2bin program

exit command

The Operating System

Allows the user to display or change the
date information in the computer. Also see
the time command for a similar function.

Included with DOS 4 from most manu­
facturers. It is a debugging/programming
tool normally used by programmers for
testing new applications programs, though
it can be used for many other jobs, such
as patching programs or examining files
for f9rmat. The DOS 4 version of debug
has been enhanced to support expanded
memory with four new commands, XA,
XD, XM and XS.

Allows the user to delete files from a disk.
On the DOS 4 version, there is a /p option
which will allow the user to be prompted
for deletion if the /p option is used.

Allows the user to display a listing of the
files in a directory.

Allows the user to compare two disks. This
works only on floppy disks, not hard disks.

Allows the user to copy one disk (source)
to another (destination). This makes an
exact copy of the source disk, and is not
used for copying a partial disk or selected
files.

Included with DOS 4 from most manu­
facturers. It is a very fast line-oriented ed­
itor, adequate for most programming
needs.

Converts an executable file (.EXE) to a
binary file (.COM). Binary format files are
usually smaller and load faster.

Exits the DOS command processor. It is
usually used to return the system to an
alternative command processor or shell.

DOS 4 Overview

fastopen program

fc program

fdisk program

find program

format program

graphics program

45

Reduces the time required to load fre­
quently used files by keeping track of the
files on the disk. DOS 4 added new func­
tions to speed up directory search and data
search operations. The /e option allows
the cache to be located in LIM 4.0 ex­
panded memory, allowing buffers= in
the config.sys file to be increased to 10,000
(assuming the user has adequate RAM to
support it).

Allows the user to compare the contents
of two files. Usually, fc is used to compare
only data files, not executable programs.
Also see the comp program for a similar
function.

Divides a hard disk into sections called
partitions. These partitions then appear
as separate disk drives, such as C:, D:, and
E:. In DOS 4, this program has been en­
hanced to accept disk partitions in me­
gabytes or percentages, and to display the
volume label and file system type for each
of the partitions.

Examines files to find a specified string of
characters in the file or files.

Formats a disk so that it can store files.
Typically, formatting is required before
you can use floppy or hard disks. The DOS
4 version has been updated to require a
volume label, and the /v switch is ignored.

Allows the user to print a graphic screen
on a compatible graphics printer. These
printers include the entire HP "Jet" series
of printers, as well as some IBM and other
manufacturers. In the DOS 4 version, the
EGA and VGA display adapters are fully
supported, as are additional printers.

46

join program

keyb program

label program

mdor mkdir
command

mem program

mode program

more program

nlsfunc program

path command

The Operating System

Combines two physical disk drives into a
single logical drive. The second physical
drive usually becomes a directory on the
logical drive.

Allows the user to redefine the keyboard.
This is usually done to accommodate the
characters on foreign language keyboards.

Changes the 11-character volume label on
a disk. Also see the vol command.

Creates a new directory or subdirectory.

Displays information about the comput­
er's memory status. This is a new program
for DOS 4, and is fully compatible with
the LIM 4.0 specification for displaying
memory information.

Alters the configuration of DOS to accom­
modate altered system configurations. For
example, it can redirect printer output
from the parallel port to a serial port, or
alter the settings of a serial port. mode
also changes the display modes, the serial
and parallel port modes, and the keyboard
or code page-switching modes. DOS 4
added the ability to select typematic rates,
additional number of lines per screen, new
print parameters, and Async parameters.

Pauses the screen after it has scrolled up
a full page. This is often used with the
type and dir commands.

Provides support for foreign language in­
stallations.

Defines the path that DOS searches to find
an executable program. Also see the ap­
pend program for a similar function.

DOS 4 Overview

print program

prompt command

rd or rmdir
command

recover program

ren or rename
command
replace command

restore program

select program

set command

share program

sort program
subst program

sys program

time command

47

Allows the user, from a print queue, to
print files in the background while other
programs are being run.
Allows the user to change the DOS com­
mand prompt to a different character, and
to display additional system information
each time the command line is displayed.
Allows the user to remove a directory or
subdirectory from a disk. This is the op­
posite of the md or mkdir command.
Allows the user to recover a file which is
written on a bad sector on a disk.
Allows the user to rename a file.

Allows the user to replace files on a disk
or add new files. Also see the copy com­
mand and the xcopy program.
Allows the user to restore files from a set
of backup disks to a (typically) hard disk.
Also see the backup program.
Installs the DOS 4 operating system and
configures it for your system. It is new to
DOS 4.

Used to define or alter the DOS environ­
ment.
Used in a network environment to support
file sharing functions.
Allows the user to sort data in a file.
Allows the user to substitute a virtual
drive for a physical drive (and/or path).
Allows the user to install a copy of the
operating system on a formatted disk.
Allows the user to display or change the
time information in the computer. Also
see the date command for a similar func­
tion.

48

tree program

type command

ver command

verify command

vol command

xcopy program

Other File Types

The Operating System

Allows the user to examine the directory
structure of a disk drive. On the DOS 4
version, the tree display is indented at
each directory level and block graphics are
used to make the structure clearer.

Allows the user to view the contents of a
file on the screen. A change in the com­
mand. com program allows the type com­
mand to display the entire contents of a
file. In earlier versions, an eof character
in the file would terminate the type com­
mand.

Allows the user to determine the version
of DOS that you are running.

Allows the user to enable or disable the
ability of DOS to verify the accuracy of
information written to a disk.

Displays the volume label of the disk. Also
see the label program.

Allows the user to copy files from one disk/
directory to another, including subdirec­
tories. This program is similar to the copy
command.

Several other types of files should be mentioned here. The first is
the config.sys file, which DOS uses to load other .sys files into the
computer's memory when power is first turned on. The second type
is the batch file, of which there are two categories:

1. The autoexec.bat file that the computer examines when
power is first applied.

2. Other batch files, usually used to perform frequent
though redundant tasks.

DOS 4 Overview 49

conflg.sys The config.sys file provides a means of con­
figuring your system to suit your particular needs. When the
config.sys file is placed in the root directory (it is OK to "hide" the
file using the attrib program), DOS will look for it every time the
system is reset or powered-up. If DOS finds the config.sys file, it
adjusts the configuration of DOS in accordance with the parameters
specified in the config.sys file. The following pages provide a brief
overview of the configuration commands. If you need detailed in­
formation, refer to the documentation that came with your version
of DOS 4.

break command

buffers command

country command

device command

Tells DOS to check for a Ctrl-Break or
Ctrl-C at all times (break=on) or only
during standard I/O (break=off).

Tells DOS how many 528-byte disk buff­
ers to allocate. With a conventional 640K
memory system, the number of buffers is
limited to 99. If you have an expanded
memory, you can use the /x option and
have whatever will fit into expanded mem­
ory, up to 10,000 buffers. Although adding
disk buffers usually increases the speed of
disk access, thus increasing the apparent
speed of program execution, the tradeoff
is that they use program memory, making
programs which are memory intensive dif­
ficult, if not impossible, to run.

Defines the display format for the country
for which the user has configured DOS.

Allows DOS to load additional device driv­
ers into the operating system. Examples
of these drivers are ansi.sys that allows use
of ANSI escape sequences when address­
ing the screen, or ramdrive.sys that allows
part of your memory to be used as a disk
drive.

50

drivparm
command

f cbs command

files command

install command

lastdrive command

rem command

The Operating System

_Allows the user to define disk drive pa­
rameters for additional disk drives. This
is often used when installing a disk drive
with unusual parameters, such as an un­
usual number of tracks or sectors.

Defines how many files can be open at
once, using file control blocks. The default
is 4, though application programs such as
databases and word processing programs
may require a larger number. If an increase
in the number of files that can be open is
required, this information should be pro­
vided by the publisher of the application
software.

Defines how many files can be open at
once using handles. As with the fcbs com­
mand above, the default is 4, though ap­
plication programs such as databases and
word processing programs may require a
larger number.

Allows the user to execute four commands;
f astopen.exe, keyb.exe, nlsfunc.exe,
or share.exe.

Allows the user to specify the last drive in
his system. The default is 5 drives (E:),
though the value can be set up to 26 to
allow access to drive Z. This is often used
on systems on a network such as the HP
ThinLan where the system administrator
may assign the network or networks, for
example, as drives N:, 0:, and P:.

Allows a command for comments, REM,
to be inserted in the config.sys file. This
is a new command for DOS 4.

DOS 4 Overview

shell command

stacks command

51

Specifies the command processor from
which the computer will start when the
user first turns it on or does a system reset.
These command processors, or shells, typ­
ically provide an easier-to-use interface
into DOS, such as the Hewlett-Packard
PAM program.

Allows the user to redefine the number and
size of the stack frames. Since DOS uses
these stacks each time an interrupt occurs,
an insufficient number of stack frames
could cause the system to crash.

Autoexec.bat The autoexec.bat file is typically located
in the root directory and is executed every time the computer is
powered up or reset. It usually contains the names of one or more
programs that are executed before you begin to use the computer.
These might be programs to set up a RAM disk drive and move
files into the drive, or to put a clock display in the corner of the
screen.

Batch Files Another category of files is the batch file.
These files can be created to abbreviate a sequence of keystrokes
that you type when starting up an often-used program.

For example, if your word processing program starts up with
the command line:

WORDPROC V 80 25 D

to start up the program WORDPROC in VGA display mode with
80 characters across and 25 lines down in document mode, you
could simplify this with a batch file. Using your text editor, create
a batch file with the following line in it:

WORDPROC V 80 25 D

Name the file w.bat. Now, every time you type Wand press
return, the operating system will find the batch file w.bat and input
the contents of the batch file to the computer instead of your having

52 The Operating System

to type it. The batch file is a rudimentary form of programming,
for you have simply written a program to tell the computer to run
W0RDPR0C v 80 25 Devery time you type W. Of course, you have
to make sure there is no program named w.com or w.exe on the
computer, or you will have a conflict.

Batch files execute some commands as a set of programming
instructions. These are listed and defined as follows:

call command

echo command

for command

goto command

if command

pause command

rem command

Allows the user to run one batch file from
another. Otherwise one batch file must be
ended before running another.

Allows the user to turn the video display
screen off when running the batch file, so
that the commands from the batch file are
not displayed as the batch file runs the
programs. This will not turn off messages
displayed by the program itself.

Runs a program or executes a command
based on a test of values. This is similar
to a for command in programming.

Allows the user to tell the batch file to
jump to a specified location in the batch
file and begin executing from that loca­
tion. These locations are addressed with
labels in the batch file.

Allows the batch file to test for a condition
and then branch if that condition meets a
defined condition.

Temporarily halts the processing of the
batch file and allows the batch file to dis­
play a message before continuing.

Allows the user to insert remark com­
ments into the batch file, thus making
troubleshooting or later changes easier.

Summary

Summary

shift command

53

Allows use of more than ten command line
parameters in the batch file.

The EISA computers are designed to use both existing operating
systems and future operating systems such as those based on OS/2,
UNIX, and others. However, most of the EISA computers use the
DOS 4.0 operating system. The structure of DOS 4.0 is basically
the same as the existing systems of today's ISA computers, but
with some enhancements to make it easier to use and more com­
plete. Calls and interrupts are basically the same, and file structures
are altered only to allow for the significantly larger hard drives that
are being introduced with the EISA computers.

CHAPTER

4

The EISA Bus

This chapter discusses the electrical characteristics of the EISA
bus connector. The function of each of the pins is summarized and
identified as either an ISA or EISA pin.

The EISA connector consists of two rows of contacts. The
upper row of pins provides connection to the original ISA board
contact pins. The lower row of pins provides connection to the new
EISA pins. As discussed in Chapter 2, Inside the Computer, the
connector has five access keys to keep ISA cards from making
contact with the EISA contacts.

Signal levels are fully compatible with those of the ISA
specification, and are provided in detail in the Intel chip set doc­
umentation. Note that each of the signal lines may have different
characteristics depending on the bus line's requirements, and con­
formance to the Intel specifications must be verified for proper
circuit operation.

The pinouts of the entire EISA connector are shown in
Figure 4-1. The inner rows of pins are the upper, or ISA, contacts.
The outer rows of pins are the lower, or EISA, contacts.

The ISA pins duplicate the standard ISA bus in order to
maintain compatibility with the earlier ISA cards. The EISA pins
provide all the additional functionality of the new EISA bus, in­
cluding expansion of the data bus to 32 bits and significantly im­
proved DMA and interrupt handling. These are described in more
detail in Chapter 5, EISA Computer Interrupts, DMA, and l/0
Structure.

The function of each of the pins on the bus is described in
the following pages. The descriptions are provided to give you a
general understanding of the functionality of the EISA bus. If you
need specific information, such as timing between the bus signals,
you should refer to the EISA specification, containing over 200
pages of detailed bus functionality and timing information. In cer­
tain of the signal descriptions the term "bus master" is used. This
applies equally to a card plugged into the EISA bus, or to the CPU
on the main processor board (usually the motherboard).

Bus Differences

The differences between the EISA and the old ISA bus are the
addition of 16 data lines, 23 address lines, and 16 additional in-

57

58

GND
+5Vdc
+5Vdc

reserved
reserved

reserved
,_rved
+12Vdc

M-IO
LOCK*

reserved
GND

reserved
BE3*

BE2*

BEO* REFRE
GND a

+5Vdc I

LA29 I
GND I
LA26 I
LA24 I

LA16
LA14

+5Vdc
+5Vdc

GND
LA10

l:M
LAS

+5Vdc

LA2

S016
8D18
GND
S021
S023
S024

GND
8D27

S029
+5Vdc

+5Vdc
MACK*

IOCHK* CMD*

D7 START*
D6 EXRDY
D5 EX32*

GND

EX16*
SLBURST*
MSBURST*
W-R
GND
reserved
reserved
reserved
GND

BE1*
LA31
GND
LA30
LA28
l.A27
lA25
GND

LA15

LA13
LA12
LA11
GND
LA9

Wo
LM
LA3
GND

SO17
S019

LA18 SD20
LA17 SD22
MWTC* GND

S025
S026
S028

D13
D14
D15

GND
S030
8D31
MREQx*

The EISA Bus

FIGURE 4-1
The EISA Bus Connector

Address and Data Bus Signals 59

dicator and control lines. A brief definition of each of the signal
lines, both ISA and EISA, follows.

Address and Data Bus Signals

Signal

BE~<3:0>

D<31:16>

D<15:0>

LA<16:2>

LA<23:17>

LA<31:24>~

Signal
Type

EISA

EISA

ISA

EISA

ISA

EISA

Definition

Provides a byte-enable function used
to identify specific bytes as addressed
in a dword (double word, or 4 bytes).

Bits 31:24 are the highest 8 bits of a
dword and are enabled when BE3~ is
asserted for 32-bit devices. Bits 23:16
are the second highest 8 bits of a
dword and are enabled when BE2~ is
asserted for 32-bit devices.

Bits 15:8 are the third highest 8 bits
of a dword and are enabled when
BEl ~ is asserted for 32-bit devices.
Bits 7:0 are the lowest 8 bits of a
dword and are enabled when BEo~ is
asserted for 32-bit devices.

Latchable address lines, part of the
32-bit latchable address bus.

Latchable address lines, part of the
32-bit latchable address bus; however,
they are located in the ISA part of
the connector.

Latchable address lines, part of the
32-bit latchable address bus. They are
similar to LA<16:2> except their
levels are inverted. That is, a 1 is an
address bit of 0, and a O is an
address bit of 1.

60

SA<19:0> ISA

ISA

AENx ISA

Data Transfer Control Signals

Signal
BCLK

MSBURS'F

SLBURS'F

M-10

Exrn~

EXRDY

START"

Signal
Type
ISA

EISA

EISA

EISA

EISA

EISA

EISA

EISA

EISA

The EISA Bus

Addresses 1/0 or memory devices,
forming the lowest 20 bits of the 32-
bit address scheme.
Indicates that cards using 16-bit
transfers should drive data on the
D<15:8> lines of the data bus.
Slot-specific; used to enable cards in
a specific slot for 1/0 and address
commands.

Definition
Synchronizes bus functions with the
main system clock.
Indicates to a slave that the bus
master can provide burst cycles.

Used by a bus slave to indicate that
it supports burst cycles.

Used by bus master to identify
whether a memory (high) or 1/0
(low) cycle is in process.

Used by the bus master to mandate
exclusive access to the memory
during the time LOCK~ is asserted.

Used by a slave to indicate that it
supports 32-bit data transfers.
Used by a slave to indicate that it
supports 16-bit data transfers.
Used by a slave to request wait state
timing.
Provides timing control from the bus
master to indicate the start of a
cycle.

Bus Arbitration Signals
61

CMD~ EISA Provides timing control of a
command.

W-R EISA Differentiates between a write (high)
or read (low) cycle.

BALE ISA Active when a valid address is
available on the LA<31:2> address
lines.

MRnc~ ISA Indicates that the memory slave
should put its data on the memory
bus.

MWTc~ ISA Indicates that the data on the
memory bus is valid and may be
latched.

SMWTC~ ISA Indicates that the data on the
memory bus is valid and may be
latched. This signal is derived from
MWTC~.

SMRnc~ ISA Indicates that the memory slave
should put its data on the memory
bus. This signal is derived from
MRnc~.

1owc~ ISA Indicates that a DMA device can
latch data from the data bus.

IORc~ ISA Indicates that a DMA device can put
data on the data bus.

CHRDY ISA Lengthens a bus cycle.

Nows~ ISA Indicates that the memory slave does
not require the remaining clock
cycles.

M16~ ISA Indicates that the memory is capable
of a 16-bit data transfer.

1016~ ISA Indicates that the 1/0 slave is
capable of a 16-bit data transfer.

62

Bus Arbitration Signals

Signal
MREQx~

MAKx~

DRQ<7:5,3:0>

T-C

MASTER16~

REFRESH~

Utility Signals

Signal
Type

EISA

EISA

ISA

ISA

ISA

ISA

ISA

The EISA Bus

Definition

Slot specific; allows specific bus
masters to request access to the bus.

Used by the system board to grant
bus access when requested by the
MREQx~ signal.

Request a DMA response from a
subsystem, or allow an ISA bus
master to request access to the bus.

Acknowledge that a DMA channel
has been granted access to the bus.

In the output mode, indicates that a
DMA channel has reached terminal
word count. In the input mode, used
to stop a DMA transfer.

Indicates a 16-bit data size by the
bus master.

Indicates when a memory refresh
cycle is in process.

Signal

osc

Signal
Type Definition

ISA

RESDRV ISA

IRQ<15,14,12:9,7:3> ISA

Provides a 14.31818 MHz, 50%
duty cycle, clock signal.

Resets the cards in the
expansion connectors.

Interrupt the CPU to request
service.

Signal Use

Signal Use

ISA Tells the main CPU that an
error has occurred. This
normally results in a
nonmaskable interrupt (NMI).

63

The use of each of the signals (or signal groups) of the EISA bus
is shown below. The signals are differentiated as to EISA or ISA,
and whether they are used for Input, Output, or both (Input/Out­
put). The function is referenced from the perspective of the system
board.

EISA Signals

Signal Input/Output

BE-<3:0> 1/0

CMD~ 0

EX16~ 1/0

EX32~ 1/0

EXRDY 1/0

LA<31:2> 1/0

LOCK~ 0

MAKx~ 0

MREQx~ I

MSBURSY 1/0

M-1O 1/0

SLBURSY I

START~ 1/0

W-R 1/0

64 The EISA Bus

ISA Signals

Signal Input/Output

AENx 0

BALE 0

BCLK 0

CHRDY 1/0

DAK~<7:5,3:0> 0

DRQ<7:5,3:0> I

D<31:0> 1/0

1O16N I

IOCHKN I

IORc~ 1/0

1owc~ 1/0

IRQ<l5,14,12:9,7:3> I

M16~ 1/0

MASTER16~ I

MRnc~ 1/0

MWTc~ 1/0

Nows~ I

osc 0

REFRESH~ 1/0

RESDRV 0

SA<19:0> 1/0

SBHE~ 1/0

SMRnc~ 0

SMWTC~ 0

T-C 1/0

Summary 65

Connector Specifications

Summary

As you can see from the following specifications, the connector is
quite rugged. The insertion force for installing cards, in spite of all
the additional pins, is approximately the same as the ISA connector
(28 lbs.).

Insertion force

Durability

Contact force

Contact resistance

Contact current

Thermal

Humidity

Vibration

Physical Shock

Housing

Contact

Contact plating

Inter-contact
capacitance

28 lbs. through ISA contacts
35 lbs. maximum ISA and EISA contacts

100 cycles minimum

.167 lbs. minimum

30 milliohms maximum (new)

40 milliohms maximum (100 insertions)

1 Amp per contact on EISA contacts

3 Amps per contact on ISA contacts

Contacts and housing will withstand all
vapor phases and surface mount processes

90-95% RH at 40 degrees Centigrade

10 Gs, 10-500 Hz, 3 hours

100 Gs, 6 ms sawtooth, 18 shocks

Glass-filled thermoplastic UL 94 V-O

Copper alloy

Gold flash in the contact area, tin lead on
the solder tails.

Less than 2 picofarads between adjacent
contacts

An EISA bus slot accepts an ISA standard card and offers it com­
plete ISA functionality. But beyond an ISA compatible connector,
the full scope of EISA bus functionality is available in the same
dual-use slot. Expansion of the data bus to 32 bits by combining

66 The EISA Bus

the original 16-bit ISA bus with an additional 16 bits from the
EISA bus, plus improved interrupt and DMA handling, makes the
EISA bus a very powerful and logical next generation in personal
computers.

CHAPTER

5

The EISA
Interrupts, DMA,

and 1/0 Structures

Interrupts

The EISA computer systems, while compatible with the ISA com­
puters, offer a number of enhancements that provide improved
operation of interrupts and DMA.

The following pages present an overview of the interrupts,
Direct Memory Access (DMA), and I/O information as provided
in the EISA specification. If you need detailed information, consult
the EISA specification. It provides complete information on all of
the registers down to the bit level.

The EISA computer systems have an ISA-compatible interrupt
controller. Interrupts can be either edge sensitive for ISA com­
patibility or level sensitive. Level triggered operation allows a single
interrupt to be shared by more than one device, such as two serial
ports.

The EISA interrupt controller provides 15 interrupts (0, 1,
3-15), with interrupt 2 used to cascade interrupts from the slave
interrupt controller (interrupts 8-15) to the master controller (0-
7). By cascading the slave interrupt controller into interrupt 2 of
the master controller, the priority is as follows:

IRQ0

IRQl

IRQS

IRQ9

IRQlO

IRQll

IRQ12

IRQ13

IRQ14

IRQ15

69

70

IRQ3

IRQ4

IRQ5

IRQ6

IRQ7

The EISA Interrupts, DMA, and 1/0 Structures

Interrupt Controller 1/0 Addresses

The interrupt controller is mapped to 1/0 addresses, as shown in
Table 5-1.

TABLE 5-1 Interrupt Controller Address Map

Interrupt 1/0 Register
Block Address Name

IRQ<7:0> 020h INT-I Base Address

IRQ<7:0> 02Ih INT-I Mask Register

IRQ<7:0> 4D0h INT-I Edge/Level Register

IRQ<I5:8> 0A0h INT-2 Base Address

IRQ<I5:8> 0Aih INT-2 Mask Register

IRQ<I5:8> 4Dih INT-2 Edge/Level Register

Interrupt Sequence

The interrupt sequence is summarized as follows:

1. One of the interrupt lines is asserted: that sets the cor­
responding bit in the Interrupt Request register.

2. The interrupt controller checks the request and inter­
rupts the CPU.

3. The CPU responds with an interrupt acknowledge cycle.

4. The interrupt controller clears the interrupt request bit
and sets the proper in-service register bit.

Interrupts 71

5. The CPU performs a second interrupt acknowledge cycle
to read the interrupt vector on data lines D<7-0>. This
consists of the interrupt code on bits D<2:0> and the
vector address on bits D<7:3>.

This completes the interrupt cycle. Depending on the mode,
the in-service register bit is cleared at the end of the second in­
terrupt acknowledge or when an appropriate end-of-interrupt com­
mand is issued.

The initialization sequence for the interrupt controller is
covered in the full EISA specification, and is beyond the scope of
this book. The specification provides detailed information.

Non-Maskable Interrupts

Non-maskable interrupts indicate error conditions. The Non­
Maskable Interrupt register is 1/0 mapped as shown in Table 5-2.

Full information on programming the NMI registers is
available in the EISA specification.

TABLE 5-2 NMI Register Map

Register

NMI Status Register

NMI Enable Register
Extended NMI Register
Software NMI Register

Interval Timers

l/0
Address

061h
070h
461h
462h

R/W

RW
w
RW
w

The EISA system provides interval timers that are compatible with
the Intel 8254 Programmable Interval Timers as used in most ISA
systems. Their functions are shown in Table 5-3.

72 The EISA Interrupts, DMA, and I/0 Structures

TABLE 5-3 Interval Timer Functions

Timer

1

1

1

2

2

2

Counter

0

1

2

0

1

2

Function

IRQO, System timer for time-of-day, disk time­
out, and other system timing functions.
DRAM refresh requests.

Speaker.
Fail-safe timer. Connected to the CPU, it gen­
erates NMI interrupts at a regular interval to
keep the system from locking up.

Not used.
Available for manufacturer-dependent timing
functions.

Direct Memory Access (DMA)

The EISA computer systems provides four types of cycles used to
transfer data between the DMA device and the computer's memory.
These are:

ISA-compatible cycle
Type A cycle
Type B cycle
Burst DMA cycle

]SA-Compatible Cycles

The ISA-compatible cycles are the same for all types of memory,
EISA memory and non-EISA memory. The MRnc~ and MWTc~
signal lines allow ISA-type memory to be accessed (unless the ad­
dress is greater than 16 megabytes and EISA memory responds).

Type A Cycles

Type A cycles can perform 8-, 16-, or 32-bit data transfers between
memory and the DMA device in 6 BCLK cycles per transfer. Most

Input/Output (l/0) 73

ISA-compatible DMA devices will transfer the data faster (by a
factor of 1.3) by using the type A transfer since the type A transfer
reduces the duration of the IORc~ or IOwc~ command strobes.
Note that this cycle only works with fast EISA memory, and au­
tomatically reverts to slower bus timing with non-EISA memory
or if data size translation is required.

Type B Cycles

Type B can perform 8-, 16-, or 32-bit data transfers between mem­
ory and the DMA device in 4 BCLK cycles per transfer. Most ISA­
compatible DMA devices will transfer the data faster (by a factor
of 2) by using the type B transfer, reducing the data setup times
for 1/0 writes and the read access time for 1/0 reads. Note that
this cycle only works with fast EISA memory, and automatically
reverts to slower bus timing with non-EISA memory or if data size
translation is required.

Burst DMA Cycles

Burst DMA cycles (also called Type C cycles) can perform 8-, 16-,
or 32-bit data transfers between memory and the DMA device in
1 BCLK cycles per transfer. This is the fastest form of DMA data
transfer (31.6MB per second). This is approximately 15 times the
data transfer rate of the old ISA-compatible data transfer rate
(2.07MB per second).

Input/Output (1/0)

Table 5-4 is a general compilation of the 1/0 addresses as used by
various manufacturers for their ISA and EISA computers. If you
are planning to use this data for a product, verify these addresses
with your intended target computer systems. Note that all the 1/0
addresses are shown with their hex values.

74 The EISA Interrupts, DMA, and 1/0 Structures

TABLE 5-4 1/0 Address Map

1/0 ISA or
Address EISA Function

0 ISA DMA Ch. 0 Address
1 ISA DMA Ch. 0 Count
2 ISA DMA Ch. I Address

3 ISA DMA Ch. I Count
4 ISA DMA Ch. 2 Address

5 ISA DMA Ch. 2 Count
6 ISA DMA Ch. 3 Address
7 ISA DMA Ch. 3 Count

8 ISA DMA Ch. 0-3
9 ISA DMA Ch. 0-3
A ISA DMA Ch. 0-3
B ISA DMA Ch. 0-3
C ISA DMA Ch. 0-3
D ISA DMA Ch. 0-3
E ISA DMA Ch. 0-3
F ISA DMA Ch. 0-3
10-IF ISA Reserved by various manufacturers.
20 ISA Int. Cont. No.I: IRQ <7:0> Control Register
21 ISA Int. Cont. No.I: IRQ <7:0> Mask Register
22-3F ISA Reserved by various manufacturers.
40 ISA PI Timer No.I: Counter 0 System Clock
41 ISA PI Timer No.I: Counter 1 Refresh Request
42 ISA PI Timer No.I: Counter 2 Speaker Tone
43 ISA PI Timer No.I Command Mode Register
44-47 ISA Reserved by various manufacturers.
48 EISA PI Timer No.2: Counter 0 Fail-Safe Timer
49 Reserved by various manufacturers.
4A EISA PI Timer No.2: Counter 2
4B EISA PI Timer No.2 Command Mode Register

Input/Output (l/0) 75

TABLE 5-4 Continued

I/0 ISA or
Address EISA Function

4C-5F ISA Reserved by various manufacturers.

60 ISA 8042 Keyboard/Mouse Controller Data
Register

61 ISA Non-Maskable Interrupt Status Register

62-63 ISA Reserved by various manufacturers.

64 ISA 8042 Keyboard/Mouse Controller

65-6F ISA Reserved by various manufacturers.

70 ISA Real-Time Clock/CMOS RAM

71 ISA Real-Time Clock/CMOS RAM

72-80 ISA Reserved by various manufacturers.

81 ISA DMA Low Page Register, 8-bit DMA Ch. 2

82 ISA DMA Low Page Register, 8-bit DMA Ch. 3

83 ISA DMA Low Page Register, 8-bit DMA Ch. 1

84-86 ISA Reserved by various manufacturers.

87 ISA DMA Low Page Register, 8-bit DMA Ch. 0

88 ISA Reserved by various manufacturers.

89 ISA DMA Low Page Register, 16-bit DMA Ch. 6

SA ISA DMA Low Page Register, 16-bit DMA Ch. 7

SB ISA DMA Low Page Register, 16-bit DMA Ch. 5

8C-8E ISA Reserved by various manufacturers.

SF ISA DMA Low Page Register

90-91 ISA Reserved by various manufacturers.

92 HP ISA CMOS Password Lock Enable

9A-9F ISA Reserved by various manufacturers.

AO ISA Int. Cont. No.2

Al ISA Int. Cont. No.I

A2-BF ISA Reserved by various manufacturers.

co ISA DMA Ch. 4

76 The EISA Interrupts, DMA, and I/0 Structures

TABLE 5-4 Continued

l/0 ISA or
Address EISA Function

Cl ISA Reserved by various manufacturers.

C2 ISA DMA Ch. 4

C3 ISA Reserved by various manufacturers.
C4 ISA DMA Ch. 5 Address (DREQ5)

C5 ISA Reserved by various manufacturers.

C6 ISA DMA Ch. 5 Count

C7 ISA Reserved by various manufacturers.

CB ISA DMA Ch. 6 Address (DREQ6)

C9 ISA Reserved by various manufacturers.
CA ISA DMA Ch. 6 Count

CB ISA Reserved by various manufacturers.

cc ISA DMA Ch. 7 Address (DREQ7)

CD ISA Reserved by various manufacturers.

CE ISA DMA Ch. 7 Count
CF ISA Reserved by various manufacturers.
DO ISA DMA Ch. 4-7

Dl ISA Reserved by various manufacturers.
D2 ISA DMA Ch. 4-7

D3 ISA Reserved by various manufacturers.
D4 ISA DMA Ch. 4-7
D5 ISA Reserved by various manufacturers.
D6 ISA DMA Ch. 4-7
D7 ISA Reserved by various manufacturers.
D8 ISA DMA Ch. 4-7
D9 ISA Reserved by various manufacturers.
DA ISA DMA Ch. 4-7

DB ISA Reserved by various manufacturers.
DC ISA DMA Ch. 4-7

Input/Output (I/0) 77

TABLE 5-4 Continued

I/0 ISA or
Address EISA Function

DD ISA Reserved by various manufacturers.

DE ISA DMA Ch. 4-7

DF-EF ISA Reserved by various manufacturers.

F0 ISA Clear Math Coprocessor Port

Fl ISA Reset Math Coprocessor

F2-1EF ISA Reserved by various manufacturers.

1F0-1F8 ISA Primary Hard Disk Registers

1F9-1FF ISA Reserved by various manufacturers.

200-207 ISA Game Controller Registers

208-277 ISA Reserved by various manufacturers.

278-27F ISA Parallel Port 2

280-2F7 ISA Reserved by various manufacturers.

2F8-2FF ISA Serial Port 2

300-31F ISA Prototype Card

320-377 ISA Reserved by various manufacturers.

378-37F ISA Parallel Port 1

380-38F ISA Synchronous Data Link

390-39F ISA Reserved by various manufacturers.

3A0-3AF ISA Bisynchronous 1 Registers

3B0-3BF ISA Monochrome Display /Printer Expander
Boards

3C0-3CF ISA Enhanced Graphics Adapter Registers

3D0-3DF ISA Color/Graphics Expander Board

3E0-3E7 ISA Reserved by various manufacturers.

3E8-3EF ISA Serial Port 3

3F0-3F7 ISA Primary Floppy Disk Controller

3F8-3FF ISA Serial Port 1

400 EISA Reserved

401 EISA DMA Ch. 0

78 The EISA Interrupts, DMA, and I/0 Structures

TABLE 5-4 Continued

I/0 ISA or
Address EISA Function

402 EISA Reserved

403 EISA DMA Ch.1

404 EISA Reserved

405 EISA DMA Ch. 2

406 EISA Reserved
407 EISA DMA Ch. 3

408-409 EISA Reserved
40A EISA DMA Ch. 0-3

40B EISA DMA Ch. 0-3

40C EISA Host/EISA Bus Master Control Register
40D-460 EISA Reserved

461 EISA Extended NMI Status Port
462 EISA Software NMI Register
463 EISA Undefined
464 EISA EISA Bus Master

465 EISA EISA Bus Master
466-480 EISA Reserved by various manufacturers.
481 EISA DMA High Page Register, DMA Ch. 2
482 EISA DMA High Page Register, DMA Ch. 3
483 EISA DMA High Page Register, DMA Ch. 1
484-486 EISA Reserved by various manufacturers.
487 EISA DMA High Page Register, DMA Ch. 0
488 EISA Reserved by various manufacturers.
489 EISA DMA High Page Register, DMA Ch. 6
48A EISA DMA High Page Register, DMA Ch. 7
48B EISA DMA High Page Register, DMA Ch. 5
48C-48E EISA Reserved by various manufacturers.
48F EISA DMA High Page Register

Input/Output (l/0)

TABLE 5-4 Continued

l/0
Address

490-4C5

4C6

4C7-4C9

4CA

4CB

4CC-4CD

4CE

4CF

4DO

4Dl

4D2

4D3

4D4

4D5

4D6

4D7-4DF

4EO

4El

4E2

4E3

4E4

4E5

4E6

4E7

4E8

4E9

4EA

4EB

4EC

ISA or
EISA

EISA

EISA

EISA

EISA

EISA

EISA

EISA

EISA

EISA

EISA

EISA

EISA

EISA

EISA

EISA

EISA

EISA

EISA

EISA

EISA

EISA

EISA

EISA

EISA

EISA

EISA

EISA

EISA

EISA

Function

Reserved by various manufacturers.

DMA Ch. 5 High Word Count

Undefined

DMA Ch. 6 High Word Count

DMA Ch. 4-7

Undefined

DMA Ch. 7 High Word Count

Undefined

Int. Cont. No.I: IRQ 7:0

Int. Cont. No.2: IRQ 15:8

Reserved by various manufacturers.

Reserved by various manufacturers.

DMA Ch. 4-7

Reserved by various manufacturers.

DMA Ch. 4-7

Reserved by various manufacturers.

DMA Ch. O

DMA Ch. 0

DMA Ch. 0

Reserved by various manufacturers.

DMA Ch. I

DMA Ch. I

DMA Ch. I

Reserved by various manufacturers.

DMA Ch. 2

DMA Ch. 2

DMA Ch. 2

Reserved by various manufacturers.

DMA Ch. 3

79

80 The EISA Interrupts, DMA, and 1/0 Structures

TABLE 5-4 Continued

1/0 ISA or
Address EISA Function

4ED EISA DMA Ch. 3

4EE EISA DMA Ch. 3

4EF-4F3 EISA Reserved by various manufacturers.

4F4 EISA DMA Ch. 5

4F5 EISA DMA Ch. 5

4F6 EISA DMA Ch. 5

4F7 EISA Reserved by various manufacturers.

4F8 EISA 8237-CP: DMA Ch. 6

4F9 EISA DMA Ch. 6

4FA EISA DMA Ch. 6

4FB EISA Reserved by various manufacturers.
4FC EISA DMA Ch. 7
4FD EISA DMA Ch. 7

4FE EISA DMA Ch. 7
4FF EISA Reserved by various manufacturers.
500-7FF EISA Alias of 100-3FF

800-SFF EISA CMOS RAM
900-BFF EISA Alias of 100-3FF

coo EISA CMOS RAM Page Select Port

COI-C02 EISA Undefined

C03 EISA Cache Control Port

C04-C39 EISA Undefined
C40 EISA Hard and Floppy Disk Controllers, Parallel

Port, Mouse Port
C41 EISA Serial Port
C42 EISA Reserved
C43-C79 EISA Undefined
C80-C82 EISA Processor PCA Board Identification Bytes
C83 EISA Reserved by various manufacturers.

Input/Output (I/0)

TABLE 5-4 Continued

1/0
Address

C84

ISA or
EISA

EISA

C85-FFF EISA

1000-l0FF EISA

1100-13FF EISA
1400-14FF EISA
1500-17FF EISA
1800-lSFF EISA

1900-lBFF EISA
lC00-lCFF EISA
lD00-lFFF EISA

through

8000-SOFF EISA
8100-83FF EISA
8400-84FF EISA
8500-87FF EISA

8800-SSFF EISA

8900-SBFF EISA
8C00-8CFF EISA
8D00-8FFF EISA
9FFF-FFFF EISA

Function

Processor PCA Board Enable

Reserved by various manufacturers.
Slot 1

Alias of 100-3FF
Slot 1
Alias of 100-3FF

Slot 1
Alias of 100-3FF
Slot 1
Alias of 100-3FF

Slot 8
Alias of 100-3FF

Slot 8
Alias of 100-3FF

Slot 8
Alias of 100-3FF

Slot 8
Alias of 100-3FF
Undefined

81

CHAPTER

6

EISA Software

This chapter covers the software that is specific to the EISA com­
puters. There are two types of software covered here: programs that
are run in order to set up (configure) and use the computer, and
files that contain the configuration data from which the computer
performs the configuration process.

Since each of the dozens of manufacturers designing EISA
computers will be providing software for installing and configuring
their systems, this chapter cannot hope to address the use of each
of these systems. I have therefore taken the approach that most of
the manufacturers will adhere to the EISA specification. Another
possibility is that some software developers will come up with in­
stallation programs that will work on several different computer
systems, and will sell their software either to hardware developers
or directly to the public. In addition, a public domain version is
also possible. Since this book is being written and published at the
time when the developers are in the process of analyzing EISA and
their plans to fit into the EISA world, it is not possible to tell you
what they will do, only what they might do, and what the EISA
specification defines and allows them to do.

One of the first things that any system will need is a con­
figuration utility more powerful than the SETUP and CONFIG­
URATION utilities of today. Today's utilities park the heads of a
disk drive, set the number and types of drives, set the date and
time, and set the video type. They then store this information in
CMOS memory. The EISA configuration utility does all of the
above, in addition to providing system configuration information
on all of the cards, both EISA and ISA, that are plugged into the
system.

EISA Configuration

Configuration Utility

The MS-DOS based EISA configuration utility program replaces
the old setup utilities offered by computer manufacturers and pro­
vides functions such as the generation of system configuration in­
formation for the programmable EISA 1/0 boards. Since EISA
computers also support ISA boards, the utility provides 1/0 board

85

86 EISA Software

jumper and switch-setting information. This saves a user the time
and frustration associated with configuring ISA boards. Once the
configuration utility has been run, the resulting information is
stored in nonvolatile memory. In this way, the utility need be run
only once, when setting up the computer, and not each time the
power is turned on or the computer is reset.

The EISA configuration utility configures the computer's
CMOS memory to match the expansion cards installed in the sys­
tem. This utility has been developed by Hewlett-Packard and Com­
paq and will be distributed in some form to each of the manufac­
turers. They may, in turn, make certain modifications to the
program to tailor it to their individual needs. Because of the
changes that each of the manufacturers may make, it is not possible
to present the program in a final form. A generic version is pre­
sented here. The version you will be using may differ slightly.

When the utility initially comes up on the screen, it displays
a welcome screen telling the user the name of the manufacturer,
and any other particulars the manufacturer feels necessary. Several
screens of information about the utility, how to use it, and perhaps
manufacturer-specific information are then presented, followed by
a System Configuration Menu.

System Configuration Menu

Typically, the System Configuration Menu will typically have the
appearance of a Windows application, with five headings across
the top of the screen: System, Edit, View, Settings, and Help.

A list of the function keys that can be used will appear
below these, and below that, a list of the boards presently in the
system. The contents of the screen will be similar to the example
in Figure 6-1.

Note that the sample screen shows more than 25 lines.
There will be a "scroll bar" at the right side of the screen that will
allow you to move up and down to view the eight slots. Some
computers will have fewer than 8 slots, and some may have more,
so the use of the scroll bar may vary from system to system.

As you select each one of the five pull-down topics from
across the top of the screen, you will get a menu of different func-

EISA Configuration 87

System Edit View Settings Help

These are the options detected by your coq:,uter. If this information is
correct, select Exit from the System pull-down menu.

Press [F10] to activate the menu bar.
Press [F1] at any time to display help information.
Press [Shift+F1] at any time to display an index of help topics.

System Board
System

Video Display Board
slot 1

Disk Drive Controller
slot 2

Expansion Memory Board
slot 3

LAN Interface Board
slot 4

slot 5

slot 6

slot 7

slot 8

[F10] =Menu bar [F1] =Help [Shift+F1l=Help topics Tab

FIGURE 6-1 The System Configuration Menu

tions you can perform. These are summarized in the following par­
agraphs.

System Menu
Open

Save As

Used to open an existing SCI file that con­
tains preset configuration information.

Used to save a configuration in a file for
later use.

88

Print

Verify

Exit

Edit Menu

Add

Move

Remove

Change function

Change resource

Revert to saved

Reset to defaults

Lock

Unlock

View Menu

Overview

Detailed by slot

Detailed by type

EISA Software

Used to print the existing system config­
uration information.

Used to verify the existing system config­
uration information to make sure there are
no resource conflicts.

Used to exit from the program.

Used, to add a board or option to the sys­
tem configuration.

Used to move a board from one slot to
another.

Used to remove a board from the system.

Used to change the function of a board
when you are viewing it in a detailed mode.

Used to change the resources of a board
when you are viewing it in a detailed mode.

Used to revert to the previously saved ver­
sion of the configuration.

Used to reset the system configuration to
the manufacturers default values.

Used to lock a board or a system config­
uration.

Used to unlock a previously locked system
or board.

Displays an overview of the system show­
ing which boards are in each slot. Selecting
a board provides more detailed informa­
tion.

Displays information on the system, pre­
sented slot-by-slot.

Displays information on the system,
sorted by type of information.

Nonvolatile Memory

Switch & jumper
settings

Software parameters

Connections

Board specifications

Resources

Settings Menu
Auto verify

Manual verify

Help Menu
Help topics

Help

How to use keys

How to use help

Copyright
information

Nonvolatile Memory

89

Displays the switch and jumper settings
for the selected board.

Displays the software parameters for the
board.

Displays information on cabling between
the board and any interconnected periph­
erals.

Displays a list of the board's specifica­
tions.

Displays the interrupt, I/0, and memory
information on the selected board.

Causes the computer to check for resource
conflicts each time a change is made.

Causes the verification process to be de­
layed until the Verify option is selected
from the System pull-down.

Lists the topics on which help is available.

Provides general information on the help
function.

Provides information on how to use the
various function keys used in the config­
uration utility program.

Provides a screen of information on how
to use the help function.

Provides copyright and revision informa­
tion on the configuration utility program.

EISA computers have EISA nonvolatile memory as well as standard
ISA nonvolatile memory. The configuration utility uses EISA non­
volatile memory to store information about the boards installed in

90 EISA Software

the system. This information includes which 1/0 ports are used by
the board, which DMA addresses are used, and which IRQs are
needed.

The configuration utility uses the ISA nonvolatile memory
for storing configuration information, including the system disk
drive types, the video adapter type, and amount of memory in­
stalled.

Configuration (CFG) Files

CFG files are needed for both ISA and EISA 1/0 boards. The
configuration utility uses the information contained in the CFG
files to determine the system resources each board requires. This
information helps a user resolve any resource conflicts that may
occur if multiple boards require similar resources. By using a com­
bination of function and choice statements, the manufacturer cre­
ates a list of configuration options that correspond to the selectable
resources for the board.

CFG Filename Format

CFG filenames must adhere to the following format: !vvvpppp.CFG,
where vvv is a three character vendor identification number, pppp
is a 4-hex-character vendor product identification number, and
.CFG is the file extension.

The following examples are valid CFG filenames:

!ABC1234.CFG

!VND0015.CFG

!PAR0C15.CFG

!LAD26AF.CFG

CFG File Format

CFG files are ASCII files that adhere to the CFG language. CFG
files can be created using a text editor or an MS-DOS based CFG
creation utility supplied by some manufacturers. CFG files are di-

Configuration (CFG) Files 91

vided into blocks. The first block is the board identification block
containing 1/0 board and slot type information. The second block
is the initialization identification block containing 1/0 port ini­
tialization information and switch and jumper configuration in­
formation.

The third and following blocks are the function identifi­
cation blocks. These contain user-selectable 1/0 board information
presented to the user by the configuration utility. Refer to the
"Brief CFG Description" below for an overview of the CFG lan­
guage. Explanations of the language are given as part of the example
CFG files following this brief description.

Brief CFG Description

[J • Square brackets indicate optional items.

BOARD

ID= "vvvpppp"

NAME :::: "name 11

MFR:::::: "name"

CATEGORY= "category"

[SLOT= ISA/ISA16/ISABOR16/OTHER/EISA/VIR/EMB[n)

[LENGTH= value]

[AMPERAGE= value]

[SKIRT= YES/NO)

[READID = YES/NO)

[BUSMASTER = value]

[IOCHECK = VALID/INVALID)

[DISABLE= SUPPORTED/UNSUPPORTED]

[COMMENTS= "comment text"]

[HELP= "help text")

IOPORT(x) = address

[SIZE= BYTE/WORD/DWORD]

[INITVAL = [LOC(list)))

SWITCH(x) = value

NAME= "description"

STYPE = DIP/ROTARY/SLIDE

[VERTICAL= YES/NO]

[REVERSE= YES/NO]

92

[LABEL= LOC(list) list]

[INITVAL = LOC(list) list]

[COMMENTS= "comment text"]

[HELP= "help text"]

JUMPER(x) = value

NAME= "description"

JTYPE = INLINE/PAIRED/TRIPOLE

[VERTICAL= YES/NO]

[REVERSE= YES/NO]

[LABEL= LOC(list) list]

[INITVAL = LOC(list) list]

[FACTORY= LOC(list) list]

[COMMENTS= "comment text"]

[HELP= "help text"]

[GROUP= "name"]

FUNCTION= "name"

[TYPE= "type"]

[COMMENTS= "comment text"]

[CONNECTION= "connection text"]

[HELP= "help text"]

CHOICE =· "name"

LINK/FREE/COMBINE

[SUBTYPE= "name"]

[DISABLE= YES/NO)

[AMPERAGE= value]

[TOTALMEM = list [STEP= value]]

[MEMORY= size]

[ADDRESS= value]

(WRITABLE= YES/NO]

[MEMTYPE = value]

[SIZE= BYTE/WORD/DWORD]

[DECODE= 20/24/32)

[CACHE= YES/NO]

[SHARE= YES/NO/"test"]

[DMA = list]

[SHARE= YES/NO/"test"]

[SIZE= BYTE/WORD/DWORD]

EISA Software

[TIMING= DEFAULT/TYPEA/TYPEB/TYPEC]

Configuration (CFG) Files

[PORT= list]

[SHARE= YES/NO/"test"]

[SIZE= BYTE/WORD/DWORD)

[IRQ = list]

[SHARE= YES/NO/"test"]

[TRIGGER= LEVEL/EDGE)

[INIT = value]

[SUBCHOICE)

[DISABLE= YES/NO)

[AMPERAGE= value]

[TOTALMEM = list [STEP= value]]

[SUBFUNCTION = "name")

[TYPE= "type"]

[CONNECTION= "comment text"]

[COMMENTS= "comment text"]

[HELP= "help text"]

CHOICE= "name"

[CHOICE= "name")

[CHOICE= "name")

[ENDGROUP)

[INCLUDE= "vvvpppp.OVL")

CFG File Examples

93

ISA Serial Board A company called Zap Computer Sys­
tems produces a small ISA board with one serial port that can be
configured as COMl or COM2. A switch is used to select the COM
port as follows:

94

switch
1

positions: 0
1

COM!
COM2

EISA Software

This board is the first produced by the company so they decide on
a board product number of 0000. Their vendor identification num­
ber is ZAP so the CFG filename is !ZAP0000.CFG. The CFG file
for the Zap serial board follows.

;A comment line· comments are delimited by a";"

Following is the board identification block. The board ID is

given. Note the similarities with the CFG filename. The name

of the board and manufacturer come next. The category COM

indicates this board is used for communications. The length

of the board is 330 millimeters and it is an 8-bit ISA board.

BOARD

ID= "ZAP0000"

NAME= "Zap Serial Board"

MFR= "Zap Computer Systems"

CATEGORY= "COM"

SLOT= ISAB

LENGTH= 330

Next comes the initialization identification block. Only a

SWITCH statement is used for the Zap serial board CFG file.

The SWITCH statement information defines the board switches.

The switch name, type, and board label are given.

SWITCH(l) = 1

NAME= "COM Port Selection"

STYPE DIP

LABEL= LOC(l) "Switch l"

Now comes the function identification block. The Zap serial

board CFG file has only one function, however, most CFG files

will contain several. The function for serial port 1 has two

choices, COMl or COM2. These choices are presented to a user

by the configuration utility. The configuration utility keeps

Configuration (CFG) Files 95

track of the user's selection by storing the resource

information below the choice in EISA nonvolatile memory. For

example, if the user selects COM2, the utility knows that IRQ 3

and I/O ports 02F8h-02FFh are used by the board. The LINK

statement is used because the resources are related.

FUNCTION= "Serial Port l"

TYPE= "COM,ASY"

CHOICE= "COMl"

SUBTYPE= "COMl"

LINK

IRQ = 4

PORT= 03F8h-03FFh

CHOICE= "COM2"

SUBTYPE= "COM2"

LINK

IRQ = 3

PORT= 02F8h-02FFh

EISA Serial/Parallel Board Zap Computer Systems
decided to create an EISA version of the serial board. Zap also
decided to add a second serial port and a parallel port to the board.
The board will not have any switches but instead will have one
programmable 1/0 port. The new EISA serial/parallel board CFG
filename is ZAP00lO.CFG.

Programmable 1/0 port definition:

Port 0zC40h:

Bit 0

Bit l

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

Parallel port number (0=LPTl, l=LPT2)

Enable parallel port (l=enable)

Serial port l number (0=COMl, l=COM2)

Enable serial port l (l=enable)

Serial port 2 number (0=COMl, l=COM2)

Enable serial port 2 (l=enable)

reserved

reserved

96 EISA Software

The CFG file for the Zap serial/parallel board would be:

The board identification block below shows the board ID, the name,

and the manufacturer. MFC indicates this board is a multi-function

board. The length of the board is 330 millimeters and it is of type

EISA.

BOARD

ID= "ZAP0010"

NAME= "Zap Serial/Parallel Board"

MFR= "Zap Computer Systems"

CATEGORY= "MFC"

SLOT= EISA

LENGTH= 330

This is the initialization identification block. The IOPORT statement

replaces the SWITCH statement from the ISA board example and is defined

for use later in the CFG file. The z tells the configuration utility

to replace that position with the slot number in which the board is

installed. This way the CFG text does not need to be changed no

matter what slot the board is in. The xxxxxxxxb means the initial

value of the port will be filled in later by the configuration utility

based on what choices the user makes.

IOPORT(l) = 0ZC40h

SIZE= BYTE

INITVAL = xxxxxxxxb

This is the function identification block. This example has added a

GROUP statement. This is done to group common functions together.

The other new statement used is the INIT statement. The INIT value

that corresponds to a choice is stored in EISA nonvolatile memory by

the configuration utility. At system power-on, the BIOS looks for

INIT entries in EISA nonvolatile memory and properly initializes the

hardware to match what the user has selected. All function in a

group are enclosed between the GROUP and ENDGROUP statements.

Configuration (CFG) Files

GROUP "Serial Ports"

TYPE

FUNCTION

TYPE

"COM,ASY"

"Serial Port l"

npl"

CHOICE= "COMl"

SUBTYPE= "COMl"

LINK

IRQ = 4

PORT= 03F8h-03FFh

INIT = IOPORT(l) xxxxl0xx

CHOICE= "COM2"

SUBTYPE= "COM2"

LINK

IRQ = 3

PORT 02F8h-02FFh

CHOICE

INIT = IOPORT(l) xxxxllxx

"Disable"

DISABLE= YES

FREE

INIT = IOPORT(l) xxxx0xxx

FUNCTION

TYPE

"Serial Port 2"

11 P2"

CHOICE= "COMl"

SUBTYPE

LINK

"COMl"

IRQ = 4

PORT 03F8h-03FFh

INIT = IOPORT(l) xxl0xxxx

CHOICE= "COM2"

SUBTYPE

LINK

"COM2"

IRQ = 3

PORT 02F8h-02FFh

INIT = IOPORT(l) xxllxxxx

The FREE statement is used because

no related resources exist.

CHOICE= "Disable"

DISABLE= YES

FREE

INIT = IOPORT(l) xx0xxxxx

97

98

ENDGROUP

FUNCTION=

TYPE=

CHOICE

CHOICE

CHOICE

"Parallel Port l"

11 PAR 11

= "LPTl"

SUBTYPE = 11 LPTl 11

LINK

IRQ = 7

PORT 0378h-037Fh

INIT = IOPORT(l) xxxxxxl0

= "LPT2"

SUBTYPE = "LPT2"

LINK

IRQ = 5

PORT 0278h-027Fh

INIT = IOPORT(l) xxxxxxll

DISABLE= YES

FREE

INIT = IOPORT(l) xxxxxx0x

EISA Software

EISA VGA Video Board Zap computer systems also
produces an EISA version of a VGA video board. The CFG name
is !ZAP0020.CFG and the text is shown below.

The board identification block is similar to the previous CFG examples

with the exception of the category. VID indicates this is a

video board.

BOARD

ID= "ZAP0020"

NAME= "Zap Systems VGA Board"

MFR= "Zap Computer Systems"

CATEGORY= "VID"

SLOT= EISA

LENGTH 330

READID = YES

No initialization block for this board

Overlay (OVL) Files

The function identification block has one function that merely

defines the board resources. MEMORY statements are used to let

the configuration utility know where the board ROM and RAM resides.

FUNCTION= "Video Board Operation"

TYPE= "VID"

CHOICE= "Primary VGA adapter"

SUBTYPE= "VGA"

FREE

MEMORY= 64K

ADDRESS= OAOOOOh

WRITABLE= YES

MEMTYPE = OTHER

CACHE= NO

SHARE= NO

MEMORY= 32K

ADDRESS= OCOOOOh

WRITABLE= NO

MEMTYPE = OTHER

CACHE= NO

SHARE= NO

Overlay (OVL) Files

;Board video RAM area

;Memory not cachable

;Memory not sharable

;Board video ROM area

;Memory not cachable

;Memory not sharable

99

Anticipating that not all boards could be described adequately with
the configuration language, overlay files were created to provide
extensions to the CFG language.

An overlay file, commonly referred to as an OVL, is a piece
of executable code that provides configuration capabilities beyond
the scope of the configuration language. Written in a combination
of C and 80x86 assembly language, OVL files conform to the MS­
DOS executable file format. The difference between an OVL and
a stand-alone program is the strict communication interface the
OVL adheres to. This is described later.

Most commonly, OVLs assist in the autoconfiguration proc­
ess. In an EISA computer, autoconfiguration generally refers to the
ability to select system options without having to prompt the user
for input. For example, when the configuration utility encounters

100 EISA Software

two boards that have serial ports, it automatically assigns one to
COMl and the other to COM2. This kind of autoconfiguration is
easy for the utility to perform, since it has a list of possible COM
choices for both serial ports and it can simply select a unique choice
for each port. Naturally, the choices selected by the utility can be
overridden. In most cases, however, the default choices selected by
the utility are acceptable.

Consider another common example. Most PCs have at least
one flexible disk drive, usually a 3.5-inch or 5.25-inch drive. Tra­
ditionally, one of the first steps in configuring a PC is to describe
the type of flexible disk drive attached. But suppose the PC in­
cluded in its hardware design a mechanism for identifying the type
of disk drives attached? The manufacturer could then write an OVL
to interrogate the hardware and select the configuration choices on
behalf of the utility, no longer requiring the user to enter the drive
type. This is another example of autoconfiguration possible with
an EISA computer.

OVLs can range from simple to complex. They can be used
simply to provide CFG text for management by the configuration
utility, or they can be so complex as to take complete control over
the screens presented to the user.

Although all boards must have a CFG file, the OVL file is
optional; the decision to include an OVL file is up to the board
manufacturer. The one exception to this rule is the system board.
In an EISA computer, the system board must have an OVL to
configure the ISA nonvolatile memory, since the configuration util­
ity does not provide this functionality. Toward the end of the con­
figuration process, the system board OVL looks at the information
stored in EISA nonvolatile memory by the configuration utility to
determine how to configure ISA nonvolatile memory.

0 VL File Structure

When the configuration utility loads a CFG file into the system
configuration, it checks for an INCLUDE="xxxyyyy.OVL" state­
ment. This statement may occur anywhere in the CFG file following
the board identification block. It tells the utility that the CFG file
has an accompanying OVL file that is to be loaded into memory.

Overlay (OVL) Files 101

To understand how an OVL operates, it is first necessary
to identify the three major phases of system configuration provided
by the utility. Taken from a broad perspective, the configuration
utility does three things. First, when loading, it examines the sys­
tem and creates an image of the system configuration. Beginning
with the system board, it automatically loads in CFG files for all
EISA cards and any ISA cards previously configured and saved in
EISA CMOS. This is known as the initialization phase.

Second, the user interacts with the utility, changing re­
sources or function choices if necessary. The utility keeps track of
any changes made and may verify and resolve resource conflicts.
Collectively, this is known as the edit phase.

Third, when all changes have been made and the system
configuration is complete, the user may save the configuration and
exit the utility. This updates the system's EISA and ISA nonvol­
atile memory. This is known as the update phase. While it is im­
possible to completely separate these three phases in the configu­
ration utility, an OVL is written very specifically to function in
only one phase at any given time.

An OVL is an extension to the configuration capability of
the standard configuration utility. At all times, it should be trans­
parent to the user that he is interacting with OVL-specific code.
Also, an OVL has access to the same screen interface library used
by the utility. This library should be utilized to achieve a consistent
look-and-feel with the configuration utility if the OVL is complex
enough to require it.

To describe an OVL in the simplest of terms, it consists of
three functions that are invoked at a specific time during the con­
figuration process. Actually, the utility invokes the OVL code
through a single entry point. The utility passes to the OVL a set
of common parameters that describe the current status of the con­
figuration process. The OVL modifies some of the parameters to
return information to the utility. For each call to the OVL, the
same parameter structure is used. This method of parameter pass­
ing is referred to as a common stack frame.

OVL Example

To better understand how OVLs work, let's construct one OVL for
a simple expanded memory card. Assume the card can hold up to

102

BOARD

EISA Software

2MB of RAM in 512K increments. This means there are four pos­
sible memory configuration choices for the card. First, start with
a simple .CFG file for the board, shown below.

ID= "ZAPl000"

NAME= "Zap Expanded Memory Card"

MFR= "Zap Technologies"

CATEGORY = "MEM''

SLOT= EISA

READID = YES

COMMENTS= "The Zap Memory Expansion board lets you add extra memory

to your system."

FUNCTION= "Memory Size"

COMMENTS= "This choice controls the amount of memory installed on

your Zap memory board."

TYPE = "MEM''

CHOICE= "Expanded Memory"

SUBCHOICE

LINK

MEMORY= 0 = 2M STEP= 512K

MEMTYPE = EXP

Given the CFG text above, this card does not require an
OVL file. The CFG text adequately describes all the resources on
the card. However, by itself, the CFG file cannot determine the
amount of memory installed on the card. The user still needs to
select the Change Resources function from the utility's Edit panel
to set the correct amount of installed memory. The example OVL
below illustrates how to make this selection automatically. Note
that the term "panel" is used in the EISA specification to refer to
the pull-down menus in the various installation and configuration
utilities.

First, remove the CFG text for the memory size function
from the CFG file and replace it with INCLUDE="ZAPl000.OVL".

This instructs the utility to load the OVL file as it loads the CFG
file.

Overlay (OVL) Files

BOARD

ID= "ZAP2000"

NAME= "Zap Expanded Memory Card"

MFR= "Zap Computer Systems"

CATEGORY = "MEM''

SLOT= EISA

READID = YES

COMMENTS= "The Zap Memory Expansion board lets you add extra memory

to your system."

INCLUDE="ZAP2000.0'ltL"

103

The following OVL written in Microsoft C 5.1 detects the
amount of memory installed and selects the proper memory choice
for the utility.

#include "ovl.h" ; Filename: OVL.H

int DetectMemorySize(void);

void far _OvlCommonEntry(OVL_PARAMETERS);

int _acrtused

#define OVLVERSION

#define MEM._CHOICE

= O;

OxOOOl

0

I* Force linker not to use crtO

I* 1st byte in selections[] array *I

unsigned char cfgText[]

I;

"FUNCTION= \"Expanded Memory\"\n"

"COMMENTS= \"Select the amount of memory installed\n"

"on your Zap memory board.\"\n"

"HELP= \"Press [Enter] to edit the choice for memory size.\"\n"

"TYPE= \"MEM\"\n"

"CHOICE= \"512K\"\n"

"LINK MEMORY= 512K MEMTYPE=EXP\n"

"CHOICE= \"1024K\"\n"

"LINK MEMORY= 1024K MEMTYPE=EXP\n"

"CHOICE= \"1536K\"\n"

"LINK MEMORY= 1536K MEMTYPE=EXP\n"

"CHOICE= \"2048K\"\n"

"LINK MEMORY= 2048K MEMTYPE=EXP\n"

104 EISA Software

CFG_FUNCTION memorySize = {

(CFG_FUNCTION *) NULL,

{ 0, o, 0 },

I* Only one function in cfg text*/

};

0x0000,

(unsigned char*) NULL,

(unsigned char*) NULL,

(unsigned char*) NULL

/* Default choice is 512K *I
/* OVL will own edit changes *I

CFG_DATA cfgData

};

o,
-1,

cfgText,

&memorySize,

0

/* let utility determine slot *I
I* the cfg text for ovl's function *I
/* select memory size function *I

void far

_ovlCornrnonEntry(ovlParameters)

OVL_PARAMETERS ovlParameters;

/* Utility will pass control *I
/* to the OVL here... */

switch(ovlParameters.function) {

case FUNCTION_INIT:

if (ovlParameters.entryStatus & TARGET__MACHINE) {

memorySize.selections[MEM-CHOICE]=DetectMemorySize();

I;

/* If memory STR did not change since last time,

then ovlParameters. exi tStatus l=OVL_NQ_CHANGES;

ovlParameters.pcfgData

ovlParameters.ovlVersion

&cfgData;

OVL_VERSION;

ovlParameters. exi tStatus I= MULTI_SUPPORT;

break;

case FUNCTION_CHANGE:

case FUNCTIQN_UPDATE:

ovlParameters.exitStatus

break;

OVL_NQ_CHANGES;

int DetectMemorySize()

*I

Overlay (OVL) Files 105

I* Four choices: 0=512K, 1=1024K, 2=1536K, and 3=2048K

/* Check the hardware to detect memory size... *I
I* For this example, let's just assume 1024K is installed. *I

return (l);

When writing an OVL program, the user must observe a
few important rules. Notice the variable _acrtused is declared.
This instructs the runtime linker not to link the C runtime module
with the OVL's object file. Since the OVL will be running along
with the utility, the runtime module will have already been loaded
for the utility. Note that without the runtime module, the OVL
cannot be run as a stand-alone program.

A second rule when writing OVLs is that the function
_QvlCommonEntry must be the first subroutine in the module. This
is necessary because the utility will invoke the OVL by transferring
control via a far call to the first location in the OVL's code segment.
Notice that the function DetectMemorySize () was declared at
the top of the program, but not initialized until after function
_ovlCommonEntry () . This takes advantage of C's function pro­
totyping capability to satisfy all forward references.

The third rule to observe is that building the .OBJ file re­
quires certain compiler options. The following Microsoft makefile
will correctly compile the OVL source code:

zapl.obj: zapl.c ovl.h

cl -Ox -Zlp -Afus -nologo -c zap.c

zap2000.ovl: zapl.obj

link zapl, zap2000.ovl;

Accessory card OVLs are limited. in size to 16K for both
code and data. System board OVLs are limited to 64K in size. All
data structures are packed. This is necessary to ensure that the
configuration utility has enough free memory to load all CFG and
OVL files. Because of this, OVLs are compiled using a small mem­
ory model. In addition, both the utility and the support routines

106 EISA Software

it provides require far data pointers. The utility also provides a 4K
stack for OVLs to use.

0 VL Functions

The utility calls an OVL's _0vlCornmonEntry (ovlParameters)
with three possible function values in ovlParameters (INIT,
CHANGE, UPDATE). With each function call, the utility passes
a set of flags in entryStatus to indicate its current status. When
returning control to the utility, the OVL passes back its flags in
exitStatus. It is important that the OVL does not keep a local
copy of information contained in the ovlParameters structure. This
prevents the OVL from getting out of sync with the utility. The
utility updates the ovlParameters structure before each OVL
function call.

OVL Function INIT Normally, the INIT function is
called only once, when the OVL is loaded into memory. During
this call, the OVL builds the CFG text for the functions it will be
handling. Both CFGs and OVLs use the same configuration lan­
guage to describe resources and functions for configuration. The
only exception is that an OVL can define a free-form data function.
This function has no subfunctions or choices; it may have a type
and subtype string. Free-form data functions contain up to 204
bytes of information in any format. This data is placed unaltered
into EISA nonvolatile memory.

During the INIT function call, the OVL must initialize sev­
eral parameters in the ovlParameters structure for the utility. The
OVL should place its version number in ovlVersion. This infor­
mation will be displayed to the user. The parameter ovlFinal­
MemorySize controls how much memory the utility reserves for
the OVL. A value of O means unload the OVL from memory; a
value of -1 means use the initial size of the OVL. The OVL must
also initialize the CFG Data Area. For each function in the CFG
text, the OVL initializes a CFG_FUNCTION to describe the selections,
choice text, and subtype string for the function.

OVL Function CHANGE The utility makes a
CHANGE call to an OVL whenever the user attempts to edit a

Overlay (OVL) Files 107

function supplied and owned by an OVL. The flag functionOwner
in the CFG_FUNCTION structure specifies who owns a function (is
responsible for edit changes). In the Zap memory board example,
the OVL supplied one function and let the utility have ownership
for changes. It is common to write a small OVL with an INIT
function to automatically select an initial value for a function
choice, and then let the utility handle any changes.

When an OVL takes ownership for changes, the utility uses
ovlParameters.subfunction to indicate what change should take
place. Subfunction CHANGE_SELECTION indicates the user wants to
change the selected choice for a function. The OVL should open a
panel and display the function and its choices. The look-and-feel
of the panel should be similar to an edit panel opened by the utility.
The user can then use the mouse or keyboard to make changes.
The following example is the same OVL modified to take control
of editing the choice for memory size.

#include "ovl.h" ; Filename: OVL.H

int DetectMemorySize(void);

void far _OvlCommonEntry(OVL-PARAMETERS);

int _acrtused

#define OVL-VERSION

#define MEM....CHOICE

= O;
0x000l

0

#define BID-OK 1024

#define BID-CANCEL 1025

unsigned char cfgText[] = (

I* Force linker not to use crt0 *I

/* 1st byte in selections[] array *I

"FUNCTION= \"Expanded Memory\"\n"

"COMMENTS= \"Select the amount of memory installed\n"

"on your Zap memory board.\"\n"

"HELP= \"Press [Enter] to edit the choice for memory size.\"\n"

"TYPE= \"MEM\"\n"

"CHOICE= \"512K\"\n"

"LINK MEMORY= 512K MEMTYPE=EXP\n"

"CHOICE= \"1024K\"\n"

"LINK MEMORY= 1024K MEMTYPE=EXP\n"

"CHOICE= \"1536K\"\n"

"LINK MEMORY= 1536K MEMTYPE=EXP\n"

"CHOICE= \"2048K\"\n"

"LINK MEMORY= 2048K MEMTYPE=EXP\n"

108 EISA Software

);

CFG_FUNCTION memorySize = {

(CFG_FUNCTION *) NULL,

(o, o, 0),

/* Only one function in cfg text*/

I* Default choice is 512K *I

);

0x000l,

(unsigned char*) NULL,

(unsigned char*) NULL,

(unsigned char*) NULL,

I* OVL will own edit changes *I

CFG_DATA cfgData

);

o,
-1,

cfgText,

&memorySize,

0

I* let utility determine slot *I
/* let cfg text for ovl's function*/

I* select memory size function *I

PANEL myPanel; /* handle for opening edit panel on screen

EVENT myEvent; I* event record to trap user keyboard/mouse action*/

unsigned char myChoices[J="512K\nl024K\nl536K\n2048K";

unsigned int theChoice,oldChoice;

PANEL_FIELD myField = {

);

(PANEL_FIELD *)NULL, /* only one field*/

(PANEL_FIELD *)NULL,

LIST-BOX,

AUTO_PLACE,

AUTQ_PLACE,

20,

"Installed Memory",

AUTQ_PLACE,

AUTO-PLACE,

20

4,

&theChoice,

/* display myChoices as a list box *I
I* let utility place panel on screen *I

/* show all four choices in list box *I

myChoices, I* the four memory size choices *I
(unsigned long)NULL,

"Select the correct amount of memory installed in your card."

Overlay (OVL) Files

PANEL_GROUP myGroup = {
(PANEL_GROUP *)

(PANEL_GROUP *)

NULL,

NULL,

(unsigned char*) NULL,

AUTO_PLACE,

/* A group is just a collection *I
I* of related fields. This *I
/* example has only one field. */

&myField

);

BUTTON buttoncancel = {
(BUTTON *)NULL,

(BUTTON *)NULL,

"Cancel 11,

BID-CANCEL,

);

"Press <Cancel> to abort your changes.",

(unsigned int) NULL,

0x0llb

BUTTON buttonOk = {
&buttonCancel,

(BUTTON *)NULL,

11 0k 11 ,

);

BID-OK,

"Press <Ok> to accept your changes.",

(unsigned int) NULL,

0xlc0d

void far

_OvlCommonEntry(ovlParameters)

OVL_PARAMETERS ovlParameters;

/* Utility will pass control *I
I* to the OVL here... *I

switch(ovlParameters.function) {

case FUNCTION-INIT:

if (ovlParameters.entryStatus & TARGET...MACHINE) [

theChoice = DetectMemorySize();

memorySize.selections[MEM...CHOICE] theChoice;

109

110

ovlParameters.pcfgData

ovlParameters.ovlVersion

&cfgData;

OVL_VERSION;

ovlParameters. exi tStatus I= MULTI_SUPPORT;

break;

case FUNCTION_CHANGE:

if (ovlParameters.subfunction == CHANGE_SELECTION)

oldChoice = theChoice;

myPanel = ovlParameters.Support (OPEN-PANEL,

DIALQG_PANEL,

DEFAULT-STYLE,

"Expanded Memory",

(ACTION *)NULL,

&myGroup,

&buttonOk) ;

ovlParameters.Support(DISPLAY_PANEL, myPanel);

if (ovlParameters.subfunction==CHANGE....SELECTION)

I I((ovlParameters.subfunction==CHANGE....RESULTS)

&&(ovlParameters.entryStatus

& OVL_CHANGES_0K == 0))) I

ovlParameters.Support(EDIT_PANEL, myPanel, &myEvent);

ovlParaneters.exitStatus = OVL-NO_CHANGES;

else

switch (myEvent.eventID) I
case BID-OK:

);

if (oldChoice != theChoice)

ovlParameters.exitStatus

&= ·ovL-NO_CHANGES;

break;

case BID-CANCEL:

theChoice = oldChoice;

break;

ovlParameters.exitStatus OVL-NO-CHANGES;

if (ovlParameters.exitStatus & OVL-NO_CHANGES) {

ovlParameters.Support(CLOSE....PANEL, myPanel);

EISA Software

Overlay (OVL) Files l ll

};

memorySize.selections[MEM_CHOICE]=theChoice;

break;

case FUNCTION_UPDATE:

ovlParameters. exi tStatus I= OVL_NQ_CHANGES;

break;

int DetectMemorySize()

/* Four choices: 0=512K, 1=1024K, 2=1536K, and 3=2048K *I
I* Check the hardware to detect memory size... *I
I* For this example, let's just assume 1024K is installed. *I

return (l);

This second example shows how very little extra code is
required for the OVL to handle the editing of a function. The utility
provides a complete set of support functions for handling the dis­
playing and editing of data. The OVL need only set up the data
structures, open a panel, and call the edit support function. From
that point on, the utility handles all user input from both the
keyboard and the mouse. This relieves the OVL from the burden
of recreating the windows-like interface of the utility, and allows
it to focus specifically on its configuration objectives.

Notice how the two subfunctions, CHANGE_SELECTION and
CHANGE_RESULTS, work together. At the beginning of the edit, the
utility calls the OVL with CHANGE_SELECTION to say, "The user
wants to change the choice for a function. Display a panel listing
all the choices and let him choose." The OVL responds by opening
a panel and calling the edit support function.

When the user makes a choice, the support function returns
an event indicating what the user did. If the user pressed the <Ok>
pushbutton to end the edit, the OVL checks to see if a new choice
was selected and returns this in exitStatus. This is the OVL's way
of saying to the utility, "The user made a change. Is this new choice
ok?". The utility examines the new choice and returns with
subfunction CHANGE_RESULTS to indicate its approval or disap-

112 EISA Software

proval. This continues until the utility accepts the user's choice.
If the user does not make a new choice or presses <Cancel>, then
nothing is changed and the OVL returns control to the utility.

OVL Function UPDATE This is last of the three func­
tions that the OVL must support. In comparison to the other two
functions, this is the easiest to implement. The utility calls the
OVL with this function to indicate the configuration process is
complete. For system board OVLs, the subfunction UPDATE_CHECK

is the last chance to verify that all system resources have been
accounted for. For example, if the system board OVL sees a serial
port that has not been claimed by any CFG file or OVL file, then
it can claim ownership to make sure that the system configuration
includes all resources. This situation can occur when a board is
installed that has no CFG file.

For both system board OVLs and accessory card OVLs, the
subfunction UPDATE_CONFIGURATION indicates the end of the con­
figuration process. The OVL should release any memory or unchain
itself from any interrupts. For most OVLs, there is no action to
perform during update, and this call is just a good-bye handshake
from the utility. The utility will unload the OVL from memory
following the UPDATE_CQNFIGURATION call. For system board
OVLs, the UPDATE_CONFIGURATION subfunction has a special
meaning. Remember that EISA computers have two sets of non­
volatile memory. This subfunction signals the system board OVL
to go ahead artd initialize the ISA-specific nonvolatile memory.
This is done by searching through the EISA nonvolatile memory
and extracting the necessary information from the TYPE and SUB -

TYPE strings defined for each function. During its search, the sys­
tem board OVL is not permitted to alter the EISA nonvolatile
memory.

OVL Memory Allocation

OVLs may find it useful to allocate dynamic storage space to hold
configuration information. The following section of C code shows
how the OVL memory support routines are used by an OVL. This
example allocates memory for two nodes in a linked list. After the

Overlay (OVL) Files 113

nodes have been linked, they are removed from the list and the
allocated memory is released.

I*
* Structure for linked list of memory entries

*I
typedef

MEM

MEM

I*

*pHead;

*pTail;

struct

l MEM;

Mem {

struct Mem *next;

struct Mem *rev;

int nodeNumber:

I* Memory entries head pointer *I
I* Memory entries tail pointer *I

* Initialize the memory entry nodes if

* the memory is allocated without errors.

*I
if(!(Support(ALLOCATE....MEMORY, sizeof(MEM), pHead))){

if(!(Support(ALLOCATE....MEMORY, sizeof(MEM), &pTail))){

I*
* Link the head node to the tail node.

*I
pHead->next = pTail;

pHead->prev = (MEM *)NULL;

pHead->nodeNumber = l;
I*

* Link the tail node the head node.

*I
pTail->next = (MEM *)NULL;

pTail->prev = pHead;

pTail->nodeNumber = 2;

114

I*

I*
* Release the memory allocated

* for the tail node.

*I
Support(RELEASEJ1EMORY, pTail);

* Release the memory allocated

* for the head node.

*I
Support(RELEASEJ1EMORY, pHead);

OVLSummary

EISA Software

The OVL is one of the innovative features in the EISA configu­
ration utility. Integrated with the execution of the utility, it pro­
vides a manufacturer with the means to customize the configuration
process for an accessory card. OVLs can range from the simple
OVL that selects configuration choices, to the full-blown system
board OVL that oversees a variety of configuration activities.

/* File: OVL.H */

#define FALSE

#define TRUE

#define NULL

#define FUNCTIQN_INIT

#define FUNCTION_CHANGE

#define FUNCTION_UPDATE

#define CHANGE_SELECTION

#define CHANGE-RESULTS

#define CHANGE_SLOT

0

-FALSE

0

0

l

2

0 I* Called to edit a function choice. *I
l /* Called if new choice is NOT ck. */

2 /* Informs OVL of slot change. *I

Overlay (OVL) Files

#define CHANGE-RESET

#define CHANGE-RESTORE

3

4

I* Reset choice to default value. *I
I* Reset choice to last saved value. *I

#define UPDATE-CONFIGURATION

#define UPDATE_CHECK

0

1

/* EISA CMOS has been written. */

I* Last chance to declare resources *I

#define TARGET__MACHINE

#define REFRESILVIDEO

#define CANNOT_PROCESS_CARD

#define MULTI-SUPPORT

#define CONFIG_INCOMPLETE

#define OVL_CHANGES_OK

#define OVL_NO_CHANGES

#define OVL_OWNS_FUNCTION

#define FREEFORM-DATA

0x8000

0x8000

0x4000

0x2000

0xl00O

0xO00l

0x0002

0x000l

0x0002

I* General support function equates *I

#define ALLOCATILMEMORY

#define MODIFY__MEMORY

#define RELEASE__MEMORY

#define OPEN-PANEL

#define DISPLAY-PANEL

#define EDIT_PANEL

#define CLOSE-PANEL

#define DIALOG-PANEL

#define DEFAULT-STYLE

#define LIST--13OX

#define AUTO-PLACE

typedef

struct cfg_function

0xOl0O

0x0101

0x0102

0x0200

0x0201

0x0202

0x0204

1

0

11

-1

struct cfg_function *next;

unsigned char selections[26];

struct (

unsigned functionOwner

functionType

} flags;

1,

l;

I* OVL wrote directly to screen. */

I* OVL cannot handle this card. *I
I* OVL can handle only one card. *I
I* Cannot report all cfg text. *I

/* Utility accepted edit changes*/

I* No changes made in edit panel*/

/* OVL will handle editing... */

/* This data not cfg text data. */

I* alloc some free memory *I
/* adjust size of allocated mem */

I* dispose of malloced memory *I

I* prepare a panel for display */

/* display the panel *I
/* get panel mouse/keybd input *I
I* close panel */

/* panel for editing a choice *I
/* let utility pick panel style *I
/* field type for a list box *I
/* utility will ;locate panel */

I* one byte/choice in cfg text

I* who owns editing of function *I
I* is function freeform data */

115

116 EISA Software

unsigned char *choice;

unsigned char *subtype;

unsigned char *freeformData;

I* text for current choice *I

CFG_FUNCTION;

typedef

struct

reserved00; unsigned int

unsigned int

char

CFG_FUNCTION

unsigned long

slot; I* what slot is the

CFG_DATA;

typedef

struct ovl_parameters

unsigned char

unsigned char

unsigned int

unsigned int

unsigned int

unsigned int

unsigned char

unsigned char

unsigned int

unsigned char

unsigned int

unsigned long

unsigned long

CFG_DATA

unsigned int

I OVLPARAMETERS;

pcfgText; I cfg

pcfgFunction; I 1st

reservedl7[2);

subfunction;

function;

utilityVersion;

ovlVersion;

entryStatus;

exitStatus;

physicalSlotNumber;

logicalSlotNumber;

reservedlO;

eisaID[4);

(far *Support)();

memorySize;

reservedlE;

far *pcfgData;

index;

typedef unsigned int PANEL;

typedef struct field

struct field *nextField;

struct field *prevField;

int fieldType;

int rowFieldPrompt;

text for OVL

OVL function

card in? *I
functions *I

*I

Overlay (OVL) Files

int colFieldPrompt;

int widFieldPrompt;

unsigned char *promptText;

int rowField;

int colField;

int widField;

int lenField;

union (

unsigned int *lpint;

unsigned char *lpStr;

fieldData;

unsigned char *extendedFieldData;

unsigned long fieldOptions;

unsigned char *fieldHelpText;

PANELFIELD;

typedef struct group

struct group *nextGroup;

struct group *prevGroup;

unsigned char *groupText;

int startingColumn;

PANELFIELD *field;

PANEL-GROUP;

typedef struct

) EVENT;

typedef

int eventID;

PANELGROUP *selectedGroup;

PANELFIELD *selectedField;

unsigned int key;

int mouse;

int colMouse;

int rowMouse

struct button

struct button *nextButton;

struct button *prevButton;

unsigned char *buttonText;

unsigned int buttonID;

unsigned char *buttonHelpText;

unsigned int buttonFlags;

unsigned int quickKey;

BUTTON;

117

118 EISA Software

typedef struct action (

struct action *nextAction;

struct action *prevAction;

unsigned char *actionText;

struct action *subAction;

unsigned char *helpText;

unsigned int actionID;

unsigned char actionFlags;

unsigned int quickKey;

} ACTION;

Summary

As shown in the examples in this chapter, the design of the EISA
software is rather complex. However, by making all the configu­
ration files and programs accessible to the programmer, the engi­
neer, and the user, the EISA system provides power through ver­
satility that is unequaled by any other technique. It is up to the
user to select an easy, automatic system configuration or to become
deeply involved in the details of the computer system.

CHAPTER

7

The VGA Video
Interface

This chapter provides general information on a typical VGA card.
From it, you should be able to obtain a general understanding of
a VGA system.

The subject of video, and particularly the VGA video inter­
face as found on many EISA computers, is not a simple topic. As a
result, concerned manufacturers such as Hewlett-Packard and
Compaq have dedicated entire technical reference manuals to the
topic of the video card. If you are doing any programming, you need
to obtain the technical reference manual for that specific VGA card
and determine the specific card BIOS and register characteristics.

VGA General Description

The VGA (Video Graphics Array) video interface is the most likely
interface to be found on an EISA computer, although the EGA and
various monochrome displays are also used. The VGA display is
usually compatible with software written for the EGA (Enhanced
Graphics Adapter) and with most software written for the CGA
(Color Graphics Adapter) and the MDA (Monochrome Display
Adapter). It also usually includes compatibility with much of the
Hercules mode software. These compatibilities are usually provided
through the use of additional programs supplied with the computer
or VGA card to initialize the emulated mode. The VGA card must,
however, be connected to an analog monitor. Such monitors are
available in full color or monochrome versions depending on your
requirements and budget. A ROM is usually included on the VGA
card that provides a BIOS software interface for use in all display
modes. The typical memory configuration is 256K configured as
four 64K bit planes, though 512K of memory is also found on some
VGA cards.

Compatibility Standards

There are two standards used to measure video compatibility. The
first is compatibility to the BIOS level. This means that when you
are writing programs that manipulate data on the screen, you will
use the BIOS to do so. This level of compatibility is assured in
virtually all of the VGA cards on the market. Software manufac-

121

122 The VGA Video Interface

turers who want to guarantee software compatibility write their
software to this level of compatibility.

The second level of compatibility is to the register level.
This is more difficult to assure, since there are a number of slightly
different video cards available. Compatibility is usually maintained
through an installation program that inserts the appropriate drivers
into the program. This level of compatibility is required if the
software you are using requires access to the VGA registers. This
method decreases the time it takes to put information on the screen.
While this is not so important in typical accounting or even word
processing programs, CAD programs, graphics programs, games,
and special video and animation programs quite often do use direct
access to the registers of the VGA. Occasionally this results in some
programs that are written for the VGA not always working on every
system.

The VGA video interface consists of over 70 registers, di­
vided into functional blocks. These functional blocks consist of the
Sequencer, the CRT Controller, the Graphics Controller, the At­
tribute Controller, the Video DAC, and some miscellaneous reg­
isters.

VGA Video Connector

The VGA has a 15-pin connector that provides all the signals re­
quired for either a color or monochrome analog display. The pin
connections for this connector are shown in Figure 7 -1.

Red Analog Ground 1
Red@

Green Analog Ground r>.~ Ila\
u.een l!J

Blue Analog Ground Ila\
Blue l!J

(key) N/C@ @

Digital Ground @ 10 @
5

Digital Ground

N/C
N/C
Horizontal Sync

Vertical Sync

N/C

FIGURE 7-1 VGA Connector
Pinout

VGA Components 123

Modes of Operation

The VGA card typically supports the modes shown in Table 7-1.
Where a number is shown with a slash, such as 8/9, it means that
either number is valid or supported in that mode, though it may
be manufacturer dependent.

In addition to the modes in Table 7-1, some manufacturers
have chosen to add and support a number of additional modes.
These modes are not considered industry-standard compatible,
though they may in time become very popular. They often deliver
performance above and beyond the current standards, such as the
Hercules mode that made significant contributions in monochrome
graphics.

TABLE 7-1 Modes of Operation

Mode Type Colors Alpha Size Graphic Size

0/1 Alpha 16 of 256K 40x25 320/360x200/350/400
2/3 Alpha 16 of 256K 80x25 640/720x200/350/400
7 Alpha Monochrome 80x25 720x350
4/5 Graphic 4 of 256K 40x25 320x200
6 Graphic 2 of 256K 80x25 640x200

8-C n/a
D Graphic 16 of 256K 40x25 320x200
E Graphic 16 of 256K 80x25 640x200
F Graphic 640x350
10 Graphic 16 of 256K 80x25 640x350
11 Graphic 2 of 256K 80x30 640x480
12 Graphic 16 of 256K 80x30 640x480
13 Graphic 256 of 256K 40x25 320x200

VGA Components

The typical EISA VGA card consists of a small number of LSI
(Large Scale Integration) components plus a few individual or dis-

124 The VGA Video Interface

crete components. The LSI components provide the main func­
tionality of the VGA card; the additional components provide ad­
ditional external registers and signal drivers.

Sequencer Creates the timing and control sequences
on the VGA card. This includes timing for
internal operations and access of the CPU.

CRT Controller Synchronizes signals for the video signal
which is output to the display. This in­
cludes programmable options such as tim­
ing and polarity, and most display-related
characteristics.

Graphics Controller Provides formatting for the data in the var­
ious modes.

Attribute Controller Provides control over the color palette and
character attributes.

Programming the VGA

Direct programming of the VGA is not recommended since it can
result in incompatibility when the program is moved to machine1,1
with a different VGA card. However, there are times when direct
programming is desirable, such as when speed is important for real
time animation (CAD programs or games). In this case, different
drivers will have to be provided for each of the possible VGA cards
that might be used.

Register Definitions

The following pages show the contents and provide general infor­
mation on the registers found in a typical VGA card and which
you can use to get a general understanding of the registers in a
VGA system. It represents only those registers that should be found
in all VGA cards. If you are doing any programming for a specific
VGA card or application, you will need to obtain the technical

Register Definitions 125

reference manual for that specific VGA card and determine the
exact register characteristics.

The information presented represents data that is common
to both EISA computer manufacturers, such as Hewlett-Packard
and Compaq, and other non-EISA computers that also use the VGA
standard, such as IBM.

External Registers

Miscellaneous Output Register The miscellaneous
output register is a write-only register located at address 3C2h.

Bit Function

DO Selects the 1/0 addresses for the monochrome or color
mode.

=O Sets the CRT Controller to 3Bxh and the Input Status
register 1 to 3BAh (monochrome mode).

= 1 Sets the CRT Controller to 3Dxh and the Input Status
register 1 to 3DAh (color mode).

D1
=O Video RAM is disabled from the CPU.

= 1 Video RAM responds at the address set by the Control
Data Select register of the graphics controller.

D3,D2

=O,=O Selects 25.175 MHz clock.

=0,=1 Selects 28.322 MHz clock.

= 1, = 0 Selects external clock.

= 1, = 1 Reserved.

D4 Labeled as reserved by most application programs.

D5

=O Low page (64K) of memory is selected.

= 1 High page of memory is selected.

126 The VGA Video Interface

D6

= 0 Horizontal retrace polarity is positive.

= 1 Horizontal retrace polarity is negative.

D7

=O Vertical retrace polarity is positive.

= 1 Vertical retrace polarity is negative.

Feature Control Register The Feature Control register
is a carry-over from the EGA cards and is not implemented on
some VGA cards. If you need these functions, refer to the technical
reference manual for your VGA card.

Input Status Register O The Input Status register O is
also a carry-over from the EGA cards. In EISA computers there
are, typically, no switches used to set the card configuration. There­
fore, this function may or may not be implemented in your par­
ticular card. As in the Feature Control register, if you require this
information in your programs you will have to refer to the technical
reference manual for your VGA.

Bit Function

D0-D3 Not used.

D4 In IBM computers, allows the CPU to determine the
type of display attached to the system but may not be
required in an EISA system.

D5,D6 Not used.

D7

= 0 Vertical retrace interrupt is cleared.

= 1 Vertical retrace interrupt is pending.

Input Status Register 1 The Input Status register 1 is
a read-only register located at port address 3DAh.

Register Definitions 127

Bit Function
DO
= 0 Raster is not in a retrace interval and screen updates

should be inhibited.

= 1 Raster is in a vertical or horizontal retrace interval.
Dl,D2 Used for light pen information in EGA cards and not

implemented in many VGA cards.

D3
=O
=1

D4,D5

D6,D7

Video information is being displayed.

Card is in a vertical retrace interval.

Connected to the attribute controller and select two of
the eight color outputs of the attribute controller.

Not used.

Sequencer Registers

Sequencer Address Register The Sequence Address
register points to other internal registers of the graphics controller
(the Sequencer Address index). These bits determine the register
to be accessed in the next register access.

Bit
DO-D2
D3-D7

Function
Sequencer address index.

Bits D3-D7 are not used.

Reset Register The Reset register is a write-only register
pointed to by a value of OOh in the Sequencer Address register.

Bit Function
DO
= 0 Causes the sequencer to clear asynchronously and halt.

=1 Causes the sequencer to run unless D1=0.

DI
= 0 Causes the sequencer to clear synchronously and halt.
= 1 Causes the sequencer to run unless DO is cleared.

128 The VGA Video Interface

D2-D7 Not used.

Clocking Mode Register The Clocking Mode register
is a write-only register pointed to by a value of Olh in the Sequencer
Address register.

Bit Function

DO
= 0 Causes the sequencer to generate character clocks that

are 9 dots wide.

= 1 Causes the sequencer to generate character clocks that
are 8 dots wide.

DI Not used.

D2

= 0 Causes the display serializers in the graphics controller
to be reloaded every character clock.

= 1 Causes the display serializers in the graphics controller
to be reloaded every other character clock.

D3

= 0 Selects the sequencer master clock input to be output
on the dot clock output pin.

= 1 Causes the master clock to be divided by 2 to generate
the dot clock.

D4

= 0 Causes the video serializers to be loaded every character
clock.

= 1 Causes the video serializers to be loaded every fourth
clock cycle.

D5

=O Selects normal screen operation.

= 1 Turns off the video screen.

D6,D7 Not used.

Register Definitions 129

Map Mask Register The Map Mask Register is a write­
only register pointed to by a value of 02h in the Sequencer Address
register. The Map Mask register enables the maps as follows:

Bit Function

DO
=1 Map O is enabled.

=O Map O is disabled.

Dl
=1 Map O is enabled.

=O Map O is disabled.

D2
=1 Map O is enabled.

=O Map O is disabled.

D3
=1 Map O is enabled.

=O Map O is disabled.

D4-D7 Not used.

Character Map Select Register The Character Map
Select register is a write-only register pointed to by a value of 03h
in the Sequencer Address register.

Bit Function

Dl/DO Select the plane that generates alpha characters when
attribute bit 3 is O according to the following:

Dl DO Map Location

0 0 0 1st 8K of Plane 2 Bank 0

0 1 1 2nd 8K of Plane 2 Bank 1

1 0 2 3rd 8K of Plane 2 Bank 2

1 1 3 4th 8K of Plane 2 Bank 3

130 The VGA Video Interface

D3/D2 Character Map Select A: select the plane that generates
alpha characters when attribute bit 3 is 1 according to
the following:

D3 D2 Map Location

0 0 0

0

1

1

1

0

1

1

2

3

1st SK of Plane 2 Bank 0

2nd SK of Plane 2 Bank 1

3rd SK of Plane 2 Bank 2

4th SK of Plane 2 Bank 3

Memory Mode Register The Memory Mode register is
a write-only register pointed to by a value of 04h in the Sequencer
Address register.

Bit Function

DO Reserved.

D1

= 1 More than 256K of display memory is present. This bit
must be set to enable character map selection.

D2

=O Directs even CPU addresses to access maps O and 2
while odd CPU addresses access maps 1 and 3.

= 1 Causes CPU addresses to access data sequentially within
a map.

CRT Controller Registers

Address Register The Address register points to the
internal registers of the CRT controller. These bits determine
which register will be pointed to in the next register-write opera­
tion.

Bit Function

D0-D4 CRT Controller Register index.

D5-D7 Not used.

Register Definitions 131

Horizontal Total Register The Horizontal Total reg­
ister is a write-only register pointed to by a value of 00h in the
CRT Controller Address register. It specifies the number of char­
acters in a horizontal scan line. The value in the register is the
total number of characters on the scan line minus 5.

Horizontal Display Enable End Register The Hor­
izontal Display Enable End register is a write-only register pointed
to by a value of 0lh in the CRT Controller Address register. It
defines the total number of displayed characters in a horizontal
line. The value in the register is the total number of characters on
the scan line minus 1.

Start Horizontal Blanking Register The Start Hor­
izontal Blanking register is a write-only register pointed to by a
value of 02h in the CRT Controller Address register. The contents
of this register define the time when the horizontal blanking will
start.

End Horizontal Blanking Register The End Hori­
zontal Blanking register is a write-only register pointed to by a
value of 03h in the CRT Controller Address register. The contents
of this register define the time when the horizontal blanking will
end.

Bit Function

D0-D4 Define the blanking signal width. This is equal to the
value of the Start Blanking Register plus the width of
the blanking signal in character clock cycles. These five
bits will contain the five least significant bits; the most
significant bit is bit 7 of the End Horizontal Retrace
Register.

D6/D5 Define skew, as shown below:

D6

0

0

D5

0

1

Skew

0

1

132

1

1

0

1

2

3

The VGA Video Interface

D7 Not used but must be set to 1.

Start Horizontal Retrace Pulse Register The Start
Horizontal Retrace Pulse register is a write-only register pointed
to by a value of 04h in the CRT Controller Address register. It
defines the character position where the horizontal retrace pulse
becomes active.

End Horizontal Retrace Pulse Register The end Hor­
izontal Retrace Pulse register is a write-only register pointed to by
a value of 05h in the CRT Controller Address register. It defines
the character count where the horizontal retrace pulse becomes
inactive.

Bit Function

D0-D4 Define the horizontal retrace skew.

D6/05 Define skew, as shown below:

D6 D5 Skew

0 0 0

0 1 1

1 0 2

1 1 3

D7 Not used but must be set to 1.

Vertical Total Register The Vertical Total register is
a write-only register pointed to by a value of 06h in the CRT
Controller Address register. It defines the number of horizontal
raster scans on the CRT screen, including the vertical retrace.

CRT Controller Overflow Register The CRT Con­
troller Overflow register is a write-only register pointed to by a
value of 07h in the CRT Controller Address register. It contains
the eighth or ninth bit of the other control registers where required.

Register Definitions

Bit

DO

Dl
D2

D3

D4

D5

D6

D7

Content
Bit 8 of the Vertical Total register

Bit 8 of the Vertical Display Enable End register

Bit 8 of the Vertical Retrace register

Bit 8 of the Start Vertical Blank register

Bit 8 of the Line Compare register

Bit 8 of the Vertical Total register

Bit 9 of the Vertical Display Enable End register

Bit 9 of the Vertical Retrace register

133

Preset Row Scan Register The Preset Row Scan reg­
ister is a write-only register pointed to by a value of 08h in the
CRT Controller Address register.

Bit

DO-D4

D5,D6

D7

Function
Specify the starting row scan count after a vertical re­
trace.
Control byte-panning modes as required for PEL pan­
ning operations.

Not used.

Maximum Scan Line Register The Maximum Scan
Line register is a write-only register pointed to by a value of 09h
in the CRT Controller Address register.

Bit Function
DO-D4 Specify the number of scan lines per character row, mi-

nus one.

D5 Contains bit 9 of the Start Vertical Blank register.

D6 Contains bit 9 of the Line Compare register.

D7
= 1 Causes a 200- to 400-line conversion, displaying each

line twice.

= 0 Provides normal display.

134 The VGA Video Interface

Cursor Start Register The Cursor Start register is a
write-only register pointed to by a value of 0Ah in the CRT Con­
troller Address register.

Bit
D0-D4

D5

Function
Specify the row scan of a character line where a cursor
is to begin.

= 0 Turns the cursor on.

= 1 turns the cursor off.

D6,D7 Not used.

Cursor End Register The Cursor End register is a
write-only register pointed to by a value of OBh in the CRT Con­
troller Address register. It specifies the row scan of a character line
where a cursor is to end.

Bit Function
D0-D4 Define the row scan where the cursor is to end.

D6/05 Define skew, as shown below:

D6 D5 Skew
0 0 Zero character skew

0 1 One character skew

1 0 Two character skew

1 1 Three character skew

D7 Not used.

Start Address High Register The Start Address High
register is a read/write register pointed to by a value of 0Ch in the
CRT Controller Address register. It specifies the first address, after
a vertical retrace, where the display on the screen begins. This
register contains the 8 high-order bits of the address.

Start Address Low Register The Start Address Low
register is a read/write register pointed to by a value of 0Dh in the

Register Definitions 135

CRT Controller Address register. It specifies the first address, after
a vertical retrace, where the display on the screen begins. This
register contains the 8 low-order bits of the address.

Cursor Location High Register The Cursor Location
High register is a read/write register pointed to by a value of OEh
in the CRT Controller Address register. It specifies the start address
for the cursor. This register contains the 8 high-order bits of the
address.

Cursor Location Low Register The Cursor Location
Low register is a read/write register pointed to by a value of OFh
in the CRT Controller Address register. It specifies the start address
for the cursor. This register contains the 8 low-order bits of the
address.

Vertical Retrace Start Register The Vertical Retrace
Start register is a write-only register pointed to by a value of 10h
in the CRT Controller Address register. It defines the position of
the vertical retrace start signal.

Vertical Retrace End Register The Vertical Retrace
End register is a write-only register pointed to by a value of 1 lh
in the CRT Controller Address register.

Bit Function

D0-D3 Specify the horizontal scan line count length.

D4

=O Clears the vertical interrupt generated on the CRTINT
output of the CRT controller.

= 1 This bit is set to 1 so that the flip-flop does not hold
the interrupts inactive.

D5

=O Enables the vertical interrupt of the CRT Controller.

= 1 Disables the vertical retrace interrupt.

136 The VGA Video Interface

D6
= 1 Generates 5 refresh cycles per horizontal line.

= 0 Generates 3 refresh cycles per horizontal line.

D7
= 0 Enables writing to RO-7.

= 1 Disables writing to RO-7.

Vertical Display Enable End Register The Vertical
Display Enable End register is a write-only register pointed to by
a value of 12h in the CRT Controller Address register. It defines
8 bits of the address that specifies the scan line position where the
screen display ends.

Offset Register The Offset register is a write-only reg­
ister pointed to by a value of 13h in the CRT Controller Address
register. It defines the logical line width of the screen.

Underline Location Register The Underline Location
register is a write-only register pointed to by a value of 14h in the
CRT Controller Address register.

Bit
D0-D4

D5

Function

Specify the horizontal row scan count where the under­
line will occur.

= 0 Causes the memory address pointer to be clocked with
the character clock, divided by 2.

= 1 Causes the memory address pointer to be clocked with
the character clock, divided by 4.

D6

=O Gives control to the CRTC Mode Control Register, bit
6.

= 1 Causes the memory addresses to be doubleword ad­
dresses.

D7 Not used.

Register Definitions 137

Start Vertical Blanking Register The Start Vertical
Blanking register is a write-only register pointed to by a value of
15h in the CRT Controller Address register. It contains the low­
order 8 bits of the horizontal scan line count where the vertical
blanking pulse becomes active.

End Vertical Blanking Register The End Vertical
Blanking register is a write-only register pointed to by a value of
16h in the CRT Controller Address register. It specifies the hori­
zontal scan line count where the vertical blanking pulse becomes
inactive.

Mode Control Register The Mode Control register is a
write-only register pointed to by a value of 17h in the CRT Con­
troller Address register.

Bit Function

DO
=O Substitutes the row scan address bit O for memory ad-

dress bit 13 during active display time.

= 1 No substitution takes place.

D1

= O Substitutes the row scan counter bit 1 for memory bit
address bit 14 during active display time.

= 1 No substitution takes place.

D2

= 0 Selects the horizontal retrace clock.

= 1 Selects the horizontal retrace clock divided by 2.

D3

= 0 Memory address counter is clocked by the character
clock input.

= 1 Memory address is clocked by the character clock input
divided by 2.

D4 Not used.

138 The VGA Video Interface

D5

=O Selects memory address counter bit MA13.

= 1 Selects MA15.

D6

=O Selects word mode.

= 1 Selects the byte mode.

D7

= 0 Clears vertical and horizontal retraces.

= 1 Enables the vertical and horizontal retraces.

Line Compare Register The Line Compare register is
a write-only register pointed to by a value of 18h in the CRT
Controller Address register. It implements a split screen function.

Graphics Controller Registers

Graphics Address Register The Graphics Address reg­
ister is a write-only register located at port address 3CEh. It points
to other internal registers of the graphics controller. The 4 least­
significant bits determine the register pointed to in the next reg­
ister-write operation.

Bit Function

D0-D3 Point to the control registers.

D4-D7 Not used.

Set/Reset Register The Set/Reset register is a write­
only register pointed to by a value of OOh in the Graphics Address
register.

Bit Function

D0-D3 Enable the set/reset function of the four memory maps.

D4-D7 Not used.

Register Definitions 139

Enable Set/Reset Register The Enable Set/Reset reg­
ister is a write-only register pointed to by the value of 0lh in the
Graphics Address register.

Bit

D0-D3

D4-D7

Function

Enable the set/reset function in conjunction with the
Set/Reset register.

Not used.

Color Compare Register The Color Compare register
is a write-only register pointed to by a value of 02h in the Graphics
Address register.

Bit

D0-D3

D4-D7

Function

Content is compared to the data read from display mem­
ory maps 0 to 3 if the Mode register has the read mode
set.

Not used.

Data Rotate Register The Data Rotate register is a
write-only register pointed to by a value of 03h in the Graphics
Address register.

Bit

D0-D2

D3-D4

Function
Binary encoded value representing the rotate count.

Operate as follows:

D4 D3 Operation

0 0 No change

0 1 Logical 'AND' between Data and latched
data

1 0

1 1

Logical 'OR' between Data and latched
data

Logical 'XOR' between Data and latched
data

D5-D7 Not used.

140 The VGA Video Interface

Read Map Select Register The Read Map Select reg­
ister is a write-only register pointed to by a value of 04h in the
Graphics Address register.

Bit Function

D1/DO Select the memory map from which the CPU reads data.

D1 DO
0 0 MapO

0 1 Map 1

1 0 Map2

1 1 Map3

D2-D7 Not used.

Mode Register The Mode register is a write-only register
pointed to by a value of 05h in the Graphics Address register.

Bit
DO,D1
D2
D3
=O

=1

D4

Function
Select the write mode.

Not used.

Causes the CPU to read the data from the display mem­
ory planes.

Causes the CPU to read the result of the logical com­
parison between the 4 display memory planes data and
the contents of the Color Compare register.

= 1 Puts the graphics controller in the odd/even addressing
mode.

D5
= 0 Formats the serial data stream for normal or high res­

olution operation.
= 1 Defines the operation of the graphics section shift reg­

isters. In mode 4 and 5 (low resolution 320x200) a 1
formats the serial data stream with even bits on even­
numbered maps and odd bits on odd-numbered maps.

Register Definitions 141

D6

= 0 Allows bit D5 to control loading of the shift registers.

= 1 Causes the registers to be loaded in 256 color mode.

D7 Not used.

Miscellaneous Register The Miscellaneous register is
a write-only register pointed to by a value of 06h in the Graphics
Address register.

Bit Function

DO
= 1 Selects the graphics mode. This disables the character

generator latches. The bit DO is output on the GRAPH­
ICS pin of the controller.

Dl

= 1 Replaces the CPU address bit AO with a higher order
address bit.

D2-D3 Control the mapping of the address memory buffers into
the CPU address space:

D3 D2

0

0

1

1

0

1

0

1

D4-D7 Not used.

AOOOh for 128K

AOOOh for 64K

BOOOh for 32K

B800h for 32K

Color Don't Care Register The Color Don't Care reg­
ister is a write-only register pointed to by a value of 07h in the
Graphics Address register.

Bit Function

DO
= 0 Color plane O is not tested.

142 The VGA Video Interface

D1

= 0 Color plane 1 is not tested.

D2

= 0 Color plane 2 is not tested.

D3

= 0 Color plane 3 is not tested.

D4-D7 Not used.

Bit Mask Register The Bit Mask register is a write­
only register pointed to by a value of 08h in the Graphics Address
register. Any bit programmed to O in this register will cause the
corresponding bit in each of the four memory planes to be immune
to change.

Attribute Controller Registers

Attribute Address Register The Attribute Address
register is a 6-bit write-only register that points to other internal
registers of the attribute controller.

Bit Function

D0-D4 Attribute address bits.

D5

= 0 Allows loading of the Color Palette registers.

= 1 Allows normal operation by enabling access to the Color
Palette registers for CRT read operations.

D6,D7 Not used.

Palette Registers Palette registers are sixteen 6-bit
write-only registers pointed to when the contents of the Address
register is OOh through OFh. These registers allow a mapping be­
tween the text attribute or graphic color input and the display color
on the CRT screen. The six bits, DO through D5, are PO through
P5 respectively. D6 and D7 are not used.

Register Definitions 143

Mode Control Register The Mode Control register is a
write-only register pointed to when the contents of the Address
register is 10h.

Bit Function

DO
= 0 Selects alphanumeric mode.

= 1 Selects graphics mode.

DI

=O Selects color display attributes.

= 1 Selects monochrome display attributes.

D2

= 0 Makes the ninth dot the same as the background.

= 1 Enables the special line graphics character codes for the
monochrome display adapter.

D3

= O Selects the background intensity for the attribute input.

= 1 Enables the blink attribute in alphanumeric and graph-
ics modes.

D4 Not used.

D5

= O Causes a line compare to have no effect on the output
of the PEL Panning register.

= 1 Forces the output of the PEL Panning register to O after
a successful compare in the CRT controller.

D6

= 1 Causes 8 bits to be available to select a color in mode
13h. Otherwise, this bit should be off.

D7 Selects the source for the P4 and P5 video bits.

= 0 Source is the outputs of the Palette registers.

= 1 Source is the Color Select register.

144 The VGA Video Interface

Overscan Color Register The Overscan Color register
is a write-only register pointed to when the contents of the address
register is 1 lh. It defines the overscan or border color displayed on
the CRT screen. Bits 0-7 correspond to P0-7, respectively.

Color Plane Enable Register The Color Plane Enable
register is a write-only register pointed to when the contents of the
Address register is 12h.

Bit Function

D0-D3 A 1 in any of the bits D0-D3 enables the respective
display memory color plane 0-3.

D4-D5 Selects the color outputs which are input to the Input
Status Register 1. The values of these bits will vary
among manufacturers.

D6,D7 Not used.

Horizontal Pel Panning Register The Horizontal Pel
Panning register is a write-only register pointed to when the con­
tents of the Address register is 13h.

Bit Function

D0-D3 Select the number of pixels to shift the display data to
the left.

D4-D7 Not used.

Color Select Register The Color Select is a read/write
register pointed to when the contents of the Address register is
14h.

Bit Function

DO,D1 Can be used instead of the P4 and P5 bits from the
Attribute Palette register.

D2,D3 Two high-order bits of the 8-bit digital color value.

D4-D7 Not used.

Using VGA BIOS Functions 145

Using VGA BIOS Functions

The VGA card usually contains an IBM-compatible ROM BIOS
that provides support for the VGA hardware. This includes fonts
for text and graphics modes, and power-on tests to assure that the
hardware is functioning properly.

The VGA BIOS-supported modes can be divided into two
types, alpha (Alphanumeric or A/N) and graphics (also called APA
or All Points Addressable). Some of the following functions apply
to only one of these types, while others expect different parameters
based on whether the current display type is alpha or graphics.

The VGA BIOS functions are accessed using interrupt lOH.
The function code is placed in register AH, and other information
is placed in the corresponding registers as indicated. Where no exit
values are given, none are present. The following functions are
usually present in all implementations of the VGA BIOS. Some
implementations may provide additional functions. Refer to your
technical reference manual to determine if you have any additional
functions.

Set Mode

Usually you need to tell the VGA what mode to use. This is done
with a Set Mode function in the BIOS.

Entry: AL= mode

AH= OOh

The Set Mode function sets the system to a text mode or
a graphics mode as discussed in the "Modes of Operation" section
of this chapter.

Get Video State

You might also need to determine the mode to which the VGA
BIOS is set. This is done with the Get Video State function.

146

Entry:

Exit:

The VGA Video Interface

AH= 0Fh

AL= mode currently set

AH= number of character columns on screen

BH = current active display page

Set Active Page

The VGA contains 256K to 512K of memory, of which only a small
amount is used at any time. Most display modes have several pages
or screens that can be displayed, though only one screen can be
active at a time. The other screens are accessible by the CPU but
are not displayed on the screen.

Entry: AL= new page value

AH= 05h

Note that the VGA BIOS maintains the current cursor po­
sition for each page.

Set Cursor Type

The cursor shows where the next character will be placed on the
screen. The shape of the cursor can be set using the Set Cursor
Type function as shown:

Entry: AH= 0lh

CH= start line for cursor (bits 4-0)

CL= end line for cursor (bits 4-0)

The shape of the cursor can be defined as anything between
a blinking box and one line.

Set Cursor Position

Through the BIOS, all characters written to the screen are placed
at the current cursor position. The program must specify where
the cursor is placed.

Using VGA BIOS Functions

Entry: AH= 02h

DH= row

DL = column

BH = page number

Read Cursor Position

147

When the cursor position is set, all character reads and writes will
be to that position. If you need to determine the cursor position
use the Read Cursor Position function:

Entry:

Exit:

BH = page number

AH= 03h

DH= row

DL = column

ex= current cursor type

Write Text Functions

Once a cursor position is known, you can place text at that position.
There are several ways to do this as shown in the following sections.

Write Character and Attribute The Write Character
and Attribute function allows you to write both the specified char­
acter and its attribute, such as color and intensity. The attribute
information is shown in Table 7-2 following the function parameter
information.

Entry: BH = page

ex= number of times to write character

AL= character to write

BL= attribute of character (Alpha mode)

BL= color of character (Graphics mode)

AH = 09h

In graphics mode, if bit 7 of BL is 1, then the color is XO Red
with the screen.

Write Character Only Function The Write Character
Only function is the same as the Write Character and Attribute

148 The VGA Video Interface

TABLE 7-2 Character Attributes

Attribute I R G B Monochrome Color

OOh 0 0 0 0 Black Black

Olh 0 0 0 1 Underline Blue

02h 0 0 1 0 Video Green

03h 0 0 1 1 Video Cyan

04h 0 1 0 0 Video Red

05h 0 1 0 1 Video Magenta

06h 0 1 1 0 Video Brown

07h 0 1 1 1 Video White

08h 1 0 0 0 Black Dark Gray

09h 1 0 0 1 Underline Light Blue

OAh 1 0 1 0 Video Light Green

OBh 1 0 1 1 Video Light Cyan

OCh 1 1 0 0 Video Light Red

ODh 1 1 0 1 Video Light Magenta

OEh 1 1 1 0 Video Yellow

OFh 1 1 1 1 Video Intensified White

function above, except that it does not alter the attribute infor­
mation for the character.

Entry: BH = page

BL= foreground color (Graphics only)

CX = count of characters to write

AL= character to write

AH= OAh

Read Character and Attribute Function The Read
Character and Attribute function returns the character and asso­
ciated attribute at the cursor position.

Using VGA BIOS Functions 149

Entry: AH= 08h

BH = page

Exit: AL= character read

AH= attribute of character read (Alpha modes only)

Write TTY Function The Write TTY function writes
a character to the screen and then moves the cursor to the right.
As the cursor goes to the right side of the screen, it will wrap back
to the left and down one line as if receiving a CR and LF. If the
cursor goes off the bottom of the screen, it will automatically scroll
up the screen one line.

Entry: AH= OEh

AL= character to write

BL= foreground color in graphics mode

The Write TTY function has several predefined special
characters which perform special action:

• CR returns the cursor to column O on the same line.

• LF leaves the column position the same but goes down
one line, scrolling the screen if the cursor is at the bottom
of the screen.

• BS moves the cursor position back one position.

• Bell outputs a tone to the speaker.

Write String Function The Write String function al­
lows writing more than one character at a time to the screen. It
also allows writing one attribute for the whole screen or a character
and an attribute for each position on the screen, so each character
has its own attribute. It can also update the cursor position or leave
it where it started.

Entry: AH = 13h

ES:BP = pointer to string

CX = character only count

DX= position to begin string

BH = page number

150

AL 0:

AL= 1:

AL= 2:

AL= 3:

The VGA Video Interface

Fixed attribute, cursor not moved

BL= attribute

Fixed attribute, cursor moved

BL= attribute

String includes attributes, cursor not moved

String includes attributes, cursor moved

This function responds to the CR, LF, BS and Bell codes
in a manner similar to the Write TTY function.

Scroll Up

The Scroll Up function scrolls the screen up a set number of lines.

Entry: AH= 06h

AL= number of lines (0 = entire window)

CH,CL = row, column of upper left corner of scroll

DH,DL = row, column of lower right corner of scroll

BH = attribute used on blank line or area

Scroll Down

The Scroll Down function scrolls the screen down a set number of
lines.

Entry:

dow.

AH= 07h

AL= number of lines (0 means entire window)

CH,CL = row, column of upper left corner of scroll

DH,DL = row, column of lower right corner of scroll

BH = attribute to be used on blank line

Specifying O lines to be scrolled will clear the defined win-

Read Dot Function

The Read Dot function returns the color value of the specified pixel.

Using VGA BIOS Functions 151

Entry: AH = ODh

BH = page

DX= row number

ex= column number

Exit: AL= color of dot read

Write Dot Function

The Write Dot function writes a color to a specified pixel.

Entry: AH= Oeh

BH = page

DX= row number

ex= column number

AL= color value

Set Color Palette Function

The Set Color Palette function allows the programmer to define
different colors to be displayed on the screen.

Entry: AH= OBh

BH = palette color ID being set

BL= color value to be used with that color ID

Where: Color ID= 0 selects the background color

Color ID= 1 selects the palette to be used:

O = Green(l)/Red(2)/Brown(3)

1 = Cyan(l)/Magenta(2)/White(3)

Note that there are several different implementations of this
function. You should verify your implementation with the technical
reference manual for your system to assure compatibility. In gen­
eral, this function provides compatibility with the CGA BIOS code.

152

Programming Examples

Display a Character Using MS-DOS

The following assembly language program uses the MS-DOS

operating system to display a character on the screen.

This program can be assembled, linked, and run

from MS-DOS.

_TEXT

_TEXT

-DATA

-DATA

_TEXT

SEGMENT BYTE PUBLIC 'CODE'

ENDS

SEGMENT WORD PUBLIC 'DATA'

ENDS

SEGMENT

ASSUME CS:_TEXT

Display "A" to standard output.

The VGA Video Interface

mov

mov

int

dl, 11 A11

ah,02h

21h

;Set the character to output

Exit back to DOS.

mov

int

-TEXT ENDS

END

ax,4C00h

21h

;Set the character output function

;Invoke DOS to display the character

Display a Character String Using MS-DOS

The following program uses the MS-DOS operating system to display a

Programming Examples 153

string of characters on the screen. This program can be

assembled, linked, and run from MS-DOS.

_TEXT SEGMENT BYTE PUBLIC 'CODE'
_TEXT ENDS

_J)ATA SEGMENT WORD PUBLIC 'DATA'
_DATA ENDS

LF EQU 0Ah :Line feed

CR EQU 0Dh :Carriage return

_J)ATA SEGMENT

GoodbyeStringDB 'Good-bye',CR,LF, '$' :'$' terminated Good-bye string

_J)ATA

_TEXT

ENDS

SEGMENT

ASSUME

mov

mov

ASSUME

CS:_TEXT

ax,_J)ATA

ds,ax

ds:-DATA

Display "Good-bye" to the standard output and move the
display cursor to a new line.

mov dx,OFFSET GoodbyeString :Set string address

mov

int

ah,09h
21h

Exit back to DOS.

:Set the string output function
:Invoke DOS to display the string

154

mov
int

ax,4C00h

21h

_TEXT ENDS

END

Display a Character Using BIOS

The following assembly language program uses the BIOS to

display a character on the screen. This program can be

assembled, linked, and run from MS-DOS.

_TEXT

_TEXT

--1)ATA

_DATA

_TEXT

SEGMENT BYTE PUBLIC 'CODE'

ENDS

SEGMENT WORD PUBLIC 'DATA'

ENDS

SEGMENT

ASSUME CS:_TEXT

Display "A" to the screen.

The VGA Video Interface

mov

mov

al, "A"

ah,0Eh ;Set BIOS write character function

int 10h

Exit back to DOS.

mov

int

_TEXT ENDS

END

ax,4C00h

21h

;Invoke BIOS to display the character

Programming Examples

Display a Character String Using BIOS

The following program uses the BIOS to display a string

of characters on the screen. This program can be assembled,

linked, and run from MS-DOS.

_TEXT SEGMENT BYTE PUBLIC 'CODE'

_TEXT ENDS

_DATA SEGMENT WORD PUBLIC 'DATA'

_DATA ENDS

CR EQU 0Dh ;Carriage return

LF EQU 0Ah ;Line feed

_DATA SEGMENT

GoodbyeStringDB 'Good-bye',0 ;NULL terminated Good-bye string

_DATA

_TEXT

string_l0:

ENDS

SEGMENT

ASSUME

mov

mov

ASSUME

cs:_TEXT

ax,_DATA

ds,ax

ds:_DATA

Display "Good bye" to the screen and move the

display cursor to a new line.

mov

lodsb

or

si,OFFSET GoodbyeString ;Set string address

;Get the next string character

al,al

155

156

string_20:

rnov

int

jrnp

rnov

rnov

int

rnov
rnov

int

jz string_20

ah,0Eh

10h

string_l0

al,CR

ah,0Eh

l0h

al,LF

ah,0Eh

10h

Exit back to DOS.

rnov

int

ax,4C00h

21h

The VGA Video Interface

;End of string?

;Set BIOS write character function

;Invoke BIOS to Display character

;Check for more characters

;Set carriage return·

;Set BIOS write character function

;Invoke BIOS to Display character

;Set line feed

;Set BIOS write character function

;Invoke BIOS to Display character

_TEXT ENDS

END

Summary

Most of the EISA computers use the VGA video standard. This
standard allows a nominal display resolution of 640 x 480 pixels
and an ultra-high resolution of up to 1024 x 768 pixels. In spite of
these high resolutions, some applications are able to handle only
the lower resolutions of CGA or monochrome modes. The VGA
cards planned for the EISA machines are fully compatible with the
earlier software modes, so no software problems should be encoun­
tered when upgrading to an EISA machine.

CHAPTER

8

Serial Data
Communications

This chapter covers the serial ports (RS232 interface) found on a
typical EISA computer system. The RS232 interface is used to
connect modems, printers, or terminals (in multi-user systems) to
the computer, and sometimes to connect one computer with an­
other for high-speed transfer of files between two computers.

First, to eliminate one misconception, the EIA RS232 in­
terface specification does not define any type of data format. It
does not require 7 or 8 data bits, or require ASCII or Baudot code.
The specification that defines the RS232 interface defines only the
signals which should appear on the connector. However, since the
two are so closely related, serial data formats are also covered in
this chapter.

In addition, the RS232 interface specification does not de­
fine many of the signals now appearing on the connector. Many
manufacturers reassign some of the pins for their own use, thus
rendering the standard somewhat ineffective.

Another complicating factor is that the function of the pins
depends on whether the computer or peripheral uses a DCE (Data
Communications Equipment) or a DTE (Data Terminal Equip­
ment) configuration. DCE configuration is that typically found on
a modem, and DTE configuration is that typically found on a ter­
minal. The computer itself may be either configuration, but usually
is DTE. This configuration (DCE or DTE) determines whether the
connector is expecting to send or receive a given signal on a spec­
ified pin. We'll get into this in more depth later on in the chapter,
since it is a source of much confusion for many computer profes­
sionals.

Computer sales people, consultants, and users are frequently
puzzled over the interconnections between the computer, the
printer, the modem, and other terminals. Each computer manu­
facturer may incorporate variations from the EIA RS-232 standard,
though the EISA computers will typically be more uniform and
conform to what is presented here. Therefore, the object of this
chapter is to help you understand which signals the computer and
peripherals are expecting, on which connector pin, and how to make
the computer match the peripheral device.

Because of the deviations from the specification standard,
this book cannot hope to be 100% accurate in all applications. What
is presented here is the information you need to understand your

159

160 Serial Data Communfoations

RS232 serial interface and help resolve problems you may have
with it.

The Serial Connector

The serial port connector is normally a 9-pin or a 25-pin D-type
connector. Looking at the connector as it appears on the equip­
ment, the pins are numbered as shown in Figures 8-1 and 8-2. Note
that the pin numbering will be a mirror image as you look at the
cable end, although the numbers on the connectors will match.

In a 25-pin installation, such as is found on earlier personal
computers and on some port expansion cards, the female connector
is mounted on the computer equipment and the male connector is
mounted on the serial interface cable. This means that a cable used

Chassis Ground

Transmit Data

Receive Data

Ready To Send

Clear To Send 5 0
Dat- Set Ready 6 0
Signal Ground 7 0
Carrier Detect 8 0

90

10()

110
12()

017
018

019

0 20 Data Terminal Ready

021

0 2 Ring Indicator

FIGURE 8-1 Typical 25-pin RS232
Connector Pin Numbering

The Serial Connector

Carrier Detect
06

20
Data Set Ready

Receive Data
07

30
Ready To Send

Transmit Data
Os Clear To Send

Data Terminal Ready
09 Ring Indicator

Signal Ground

FIGURE 8-2 Typical 9-pin RS232
Connector Pin Numbering

Computer Modem
Connector

Carrier Detect
Connector

1
Receive Data

8
2

Transmit Data
3

3
Data Terminal Readi

2
4 20
5

Ground
7

6
Data Set Readi 6

7
Reguest To Send

4
Clear To Send

8
Ring Indicator

5
9 22

Cable Ground 1

FIGURE 8-3 Wiring of a Typical Modem
9- to 25-pin RS232 Cable

161

to connect two pieces of equipment, such as a computer and a
modem or printer, will have a male connector at both ends.

In a normal 9-pin installation, such as is found on most
EISA computers, a 9-pin male connector is mounted on the com­
puter and a female connector is mounted on the serial interface
cable, but only on the computer end of the cable. On the peripheral
end, such as a modem or printer, the cable will probably have a
25-pin male connector and the modem or printer will have a female
connector. Wiring for typical cables for a modem and a printer is
shown schematically in Figures 8-3 and 8-4.

162 Serial Data Communications

Computer Printer
Connector Connector

1 Carrier Detect 4
2 Receive Data 2
3 Transmit Data 3
4 Data Terminal Rea[y 5

6
5 Ground 7
6 ~:[Set Ready 20
8 ClearToS~

7 Ready To Send 8

FIGURE 8-4 Wiring of a Typical Printer
9- to 25-pin RS232 Cable

The cable seems to be a simple thing, and the connector
pin numbering is easy to understand. To get the right cable, just
match the connectors with the same number of pins, male to female.
So why doesn't every computer work properly with every periph­
eral? There are a number of variations, often caused by manufac­
turers using nonstandard pin assignments. In order to understand
what is going on, let's look at some of the signals and see what
they do.

RS-232C Signals

The signals that appear on each of the pins of the RS232 interface
are shown in Table 8-1. Only the signals that conform to the in­
dustry standards and are common to most typical equipment are
shown. If your computer or peripheral equipment has specialized
applications, you may have to change your cable wiring accordingly.
In the table, the Pin column shows both 25- and 9-pin connector
pin numbering (the 25-pin numbering is shown first, followed by
a/ and the 9-pin numbering).

Normally, of the 25 pins of the DB-25 connector, only ten
pins are used. These provide two grounds (FG/PG and SG), a trans­
mit (TXD) and receive (RXD) line, two lines on each end that
signal that the equipment has power and is ready to transmit and

RS-232C Signals 163

TABLE 8-1 RS232 Pins and Signal N aines

Pin EIA
25/9 Pin Name Description

1 AA FG/PG Frame or Protective Ground

2/3 BA TXD Transmit Data

3/2 BB RXD Receive Data

4/7 CA RTS Ready to Send

5/8 CB CTS Clear To Send

6/6 cc DSR Data Set Ready

7/5 AB SG Signal Ground

8/1 CF DCD Data Carrier Detect

9 Positive DC Test Voltage

10 Negative DC Test Voltage

11

12 (S)CF SDCD Secondary Data Carrier Detect

13 (S)CB SCTS Secondary Clear To Send

14 (S)BA STD Secondary Transmit Data

15 DB TC Transmitter Clock

16 (S)BB SRD Secondary Receive Data

17 DD RC Receiver Clock

18
19 (S)CA SRTS Secondary Ready To Send

20/4 CD DTR Data Terminal Ready

21 CG SQ Signal Quality

22/9 CE RI Ring Indicator

23 CH/CI Data Rate Selector

24 DA TC External Transmitter Clock

25

164 Serial Data Communications

receive data (RTS, CTS, DSR, and DCD), and two to indicate the
status of an incoming modem call (DTR and RI). On the 9-pin
DE-9 connector, there is only one ground (SG) leaving eight pins
to provide signal connections.

With the caveat that a few manufacturers of computers and
modems may use the RS-232 standard signal lines differently, these
lines are defined in the following paragraphs.

PG-Protective Ground

The PG Signal is the chassis ground for the computer, the printer,
or the modem. This line ties the grounds together to reduce the
possibility of shock. The protective ground signal does not appear
on a DE-9 9-pin connector.

TXD-Transmit Data

The TXD signal is the actual data signal being transmitted from
one piece of equipment to the other. On the other end, this signal
is the RXD (Receive Data) signal connected to the RXD pin of
that connector.

RXD-Receive Data

The RXD signal is the data signal that is being received from the
other piece of equipment. On the other end, this signal is the TXD
(Transmit Data) signal.

Note: The TXD and RXD signals, along with the Signal
Ground, are the only lines required for data communications. All
the other lines are used for control or handshaking.

RTS-Ready To Send

The RTS signal is output by the computer to a modem or printer
to indicate that the computer is ready to send data.

CTS-Clear To Send

The CTS signal is output by the modem or printer to the computer
to indicate that the modem may send data to the computer.

165
Typical Communications

DSR-Data Set Ready

The DSR signal is sent from the modem to the computer o~ ter­
minal, indicating that the modem is ready to be used. Typically
this signal indicates that the modem has power applied and has
successfully performed its initialization (internal setup) routines.

SG-Signal Ground

The SG signal is the ground reference for the various signals trans­
mitted on the RS232 cable. Although under normal conditions in
a 25-pin connector, SG may be the same as the PG signal, this is
not always the case. These two signals, SG and PG, should never
be tied together in the cable; they may be tied only in the equip­
ment, and only by design of the engineer. The protective ground
signal (pin 1 in a 25-pin connector) does not appear in a 9-pin
connector.

DCD-Data Carrier Detect

The DCD signal, sent by a modem to a terminal or computer,
indicates that the modem has received a carrier signal from a mo­
dem on the far end of the telephone line.

DTR-Data Terminal Ready

The DTR signal is sent from the computer or terminal to the
modem, indicating that the computer is ready to be used. Usually
this signal indicates that the computer has power applied.

RI-Ring Indicator

The RI si~al, sent by a modem to a terminal or computer, indicates
that there 1s a phone call coming in. This signal is the electrical
equivalent of the telephone ringing. When the computer receives
this si~al, it usually sends an interrupt to activate the program
or routmes that answer incoming calls.

166
Serial Data Communications

Typical Communications

The following four steps are a simplification of the procedure the
computer and a peripheral device use to get information transferred
from one piece of equipment to the other. The pieces of equipment
in this example are a computer and a printer, both using 25-pin
connectors.

1. The computer looks at DTR, pin 20, to determine
whether the printer is turned on. Normally, the printer
turns DTR ON when power is applied to the printer.

2. At the same time, the printer looks at DSR, pin 6, to
determine if the computer is turned on. Normally, the
computer turns DSR ON when power is applied to the
computer.
NOTE: At this point, if either of the above checks shows
the other end is turned off, further attempts at com­
munication are halted. The means of signaling the user
that this condition exists varies, and in some equipment
this check is ignored or not even made.

3. The computer then begins sending data to the printer.
This is sent over the TXD line, pin 2.

4. At some point, the printer will have received more data
than it can print since the computer is sending the data
at several hundred characters per second. At this time,
the printer signals the computer to stop sending data.
This is done with RTS, pin 4. So long as the printer sets
pin 4 active, the computer waits. When RTS goes off,
the computer begins to send more data.

It is relatively simple, except for a few complications. For
example:

• When connecting a modem to a computer, you might want
the modem to signal the computer when a call is being
received. This function is handled with the RI line, pin
22. When it goes ON, the computer knows that there is

Connector Configurations 167

a call coming in, and it can then set up its software to
answer the call and converse with the caller. Normally,
this pin is not used for any other application.

• When a modem is used to communicate with another com­
puter with a modem, how do we tell the computer (or
terminal) that the modems have connected with each
other? This function is handled with the DCD line, pin
8. When this pin is ON, the computer knows that the two
modems are talking. Normally, this pin is not used for
any other application.

• Also, when using a modem, the modem must tell the com­
puter that it is ready to send data. The computer will then
send the characters to the modem one at a time. The CTS
line usually turns ON and OFF on a character-by-char­
acter basis.

Now that we have covered some of the communications
procedures or protocols that you might encounter, let's look at how
the connectors are configured.

Connector Configurations

The pin numbers in Table 8-1 are for a connector configuration
often referred to as a DTE (Data Terminal Equipment) pinout.
The connector to which this mates has a DCE (Data Communi­
cations Equipment) pinout. This means that some of the pins on
the connector are functionally different. Pins on one type of equip­
ment are sending the signal where pins on the other type of equip­
ment are trying to receive it. One reason you may have trouble
hooking equipment together is that the standard differs between
types of equipment.

To try to simplify this, suppose that you want to connect
a terminal to a modem. When one of the units is transmitting on
pin 2, the other unit must be receiving on pin 2. The same for pin
3. The modem must have a DCE configuration to allow this to
happen. An example of this is shown in Figure 8-5.

There may be more signals required than just the two shown
in Figure 8-5, but we'll ignore these for now. Since a terminal

168 Serial Data Communications

Computer Modem
Connector Connector

3 Transmit Data 2
2 Receive Data 3
5 Signal Ground 7

FIGURE 8-5 TXD/RXD Signal Wiring

9-pin
Computer Printer
Connector Connector

1 _____ C=ar=r-ie_r~D~e=te~c=t ____ 4
2 ____ _..c_R=e=c=ei~v=e~D=a=m~---- 2
3 Transmit Data 3
4 Data Terminal Ready 5

5 Ground

6 .Dat,a Set Ready
8 ~C=l=e=a~r T~o-S-er-n=dl
7 Ready To Send

6
7
20

8

FIGURE 8-6 Null Modem Cable Wiring

normally has a DTE configuration, it is transmitting on pin 2 and
receiving on pin 3. The modem should be wired accordingly, re­
ceiving on pin 2 and transmitting on pin 3. The modem therefore
has a DCE configuration.

The other signal lines operate on the same principle. When
one piece of equipment is sending a signal, the other piece should
be configured to receive it.

Now, what happens if both of the pieces of equipment you
are using have a DTE configuration? What if they are both a DCE
configuration? How do you make them "talk"?

One of the ways this is accomplished is with a special cable
called a null modem. This is a cable that, normally, crosses the
wiring between pins 2 & 3, 4 & 5, and 6 & 20. The effect of a null
modem cable is to allow both of the devices lnterconnected to be
a DTE (or DCE) configuration, and yet they can both transmit (or
receive) on the same pin. The wiring of this cable is shown in Figure
8-6.

Connector Configurations 169

When you vyant to connect two computers together, such
as a laptop and a desktop computer, the fastest way to transfer
data is to connect them with a direct-connect cable as shown sche­
matically in Figure 8-7 (25-pin) and Figure 8-8 (9-pin). Using this
method, you can usually transfer files at high speed. You can use
the operating system mode command or other utility program to
set the port baud rate to 19,200 (or often even higher). There are
many communications programs designed for file transfer, both
commercial programs and some public-domain programs available
from bulletin boards. Any communication utility program designed
to work with a modem should work with direct connection, and
usually at a much higher speed.

Just as some equipment is normally configured for DTE
connections, some equipment is normally configured for DCE con­
nections. Typical connector configurations are:

Computer Computer
Connector Connector

1 Cable Ground 1
Transmit Data 2----~==~~~---- 3

3 Receive Data 2
7 Ground 7

5 & 6 ---~C=a=rr=ie=r~D~e=te=c=t ____ 20
20 --~D=a=t=a~T~e=rm=in=a=l~R=e=a=dY-1---- 5 & 6

FIGURE 8-7 Wiring of a Typical
Computer-to-Computer 25-pin RS232
Cable

Computer Computer
Connector

Cable Ground
Connector

1 1
3 Transmit Data 2

Receive Data 2
Ground

3
7

Carrier Detect
7

6&8
Data Terminal Ready

4
4 6&8

FIGURE 8-8 Wiring of a Typical
Computer-to-Computer 9-pin RS232 Cable

170 Serial Data Communications

Equipment Configuration

Computer

printer port DTE or DCE

modem port DTE

terminal port DTE or DCE

Modem DCE

Printer DTE

Terminal DTE

The following list shows some of the names used when talk­
ing about the signal levels on the RS232 interface. Which is the
"right" one or the "wrong" one seems to be up to the individual
manufacturer. The best that can be done here is to present as many
of the common terms as possible with their equivalents in the same
column, then let you determine which ones you will use. Note that
the EIA specification uses the terms "On" and "Off." By using
these terms, you can be assured of at least adhering to the EIA
standard which defines the RS232 interface.

Term Opposite State

Zero One

> +3 Volts < -3 Volts

+12 Volts -12 Volts

Positive Negative

Reset Set

Space Mark

Off On

On Off

Lo Hi

Open Closed

Break

Perforation No Perforation

Active Inactive

Serial Data Format

Start

False

Binary 0

Stop

True

Binary I

171

Some of the terms above seem to be contradictory (for ex­
ample, ON and OFF), indicating how much the standard has been
ignored. All of the above terms come from popular manufacturers
of computers, modems, printers, and terminals.

Serial Data format

Data format is not part of the RS232 specification because the
serial interface specification only addresses the connector that de­
livers the data and not the format of the data. But since it is such
an integral part of serial data communications, you may need the
information here together with the other serial port information
when setting up a serial communications link.

The serial data stream consists of a start bit, the actual data
bits (usually 5, 6, 7 or 8 bits), an optional parity bit, and a stop
bit (usually 1 bit, but can be 1.5 or 2 bits). This is shown in Figure
8-9.

In the same way that the hardware connections must be
made to match, both the computer and the peripheral have to be

Start 5-8 Data bits
Bit (normally 8)

~~

FIGURE 8-9 Serial Data Stream Format

Stop bit
(1, 1.5, or 2,
usually 1)

t
Parity bit
(optional)

~

172 Serial Data Communications

set to the same data format options for everything to work properly.
For example, a modem typically is set for 8 data bits, no parity
bit, and 1 stop bit. This is often abbreviated 8,N,1. Look in your
peripheral manual to determine what the peripheral uses. Once you
have determined the data format the peripheral uses, you can use
a software program to set the computer port to the proper format
to match it. Usually on an EISA machine, this is set with the
installation program. However, if the EISA installation program
does not provide a means of setting the serial port (or ports), you
can use the PC/MS-DOS operating system mode command to set
the port. Refer to your PC/MS-DOS operating system manual and
the computer documentation for the specifics of your particular
system.

A few notes:

• A modem should almost always be set for 8 data bits.
Setting the modem for 7 or less will result in loss of data,
especially when using the modem to download software,
since all software is 8 bits wide and using 7-bit mode will
garble the files.

• A printer will not always require 8 bits, since most of the
data sent to it is 7-bit ASCII information. However, some
printers require the eighth bit for control information, and
others are confused by the eighth bit. Be sure to consult
the printer manual.

• You should usually set the printer to as high a speed as
possible, since many printers actually receive more than
one character for each character they print. The addi­
tional characters are control characters for some of the
printer's functions such as bold printing, font changes,
and so forth.

• Sometimes printers garble the printing because they are
receiving the characters faster than they can process
them. Although most printers have good "handshaking"
between the printer and the computer to help eliminate
this problem, some lack this sophistication. If you are
having a problem, first shift the printer (and the com­
puter's serial port) to a low speed such as 300 baud and

Serial Port Registers 173

see if the problem persists. Handshaking problems usually
show up at speeds above 2400 baud.

Serial 1/0 Ports and Interrupts

The serial output port (or ports) on most EISA computers can be
set up as Port 1, 2, 3 or 4. These ports are mapped to different 1/0
addresses and have different interrupt levels as shown below:

Interrupt
Port 1/0 Address Level

1 3F8h-3FFh 4

2 2F8h-2FFh 3

3 3E8h-3EFh 10

4 2E8h-2EFh 11

A typical EISA computer will have at least one serial port,
and two is not uncommon. Additional serial ports are easily added
through cards that plug into the EISA backplane. These cards
usually add either one parallel port and one serial port, or two serial
ports. The addition of the card is handled by the EISA software
and once the software has added the card to its inventory, your
computer can easily have up to four serial ports for modems, print­
ers, data communications links with other computers, or terminals
for multi-user systems.

Serial Port Registers

The serial port of most EISA computers has 11 registers. Table 8-
2 lists the registers and their addresses.

Transmit Buffer Register

The Transmit Buffer register holds the data to be sent out on the
TXD pin on the serial connector. Data bit 0, the least-significant

174 Serial Data Communications

TABLE 8-2 Serial Port Subsystem Registers

Register Port 1 Port 2 Port 3 Port 4

Transmit Buffer 3F8h 2F8h 3E8h 2E8h

Receive Buffer 3F8h 2F8h 3E8h 2E8h

Divisor Latch LSB 3F8h 2F8h 3E8h 2E8h

Divisor Latch MSB 3F9h 2F9h 3E9h 2E9h

Interrupt Enable 3F9h 2F9h 3E9h 2E9h

Interrupt ID 3FAh 2FAh 3EAh 2EAh
Line Control 3FBh 2FBh 3EBh 2EBh

Modem Control 3FCh 2FCh 3ECh 2ECh

Line Status 3FDh 2FDh 3EDh 2EDh

Modem Status 3FEh 2FEh 3EEh 2EEh

Reserved 3FFh 2FFh 3EFh 2EFh

bit (LSB), is sent first and data bit 7, the most-significant bit
(MSB), is sent last.

Receive Buffer Register

The Receive Buffer register contains the characters received on the
RXD pin on the serial connector. Data bit O (LSB) is received first
and data bit 7 (MSB) is received last.

Divisor Latch Registers

The Divisor Latch registers control the baud rate of the transmitted
and received data. Table 8-3 shows the values loaded into the Div­
isor Latch registers to set the baud rate.

Bit 7 of the Line Control register determines whether the
Divisor Latch MSB or the Interrupt Enable register is accessed.

Serial Port Registers 175

TABLE 8-3 Divisor Latch Values

Baud MSB Bits Bits LSB
Rate 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

75 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

110 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 1

300 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

600 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

1200 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

2400 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

4800 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

9600 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

19200 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

Interrupt Enable Register

The Interrupt Enable register enables and disables the four types
of interrupts.

Bit

0

1

2

3

4-7

Data

1

Interrupt

Enables the Received Data Available
interrupt.

0 Disables the interrupt.

1 Enables the Transmitter Holding Register
Empty interrupt.

0 Disables the interrupt.

1

0

1

0

Enables the Receiver Line Status
interrupt.

Disables the interrupt.

Enables t4e Modem Status interrupt.

Disables interrupt.

Should always be 0.

176 Serial Data Communications

Interrupt Identification Register

The Interrupt Identification register identifies the highest priority
pending interrupt signal. When this register is addressed, it inhibits
the highest priority interrupt. No other interrupts are acknowl­
edged until this inhibited interrupt is cleared.

Bit

0

1-2

3-7

Data

0

Definition

An interrupt is pending.

Identify the pending interrupt with the
highest priority:

Bit Interrupt

1 2

1 1 Receiver line status

1 0 Received data available

0 1 Transmit buffer empty

0 0 Modem status

Should always be 0.

Line Control Register

The Line Control register controls the format of the data com­
munications.

Bit

0-1

Data Definition

Specify the number of bits in each
transmitted or received character:

Bit Character Length in Bits

0 1

1 1 8

1 0 7

0 1 6

0 0 5

Serial Port Registers

2

3

4

5

6

7

0

1

0

177

One stop bit is generated or deleted in the
data sent or received.

For 5-bit words 1.5 stop bits are generated
or deleted. For a 6, 7, or 8-bit word, 2 stop
bits are generated or deleted.

Disables the parity bit.

1 A parity bit is generated (transmit data) or
checked (receive data).

0 When bit 3 is 0, the parity bits sent or
checked are odd.

1 When bit 3 is 1, the parity bits sent or
checked are even.

1 When bit 3 is 1, the parity bit is O for even
parity and 1 for odd parity.

0 The stuck parity is disabled.

1

0

1

Sets the transmit data line to the space
state (O) and remains at that state
regardless of the state of the output buffer
register.

Set-breaking is disabled.

Address selection bit. It is set to gain
access to the divisor latches of the baud-
rate generator during a read/write
operation.

0 Reset to gain access to the Receiver Buffer
register, the Transmit Buffer register, or
the Interrupt Enable register.

Modem Control Register

The Modem Control register controls the modem signals and allows
the serial port to be set to a diagnostic mode. The receiver and
transmitter interrupts and the modem control interrupts are fully
operational, allowing the interrupts to be tested.

178 Serial Data Communications

Bit Data Definition

0 1 DTR (Data Terminal Ready) signal is
active.

0 DTR signal is inactive.

1 1 RTS (Request To Send) signal is active.

0 RTS signal is inactive.

2 Controls the OUTl ~ signal from the
controller chip. It can be O or 1.

3 1 Controls OUT2~ signal from the controller
chip.

0 Forces the OUT2~ output inactive.

4 1 Enables the modem loopback (diagnostic
test) as follows:

The transmitter serial input is disabled.

Transmitter serial output is set to the
active state.

The output from the transmitter shift
register is looped back to the receiver
shift register.

The four modem control inputs to the
modem status register are disabled.

The four modem control outputs from
the modem control register are internally
connected to the four modem control
inputs.

5-7 Should always be 0.

Line Status Register

The Line Status register provides information on the data transfer.
Bits 1 through 4 are error conditions that generate a receiver line
status interrupt.

Serial Port Registers 179

Bit Data Definition

0 1 A complete incoming character has been
received and is in the Receiver Buffer
register.

0 Reset by reading the data in the Receiver
Buffer register or writing a 0 in it.

1 1 Data in the Receive Buff er register was not
read by the processor before the next
character was transferred into the register.

0 Reset when the CPU reads the Line Status
register.

2 1 Parity error detected.

0 Reset when the CPU reads the Line Status
register.

3 1 Framing error has occurred.

0 Reset when the CPU reads the Line Status
register.

4 1 Received data line was at a space state (0)
for longer than the transmission time of a
complete data character.

0 Reset when the CPU reads the Line Status
register.

5 1 Character is transferred from the Transmit
Buffer register to the Transmit Shift
register.

0 Reset when the next character is written
into the Transmit Buffer register.

6 1 Transmit Buffer register and Transmit
Shift register are empty.

0 Reset when either register contains a
character.

7 Should always be 0.

180 Serial Data Communications

Modem Status Register

The Modem Status register provides information on the control
lines from the modem or device.

Bit Data Definition
0 1 CTS (Clear To Send) signal input changed

state.

0 Reset when the Modem Status register is
read.

1 1 DSR (Data Set Ready) input changed
state.

0 Reset when the Modem Status register is
read.

2 1 RI (Ring Indicator) input changed from a
low to a high state.

0 Reset when the Modem Status register is
read.

3 1 DCD (Data Carrier Detect) input changed
state.

0 Reset when the Modem Status register is
read.

4 1 CTS (Clear To Send) input is active.

0 CTS input is inactive.

5 1 DSR (Data Set Ready) input is active.

0 DSR input is inactive.

6 1 RI (Ring Indicator) input is active.

0 RI input is inactive.

7 1 CF input is active.

0 CF input is inactive.

Serial Port BIOS Routines

The BIOS of most EISA computers provides six functions which
are used to output and receive data through the serial port. These

Serial Port BIOS Routines l8l

functions can be divided into two categories: those that provide or
control protocol or status, and those that transmit and receive data.
These functions are:

Function Equate Definition
00 INIT Initialize Serial Port

01 XMIT Send Out One Character

02 RECV Receive One Character

03 STATUS Get Serial Port Status

04 EXTENDED_INIT Extended Serial Port
Initialization

INIT

The INIT function sets the baud rate, number of stop bits, parity
and character length of the specified serial port. It returns with the
contents of the Line Status register and the Modem Status register
of the specified port.

On Entry: AH= Fl4_INIT (00h)

AL= Port attribute

Bit Data Definition

7-5 111 9600 baud rate

110 4800 baud rate

101 2400 baud rate

100 1200 baud rate

011 600 baud rate

010 300 baud rate

001 150 baud rate

000 110 baud rate

4-3 xO no parity

11 even parity

01 odd parity

2 0 1 stop bit

1 2 stop bits

1-0 00 5 bits

01 6 bits

10 7 bit character

11 8 bit character

182 Serial Data Communications

DX= Port number

On Exit: AH= Line Status

AL= Modem Status

Registers Altered: AX

The following defines the Line Status byte as returned in
the AH register:

Bit Data Definition
7 1 Timeout Error

6 1 Transmit Shift Register Empty

5 1 Transmit Hold Register Empty

4 1 Break Received

3 1 Character Framing Error

2 1 Parity Error

1 1 Overrun Error

0 1 Data Set Ready

The following defines the Modem Status byte as returned
in the AL register:

Bit Data Definition
7 1 Receive Line Signal Detected

6 1 Ring Indicator Line State

5 1 Data Set Ready Line State

4 1 Clear to Send Line State

3 1 Change in Receive Line Detected

2 1 Trailing Edge of Ring Detected

1 1 Change in Data Set Ready

0 1 Change in Clear to Send State

Serial Port BIOS Routines 183

A printer connected to the serial port would typically op­
erate at 9600 baud with no parity, use two stop bits, and require
8-bit characters (to allow the passage of control characters). The
following shows the programming of the serial port for these pa­
rameters:

Example:

MOV AH, INIT AH= 00h

MOV AL, 11100111B 9600 baud, No parity, 2 stop bits, 8 bit

MOV DX, 1 Send it to port 1

INT 14h Call the serial driver using INT 14h

XMIT

The XMIT function transmits a byte of data through the serial
port defined by the DX register.

On Entry: AH= XMIT (0lh)

AL= Data byte to be sent

DX= Port number

On Exit: AH= Line status

AL= Modern status

Registers Altered: AX

RECV

The RECV function reads a byte of data from the serial port defined
by the DX register.

On Entry: AH= RECV (02h)

DX= Port number

On Exit: AH= Line status

AL= If no error: Data byte received

If error: Null character, zero

Registers Altered: AX

184 Serial Data Communications

STATUS

The STATUS function provides the status of the serial port defined
by the DX register.

On Entry: AH= STATUS (03h)

DX= Port number

On Exit: AH= Line status

AL= Modem status

Registers Altered: AX

EXTENDED-1NIT

The EXTENDED_JNIT function sets the break, parity, stop bits,
word length, and baud rate for the defined serial port. This function
provides more choices than those in F14_INIT, but requires more
extensive data in the various registers.

On Entry: AH= EXTENDED-INIT

AL= Break

00h = No Break

0lh = Break

BH = Parity

00h = None

0lh = Odd

02h = Even

03h = Stick parity odd

04h = Stick parity even

BL= Stop bit

00h = One

0lh = Two if 6-, 7-, or 8-bit word length

One and one half if 5-bit word length

CH= Word Length

00h = 5 bits

0lh = 6 bits

02h = 7 bits

03h = 8 bits

CL= Baud rate

00h = 110 baud

0lh = 150 baud

Programming Examples

02h 300 baud

03h 600 baud

04h 1200 baud

05h 2400 baud

06h 4800 baud

07h 9600 baud

08h 19200 baud

Programming Examples

Initialize Serial Port

The following program uses the BIOS to initialize the serial port

for modem communication. Though this is just a code fragment, it

can be assembled, linked, and run from MS-DOS.

_TEXT

-TEXT

-DATA

-DATA

-DATA

-DATA

_TEXT

SEGMENT BYTE PUBLIC 'CODE'

ENDS

SEGMENT WORD PUBLIC 'DATA'

ENDS

SEGMENT

ENDS

SEGMENT

ASSUME CS:_TEXT

Initialize the serial port - assume COMl will be used.

mov dx,00h ;Set serial port number: 0

mov ah,00h ;Set serial initialization

mov al,1010001lb ;Set 2400 baud, no parity,
; 8 data bits, 1 stop bit

int 14H ;Invoke BIOS to initialize

185

= COMl
function

serial port

186 Serial Data Communications

Exit back to DOS.

mov

int

_TEXT ENDS

END

ax,4C00h

21h

Read Serial Port Status

The following code fragment uses the BIOS to read the serial

port status. Though this is just a code fragment, it can be

assembled, linked, and run from MS-DOS.

_TEXT

_TEXT

-DATA
_DATA

_DATA

-DATA

_TEXT

SEGMENT BYTE PUBLIC 'CODE'

ENDS

SEGMENT WORD PUBLIC 'DATA'

ENDS

SEGMENT

ENDS

SEGMENT

ASSUME

Initialize

mov

cs:_TEXT

the serial port

dx,00h

- assume COMl will be used

;Set serial port number: 0

mov ah,00h ;Set serial initialization

mov al,101000llb ;Set 2400 baud, no parity,
; 8 data bits, 1 stop bit

int 14H ;Invoke BIOS to initialize

= COMl
function

serial port

Programming Examples 187

Initialize the serial port - assume COMl will be used

mov dx,00h ;Set serial port number: 0 = COMl

mov ah,03h ;Set serial status function

int 14H ;Invoke BIOS to get status - modem
; status back in AL, line status in AH

Exit back to DOS.

mov

int

ax,4C00h

21h

_TEXT ENDS

END

Send/Receive Character From Serial Port

The following code fragment uses the BIOS to send a character

to the serial port and receive a character from the serial port.

It is merely a code fragment, and it should not be run.

_TEXT

_TEXT

--1)ATA
--1)ATA

--1)ATA

--1)ATA

_TEXT

SEGMENT BYTE PUBLIC 'CODE'

ENDS

SEGMENT WORD PUBLIC 'DATA'

ENDS

SEGMENT
ENDS

SEGMENT
ASSUME CS:_TEXT

188

_TEXT

Serial Data Communications

Initialize the serial port - assume COMl will be used

mov dx,O0h ;Set serial port number: 0 = COMl

mov ah,0Oh ;Set serial initialization function

mov al,101000llb ;Set 2400 baud, no parity,

; 8 data bits, 1 stop bit

int 14H ;Invoke BIOS to initialize serial port

Output an "A" to the serial port.

mov

mov

mov

int

dx,00h

ah,0lh

al, "A"

14H

;Set serial port number: 0 = COMl

;Set serial output character function

;Set character to output

;Invoke BIOS to output character

Get a character from the serial port.

mov

mov

int

dx,00h

ah,02h

14H

Exit back to DOS.

mov

int

ENDS

END

ax,4C00h

21h

;Set serial port number: 0 = COMl

;Set serial input character function

;Invoke BIOS to input character

Summary

Summary

189

Most of the EISA machines are supplied with two serial ports for
the connection of printers, modems, or other serial devices. The
EISA computers maintain the addresses and interrupts as defined
in the previous ISA standard, so that using existing software and
programming expertise with the peripheral interfaces of the EISA
computers is possible.

CHAPTER

9

The Parallel Printer
Connector

This chapter covers the parallel printer interface port found on a
typical EISA computer system. The emphasis is on using the par­
allel port interface for connecting printers to the computer system,
though the parallel port is also sometimes used for other peripherals
such as an 8-bit controller, or for high-speed data transfer.

The parallel interface uses signal levels at standard TTL
logic levels. This means that the cable lengths are somewhat less
than those of serial interfaces-in fact, parallel cables are usually
about 25 feet long or less because of wire resistance and the low
voltage levels found in the parallel interface. Typical hardware line
drivers will have the following characteristics:

Sink Current

Source Current

Logic High Output Voltage

Logic Low Output Voltage

24 mA maximum

15 mA maximum

2.4 V de minimum

0.5 Vdc maximum

Note that these levels are typical. Different computer man­
ufacturers may use drivers that do not provide these exact values,
especially on pins 1, 14, 16, and 17. If you are using an interface
that may be nonstandard, such as might be found in a computer
not from a major manufacturer, you should consult the technical
reference manual of the computer or interface to make sure that
your levels are compatible.

The Parallel Port Connector

Normally, the parallel port connector on the back of the computer
is a female, 25-pin, D-type connector. Figure 9-1 shows the pin
numbers as they appear on the equipment connector. Note that
the pin numbering is a mirror image as you look at the cable end,
though the numbers on the cable connector are the same.

In a normal configuration. a female connector is mounted
on the equipment and the male connector is mounted on the cable.
The printer end of the cable has a Centronics-type connector, a
36-pin connector, as shown in Figure 9-2. The wiring of a typical
cable is shown in Figure 9-3.

193

194 The Parallel Printer Connector

STROBE-
0

Data bit o 0
AUTO FD-

Data bit 1 0
0 ERROR-

Data bit 2 0
0 INIT-

Data bit 3 0
0 SLCTIN-

Data bit 4 0
0

Data bit 5 0
0
0

Data bit 6 0
0

Data bit 7 0
0 Ground (all 8 pins)

ACK- 0
0 BUSY 0

PE 0
0

SLCT
0

13

FIGURE 9-1 Parallel Printer
Connector Pin Numbering

Data Strobe
DataO
Data 1
Data2
Data3
Data4
Data5
Data6
Data7
ACK-
Busy
P.E.

Select
Auto Feed

Signal Ground
Chassis Ground

Ground 0

Ground 1
Ground2
Ground3
Ground4
Ground 5
Ground6
Ground 7

Initialize
Error

+5Vdc
Select In From Computer

FIGURE 9-2 Typical Centronics
Connector Pin Numbering

Parallel Port Addresses/Registers

1---------
2 14

1

25-pin connector
on computer
end of cable

3
4
5
6
7
8
9

10
11
12
13

15
16
17
18
19
20
21
22
23
24
25

2
3
4
5
6
7
8
9

10
11
12
13

-14
15
16
17
18

195

19
20
21
22
23
24
25

36-pin connector 26
27 on printer

28 end of cable

29
30
31
32
33
34
35
36

FIGURE 9-3 Typical Parallel Printer Cable Wiring

Parallel Printer Signals

The signals that appear on each of the pins of the Parallel interface
are defined in Table 9-1. Only the signals that conform to the
industry standards and are common to most typical equipment are
shown. If your computer has a nonstandard connector arrangement,
you will have to make cable changes or purchase appropriate cables
from the computer manufacturer.

Signal Timing

The signals on the connector must conform to certain timing re­
strictions. There are three control signals, BUSY, ACKN, and
STROBEN, that are coordinated with the 8 data lines. These sig­
nals, and the nominal timing requirements, are shown in Figure
9-4.

Parallel Port Addresses/Registers

The parallel output port can be addressed as parallel port 1, 2, or
3. Port selection is usually accomplished by the installation pro-

196 The Parallel Printer Connector

TABLE 9-1 Parallel Port Pin Assignments

Pin 1/0 Signal Definition

1 0 STROBE~ Data strobe
2 0 DO Data bit 0

3 0 DI Data bit 1
4 0 D2 Data bit 2

5 0 D3 Data bit 3

6 0 D4 Data bit 4

7 0 D5 Data bit 5
8 0 D6 Data bit 6

9 0 D7 Data bit 7

10 I ACK~ Printer acknowledges receipt of
the character and is ready for the
next character.

11 I BUSY Printer is busy and is not ready to
accept more data.

12 I PE Printer error; usually means the
printer is out of paper.

13 I SLCT Printer select.
14 0 AUTO FD~ Tells printer to perform a linefeed

after a line is printed.
15 I ERROR~ Printer has encountered an error.
16 0 INir Initializes the printer.
17 0 SLCT IN~ Enables the printer for printing.
18 GND Ground
19 GND Ground
20 GND Ground
21 GND Ground
22 GND Ground
23 GND Ground
24 GND Ground
25 GND Ground

Parallel Port Addresses/Registers

BUSY

DATA-----~

STROBE*

0.5usec.
minimum

0.5usec.
minimum

FIGURE 9-4 Typical Parallel Connector
Timing

197

gram which sets up the EISA computer. Information on how to
use this setup software is presented in Chapter 6, EISA Software.
Each of the ports is mapped to a different 1/0 address as follows:

Port
Register 1 2 3

Data Address 03BCh 0378h 0278h

Status Address 03BDh 0379h 0279h

Control Address 03BEh 037Ah 027Ah

Characters can be output through the parallel port in two
ways. The first way uses the BIOS routines to output the data; this
is the preferable method, and will result in optimum compatibility
between different computer manufacturers. This is shown later in
this chapter. The second way is to output the data directly to the
port at the addresses shown above; this is usually a faster way,

198 The Parallel Printer Connector

since it bypasses the BIOS routines, but it risks incompatibility.
The parallel output registers may be located at a different, non­
standard address. The information normally contained in these
registers is described in the following paragraphs.

Data Register

The Data register contains the data to be sent to the printer. Writ­
ing a character to this register causes it to be sent to the equipment
or device connected to the parallel port.

Printer Control Register

The Printer Control register controls the printer signals by loading
the CPU register with the appropriate data from that shown in the
following bit definition table, and then outputting the byte to the

· Printer Control register.

Bit
0

1

2

3

Data
1

Definition
Generates an active low STROBE signal for
at least 500nS. The STROBE signal is used
to clock the data from the parallel port into
the printer. Note that the data must be on
the DATA pins at least 0.5µ8 before and
after the STROBE signal.

0 STROBE inactive.
1

0

0

1

1

0

Generates the low AUTO FD~ signal; printer
automatically does a line feed after each line
is printed.
AUTO FD~ signal inactive.
Generates the low INIT~ signal for at least
50µ8; printer initializes (prepares itself for
operation.)
INIT~ signal inactive.
Generates the low SLCT IN~ signal; printer
is selected and ready for use.
SLCT IN signal inactive; printer deselected
or inactive.

Parallel Port Addresses/Registers 199

4

5

6,7

1

0

1

Enables the printer parallel port interrupt
when the ACK~ input signals that the printer
is ready.

ACK~ input signal inactive.

Controls the direction of the printer port. In
some computers, this bit can be used to set
up the parallel port as a bidirectional port,
allowing the parallel port to read data as well
as output it to a device such as a printer.

Not used. Usually tagged as reserved.

Printer Status Register

The Printer Status register provides information on the control
lines coming from the printer.

Bit
0-1

2

3

4

5

6

7

Data

0

1

0

Definition
Not used. Usually tagged as reserved.

Printer has acknowledged receipt of the data
with the ACK signal.

ACK signal inactive.

ERROR~ input active and an error condition
exists.

1 ERROR~ input inactive.

1

0

1

SLCT input active; printer has been selected.

SLCT input inactive.

PE input active; typically, the printer is out
of paper.

0 PE input inactive.

0

1

0

ACK~ input active; printer ready to accept
data.
ACK~ input inactive.

BUSY input active; printer cannot receive
data.

1 BUSY input inactive.

200 The Parallel Printer Connector

Parallel Port BIOS Routines

The BIOS of most EISA computers provides three functions that
are used to output characters on the parallel port. These functions
are:

Function

OOH

OlH

02H

PUT_CHAR

Equate

PUT_CHAR

INIT

STATUS

Definition

Send a character to the printer

Initialize the printer port

Get the printer port status

The PUT _CHAR function sends a character to the parallel port.
It returns with the port status in the AH register.

On Entry: AH= PUT_CHAR (00h)

AL= Data byte to be sent to printer

DX= Port number

On Exit: AH= Printer port status

Registers Altered: AH

The following shows the printer port status byte as returned
in the AH register.

Bit Data Definition

7 0 Printer Busy

1 Printer Not Busy

6 0 Not Ready for Data

1 Data Acknowledged

5 1 Out of Paper

4 0 Printer Offiine

1 Printer On Line

Programming Examples

3

2,1

0

INIT

1

1

1/0 Error

Not Used

Printer Error or Timed out

201

The INIT function initializes the parallel printer port. The func­
tion returns with the printer port status in the AH register in the
same manner as the previous PUT _CHAR function.

On Entry: AH= INIT (0lh)

DX= Port number

On Exit: AH= Printer port status

Registers Altered: AH

STATUS

The ST A TUS function provides the status of the parallel printer
port.

On Entry: AH= STATUS (02h)

DX= Port number

On Exit: AH= Printer port status

Registers Altered: AH

Programming Examples

Send Character to Printer

The following program uses the BIOS to output a character

to the printer. This program can be assembled, linked, and

run from MS-DOS.

202

_TEXT

_TEXT

_DATA

_DATA

SEGMENT BYTE PUBLIC 'CODE'

ENDS

SEGMENT WORD PUBLIC 'DATA'

ENDS

The Parallel Printer Connector

LPT_STATUS__MASILERROR EQU 0000l0000b;LPT Status mask for ERROR

LF

FF

CR

_DATA

EQU

EQU

EQU

SEGMENT

0Ah

0Ch

0Dh

;Line feed

;Form feed

;Carriage return

LptMsgNotReady DB 'The printer is not ready',CR,LF,0

_DATA

_TEXT

LPTl

ENDS

SEGMENT

ASSUME

mov

mov

ASSUME

CS:_TEXT

ax,_DATA

ds,ax

ds:_IJATA

Initialize the printer port• assume

the printer is attached to LPTl.

mov

mov

int

dx,00h

ah,0lh

17h

Check the printer status.

xor cx,cx

;Set printer port number: 0 =
;Set printer initialization function

;Invoke BIOS to initialize port

;Set printer status wait count

Programming Examples

lpLlO:

lpL15:

lpL20:

lpL30:

mov

mov

int

test

jz

loop

dx,OOh

ah,02h

17H

;Set printer port number: 0 = LPTl

;Set printer status function

;Invoke BIOS to get status

ah,LPT_STATUS_MASILERROR

lpt_30

lpt_lQ

;No printer errors?

;Check printer status again?

The printer is not ready - print an error message and quit.

mov

lodsb

or

jz

mov

int

jmp

si,OFFSET LptMsgNotReady

al,al

lpt_40

ah,OEh

10h

lpL20

;Get the next error string character

;End of string?

;Set BIOS write character function

;Invoke BIOS to Display character

;Check for more characters

Output a character to the printer.

mov

mov

mov

int

test

jnz

mov

mov

mov

int

dx,OOh

ah,OOh

al, "A"

17H

;Set printer port number: 0 = LPTl

;Set printer put character function

;Set the character to output

;Invoke BIOS to output character

ah,LPT_STATUS_MAS!LERROR

lpL15

dx,OOh

ah,OOh

al,FF

17H

;Error status back from printer?

;Set printer port number: 0 = LPTl

;Set printer put character function

;Set the form feed character

;Invoke BIOS to do form feed

203

204

lpL40:

_TEXT

Exit back to DOS.

mov

int

ENDS

END

ax,4COOh

21h

Send String to Printer

The Parallel Printer Connector

The following program uses the BIOS to output a string of

characters to the printer. This program can be assembled,

linked, and run from MS-DOS.

_TEXT

_TEXT

_DATA

_DATA

SEGMENT BYTE PUBLIC 'CODE'

ENDS

SEGMENT WORD PUBLIC 'DATA'

ENDS

LPT_STATUS__MASILERROR EQU OOOOlOOOOb;LPT Status mask for ERROR

CR

FF

LF

EQU

EQU

EQU

_DATA SEGMENT

ODh

OCh

OAh

;Carriage return

;Form feed

;Line feed

GoodbyeString DB 'Good-bye',CR,LF,FF,O ;NULL terminated Good-bye string

LptMsgNotReady DB 'The printer is not ready',CR,LF,O ;LPT Error string

_DATA

_TEXT

ENDS

SEGMENT

ASSUME CS:_TEXT

Programming Examples

lpLl0:

lpLlS:

lpL20:

mov

mov

ASSUME

ax,_DATA

ds,ax

ds:_DATA

Initialize the printer port - assume

the printer is attached to LPTl.

mov

mov

int

dx,00h

ah,0lh

17h

;Set printer port number: 0 = LPTl

;Set printer initialization function

;Invoke BIOS to initialize port

Check the printer status.

xor

mov

mov

int

test

jz

loop

cx,cx

dx,00h

ah,02h

17H

;Set printer status wait count

;Set printer port number: 0 = LPTl

;Set printer status function

;Invoke BIOS to get status

ah,LPT_STATUS-MASILERROR

lpt_3Q

lpt_lQ

;No printer errors?

;Check printer status again?

The printer is not ready - print an error message and quit.

mov

lodsb

or

jz

mov

int

jmp

si,OFFSET LptMsgNotReady

al,al

lpt_40

ah,0Eh

10h

lpt_2Q

;Get the next error string character

;End of string?

;Set BIOS write character function

;Invoke BIOS to Display character

;Check for more characters

205

206

lpL30:

lpt_JS:

lpt_40:

The Parallel Printer Connector

Output "Good-bye" to the printer.

mov

lodsb

or

jz

mov

mov

int

test

jnz

jmp

si,OFFSET GoodByeString

al,al

lpt_40

dx,OOh

ah,OOh

17H

;Get the next string character

;End of string?

;Set printer port number: 0 = LPTl

;Set printer put character function

;Invoke BIOS to output character

ah,LPT_STATUS....MASILERROR

lpt_lS ;Error status back from printer?

lpt_JS ; Check for more chara·cters

Exit back to DOS.

mov

int

ax,4COOh

21h

_TEXT ENDS

END

Summary

The EISA computers use parallel ports that are fully compatible,
both in addresses and interrupts, with the existing ISA standard.
Programs and programmers using the existing standards will have
no problem with the new EISA standards.

CHAPTER

10

The 80486 (i486)
CPU

Although the 80286 and 80386 will continue to be popular micro­
processors, the i486 will undoubtedly be the processor of choice for
most of the new EISA designs. The 82350 EISA chip set is an
optimum match for the i486's power and features.

A word about Intel's chip names. For many years Intel has
referred to their chip sets as the 8080, the 8086, the 80186, the
80286, and so forth. With the introduction of the 80486, they have
changed the designations and now use just the last three digits
preceded by a lower case "i." Thus, the 80386 is now often referred
to as the i386, and the 80486 is now referred to as the i486. The
i486 designation is used throughout the rest of this chapter.

The i486 contains all of the functionality of the 80386 (i386)
and the 80387 combined in a single chip. In addition, it has a built­
in cache memory that allows frequently accessed data and code to
be resident in the chip, thus reducing access to the system memory.

The i486 is object-code compatible with code developed for
all of the previous members of the same CPU family, including the
8086, 8088, 80186, 80188, 80286, and 80386. In addition, it features:

• Frequent instructions that execute in one clock cycle

• On-chip BK code and data cache

• On-chip floating point (80387) coprocessor

• Paged, virtual memory management

• Built-in self test

• 25 and 33 MHz clock versions now, with faster (40 MHz)
versions to come

• 106 Mbyte/second burst bus

• Performance of 37,000 Dhrystones, 6.1 million Whet-
stones, at 25 MHz

• Newest 1 micron CHMOS IV manufacturing technology

• All addresses, data busses, and registers are 32 bits wide

• Full support for multiprocessor operation

• 64K I/O addresses

• Addresses 4 GB of physical memory and 64 Terabytes of
virtual memory

209

210 The 80486 (i486) CPU

• Full support for both multitasking and multiprocessor en­
vironments

• 168-pin grid array package

• 1.18 million transistors

Intel has announced two versions of the i486, a 25 MHz
version and a 33 MHz version, designated the i486-25 and the i486-
33 respectively. The i486-33 is the fastest CPU available of those
popular in the PC market. As more programs are written that take
advantage of the internal coprocessor and memory management
facilities of the i486, the speed of the i486-33 will be vastly increased
over what we now consider fast and powerful computers.

Speed comparisons are difficult to make since programs can
be written to take advantage of certain instructions that execute
much faster in the new chip, while ignoring those that have only
nominal improvements. However, even at its worst, the i486 is a
major improvement over the earlier processors. In an average case,
the i486-33 is approximately 4 times faster than a i386-16. The
i386-16 itself is approximately 3.2 times faster than an 80286-12,
which makes the i486-33 about 13 times faster than today's stan­
dard 80286 computers running at 12 MHz. A sort taking one hour
on an 80286-12 computer will take four minutes on an i486 EISA
computer. That, of course, ignores other possible gains made by
the i486's built-in math coprocessor, the newer faster disk drives,
and disk caching. If you are using one of the older IBM PC com­
puters, the new i486 may be as much as 70 times faster.

These speed increases do not come only from an increase
in clock speeds. The operation of the processor's internal circuitry
is synchronized by the clock signal, which typically pulses on/off/
on at the frequency indicated by the processor's clock rating. For
example, a processor rated at 25 MHz would go through 25 million
clock cycles per second. Some instructions take only a few clock
cycles to execute, some take over 300 clock cycles to execute a single
instruction. The i486 has dramatically reduced the number of clock
cycles required for the execution of some instructions.

Because of the improvement in both the processor's internal
architecture and in clock speeds, the i486 can perform operations
that took hours on the original PCs in minutes, while operations

Compatibility 211

that took minutes before now take only seconds. However, pro­
grammers are taking advantage of the power of the new processors
to add many new functions and features to their software, and
sometimes a state-of-the-art database running on a fast EISA ma­
chine may seem no faster than your old database program running
on a PC. The newer programs are far more powerful and complex,
and simply use more processor time.

Compatibility

The i486 is object-code compatible with all of the 80x86 family of
processors, so that a program written for the original PC will run
on the latest EISA i486 computer, for example. However, incom­
patibilities may occur at times. Differences in the BIOS code cause
this most frequently and will represent the majority of the problems
encountered. Other incompatibilities may result from the differing
implementations of interrupts and interrupt controllers.

Differences also exist in the some of the opcodes and pro­
tected modes used in assembly language programming. For ex­
ample, the PUSH SP instruction on the 8086 class CPUs pushes
the stack pointer value after the instruction is completed, and the
i486 (as well as the 80286 and 80386) push the current stack pointer.
A few other instructions differ primarily in the timing of an in­
struction related to subsequent instructions. In most cases, assem­
blers such as the Microsoft assembler can take care of these dif­
ferences when assembling the source code, and higher-level
programming languages such as C or BASIC make the differences
invisible.

The i486 has added only six new instructions, BSW AP
(Byte Swap), XADD (Exchange and Add), CMPXCHG (Compare
and Exchange), INVD (Invalidate), WBINVD (Write Back Inval­
idate), and INVLPG (Invalidate TBL Entry), as described below.

Instruction
BSWAP

Function
Reverses the order of the bits in a register to
support fast translation between big endian
(680x0 and IBM mainframes) and little endian
(80x86 family) data.

212

XADD

CMPXCHG

INVD

WBINVD

INVLPG

The 80486 (i486) CPU

Exchanges two operands and sums them. Used
in multi-processor systems which partition al­
gorithms across several processors.

Conditionally exchanges the contents of a reg­
ister with a memory operand.

Invalidates an instruction or data cache.

Invalidates the cache, like INVD, but then uses
an output signal to tell the secondary cache to
write back the bad cache data.

Invalidates a matching TLB (translation look­
aside buffer) entry if one is present.

Segmentation Architecture

The i486 retains the segmentation architecture of the earlier pro­
cessors, but segmentation size is definable (as it is also for the
80386). Thus the 64K segments that were a problem for program­
mers have been eliminated, with segments being definable up to 4
GB. This is done with just a few instructions at initialization by
pointing the segment registers to 00000000h and setting the size
up to 4 GB. However, segmentation capability has been retained
and is a real advantage for multitasking systems where each task
may reside in a different segment.

Coprocessor

A coprocessor provides a number of additional instructions that
can be used for math-intensive applications, such as high-precision
integer functions or floating-point calculations. If these functions
are performed by the main processor, the calculations might take
thousands of clock cycles to perform a single complex calculation.
A coprocessor will take over these functions and perform the cal­
culations while the main processor is busy with other tasks. When
the coprocessor is finished, it signals the main processor that it
has the answer available.

Summary

Summary

213

Applications programs often are supplied in two versions,
one for computers where the additional coprocessor has been in­
stalled, and one version where the main processor must do all the
calculations. Other software automatically tests for the presence of
a coprocessor and uses the appropriate part of the program to per­
form the calculations. The i486 includes a built-in functional equiv­
alent of the 80387 coprocessor, so this costly feature is now standard
with any EISA computer that uses the i486 processor.

The coprocessor offers significant advantages when using
any computer-aided design, engineering, or manufacturing appli­
cation. In addition, programs that perform a large number of com­
plex mathematical calculations, such as fractal-generation pro­
grams, make extensive use of a coprocessor. The coprocessor
performs the mathematical functions while the main processor per­
forms other functions.

The i486 is basically an 80386, an 80387, and a cache memory on
one chip. This results in significantly improved ease of design and
performance. In addition, Intel has improved the internal archi­
tecture to allow commonly executed instructions to execute much
faster. Add to that the improved clock speeds of 25 and 33 MHz,
and much faster ones to come, and the i486 promises to be the
heart of extremely powerful computers for a long time.

Glossary

ACK Acknowledge.
Active high Signal that must go to a logic high (1) to produce

an effect.
Active low Signal that must go to a logic low (0) to produce an

effect.
Application Programs Software that performs specific tasks,

such as word processors, spreadsheets, and data bases.
Architecture A term that defines the relationship between the

various components and designs that make up a computer
design.

Attribute The characteristic of a pixel or character on the screen
that defines its color or intensity. The Attribute informa­
tion is the data stored in the video RAM memory at each
location corresponding to a pixel or character location on
the screen.

BCD Binary Coded Decimal.
BIOS Basic Input/Output System. BIOS is the program stored

in the ROM BIOS that provides the software interface be-

216 Glossary

tween the hardware and system software and application
programs.

Bit The smallest unit of data that a computer can manipulate.
Its state may be either on (1) or off (0), and it is usually
combined with seven other bits to form a byte of data. Bits
are often used to record the state of flags or the result of a
register operation. The microprocessor has many instruc­
tions to support this.

BPS Bits per second.
Byte Eight bits, or binary states. Typically, a byte is typically

used to store a single ASCII character, or a binary value
from O (all bits are 0) to 255 (all bits are 1).

Cache memory Memory that stores frequently accessed data
from a disk controller or main memory, used to increase
processing speed.

Call Occurs when a program, typically an application program,
puts certain information into the CPU registers, then
"calls" (jumps to) a specified location. The program code
at that location then takes the information in the registers
and, based on the information, performs a task or stores
the data.

Checksum byte A byte containing the eight least-significant bits
of the sum of a block of code or data.

Checksum An error-checking technique used to verify a block
of code or data. It is calculated by adding all of the bytes
in the specified block, the sum of which forms the checksum.
Subsequent adding of the bytes in the block and comparing
the result against the previously calculated value is a de­
termination of the validity of the specified block.

CMOS RAM Random-access memory that is powered by a bat­
tery when the computer is turned off. Data, such as the
system configuration and other ISA and EISA parameters,
is stored in the CMOS RAM.

Coprocessor A processor that works in conjunction with the
CPU. On the 80486, the coprocessor is built into the 80486.

CPU Central Processing Unit. Typically, used to refer to the
microprocessor, such as an 80486 or 80386, that is used in
a computer system. However, some manufacturers also use
the term CPU to refer to the circuit board that contains
the microprocessor. Occasionally, manufacturers also use

Glossary 217

the term to refer to the computer as a whole, typically in
the context of differentiating it from peripherals such as
the printer or a terminal.

CTS Clear To Send. This signal is output by the modem or
printer to the computer to indicate that the modem may
send data to the computer, or the printer may return status
information.

DCD Data Carrier Detect. This signal, sent by a modem to a
terminal or computer, indicates that the modem has re­
ceived a carrier signal from a modem on the far end of the
telephone line.

DIN Acronym for Deutsche Industrie Normenausschuss, a West
German association that sets electrical standards.

Direct memory access A means for boards or devices on the
memory bus to obtain access to the main memory, and
transfer data, without using the central processing unit.

DMA See direct memory access.
DSR Data Set Ready. Signal sent from the modem to the com­

puter or terminal indicating that the modem is ready to be
used. Typically, this signal indicates that the modem has
power applied and has successfully performed its initiali­
zation (internal setup) routines.

DTR Data Terminal Ready. Signal sent from the computer (or
terminal) to the modem, indicating that the computer is
ready to be used. Typically, this signal indicates that the
computer has power applied.

Dword A dword is a double word containing 2 words, or 4 bytes.
With the power of the 80486 and the EISA bus, dword
operations are often used to move data quickly over the 32-
bit data bus.

Dynamic RAM Dynamic Random Access Memory. Also known
as Main Memory, Memory, RAM, System Memory, or Sys­
tem RAM.

EISA Extended Industry Standard Architecture. Mnemonic for
the new architecture about which this book is written. EISA
is an enhancement of the ISA architecture (see ISA).

EGA Enhanced Graphics Adapter.
GB Gigabyte. 1,073,741,824 bytes.

218 Glossary

Graphic display mode A video display mode where all positions
on the screen are addressed as pixels.

Handshaking A process whereby the computer and a peripheral,
such as a printer or modem, tell each other their status.
This status may typically represent information such as "I
am out of paper" (from a printer) or "I am ready to send"
(from a computer).

Hardware interrupts Requests for attention of the CPU, and
subsequent processing of code, that are generated by the
hardware.

Hexadecimal Numbers expressed in base 16. Hexadecimal digits
are represented by the numbers 0-9 and letters A-F. In this
book, hexadecimal numbers are indicated with a lowercase
has their last character (17h).

Interrupt May be of two kinds, either hardware or software. A
hardware interrupt occurs when a signal line from an in­
terrupt controller or other similar device goes active, forcing
the CPU to stop what it is doing and respond to the in­
terrupt. This process is the result of a hardware, or signal,
action. A software interrupt occurs when a program exe­
cutes an INT instruction. This forces the CPU to jump to
a specified location and execute a routine (small program)
at that location.

ISA (Industry Standard Architecture) A bus and computer
architecture compatible with IBM AT personal computers.

K Kilobytes. 1,024 bytes.
MB MegaByte. 1,048,576 bytes.
MDA Monochrome Display Adapter.
Monochrome A display with a single color, normally green or

amber, though white is sometimes used.
NMI Non-Maskable Interrupt, typically used to report error con­

ditions. This interrupt is normally found at interrupt vector
02h.

Operating system The software that interfaces the applications
program to the computer hardware. The operating system
interfaces between input and output functions, data files,
program files, and system memory. Examples of operating
systems are MS-DOS, 08/2, or UNIX.

Palette The set of all the possible colors a Video Display Adapter
can produce.

Glossary 219

Pixel A dot on the screen in the graphics modes.

Processor interrupts Interrupts generated by the processor,
typically in response to error conditions.

Protective ground Chassis ground for the computer, the
printer, or the modem. This line ties the grounds together
to reduce the possibility of shock.

RAM Random Access Memory. This type of memory is used for
general storage of the computer's programs and data. It can
be either read or written to, although it will lose its contents
when the power is turned off. (Also see ROM)

Register A latch in the 80386 or 80486 that stores information
or controls a function. For example, a register may contain
data to be sent out to a port, or an address where the pro­
cessor has stored information, or an address where the pro­
cessor should go to get the next instruction to be processed.

RGB A mnemonic for Red-Green-Blue. These are the three pri­
mary colors used in a color display. In a typical VGA display,
these are varied in intensity and combination to produce
all the possible colors which can be displayed.

RI Ring Indicator. This signal, sent by a modem to a terminal
or computer, indicates that there is a phone call coming in.
This signal is the electrical equivalent of the telephone ring­
ing. When the computer receives this signal, it usually ac­
tivates (through an interrupt) the program or routines to
answer incoming calls.

ROM Read Only Memory. This type of computer memory can
only be read by the processor, not written to. ROM-type
memory typically contains the BIOS code or utilities that
must be accessable even when the computer has no disk
drives attached from which to load the operating system.
ROM memory retains its contents even when the power is
removed. (Also see RAM)

Routine A piece of a program that performs a single and specific
function. For example, a routine might output a character
to a parallel port. The program would put the character into
one of the CPU's registers, and then the "output routine"
would be called. This output routine would then read the
character in the CPU's register and send it to the printer.
The routine would then return to the program which called

it, to repeat the process, or if all the characters had been
sent, to continue on with the program.

RTS Ready To Send. This signal is output by the computer to
a modem or printer to indicate that the computer is ready
to send data.

RXD Receive Data. This is the data signal that is being received
from an other piece of equipment. On the other end, this
signal is the TXD (Transmit Data) signal.

SG Signal Ground. This is the ground reference for the various
signals transmitted on the RS232 cable. Although under
normal conditions (in a 25-pin connector only), SG (Signal
Ground) may be the same as the PG (Protective Ground)
signal, this is not always the case. These two signals, SG
and PG, should never be tied together in the cable. They
may be tied in the equipment by design of the engineer.
The protective ground signal (Pin 1 in a 25 pin connector)
does not appear in a 9-pin connector.

Software interrupts Interrupts generated by the INT "n" in­
struction.

TSR Terminate and Stay Ready. This type of program is loaded
into the computer's memory and then seems to disappear.
It becomes active when, typically, a hot key is pressed that
calls the program up.

TXD Transmit Data. This is the actual data signal being trans­
mitted from one piece of equipment to another. On the other
end this signal is the RXD (Receive Data) signal, and is
connected to the RXD pin of that connector.

VGA Video Graphics Adapter. This is the high-resolution video
display card that is found on most of the EISA computers.
Other video display cards are the EGA, CGA, and MDA.

Video attributes The video characteristics of alphanumeric
characters displayed on the CRT. Video attributes include
reverse video, blinking, underline, and high intensity.

Word A word is 16 binary bits, made up of two 8-bit bytes. Word­
sized data transfers are often found in 16-bit computers to
double the speed with which data can be moved. (Earlier
personal computers transferred data & byte (8 bits) at a
time.) Note that 8-bit data transfer is still used in trans­
ferring data to most serial and parallel 1/0 devices.

Appendix

7-Bit ASCII Reference Chart

Dec ASCII Octal Hex Binary Definition

0 NUL 000 00 0000000 A@ (used for padding) <NULL>
1 SOH 001 01 0000001 A A (start of header)

2 STX 002 02 0000010 AB (start of text)

3 ETX 003 03 0000011 Ac (end of text)

4 EOT 004 04 0000100 AD (end of transmission)

5 ENQ 005 05 0000101 AE (enquiry)

6 ACK 006 06 0000110 AF (acknowledge)

7 BEL 007 07 0000111 AG (bell or alarm) <BELL>
8 BS 010 08 0001000 AH (backspace) <BS>
9 HT 011 09 0001001 AI (horizontal tab) <TAB>
10 LF 012 0A 0001010 AJ (line feed) <LF>
11 VT 013 OB 0001011 AK (vertical tab)

12 FF 014 oc 0001100 AL (form feed, new page)

222 Appendix
-

13 CR 015 OD 0001101 AM (carriage return) <CR>

14 so 016 OE 0001110 AN (shift out)

15 SI 017 OF 0001111 Ao (shift in)

16 DLE 020 10 0010000 AP (data link escape)

17 DCI 021 11 0010001 AQ (device control 1, XON)

18 DC2 022 12 0010010 AR (device control 2)
19 DC3 023 13 0010011 AS (device control 3, XOFF)
20 DC4 024 14 0010100 AT (device control 4)
21 NAK 025 15 0010101 AU (negative acknowledge)

22 SYN 026 16 0010110 AV (synchronous idle)

23 ETB 027 17 0010111 AW (end transmission block)

24 CAN 030 18 0011000 AX (cancel)

25 EM 031 19 0011001 Ay (end of medium)

26 SUB 032 IA 0011010 AZ (substitute)

27 ESC 033 lB 0011011 A[(escape, alter mode, SEL)
28 FS 034 IC 0011100 A\ (file separator)

29 GS 035 1D 0011101 A] (group separator)

30 RS 036 IE 0011110 - (record separator)

31 us 037 IF 0011111 A- (unit separator)

32 SP 040 20 0100000 space or blank <SP>
33 ! 041 21 0100001 exclamation mark

34 II 042 22 0100010 double quote

35 # 043 23 0100011 number sign, pound sign

36 $ 044 24 0100100 dollar sign

37 % 045 25 0100101 percent sign

38 & 046 26 0100110 ampersand sign

39 ' 047 27 0100111 apostrophe
40 (050 28 0101000 left parenthesis
41) 051 29 0101001 right parenthesis
42 * 052 2A 0101010 asterisk (star)
43 + 053 2B 0101011 plus sign
44

'
054 2C 0101100 comma

45 - 055 2D 0101101 minus sign (dash)
46 056 2E 0101110 period (decimal point)

Appendix 223

47 I 057 2F 0101111 (right) slash

48 0 060 30 0110000 number zero

49 1 061 31 0110001 number one

50 2 062 32 0110010 number two

51 3 063 33 0110011 number three

52 4 064 34 0110100 number four

53 5 065 35 0110101 number five

54 6 066 36 0110110 number six

55 7 067 37 0110111 number seven

56 8 070 38 0111000 number eight

57 9 071 39 0111001 number nine

58 072 3A 0111010 colon

59 073 3B 0111011 semicolon

60 < 074 3C 0111100 less-than sign

61 075 3D 0111101 equal sign

62 > 076 3E 0111110 greater-than sign

63 ? 077 3F 0111111 question mark

64 @ 100 40 1000000 at sign

65 A 101 41 1000001 upper-case letter A

66 B 102 42 1000010 upper-case letter B

67 C 103 43 1000011 upper-case letter C

68 D 104 44 1000100 upper-case letter D

69 E 105 45 1000101 upper-case letter E

70 F 106 46 1000110 upper-case letter F

71 G 107 47 1000111 upper-case letter G

72 H 110 48 1001000 upper-case letter H

73 I 111 49 1001001 upper-case letter I

74 J 112 4A 1001010 upper-case letter J

75 K 113 4B 1001011 upper-case letter K

76 L 114 4C 1001100 upper-case letter L

77 M 115 4D 1001101 upper-case letter M

78 N 116 4E 1001110 upper-case letter N

79 0 117 4F 1001111 upper-case letter 0
80 p 120 50 1010000 upper-case letter P

224 Appendix

81 Q 121 51 1010001 upper-case letter Q
82 R 122 52 1010010 upper-case letter R

83 s 123 53 1010011 upper-case letter S

84 T 124 54 1010100 upper-case letter T

85 u 125 55 1010101 upper-case letter U

86 V 126 56 1010110 upper-case letter V

87 w 127 57 1010111 upper-case letter W

88 X 130 58 1011000 upper-case letter X

89 y 131 59 1011001 upper-case letter Y

90 z 132 5A 1011010 upper-case letter Z

91 [133 5B 1011011 left square bracket

92 \ 134 5C 1011100 left slash (backslash)

93] 135 5D 1011101 right square bracket

94 A 136 5E 1011110 up arrow (carat)

95 - 137 5F 1011111 underscore

96 140 60 1100000 back quote

97 a 141 61 1100001 lower-case letter a

98 b 142 62 1100010 lower-case letter b

99 C 143 63 1100011 lower-case letter c

100 d 144 64 1100100 lower-case letter d

101 e 145 65 1100101 lower-case letter e

102 f 146 66 1100110 lower-case letter f

103 g 147 67 1100111 lower-case letter g

104 h 150 68 1101000 lower-case letter h

105 i 151 69 1101001 lower-case letter i

106 j 152 6A 1101010 lower-case letter j

107 k 153 6B 1101011 lower-case letter k

108 l 154 6C 1101100 lower-case letter l

109 m 155 6D 1101101 lower-case letter m

110 n 156 6E 1101110 lower-case letter n
111 0 157 6F 1101111 lower-case letter o

112 p 160 70 1110000 lower-case letter p
113 q 161 71 1110001 lower-case letter q
114 r 162 72 1110010 lower-case letter r

Appendix 225

115 s 163 73 1110011 lower-case letter s

116 t 164 74 1110100 lower-case letter t

117 u 165 75 1110101 lower-case letter u

118 V 166 76 1110110 lower-case letter v

119 w 167 77 1110111 lower-case letter w

120 X 170 78 1111000 lower-case letter x

121 y 171 79 1111001 lower-case letter y

122 z 172 7A 1111010 lower-case letter z

123 173 7B 1111011 left curly brace

124 174 7C 1111100 vertical bar

125 175 7D 1111101 right curly brace

126 176 7E 1111110 tilde

127 DEL 177 7F 1111111 delete, rub out

80386 chip, 209
80387 chip, 28, 209
80486 chip. See 1486 chip
82350 EISA chip set, 7, 28, 209
82352 EISA bus buffer, 29-30
82355 bus master interface controller,

30
82357 integrated system peripheral,

29
82358 EISA bus controller, 29

Accessory card overlays, 105
ACK signal, 195, 199
_acrtused variable, 105
Active states, notation for, 4
Add function (system configuration),

88
Address bus signal, 59-60
Address lines

for CPU, 14
and reset signal, 18

Address Register, VGA, 130

Index
Addresses

for interrupt controller, 70
1/0, 20-21
parallel port, 195-198

Allocation of memory, 112-113
Alpha VGA mode, 123
Analog monitors for VGA, 121
Angle brackets (<>) for bus ranges, 4
Animation, direct VGA programming

for, 124
Append program (DOS), 42
Application software, 37-38

for i486, 213
interface for, 33

Arbitration signals, 62
Architecture, 13

CPU, 14-19
hardware, 21-30
software, 33-38

Assign program (DOS), 42
Attrib program (DOS), 42
Attribute Address register, VGA, 142

227

228

Attribute controller, VGA, 124
registers for, VGA, 142-144

Attributes, VGA, 148
Auto verify function (system

configuration), 89
Autoconfiguration, overlay files for,

100
Autoexec.bat file, 48, 51

in boot process, 19
select command for, 41

Backup program (DOS), 43
Batch files, 48

commands for, 51-53
Battery-powered CMOS RAM, 37
Baud rate, 174, 181, 184
Binary files, conversion to, 44
Binary numbering system, 15-16
BIOS and BIOS routines

memory map of, 20
operating system loaded by, 37
for parallel printer port, 195-198,

200-206
power-on test by, 36
ROM for, 19
for serial communications, 180-185
as software, 33-37
for VGA display, 145-152, 154-156
for video compatibility, 121-122

Bit Mask register, VGA, 142
Blocks, CFG, 91
Board identification blocks, CFG file,

91
Board specifications function (system

configuration), 89
Boot routine

address for, 18
for operating system loading, 19

Break command (DOS), 43
Break command (DOS configuration),

49
BSWAP instruction (i486), 211
Buffers

bus, 29-30
disk, 49

Buffers command (DOS
configuration), 49

Burntly Corporation, 7
Burst DMA cycles, 73
Bus, EISA

Index

address and data signals on, 59-60
arbitration signals on, 62
buffer for, 29-30
controller for, 29
data transfer control signals on, 60-

62
vs. ISA bus, 57-59
master interface controller for, 30
names of, notation for, 4
signal use on, 63-65
utility signals on, 62-63

Bus connectors, history of, xvii-xviii
BUSY control signal, 195, 196

Cables
direct-connect, 169
null modem, 168
parallel port, 195
serial port, 160-162

Cache memory, 41
in i486, 209

Call command (batch file), 52
Calls, 34, 36
Cards, expansion

compatibility of, 6
l/0 map for, 21
size of, 27-28

CD command (DOS), 43
Central Processing Unit, 13-19
Centronics-type connector, 193, 194
CFG files, 90-99
CGA (Color Graphics Adapter), 121
Change function function (system

configuration), 88
CHANGE overlay function, 107, 111
Change resource function (system

configuration), 88
Character Map Select register, VGA,

129-130
Characters

attributes for, VGA, 148

Index

displaying of, with VGA, 152-154
parallel port I/O of, 201-204
serial port I/O of, 187-188

Chdir command (DOS), 43
Chkdsk program (DOS), 43
CHMOS technology, 7
Clocking Mode register, VGA, 128
Cls command (DOS), 41
CMOS RAM

for configuration settings, 86
testing of, 37

CMPXCHG instruction (i486), 212
Colons (:) for bus ranges, 4
Color Compare register, VGA, 139
Color Don't Care register, VGA, 141-

142
Color Graphics Adapter, 121
Color Plane Enable register, VGA,

144
Color Select register, VGA, 144
Colors, VGA, 123, 139, 141-142, 144,

148
.COM files, conversion to, 44
Comp program (DOS), 43
Compatibility

of connectors, 57-58
of expansion cards, 6
ofi486, 209, 211-212
of video, 121-122

Component interface, 28-29
Computer-to-computer connections,

169
Con command (DOS), 41
Config.sys file

in boot process, 19
commands for, 48-51
and select command, 41

Configuration
files for, 90-99
and mode command, 46
overlay files for. See Overlay files
software for, 7, 85-90

Configuration utility program, 85-87
Connections function (system

configuration), 89
Connectors

communications, 167-171
EISA, 22-27, 57-58
parallel port, 193-195
serial port, 160-162, 173
specifications for, 65
VGA video, 122

Console, changing of, 43
Consortium leaders, 5
Contacts, EISA connector, 57

229

Control Address register, parallel port,
197

Control lines for CPU, 14
Control registers, printer, 198-199
Control signals

data transfer, 60-62
printer, 195

Controllers
attribute, VGA, 124
bus, 29
bus master interface, 30
CRT, 124
graphics, 124
interrupt, 69-70

Coprocessor in i486, 212-213
Copy command (DOS), 37, 43
Copyright information function

(system configuration), 89
Country command (DOS

configuration), 49
CPU (Central Processing Unit), 13-19
CRT controller, VGA, 124

registers for, 130-138
CRT Controller Overflow register,

VGA, 132-133
CTS (Clear To Send) RS232 signal,

164, 167
Ctty command (DOS), 43
Cursor End register, VGA, 134
Cursor Location High register, VGA,

135
Cursor Location Low register, VGA,

135
Cursor Start register, VGA, 134

Data Address register, parallel port,
197

230

Data bits, 171-172
Data bus signals, 59-60
Data Communications Equipment,

159
pinouts for, 167

Data formats for serial
communication, 171-173

Data lines for CPU, 14
Data register, parallel port, 198
Data Rotate register, VGA, 139
Data structures for overlays, 106
Data Terminal Equipment, 159

pinouts for, 167
Date command (DOS), 44
DCD (Data Carrier Detect) RS232

signal, 165, 167
DCE (Data Communications

Equipment), 159
pinouts for, 167

Debug program (DOS), 44
Decimal numbers

and binary, 15
and hexadecimal, 17-18

Del command (DOS), 37, 41, 44
Detailed by slot function (system

configuration), 88
Detailed by type function (system

configuration), 88
Device command (DOS

configuration), 49
Dimensions, EISA card, 27
Dir command (DOS), 37, 41, 44
Direct-connect cables, 169
Direct memory access, 71-73

development of, 7
integrated system peripheral for, 29

Direct programming
of parallel printer port, 197-198
of VGA, 124

Directories
changing of, 43
creation of, 46
listing of, 37, 41, 44
removal of, 4 7
structure of, 48

Disk caching, DOS 4 support for, 41

Diskcomp program (DOS), 44
Diskcopy program (DOS), 44
Disks and disk drives

buffers for, 49
checking of, 43
comparison of, 44
copying of, 43-44
formatting of, 45
joining of, 46
parameters for, 50
virtual, 47

Index

Divisor Latch registers, serial port,
174-175

DMA (direct memory access), 71-73
development of, 7
integrated system peripheral for, 29

DOS 3.3 vs. DOS 4, 38-39
DOS 4.0, 37-38

commands and programs in, 41-48
enhancements for, 39-41
file structures in, 39

Drivers, device, 49
Drivparm command (DOS

configuration), 50
DSR (Data Set Ready) RS232 signal,

165
DTE (Data Terminal Equipment),

159
pinouts for, 167

DTR (Data Terminal Ready) RS232
signal, 165-166

Dynamic memory, allocation of, 112-
113

Echo command (batch file), 52
Edge sensitive interrupts, 69
Edit menu (system configuration), 88
Editing of overlay functions, 101,

111-112
Edlin command (DOS), 41, 44
EGA (Enhanced Graphics Adapter),

121
EMS (Expanded Memory

Specification), DOS 4 support
for, 38-39

Enable Set/Reset register, VGA, 139

Index

End Horizontal Blanking register,
VGA, 131-132

End Horizontal Retrace Pulse
register, VGA, 132

End Vertical Blanking register, VGA,
137

Enhanced Graphics Adapter, 121
Enhancements, DOS 4, 39-41
Erase command (DOS), 37, 44
.EXE files, conversion of, 44
Exe2bin program (DOS), 44
Exit command (DOS), 44
Exit function (system configuration),

88
Expanded memory

DOS 4 support of, 38-39
overlay file for, 102-103

Expansion cards
compatibility of, 6
I/O map for, 21
size of, 27-28

Expansion slots, I/O map for, 21
EXTENDED_INIT BIOS function,

184-185
External registers, VGA, 125-127

Fastopen program (DOS), 45
Fe program (DOS), 45
Fcbs command (DOS configuration),

50
Fdisk program (DOS), 45
Feature Control register, VGA, 126
Files

batch, 48, 51-53
configuration, 90-99
copying of, 48
DOS 4, 39-40
management of, 37, 41-47
open,50
overlay. See Overlay files

Files command (DOS configuration),
50

Find program (DOS), 45
Firmware, 34
Floating-point coprocessor in i486,

212-213

For command (batch file), 52
Foreign language support, 46
Format program (DOS), 45
Formats

CFG file, 90-91
serial data, 1 71-1 73

231

Function identification blocks, CFG
file, 91

Gang of nine, 8
Get Video State function, VGA, 145-

146
Goto command (batch file), 52
Graphics, 123

controller for, VGA, 124, 138-142
DOS 4 support for, 41

Graphics Address register, VGA, 138
Graphics program (DOS), 45
Grounds, RS232, 162, 164

Handles, file, 50
Hard disks, DOS 4 support for, 38
Hardware

BIOS as interface for, 35
EISA, 21-30
interrupts for, 36

Help menu and functions (system
configuration), 89

Hexadecimal numbering system, 16-
18

notation for, 5
History

of bus connectors, xvii-xviii
of EISA, 5-8

Horizontal Display Enable End
register, VGA, 131

Horizontal Pel Panning register,
VGA, 144

Horizontal Total register, VGA, 131
How to use help function (system

configuration), 89
How to use keys function (system

configuration), 89

1486 chip, 22, 209-210
compatibility of, 211-212

232

coprocessor in, 212-213
reset line address for, 18
segmentation architecture of, 212

If command (batch file), 52
!NIT function (overlay), 106-107
!NIT function (parallel port), 201
!NIT routine (BIOS), 181-183
Initialization

of nonvolatile memory, 113
of overlay files, 101, 106-107
of parallel ports, 201
of serial ports, 181-183, 185-186

Initialization identification blocks,
CFG file, 91

Input/output
address map for, 73-81
functions for, 13
memory map for, 20-21
See also Parallel ports; Serial ports

and data communications
Input Status register 0, VGA, 126
Input Status register 1, VGA, 126-127
Insertion force for EISA connector,

23,65
Install command (DOS configuration),

50
Installation, select command for, 41,

47
Integrated system peripheral, 29
Intel chips, names for, 209
Interfaces

application program, 33
BIOS as, 35
component, 28-29
See also Parallel ports; Serial ports

and data communications
Interrupt Enable register, serial port,

175
Interrupt Identification register, serial

port, 176
Interrupts, 34, 69-71

design of, 7
hardware, 36
for serial communications, 173-176

Interval timers, 71-72
INVD instruction (i486), 212

Index

INVLPG instruction (i486), 212
I/O. See Input/output
ISA bus

compatible DMA cycles for, 72
vs. EISA, 5, 21, 57
serial board for, 93-95
signals for, 59-65

Join program (DOS), 46

Keyb program (DOS), 46

Label program (DOS), 46
Labels, volume, 46, 48
Lastdrive command (DOS

configuration), 50
Level triggered interrupts, 69
Line Compare register, VGA, 138
Line Control register, serial port, 176-

177
Line Status register, serial port, 178-

179
Loading

of operating system, 37
of system files, 48

Lock function (system configuration),
88

Logic levels, notation for, 5
Lotus/Intel/Microsoft standard, 38-39

Manual verify function (system
configuration), 89

Map Mask register, VGA, 129
Maps

input/output, 73-81
interrupt controller, 70
NMI register, 71
of system I/O, 21
of system memory, 20

Math coprocessor in i486, 214-215
Maximum Scan Line register, VGA,

133
MCA (Micro Channel Architecture),

xvii, 5
Md command (DOS), 46

Index

MDA (Monochrome Display
Adapter), 121

Mem program (DOS), 41, 46
Memory, 13

cache, in i486, 209
DMA for, 71-73
dynamic allocation of, 112-113
expanded, 38-39, 102-103
installed, detection of, 103-105
map of, 20
nonvolatile, 86, 89-90, 112
RAM and ROM, 19-20
status of, 41, 46
testing of, 36

Memory Mode register, VGA, 130
Menus, DOS 4, 38
Micro Channel Architecture, xvii, 5
Miscellaneous output register, VGA,

125-126
Miscellaneous register, VGA, 141
Mkdir command (DOS), 46
Mode Control register

serial port, 177-178
VGA, 137-138, 143

Mode program (DOS), 46
for serial ports, 172

Mode register, VGA, 140-141
Modem Status register, serial port,

180
Modems

cables for, 161
connections to, 166-169
data bits for, 172
registers for, 180

Modes, VGA, 123
Monitors for VGA, 121
Monochrome Display Adapter, 121
Monochrome VGA attributes, 148
More program (DOS), 41, 46
Move function (system configuration),

88
MS-DOS. See DOS 4.0

Names for CFG files, 90
Networks, file sharing in, 47
Nlsfunc program (DOS), 46

Non-maskable interrupts, 71
Nonvolatile memory

233

for configuration settings, 86, 89-90
initialization of, 112

Notations, 4-5
Null modem cables, 168
Numbering systems, 15-18

Object-code compatibility of i486,
209, 211-212

Offset register, VGA, 136
Open function (system configuration),

87
Operating system, 37

and boot routine, 19
and software architecture, 33-38

Overlay files, 99, 114-118
example of, 101-106
functions for, 106-112
for memory allocation, 112-114
structure of, 100-101

Overscan Color register, VGA, 144
Overview function (system

configuration), 88
OVL files. See Overlay files
_OvlCommonEntry function, 105
OVL.H file, 114-118

Palette registers, VGA, 142
Parallel board, 95-98
Parallel ports, 35-36

addresses and registers for, 195-199
BIOS routines for, 200-206
connector for, 193-195
programming examples for, 201-206

Parameters for overlay files, 101
Parity bits, 171, 181, 184
Partitions, hard disk, 45
Path command (DOS), 46
Paths, DOS command for, 42, 46
Pause command (batch file), 52
Pausing of screen display, 46, 52
PG (Protective Ground) RS232

signal, 162, 164
Pinouts for connectors

EISA, 24-26, 57-58

234

parallel port, 193-195
RS232, 160-161
VGA, 122

Power-on test, 36
Preset Row Scan register, VGA, 133
Print function (system configuration),

88
Print program (DOS), 47
Printer Control register, 198-199
Printer Status register, 199
Printers

BIOS routines for, 200-201
cables for, 161-162
character output to, 201-204
data bits for, 172
parallel port assignment for, 196
registers for, 198, 198-199
signals for, 195, 198
string output to, 204-206

Program listings, notation for, 5
Prompt command (DOS), 47
Providers of EISA products, 8-10
PUT_CHAR function (parallel port),

200-201

RAM (Random Access Memory), 19-
20

CMOS, 37, 86
testing of, 36

Rd command (DOS), 47
Read Character and Attribute

function, VGA, 148-149
Read Cursor Position function, VGA,

147
Read Dot function, VGA, 150-151
Read Map Select register, VGA, 140
Read Only Memory, 19-20

See also BIOS and BIOS routines
Receive Buffer register, serial port,

174
Recover program (DOS), 47
RECV BIOS function, 183
Registers

CPU, 14
NMI, 71
parallel port, 195-199

and reset signal, 18
serial port, 173-180

Index

VGA. See VGA (Video Graphics
Array)

video compatibility with, 122
Rem command (batch file), 52
Rem command (DOS configuration),

50
Remove function (system

configuration), 88
Ren command (DOS), 47
Rename command (DOS), 47
Replace command (DOS), 47
Reset signals for CPU, 18, 36
Resources function (system

configuration), 89
Restore command (DOS), 47
Revert to saved function (system

configuration), 88
RI (Ring Indicator) RS232 signal, 165
Rmdir command (DOS), 47
ROM (Read Only Memory), 19-20

See also BIOS and BIOS routines
Root directory, 39
RS232 interface, 159

communications using, 166-167
computer-to-computer cable for,

169
pin numbering for, 160-163
signals for, 162-166, 171

RTS (Ready To Send) RS232 signal,
164, 166

RXD (Receive Data) RS232 signal,
162,164

Save As function (system
configuration), 87

Scroll bar in system configuration
menu, 86

Scroll Down function, VGA, 150
Scroll Up function, VGA, 150
Search paths, DOS command for, 42
Searching through files, 45
Segmentation architecture of i486,

212
Select program (DOS), 39, 41, 47

Index

Sequencer, VGA, 124
registers for, 127-130

Sequencer Address register, VGA, 127
Serial board, ISA, 93-95
Serial ports and data

communications, 159, 173
BIOS routines for, 180-185
boards for, 93-98
connections for, 160-162, 166-171
programming examples for, 185-189
registers for, 173-180
RS-232C signals for, 162-165
series data format for, 1 71-173

Serial/parallel board, 95-98
Serial port status, reading of, 186-187
Set Active Page function, VGA, 146
Set Color Palette function, VGA, 151
Set command (DOS), 47
Set Cursor Position function, VGA,

146-147
Set Cursor Type function, VGA, 146
Set Mode function, VGA, 145
Set/Reset register, VGA, 138
Settings Menu function (system

configuration), 89
SG (Signal Ground) RS232 signal,

162,165
Share program (DOS), 47
Shell command (DOS configuration),

51
Shell program (DOS 4), 38
Shift command (batch file), 53
Signals

address and data bus, 59-60
arbitration, 62
compatibility of, 57
data transfer control, 60-62
on EISA connector, 24-26
notation for, 4
parallel printer, 195
RS-232C, 162-166, 170
use of, 63-65
utility, 62-63

Slot specific signal lines, 4
SMT (surface-mount technology), 27
Software

architecture for, 33-38
configuration files, 90-99
for EISA configuration, 85-90
overlay files. See Overlay files

235

Software parameters function (system
configuration), 89

Sort program (DOS), 47
Stacks command (DOS

configuration), 51
Start Address High register, VGA,

134
Start Address Low register, VGA,

134-135
Start bits, 171
Start Horizontal Blanking register,

VGA, 131
Start Vertical Blanking register, VGA,

137
Status Address register, parallel port,

197
STATUS function (BIOS), 184
STATUS function (parallel port), 201
Status register, printer, 199
Stop bits, 171, 181, 186
Strings

displaying of, with VGA, 152-156
parallel port output of, 204-206

STROBE signal, 195, 196, 198
Subst program (DOS), 47
Surface-mount technology, 27
Switch & jumper settings function

(system configuration), 89
.Sys files, loading of, 48
Sys program (DOS), 47
System board

memory map for, 21
overlays for, 106

System configurations
changing of, 46
menu for, 86-89

System memory map, 20
System menu (system configuration),

87-88
System reset, 36

Test, power-on, 36

236

Tildes O for active low states, 4
Time command (DOS), 47
Transmit Buffer register, serial port,

173-174
Tree program (DOS), 41, 48
TXD (Transmit Data) RS232 signal,

162, 164, 166, 168
Type A DMA cycles, 72-73
Type B DMA cycles, 73
Type command (DOS), 48

Underline attribute, VGA, 148
Underline Location register, VGA,

136
Unlock function (system

configuration), 88
UPDATE overlay function, 112
Update phase for overlay files, 101
Utility programs, 38
Utility signals, 62-63

Ver command (DOS), 48
Verify command (DOS), 48
Verify function (system

configuration), 88
Version, DOS, 48
Vertical Display Enable End register,

VGA, 136
Vertical Retrace End register, VGA,

135-136
Vertical Retrace Start register, VGA,

135
Vertical Total register, VGA, 132
VGA (Video Graphics Array), 121-

122
attribute controller registers for,

142-144

Index

BIOS functions with, 145-151, 154-
156

components for, 123-124
CRT controller registers for, 130-

138
external registers for, 125-127
graphics controller registers for,

138-142
modes of operation for, 123
programming examples for, 151-156
programming of, 124
sequencer registers for, 127-130
video board for, 98-99

Video
compatibility for, 121-122
connector for, 122
DOS 4 support for, 39, 41
memory for, 20
See also VGA (Video Graphics

Array)
View menu (system configuration),

88-89
Virtual drives, 47
Vol command (DOS), 46, 48
Volume labels, 46

WBINVD instruction (i486), 212
Write Character and Attribute

function, VGA, 147
Write Character Only function, VGA,

147-148
Write String function, VGA, 149-150
Write TTY function, VGA, 149

XADD instruction (i486), 212
Xcopy program (DOS), 48
XMIT BIOS function, 183

Inside the EISA Computers
Tony Dowden

EXPLORE THE INNER WORKINGS OF AN EISA MA.CHINE

In 1988, a group of leading computer manufacturers - including Hewlett-Packard,
Compaq, and Tandy- announced the formation of a consortium to create an
enhanced version of the ISA (Industry Standard Architecture) bus as an alternative
to IBM's Micro Channel Architecture. The new 32-bit EISA bus provides a platform
for powerful high-performance machines, yet provides full compatibility with
over 1000 existing expansion cards. The first EISA machines are now a reality,
and INSIDE THE EISA COMPUTERS gives the first detailed explanation of this
new technology.

This book is the first step toward understanding the power of the EISA bus and
the operation of EISA-based computers. The book begins with a history of the EISA
organization and then turns to an overview of the workings of an EISA computer.
Following is a more technical discussion of the computer, including both hardware
and software components. INSIDE THE EISA COMPUTERS covers:

• the 80486 CPU
• the EISA Interrupts, OMA, and I/0 structures
• programming examples to illustrate the concepts presented
• in-depth discussions of the video, RS232, serial, and parallel interfaces
• a glossary of terms

Whether you are a programmer or developer looking for specific technical
information, or an interested observer of the computer industry, INSIDE THE
EISA COMPUTERS will give you a guided tour of this significant new technology.

Tony Dowden is an experienced Silicon Valley technical writer, with over 150
manuals and several books to his credit. For the past three years he has worked
on documentation at Hewlett-Packard with the EISA development team.

Cover design by Doliber Skeffington

9 7 0201 523973

52195

Addison-Wesley Publishing Company, Inc. ISBN □ -201-52397-3

52397

