
ISA System

Architecture

Third Edition

MINDSHARE, INC.

TOM SHANLEY

AND

DON ANDERSON

EDITED AND REVISED BY

JOHN SWINDLE

....
........

Addison-Wesley Publishing Company

Reading, Massachusetts • Menlo Park, California • New York

Don Mills, Ontario • Wokingham, England • Amsterdam

Bonn • Sydney • Singapore • Tokyo • Madrid • San Juan

Paris • Seoul • Milan • Mexico City • Taipei

Many of the designations used by manufacturers and sellers to distinguish their prod
ucts are claimed as trademarks. Where those designations appear in this book, and
Addison-Wesley was aware of a trademark claim, the designations have been printed
in initial capital letters or all capital letters.

The authors and publishers have taken care in preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connec
tion with or arising out of the use of the information or programs contained herein.

Library of Congress Cataloging-in-Publication Data

ISBN: 0-201-40996-8

Copyright © 1995 by MindShare, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a re

trieval system, or transmitted, in any form or by any means, electronic, mechanical,

photocopying, recording, or otherwise, without the prior written permission of the

publisher. Printed in the United States of America. Published simultaneously in Can

ada.

Sponsoring Editor: Keith W oUman

Project Manager: Eleanor McCarthy

Production Coordinator: Deborah McKenna

Cover design: Barbara T. Atkinson

Set in 10 point Palatino by MindShare, Inc.

123456789 -MA- 9998979695

First printing, February 1995

Addison-Wesley books are available for bulk purchases by corporations, institutions,

and other organizations. For more information please contact the Corporate, Govern

ment, and Special Sales Department at (800) 238-9682.

Dedication

This book is dedicated to the numerous engineers and programmers who con
tributed to this work unknowingly by asking tough questions during Mind
Share seminars. These questions led us to a far greater understanding of ISA
architecture and made this book more complete.

Contents

Contents

Foreword .. xxiii

Acknowledgments .. xxv

About This Book
The MindShare Architecture Series ... 1

Organization of This Book .. 2

Who This Book Is For ... 2

Prerequisite Knowledge... 2

Documentation Conventions... : 3

Hex Notation ... 3

Binary Notation ... 3

Decimal Notation .. 3

Signal Name Representation .. 3

Identification of Bit Fields (logical groups of bits or signals)4

We Want Your Feedback..4

Overview
System Kernel ... 6

Memory Subsystems .. 6

ISA Subsystem .. 7

Origins of ISA ... 7

The IBM PC.. 7

The IBM PCIAT .. 8

The ISA Concept ... 8

Part 1: The System Kernel

Chapter 1: Intro to Microprocessor Communications
Instruction Fetch and Execution ... 11

General ... 11

In-Line Code Fetching... 13

Reading and Writing .. 15

Type of Information Read from Memory.. 16

Type of Information Written to Memory .. 16

The Buses ... 16

The Address Bus ... 17

Control Bus - Transaction Type and Synchronization... 19

The Data Bus - Data Transfer Path .. 19

v

ISA System Architecture

Chapter 2: Introduction to the Bus Cycle
Introduction ... 21

Automatic Dishwasher - Classic State Machine Example .. 21

The System Clock - a Metronome .. 22

Microprocessor's Bus Cycle State Machine ... 23

Address Time .. 24

Data Time... 25

The Wait State.. 26

Chapter 3: Addressing liD and Memory
Evolution of Memory and 1/0 Address Space .. 29

Intel 8080 Microprocessor Address Space .. 29

8086 and 8088 Microprocessor Address Space ... 33

286 and 386SX Address Space.. 34

386DX, 486 and Pentium Processor Address Space ... 35

Memory Mapped 1/0 ..36

The 110 Device .. 36

Chapter 4: The Address Decode Logic
The Address Decoder Concept.. 39

Data Bus Contention (Address Conflicts) ... 41

How Address Decoders Work ... 41

Example 1- PC and Pc/XT ROM Address Decoder ...42

Background.. 42

The PC/XT ROM Address Decode Logic ... 44

Example 2 - System Board 110 Address Decoder ... 47

Chapter 5: The 80286 Microprocessor
The 80286 Functional Units ... 53

The Instruction Unit .. 55

The Execution Unit.. 55

General Registers .. 56

The Status and Control Registers .. 59

The Address Unit .. 63

The Segment Registers ... 63

Segment Register Usage in Real Mode ... 63

Code Segment (CS) & Instruction Pointer (IP) Registers 67

The Data Segment (DS) Register ... 69

The Extra Segment (ES) Register ... 70

Stack Segment (SS) & Stack Pointer (SP) Registers .. 71

Little-Endian Byte-Ordering Rule ... 74

Definition of Extended Memory ... 75

vi

Contents

Accessing Extended Memory in Real Mode .. 76

The Bus Unit .. 81

Address Latches and Drivers .. 81

Instruction Prefetcher and 6-byte Prefetch Queue... 81

Processor Extension Interface .. 82

Bus Control Logic ... 83

Data Transceivers ... 83

80286 Hardware Interface to External Devices .. 83

The Address Bus ... 83

How 80286 Addresses External Locations .. 85

The Data Bus .. 87

The Cardinal Rules.. 88

Cardinal Rule Number One... 88

Cardinal Rule Number Two .. 89

Cardinal Rule Number Three .. 89

The Control Bus ... 89

Bus Cycle Definition Lines ... 90

Bus Mastering Lines ... 90

Protecting Access To Shared Resource ... 92

Ready Line .. 94

Interrupt Lines .. 95

Processor Extension Interface Lines .. 96

The Clock Line .. 97

The Reset Line ... 97

Protected Mode.. 98

Intro to Protected Mode and Multitasking Operating Systems 99

Segment Register Usage in Protected Mode ... 101

Chapter 6: The Reset Logic
The Power Supply Reset .. 107

Reset Button... 108

Shutdown Detect .. 108

Hot Reset .. 109

Alternate (Fast) Hot Reset .. 111

Ctrl-Alt-Del Soft Reset ... 111

Chapter 7: The Power-Up Sequence
The Power Supply - Primary Reset Source ... 113

How RESET Affects the Microprocessor ... 115

Processor Reaction When Output Voltages Stabilize .. 115

The First Bus Cycle ... 116

vii

ISA System Architecture

Chapter 8: The 80286 System Kernel: the Engine
The Bus Control Logic .. 119

The Address Latch .. 1~

Address Pipelining ... 123

The Data Bus Transceivers .. 124

Data Bus Steering Logic•... 126

Scenario One - Read Even-Addressed Location in 8-Bit Device 128

Scenario Two - 8-Bit Read from Odd-Addressed Location in 8-Bit Device 129

Scenario Three - 8-Bit Write to Odd-Addressed Location in 8-Bit Device 131

Scenario Four -16-Bit Write to 8-Bit Device ... 132

Scenario Five -16-Bit Read from 8-Bit Device .. 133

Scenario Six ~ 8-Bit Read from 16-Bit Device .. 134

Scenario Seven -16-Bit Read from 16-Bit Device ... 134

Scenario Eight - 8-Bit Write to 16-Bit Device .. 134

Scenario Nine - 16-Bit Write to 16-Bit Device ... 134

The Ready Logic .. 134

Access Time ... 134

Stretching the Transfer Time .. 135

The Default Ready Timer ... 135

Custom Ready Timers .. 136

Extending the Default Timing ... 137

Shortening the Default Timing .. 138

Chapter 9: Detailed View of the 80286 Bus Cycle
Address and Data Time Revisited .. 139

The Read Bus Cycle .. 141

Bus Cycle A .. 144

Bus -Cycle B .. 145

The Write Bus Cycle ... 146

The Halt or Shutdown Bus Cycle ... 150

Halt ... ; 150

Shutdown... 151

Chapter 10: The 80386 DX and SX Microprocessors
Introduction ... 153

The 80386 Functional Units ... 154

General ... 154

Code Prefetch Unit .. 155

Instruction Decode Unit ... 155

Execution Unit ... 156

General .. 156

viii

Contents

The Registers ... 156

General Registers ... 156

Status, MSW and Instruction Registers ... 157

Debug Registers ... 159

Test Registers ... 160

Segmentation Unit... 160

Paging Unit .. 161

Bus Unit ... 162

Protected Mode.. 162

Page Translation.. 164

Virtual Paging .. 164

Translation Lookaside Buffer ... 170

Virtual-8086 Mode .. 172

Automatic Self-Test .. 174

80386DX External Interface .. 175

The Address Bus ... 175

The Data Bus.. 183

The Control Bus... 184

Bus Cycle Definition Outputs.. 185

Processor Extension Lines ... 185

Address Status Output .. 185

Pipelining Control Input .. 186

Dynamic Bus Sizing (BS16#) .. 186

80386SX External Interface ... 187

Interface Signal Differences .. 187

AO or BLE#... 188

Addressing Scheme, Data Bus Width Ramifications ... 188

Throughput and Compatibility Considerations ... 189

Chapter 11: The 80386 System Kernel
Introduction ... 191

The 80386SX System Kernel .. 192

The 80386DX System Kernel ... 194

80386DX System Kernel with Dynamic Bus Sizing .. 194

Introduction .. 194

Reading from an 8-Bit Device .. 196

One-Byte Read from an 8-Bit Device ... 196

Two-Byte Read from an 8-Bit Device ... 197

Four-Byte Read from an 8-Bit Device .. 198

Writing to an 8-Bit Device ... 200

One-Byte Write to an 8-Bit Device ... 200

Two-Byte Write to an 8-Bit Device ... 201

ix

ISA System Architecture

Four-Byte Write to an 8-Bit Device .. 203

Reading from a 16-Bit Device .. 205

Two-Byte Read from a 16-Bit Device ... 205

Four-Byte Read from a 16-Bit Device ... 206

Writing to a 16-Bit Device .. 207

Two-Byte Write to a 16-Bit Device ... 207

Four-Byte Write to a 16-Bit Device ... , ... 208

Reading from a 32-Bit Device .. 210

Writing to a 32-Bit Device .. 211

80386DX System Kernel without Dynamic Bus Sizing .. 212

Introduction .. 212

Reading from a 16-Bit Device .. 214

Two-Byte Read from a 16-Bit Device ... 214

Four-Byte Read from a 16-Bit Device ... 215

Writing to a 16-Bit Device .. 216

Two-Byte Write to a 16-Bit Device ... 216

Four-Byte Write to a 16-Bit Device ... 217

Chapter 12: Detailed View of the 80386 Bus Cycles
The Bus Cycle Types ~... 221

Address Pipelining Overview... 222

Memory or 1/0 Read Bus Cycle ... 222

Memory or 1/0 Write Bus Cycle , .. 224

Address Pipelining Example ... 226

Interrupt Acknowledge Bus Cycle .. 230

Halt or Shutdown Bus Cycle ... 230

Part 2: Memory Subsystems

Chapter 13: RAM Memory: Theory of Operation
Dynamic RAM (DRAM) Memory... 235

DRAM Addressing Sequence... 236

Rowand Column Address Source .. 238

DRAM Addressing Logic ... 239

Detailed Description of DRAM Addressing Sequence .. 242

How Data is Stored in DRAM ... 244

DRAM Refresh .. 244

Refresh Logic and RAS-only Refresh .. 245

CAS-before-RAS Refresh ... 248

Hidden Refresh... 248

Self-Refresh ... 248

Destructive Read: Pre-Charge Delay and Cycle Time ... 250

x

Contents

DRAM Bank ... 251

DRAM Bank Width ... 253

DRAM Error Detection and Correction .. 256

DRAM Parity .. 256

Error-Checking-and-Correcting Memory ... 259

Page-Mode DRAM and Its Variations ... 259

Page Mode DRAM " ... 259

Enhanced Page Mode DRAM.. 264

Burst and Nibble Mode DRAM .. 265

Static Column RAM (SCRAM) .. 267

Synchronous DRAM .. 268

Interleaved Memory Architecture ... 269

Static RAM (SRAM) ... 271

Chapter 14: Cache Memory Concepts
The Problem .. 273

The Solution .. 274

Principles of Locality ... 277

Temporal Locality .. 277

Spatial Locality ... 277

Cache Performance ... 278

Overall System Performance .. 278

Cache Consistency .. 279

Components of a Cache Subsystem.. 279

Cache Memory .. 279

Cache Management Logic .. 281

Cache Memory Directory ... 281

Intro to Cache Architecture, Coherency, Write Policies and Organization 282

Cache Architectures .. 283

Look-Through Cache .. 283

Look-Aside Cache ... 287

First- and Second-Level Caches ... 289

Combined (Unified) and Split (Dedicated) Caches .. 290

Cache Consistency (Coherency) .. 291

Causes of Cache Consistency Problems .. 292

Write Policy ... 292

Write-Through Cache Designs .. 293

Buffered Write-Through Designs .. 293

Write-Back Cache Designs ... 294

Bus Master I Cache Interaction ... 295

Bus Snooping/Snarfing .. 295

Coherency via Cache Flushing ... 297

xi

ISA System Architecture

Software-Enforced Coherency ... 298

Cache Organization and Size .. 299

Fully-Associative Cache .. 299

Direct-Mapped Cache (One-Way Set-Associative) .. 301

Two-Way Set-Associative Cache ... 304

Four-Way Set-Associative Cache ... 307

Least-Recently Used (LRU) Algorithm ... 307

Cache Line Size .. 308

Cache Size .. 310

First-Level Cache Size .. 310

Second-Level Cache Size .. 310

Cache Addressing ... 311

110 Information Not Cached.. 311

Non-Cacheable Memory .. 312

Testing Memory .. 313

Chapter 15: ROM Memory
ROM Memory - Theory of Operation .. 315

Introduction ... 315

Fusible-Link PROM ... 317

Masked ROM (MROM) .. 317

Eraseable Programmable Read-Only Memory (EPROM) 318

Electrically Eraseable Programmable Read-Only Memory (EEPROM) 319

Flash EEPROM .. 320

ROM's Interface to System ... 320

System Board ROM Memory... 322

Testing .. 322

Shadow RAM .. 324

Shadow RAM and ROM Occupying Different Address Spaces 324

Shadow RAM and ROM Occupy Same Address Space.................................. 325

Double Mapping ROM and Shadow RAM Address Space 325

Recovering Unused ROM Address Space .. 326

32KB System Board ROM Configuration .. 327

64KB System Board ROM Configuration .. 329

ROMs on ISA Cards (Device ROMs) ... 330

Part 3: The Industry Standard Architecture

Chapter 16: ISA Bus Structure
Introduction ... 335

Address Bus ... 338

Data Bus ... 339

xii

Contents

Bus Cycle Definition .. 339

Bus Cycle Timing.. 341

Device Size ... 343

Reset.. 344

DMA ... 345

Interrupts ... 347

Error Reporting Signal ... 349

Miscellaneous Signals.. 350

Chapter 17: Types of ISA Bus Cycles
Introduction ... 351

Transfers with 8-bit Devices .. 352

Transfers with 16-bit Devices .. 355

Standard 16-bit Memory Device ISA Bus Cycle ... 355

Standard 16-bit I/O Device ISA Bus Cycle ... 359

O-Wait State Access to 16-bit Memory Device .. 362

Chapter 18: The Interrupt Subsystem
What Is an Interrupt?.. 365

Microprocessor Response to Interrupt Request .. 366

Interrupt Acknowledge Bus Cycles ... 369

Saving Pointer to Interrupted Program.. 373

Clearing the Interrupt Enable Flag .. 378

Jumping to the ISR .. 378

Resuming the Interrupted Program... 379

When One 8259 Interrupt Controller Isn't Enough .. 383

Servicing Requests to Slave Interrupt Controller... 387

Interrupt Table Entry Assignments .. 388

IRQ2 Redirect .. 389

Shareable Interrupts in ISA Machines .. 391

Generating the Interrupt Request .. 391

Interrupt Table Initialization - Add-in Devices.. 392

Shared Interrupt Procedure.. 393

Phantom Interrupts... 394

Programming the 8259 .. 396

Introduction ... 396

Programming the Registers .. 396

Non-Maskable Interrupt Requests (NMI) ... 399

Software Interrupts ... 402

Software Exceptions .. 402

Software Interrupt Instruction ... 403

Protected Mode Interrupts ... 406

xiii

ISA System Architecture

Chapter 19: Direct Memory Access (DMA)
D MA Concept.. 409

DMA Example ... 410

DMA Controller (DMAC) .. 414

DMA Transfer Types .. 414

DMA Transfer Modes ... 414

Single Transfer Mode ... 415

Block Transfer Mode .. 416

Demand Transfer Mode... 416

Cascade Mode .. 417

DMAC Priority Logic.. 417

DMA Bus Cycle ... 420

Byte or Word Transfers .. 423

DMAC Addressing Capability.. 423

Addressing ISA Memory .. 427

Addressing Local Bus Memory.. 428

Address Translation.. 430

Data Bus Steering .. 430

DMA Transfer Rate .. 431

DMAC Initialization During POST ... 431

Chapter 20: ISA Bus Masters
ISA Bus Master Capability .. 433

ISA Bus Masters in 80386DX and Higher Systems... 435

Address Translation.. 438

Data Bus Steering .. 438

Bus Masters and DRAM Refresh.. 439

Chapter 21: RTC and Configuration RAM

Introduction ... 441

Accessing the RAM Locations... 442

Address Decoder and RTC's Hardware Interface ... 442

Real-Time Clock Function ... 443

Using BIOS to Control Real-Time Clock ... 445

Configuration RAM Usage .. 446

Chapter 22: Keyboard/Mouse Interface
Keyboard/Mouse Interface .. 449

Keyboard.. 450

Mouse ... 450

8042 Local I/O Ports .. 450

Hot Reset. ... 451

xiv

Contents

A20 Gate ... 451

Local Port Definition... 452

Systenl Interface .. 453

Command/Status Port ... 454

Data Port .. 456

BIOS Routine... 457

Chapter 23: Numeric Coprocessor
Introduction ... 459

Setup ... 460

With Numeric Coprocessor Installed ... 460

Numeric Coprocessor Reset .. ~.............................. 463

Without Numeric Coprocessor Installed (Emulation).. 465

Weitek Numeric Coprocessor.. 467

Introduction ... 467

Systems Incorporating Just the Weitek .. 467

General .. 467

Weitek Handling of Intel Coprocessor Instructions .. 467

Systems Incorporating Both Coprocessor Types .. 468

Chapter 24: ISA Timers
ISA Oscillator, OSC.. 469

System Timer (Timer 0)••.. 469

Refresh Timer (Timer 1) ... 471

Speaker Timer (Timer 2) .. 471

Watchdog Timer .. 472

Slowdown Timer... 474

Appendices
110 Address Map... 479

Glossary of Terms ... 491

Index ... 507

xv

Figures

Figures

Figure 1. Simplified Block Diagram of Typical ISA System .. 5

Figure 1-1. Microprocessor's Relationship to External Devices 13

Figure 1-2. Sample Instruction Sequence .. 15

Figure 1-3. The 80286 Address Bus.. 18

Figure 1-4. The 80286 Data Bus ..20

Figure 2-1. Crystal Oscillator Output .. 22

Figure 2-2. Relationship of CLOCK and PCLK .. 23

Figure 2-3. Each Cycle of PCLK Defines the Duration of a State 24

Figure 2-4. Bus Cycle Consisting of Address Time and Data Time 26

Figure 2-5. Bus Cycle with One Wait State Inserted ..27

Figure 3-1. Single 64K Address Space ... 30

Figure 3-2. The 8085's Memory and I/O Address Spaces ... 32

Figure 3-3.8086 and 8088 Memory and I/O Address Space ... 34

Figure 3-4.286 and 386SX Memory and I/O Address Space .. 35

Figure 3-5.386/486/Pentium Processor Memory and I/O Address Space................... 36

Figure 4-1. Relationship of Address Bus, Address Decoders and Devices40

Figure 4-2. PC Memory Address Map43

Figure 4-3. Example PC/XT ROM Address Decoder45

Figure 4-4. System Board 1/0 Address Decoder .. .48

Figure 4-5. Microprocessor Placing I/O Address 0012h on the Address Bus 51

Figure 5-1. 80286 Microprocessor Block Diagram.. 54

Figure 5-2. The 80286 General Registers ... 57

Figure 5-3. The 80286 Status and Control Registers ... 59

Figure 5-4. The Flag Register'S Status, Control and System Bits 60

Figure 5-5. The 80286 Machine Status Word (MSW) Register ... 62

Figure 5-6. Result If Segment Registers Were Restricted to 16 Bits 65

Figure 5-7. Segment Registers Point to Start Address of Memory Segments 66

Figure 5-8. CS and IP Registers .. 68

Figure 5-9. Illustration of Location within the Data Segment ... 70

Figure 5-10. The Stack ... 72

Figure 5-11. Extended Memory ... 76

Figure 5-12. A20 High ... 78

Figure 5-13. A20 Gate ... 80

Figure 5-14. The 80286 Address Bus.. 84

Figure 5-15. The 80286 Data Bus .. 88

Figure 5-16. The Lock Output .. 92

Figure 5-17. Relationship of the Microprocessor and the Numeric Coprocessor 96

Figure 5-18. The Reset Logic .. 98

xvii

ISA System Architecture

Figure 5-19. The Segment Selector ... 102

Figure 5-20. The Segment Descriptor .. 104

Figure 7-1. RESET Is Derived from POWERGOOD. .. 114

Figure 8-1. The Bus Control Logic ... 120

Figure 8-2. The Address Latch ... 122

Figure 8-3. The Data Bus Transceivers .. 125

Figure 8-4. The Data Bus Steering Logic ... 127

Figure 8-5. Access Time ... , 135

Figure 8-6. Custom Ready Timer Logic .. 137

Figure 9-1. The Read Bus Cycle ... 142

Figure 9-2. The 80286 System Engine .. 143

Figure 9-3. The Write Bus Cycle .. 148

Figure 10-1. 80386 Microprocessor Block Diagram .. 154

Figure 10-2. The 80386 General Registers .. 157

Figure 10-3. The 80386 Status and Instruction Registers ... 158

Figure 10-4. The 80386 Debug Registers .. 159

Figure 10-5. The 80386 Test Registers .. 160

Figure 10-6. The 80386 Segment Registers .. 161

Figure 10-7. The 80286 Segment Descriptor Format .. 163

Figure 10-8. The 80386 General Segment Descriptor Format .. 164

Figure 10-9. Control Registers CR2 and CR3 .. 166

Figure 10-10. Translation of Linear Memory Address to Physical Memory Address. 167

Figure 10-11. Another View of the Page Directory, Page Tables and Memory Pages. 170

Figure 10-12. The Translation Look-Aside Buffer .. 171

Figure 10-13. 80386DX Address/Byte Enable Relationship .. 179

Figure 10-14. The 80386DX Data Bus .. 184

Figure 11-1. The 80386SX-Based Kernel .. 193

Figure 11-2. The 80386DX-Based Kernel with Dynamic Bus Sizing Implemented 195

Figure 11-3. The 80386DX-Based Kernel without Dynamic Bus Sizing Implemented 213

Figure 12-1. Non-Pipelined Read Bus Cycle ... 223

Figure 12-2. Non-Pipelined Write Bus Cycle .. 225

Figure 12-3. Transition from Non-Pipelined to Pipelined Operation 229

Figure 13-1. Block Diagram of a DRAM Memory Chip... 237

Figure 13-2. The Address Output by the Current Bus Master 239

Figure 13-3. The Time Delay Device .. 240

Figure 13-4. Block Diagram of DRAM Addressing Logic ... 241

Figure 13-5. DRAM Addressing Timing Diagram ... 243

Figure 13-6. The Refresh Logic ... 246

Figure 13-7. Pre-Charge Delay and Cycle Time .. 251

Figure 13-8. The DRAM Bank .. 253

Figure 13-9. 16-Bit DRAM Bank. .. 254

xviii

Figures

Figure 13-10. 32-Bit DRAM Bank ... 255

Figure 13-11. The System Board DRAM Parity Logic .. 258

Figure 13-12. Page Mode DRAM Support Logic .. 262

Figure 13-13. Page Mode DRAM RAS/CAS Timing ... 264

Figure 13-14. Burst Mode Access Timing .. 266

Figure 13-15. SCRAM Access Timing .. 268

Figure 13-16. Interleaved Memory Architecture .. 270

Figure 14-1. The Cache Memory Concept ... 275

Figure 14-2. Cache Subsystem Components ... 280

Figure 14-3. Relationship of Cache Directory to the Cache Memory............................ 281

Figure 14-4. Look-Through Cache Architecture ... 284

Figure 14-5. Look-Through-Concurrent Bus Operation .. 285

Figure 14-6. Look-Aside Cache Architecture .. 288

Figure 14-7. First- and Second-Level Caches .. 289

Figure 14-8. Fully-Associative Cache Organization ... 300

Figure 14-9. Set-Associative Organization-Direct-Mapped .. 302

Figure 14-10. Direct-Mapped Cache Organization ... 303

Figure 14-11. Two-Way Set-Associative Cache Organization 306

Figure 15-1. The Bit Cell ... 316

Figure 15-2. The PROM Bit Cells ... 317

Figure 15-3. The EPROM Bit CelL.. 319

Figure 15-4. The ROM's Interface to the System ... 321

Figure 15-5. System Board ROM Configuration with 32KB ROMs 329

Figure 15-6. System Board ROM Configuration with 64KB ROMs 330

Figure 16-1. The 8-bit Portion of the ISA Bus ... 336

Figure 16-2. The 16-bit Portion of the ISA Bus .. 336

Figure 16-3. The ISA Connector ... 337

Figure 16-4. The ISA DMA Signals and Associated System Board Logic 346

Figure 16-5. The ISA Interrupt Signals and Associated System Board Logic 348

Figure 16-6. The Channel Check Logic .. 349

Figure 17-1. Standard Access to an 8-bit ISA Device ... 353

Figure 17-2. Standard Access to a 16-bit ISA Memory Device 357

Figure 17-3. Standard Access to 16-bit I/O device... 360

Figure 17-4. Zero-Wait-State Access to a 16-bit ISA Memory Device 363

Figure 18-1. Flowchart of Interrupt Servicing... 367

Figure 18-2. The Intel 8259 Programmable Interrupt Controller (PIC) 368

Figure 18-3. The Interrupt Table (in Real Mode) .. 370

Figure 18-4. The Stack ... 373

Figure 18-5. Stack After Flag Register Push Operation.. 375

Figure 18-6. Stack After CS Register Push Operation .. 376

Figure 18-7. Stack After IP Register Push Operation ... 377

xix

ISA System Architecture

Figure 18-8. Stack Before Pop Operation to Read IP Register 380

Figure 18-9. Stack Before Pop Operation to Read CS Register 381

Figure 18-10. Stack Before Pop Operation to Read Flag Register 382

Figure 18-11. Cascaded Interrupt Controllers .. 385

Figure 18-12. Causes of a NMI ... 401

Figure 19-1. Example Disk/DMA Hardware System .. 411

Figure 19-2. Cascaded DMA Controllers .. 419

Figure 19-3. Single Transfer Mode Timing.. 422

Figure 19-4. The Slave DMAC Memory Address Logic425

Figure 19-5. The Master DMAC Memory Address Logic .. .426

Figure 19-6. Master DMAC Addressing 16-bit ISA Memory427

Figure 19-7. DMA (16-bit channel) Addressing 32-bit System Memory428

Figure 19-8. 16-bit Access to 32-bit Memory with DMA .. .429

Figure 20-1. 0 MA and Bus Mastering .. .434

Figure 20-2. ISA Bus Master Addressing 32-bit System Memory 436

Figure 20-3. Addressing 32-bit Memory with ISA Bus Masters437

Figure 21-1. The RTC / Configuration RAM Chip... 443

Figure 22-1. The Keyboard Controller ... 451

Figure 22-2. Sample 8042 Configuration ... 452

Figure 23-1. The 80287 Numeric Coprocessor .. 462

Figure 24-1. The System Timer, Timer 0 ... 470

Figure 24-2. The Speaker Timer and Associated Logic472

Figure 24-3. The Watchdog Timer and Associated Logic .. 474

xx

Tables

Tables

Table 4-1. State of the Address Lines When Any Memory Address in

Range FOOOOh to FFFFFh Is Addressed... .43

Table 4-2. State of the Address Lines when any Memory Address in

Table 10-4. Relationship of 80386DX Byte Enables, Data Paths and

Table 10-10. Interface Signals That Differentiate the 80386SX from

Range EOOOOh to EFFFFh Is Addressed .. .44

Table 4-3. System Board I/O Address Sub-Range Assignments48

Table 4-4.74138 Output Selection Criteria .. 50

Table 4-5.1/0 Address Range Assigned to Each System Board Device 52

Table 5-1. The Flag Register'S Status, Control and System Bits 61

Table 5-2. The 80286 MSW Register Bits ... 62

Table 5-3. Little-Endian Byte Ordering ... 74

Table 5-4. Big-Endian Byte Ordering (not used on x86) .. 74

Table 5-5. Memory Contents .. 75

Table 5-6. Binary Weighted Value of each Address Line .. 86

Table 5-7. Transfer Size Indicated by AO and BHE# .. 87

Table 5-8. Examples of Even and Odd Addresses ... 89

Table 5-9. Bus Cycle Definition .. 90

Table 5-10. Attribute Byte Definition ... 105

Table 6-1. CMOS Reset Code Definition ... 112

Table 7-1. Values Preset Into 8086 and 8088 Microprocessor Registers by RESET...... 115

Table 7-2. State of 80386DX Outputs While RESET is Asserted.................................... 115

Table 7-3. State of 80286 Outputs While RESET Is Asserted ... 115

Table 8-1. Number of Wait States-Default Ready Timer ... 135

Table 9-1. 80286 Bus Cycle Definition ... 140

Table 9-2. 80286 and 80386 Bus Cycle State Names ... 140

Table 10-1. Format of Page Table Entry Attribute Bits .. 168

Table 10-2. Signals Common to the 80286 and 80386DX Microprocessors 175

Table 10-3. Example Addresses Output by an 80386DX ... 177

Locations in the Currently-Addressed Doubleword.. 178

Table 10-5. Relationship of Addresses and Byte Enables Output by an 80386DX....... 180

Table 10-6. 80386DX Addressing Examples.. 180

Table 10-7. 80386DX Byte Enable Combinations .. 181

Table 10-8. Example Instructions and Resultant Addresses.. 182

Table 10-9. 80386 Bus Cycle Definition ... 185

the 80386DX Microprocessor .. 188

Table 12-1. 80386 Bus Unit States... 230

Table 14-1. Cache Size vs. Hit Rate.. 310

xxi

ISA System Architecture

Table 15-1. The ROM's Interface Signals ... 321

Table 16-1. The ISA Address-Related Signals ... 338

Table 16-2. The ISA Data Bus Paths ... 339

Table 16-3. Bus Cycle Definition Line Decoding .. 339

Table 16-4. The ISA Command Lines .. 340

Table 16-5. Bus Cycle Timing Signals .. 341

Table 16-6. The Size 16 Signal Lines .. 344

Table 16-7. The ISA DMA Signal Lines and Associated System Board Logic 345

Table 16-8. ISA Bus Interrupt Request Line Assignment... .. 347

Table 16-9. Interrupt Request Line Assignment, Lines Not on ISA Bus 347

Table 16-10. The ISA Error Reporting Signal... ... 349

Table 16-11. Miscellaneous ISA Signals ... 350

Table 18-1. Standard ISA Interrupt Table entry number Assignments 389

Table 18-2. Initialization Sequence for the Master Interrupt Controller. 397

Table 18-3. Initialization Sequence for the Slave Interrupt Controller 398

Table 18-4. System Control Port B at I/O Address 0061h (Read) 400

Table 18-5. System Control Port A at I/O Address 0092h.. .400

Table 18-6. Interrupt Table Entry Assignment ... 403

Table 19-1. DMA Clock Frequency .. 420

Table 19-2. DMAC States .. 421

Table 19-3. DMAC Memory Address and Page Registers-I/O Locations424

Table 19-4. ISA DMA Transfer Rates431

Table 19-5. Initialization of DMACs .. 432

Table 21-1. The Real-Time Clock Bytes ... 443

Table 21-2. RTC Status Register A ... 444

Table 21-3. RTC Status Register B..444

Table 21-4. RTC Status Register C ... 445

Table 21-5. RTC Status Register D ... 445

Table 21-6. Configuration RAM Usage ... 446

Table 21-7. The Reset Code Byte .. 447

Table 22-1. Sample Keyboard/Mouse Interface-Local Input Port.............................. 453

Table 22-2. SCl-mple Keyboard/Mouse Interface-Local Output Port.......................... .453

Table 22-3. Keyboard/Mouse Interface-Test Port... ... 453

Table 22-4. 8042 Sample Keyboard/Mouse Interface Command List455

Table 23-1. The Numeric Coprocessor Control Bits in the MSW Register460

Table 23-2. Intel Coprocessor /Processor Communication Signals464

Table 23-3. Weitek Interpretation of the Memory Address .. .468

xxii

Foreword

Have you ever started using a new tool and shortly thereafter wondered how
in the world you ever got along without it? Well, that is how I feel about this
book, and many of my technical compatriots here at Dell Computer Corpora
tion would agree. Let's face it, the fast moving computer world is treacherous
and follows Darwin's Law of Survival of the Fittest, where the strong survive
and the weak get eaten. Don Anderson and Tom Shanley have provided you
with a mechanism to maximize your chances of survival in this exciting world
of computers.

ISA System Architecture is what I call the missing link. There exist many com
plementary tools to this book such as various chip data books, programming
manuals, "light" architecture books, "how to" books, logic analyzers, scopes,
debuggers, digital logic textbooks and so forth, but none that describe the AT
architecture from a system point of view in such an organized and under
standable fashion. All of the fundamental and critical areas of a functional ISA
system are explained in detail with diagrams and examples including bus cy
cles, addressing, I/O and memory, decode logic, reset logic, power-up, mi
croprocessors, the system kernel, RAM, cache, ROM, interrupts, DMA,
busmastering, RTC and configuration RAM, keyboard/mouse interface,
coprocessor, timers, and more. Ergo, you've got a comprehensive reference on
AT system functionality; you've got the missing link.

We were fortunate to have Don and Tom conduct several training classes
based on this book here at Dell (and continue to do so). Members of my group
consist of engineers and technicians who are first to test systems after they
leave development; we perform a variety of tests including hardware, soft
ware, and environmental tests. The information obtained from this class and
book was excellent, but what was pleasantly surprising was the reaction of the
folks who attended these sessions. During the classes and right after, there
were people throughout the lab with big grins saying something to the effect
of "This is great. I've been wanting to tie all of this information together so I
could not only understand it fully, but put it to good use." And they have put
the information to good use, which has helped us improve our process and
test smarter.

This book is quite valuable as a training tool. The first technical literature that
a new engineer or technician in my group studies is this book. This allows him
or her to learn not only the system but the fundamentals required to test and
troubleshoot a system in the most efficient way. Many technical managers in
other groups here such as design, manufacturing, sustaining, technical sup
port, and repair use this book in a similar manner. As a matter of fact, train

xxiii

ISA System Architecture

ing classes using this book are available on a fairly regular basis within our
entire organization. Not only do our technical people have a sound foundation
on the building blocks of a system, but throughout the company, the termi
nology used is consistent. A BALE is a BALE is a BALE throughout the com
pany.

Finally, I'd like to expand on the concept of testing smarter and improving
your process. All of us in this business know that we must improve our proc
esses to successfully compete. We need to decrease our time-to-market cycles,
perform more complex processes in this shorter time period, and achieve this
improvement on increasingly complex products. This is a real, not imaginary,
burden to bear! However, if implemented successfully, the benefits I've men
tioned can be attained in addition to improved methods and throughput, bet
ter troubleshooting techniques, reduction in field returns, and an increase in
customer service quality. Quite simply, this text can be used as a part of this
process.

In closing, I'd like to commend Don and Tom for a job well done. There is no
doubt that their blood, sweat and tears have produced an immensely valuable
technical work that they can well be proud of. The book is an invaluable tool
and reference on ISA architecture and time reading it is time well spent. You
might just end up wondering how you ever got along without it!

Dave Greenberg B.S.E.E, C.Q.E.
Manager, Test Operations
Dell Computer Corporation

xxiv

Acknowledgments

To Jerry Farnham for his help in editing the earlier versions of this book and
for his many ideas that were incorporated.

To John Swindle for his tireless attention to detail during the editing and re
vision of the third edition.

xxv

About This Book

The MindShare Architecture Series

The MindShare Architecture book series includes: ISA System Architecture,
EISA System Architecture, 80486 System Architecture, PCI System Architecture,
Pentium System Architecture, PCMCIA System Architecture, PowerPC System Ar
chitecture, Plug-and-Play System Architecture, and AMD K5 System Architecture.

Rather than duplicating common information in each book, the series uses the
bUilding-block approach. ISA System Architecture is the core book upon which
the others build. The figure that follows illustrates the relationship of the
books to each other.

Platfonn
_______m_d~~~ffi_d_em _____

Series Organization

1

ISA System Architecture

Organization of This Book

ISA System Architecture is divided into three parts:

• 	 Part 1: The System Kernel. This section provides a detailed tutorial on
how Intel X86 microprocessors communicate with memory and I/O de
vices. Included is the support logic which allows the microprocessor to
communicate with 8- and 16-bit devices and detailed descriptions of the
signals and timing involved in all Bus Cycle types.

• 	 Part 2: Memory Subsystems. The memory section provides a detailed
theory of operation of RAM and ROM devices, along with implementa
tions commonly used in ISA systems. The section also covers the concepts
and terminology related to cache memory designs.

• 	 Part 3: The Industry Standard Architecture. This section provides a de
tailed discussion of the ISA Bus Architecture including ISA bus cycles and
timing, along with ISA implementations of Interrupts, DMA, Real-Time
Clock and Configuration RAM, Numeric Coprocessors, Keyboard/Mouse
Interface, and Timers.

Who This Book Is For

This book is intended for use by hardware and software design and support
personnel. Due to the clear, concise explanatory methods used to describe
each subject, personnel outside of the design field may also find the text use
ful.

Prerequisite Knowledge

The approach taken by this book assumes moderate technical knowledge on
the part of the technical audience. It is assumed that the reader has had expo
sure to PCs in a technical capacity (hardware designer, programmer, technical
support, repair, and so on). Familiarity with the binary and hexadecimal
numbering systems and their application to electronic computing is essential.
To ensure an optimum level of understanding, every attempt is made to ex
plain terminology as it is encountered and to avoid mystifying terms.

2

About This Book

Documentation Conventions

This section defines the typographical conventions used throughout this book.

Hex Notation

All hex numbers are followed by an "h." Examples:

9A4Eh

0100h

Binary Notation

All binary numbers are followed by a lib." Examples:

0001 0101b

01b

Decimal Notation

When required for clarity, all decimal numbers are followed by a lid." Exam
ples:

256d

128d

Signal Name Representation

Each signal that assumes the logic low state when asserted is followed by a
pound sign (#). As an example, the REFRESH# signal is asserted low when the
refresh logic runs a refresh bus cycle.

Signals that are not followed by a pound sign are asserted when they assume
the logic high state. As an example, DREQ3 is asserted high to indicate that a
device using DMA Channel three is ready for data to be transferred.

3

ISA System Architecture

Identification of Bit Fields (logical groups of bits or
signals)

All bit fields are designated as follows:

[X:Y]

where "X" is the most-significant bit and "Y" is the least-significant bit of the
field. As an example, the I5A data bus consists of 50[15:0], where S015 is the
most-significant and ~OO the least-significant bit of the field.

We Want Your Feedback

MindShare values your comments and suggestions. You can contact us via
mail, phone, fax or Internet email.

Phone: (214) 231-2216

Fax: (214) 783-4715

Email: mindshar@interserv.com

BBS: (214) 705-9604

Mailing Address:

MindShare, Inc.

2202 Buttercup Drive

Richardson, TX 75082

4

mailto:mindshar@interserv.com

Overview

This book details the operation of ISA systems. Figure 1 below illustrates most
of the subsystems covered. The book is divided into three major parts:

• The System Kernel
• Memory Subsystems
• The Industry Standard Architecture

System Kernel

Micro

Processor

I

~
DMA

Subsystem

Interrupt

Subsystem

RTC &
Config
RAM

ISA
Timers

System
Memory

System
ROM

I
-,

ISA Subsystem

en »
OJ
c:
(J)

ISA

Expansion

Slots

~-------------------~
Figure 1. Simplified Block Diagram of Typical ISA System

5

ISA System Architecture

In addition to detailed analysis of the hardware, many programming exam
ples are covered with the purpose of tying the software and hardware to
gether. This provides a very comprehensive understanding of system
operation.

Refer to figure 1 during the following discussion of each major section.

System Kernel

The system kernel consists of the microprocessor and bus control logic, as well
as other support circuitry not shown in figure 1. The kernel provides the basic
signal, timing and protocols necessary for the microprocessor to communicate
with the rest of the system.

This section provides a detailed tutorial on how Intel X86 microprocessors
communicate with memory and I/O devices. Included is the support logic
which allows the microprocessor to communicate with 8- and 16-bit devices
and detailed descriptions of the signals and timing involved in all Bus Cycle
types.

Several kernel implementations are possible with ISA systems depending on
the exact processor used. Since ISA Architecture is based on the 8MHz IBM
PC/AT, the initial kernel discussion is based on the Intel 80286 microproces
sor running at 8MHz. 80286 microprocessors running at speeds faster than
8MHz require slight modification to the kernel. More drastic changes are re
quired when using an 80386, 80486 or Pentium microprocessor in ISA sys
tems. All major variations to kernel design and implementation are covered.
Note that a thorough understanding of the 80286 kernel is essential before
studying the 80386 kernel and that a thorough understanding of the 80386
kernel is essential before studying the 80486 and Pentium processors.

Memory Subsystems

Memory subsystems include main system memory, system ROM, and cache
memory (not shown in figure 1). Design of the memory subsystem is key to
obtaining maximum system performance at a reasonable price. A wide variety
of memory devices are used in ISA systems to achieve high yet economical
performance. Along with these devices come various memory architectures
also designed to increase system performance.

6

Overview

The memory section provides a detailed theory of operation of RAM and
ROM devices, along with implementations commonly used in ISA systems.
The section also covers the concepts and terminology related to cache memory
designs.

ISA Subsystem

The ISA subsystem includes the bus structures and standard devices used in
all ISA systems. The ISA buses operate at speeds of 8MHz to 8.33MHz and
include ability to communicate with both 8- and 16-bit devices. By having a
range of allowable bus speeds, the system designer can easily divide the mi
croprocessor's clock frequency down to the ISA clock frequency. Specific
functions common to all ISA systems include Direct Memory Access (DMA),
Interrupts, Keyboard, Real-Time Clock (RTC) and Configuration RAM, and
the ISA Timers. Each of these functions must operate according to ISA stan
dards.

This section provides a detailed discussion of the ISA Bus Architecture includ
ing ISA bus cycles and timing, along with ISA implementations of Interrupts,
DMA, Real-Time Clock and Configuration RAM, Numeric Coprocessors,
Keyboard/Mouse Interface, and Timers.

Some functions within ISA systems can be implemented in different ways de
pending on manufacturer preference, while others must conform to precise
ISA standards. Items that can be implemented in different ways are described
in general and followed by specific examples that have been chosen based on
common or most recent implementations.

Origins of ISA

The IBM PC

The ISA bus structure is based partially on the first Intel-based PC: the IBM
Pc. The original PC used an Intel 8088 running at 4.77MHz, limiting the ex
pansion bus for this system to eight data lines and twenty address lines. Sub
sequent designs of the PC included support for features such as fixed disk
drives, but the bus structure remained the same to ensure continuing com
patibility for a growing number of expansion devices.

7

ISA System Architecture

The IBM PC/AT

The Intel 80286-based PC/AT maintained compatibility with the PC and of
fered additional capability. IBM designed the PC/AT so that 8-bit boards used
in the original PC could work in the PC/AT. To accommodate the sixteen data
lines and twenty-four address lines of the Intel 80286, IBM designed an addi
tional connector to extend the 8-bit PC connector. These two connectors be
came the new industry standard.

System compatibility with ISA was originally based on the 8MHz IBM
PC/AT; however, no written specification on the system architecture was
available. The acid test for software and hardware compatibility was "if it ran
on the 8MHz PC/AT it was compatible." That is, if software and hardware
ran successfully on a PC/AT it should also run on a compatible machine. The
lack of a standard however, created numerous problems for designers of both
software and hardware.

The ISA Concept

The signals found on each ISA slot can be divided into three basic categories:

• The Address Bus group
• The Control Bus group
• The Data Bus group

These signal groups are present on the 8- and 16-bit expansion slots found in
all ISA-compatible and IBM PC products. In an ISA system, each of these sig
nal groups has been extended to provide additional capability not found in
the IBM PC and PC/XT architecture.

The ISA standard encompasses more than just the structure of the expansion
connectors. The ISA system must also provide support logic for interrupt
handling, direct memory access, timers, error handling, the keyboard inter
face, and configuration RAM. Additionally, the IBM PC/AT and ISA com
patibles, provide limited support for bus mastering. The following chapters
provide detailed information regarding every aspect of the ISA architecture.

8

Part 1

The System Kernel
Part 1 covers the background information necessary to an understanding of
the material covered in Parts 2 and 3. The focus is on the mechanism used by
microprocessors in the Intel X86 family when communicating with memory
and I/O devices.

Part 1 includes the following chapters:

• Chapter 1: Intro To Microprocessor Communications
• Chapter 2: Introduction To the Bus Cycle
• Chapter 3: Addressing I/O and Memory
• Chapter 4: The Address Decode Logic
• Chapter 5: The 80286 Microprocessor
• Chapter 6: The Reset Logic
• Chapter 7: The Power-Up Sequence
• Chapter 8: The 80286 System Kernel
• Chapter 9: Detailed View of the 80286 Bus cycle
• Chapter 10: The 80386DX and SX Microprocessors
• Chapter 11: The 80386 System Kernel

Chapter 1: Intro to Microprocessor Communications

Chapter 1
This Chapter

This chapter defines the microprocessor's role in the system, the usage of
memory, and defines the role of the address, control and data buses.

The Next Chapter

The next chapter, "Introduction to the Bus Cycle," introduces the concept of
the bus cycle and defines the basic sequence of events when the microproces
sor uses a bus cycle to communicate with memory or an I/O device.

Instruction Fetch and Execution

General

The microprocessor is an engine with only one task in life - to continually
read instructions from memory and execute them (perform the operations
specified by the instructions).

An instruction tells the microprocessor to perform one of three basic types of
operations:

• 	 Read data from an external device.
• 	 Write data to an external device.
• 	 Perform an internal operation that doesn't involve reading from or writing

to the outside world (such as math functions).

Note - As used in this book, the term external device refers to a device ex
ternal to the microprocessor chip itself. Refer to figure 1-1.

The instructions fetched (read) from memory tell the microprocessor what to
do. When a microprocessor-based system is initially powered up, the micro
processor knows what address in memory to fetch (read) its first instruction

11

ISA System Architecture

from. This location is known as the power-on restart address. A group of in
structions that cause the microprocessor to perform a particular task is re
ferred to as a program. After fetching the first instruction from the restart
address, the microprocessor is totally dependent on the program to tell it
what to do.

In a properly functioning system, the microprocessor is never idle. At any
given moment in time, the microprocessor is reading data from an external
device, writing data to an external device, or executing an instruction that
doesn't require that a read or write take place (for example, an instruction to
add the contents of two of the microprocessor's internal registers together).

The microprocessor communicates with all external devices by reading data
from them or writing data to them. The terms read and write are extremely
important in any discussion of microprocessors. Always think of reading and
writing from the point of view of the microprocessor rather than from that of
the device the microprocessor is communicating with. The microprocessor
does the reading and writing. Devices are read from and written to by the mi
croprocessor. If you think of the terms read and write from the device's point
of view, much of the information in this book will not make sense.

12

Chapter 1: Intro to Microprocessor Communications

s:
a
o· External

Device

"0 a
(')
CD

~ 	 External
Device.....

External
Device

External
Device

Figure 1-1. Microprocessor's Relationship to External Devices

In-Line Code Fetching

When a inicroprocessor fetches an instruction from a memory location and
executes it, the address of the next instruction mayor may not be specified as
part of the currently executing instruction.

Case 1: 	The currently executing instruction doesn't specify the memory
address of the next instruction. The microprocessor automatically
assumes the next instruction is to be fetched from the next sequential
memory location.

or
Case 2: 	The currently executing instruction specifies the memory address of

the next instruction. Execution of the instruction, called a jump
instruction, causes the microprocessor to alter its program flow
(which is usually sequential). Rather than fetching its next instruction

13

ISA System Architecture

from the next sequential memory location, the microprocessor fetches
it from the memory location specified by the instruction.

After executing a JUMP instruction, the microprocessor resumes fetching in
structions from sequential memory locations until another JUMP instruction is
executed. Most well-written programs do not contain an excessive number of
JUMPs. Statistically then, the microprocessor is executing non-jump instruc
tions the majority of the time. This means that the microprocessor is perform
ing what is commonly referred to as in-line code fetches most of the time.

As an example, refer to figure 1-2. Assume that the microprocessor has just
fetched the ADD instruction from location OOOOOh in memory. The flow of in
structions fetched and executed proceeds as follows:

1. 	 The microprocessor executes the ADD instruction fetched from location
OOOOOh. Since it's not a JUMP instruction, the microprocessor fetches its
next instruction from memory location 00001h.

2. 	 The microprocessor executes the SUBTRACT instruction fetched from lo
cation 1. Since it's not a JUMP, the microprocessor fetches its next instruc
tion from memory location 00002h.

3. 	 The microprocessor executes the MOVE instruction fetched from location
2. Since it's not a JUMP, the microprocessor fetches its next instruction
from memory location 00003h.

4. 	 The microprocessor executes the JUMP 10000 instruction fetched from lo
cation 3. The JUMP instruction alters program flow. Rather than fetch its
next instruction from the next sequential memory location (00004h), the
microprocessor fetches it from memory location 10000h.

5. 	 The microprocessor executes the MOVE instruction fetched from location
10000h. Since it's not a JUMP, the microprocessor fetches its next instruc
tion from memory location 1000lh.

6. 	 And so on.

14

Chapter 1: Intro to Microprocessor Communications

l0005h

l0004h

l0003h

l0002h

Compare 	 lOOOlh

lOOOOhMove
OFFFFh

OFFFEh

OFFFDh
'-. ~.-...-------

00008h

00007h

00006h

00005h

00004h

Jump 10000 00003h

00002hMove
Subtract OOOOlh

Add OOOOOh

Figure 1-2. Sample Instruction Sequence

Reading and Writing

The microprocessor communicates with external devices under the following
circumstances:

• 	 To fetch (read) the next instruction from memory.
• 	 When the currently executing instruction directs the microprocessor to

read data from an external device.
• 	 When the currently executing instruction directs the microprocessor to

write data to an external device.

15

ISA System Architecture

The microprocessor communicates with external devices under some other
special circumstances as well, but reading or writing occurs for one of the
three reasons cited above most of the time.

Type of Information Read from Memory

The microprocessor reads the following types of information from memory:

• Instructions
• Data

The microprocessor reads instructions from memory on an on-going basis.
Data, written into a memory location by a previously executed instruction, is
read from memory when the microprocessor executes an instruction that tells
it to read data from the memory location.

Type of Information Written to Memory

The Intel x86 microprocessors can only write data, not instructions, into mem
ory locations. Instructions are never written into memory by the microproces
sor. Instructions (the program) are read from the floppy disk and written into
memory by the DMA Controller, not by the microprocessor. Similarly, in
structions may be read from the hard disk and written into memory by a bus
mastering disk controller, instead of by the microprocessor. DMA and bus
mastering are covered in the chapters entitled "Direct Memory Access
(DMA)" and "ISA Bus Masters."

Back in the bad old days, programmers would sometimes write programs that
modified themselves on-the-fly by writing new instructions into memory and
then executing them. This is known as self-modifying code and, generally
speaking, programmers who write this type of program should be cast into
the pit. Programs of this nature are a nightmare to understand and maintain,
even for the person who wrote them.

The Buses

When the microprocessor must read data from or write data to an external
device, it uses three sets of signal lines to perform the read or write operation.
They are:

16

Chapter 1: Intro to Microprocessor Communications

• The address bus
• The data bus
• The control bus

The following sections describe the role played by each of these three buses
during a read or write operation.

The Address Bus

The microprocessor uses the address bus to identify the external device (and
location within the device) that it wishes to communicate with.

The address bus consists of a number of signal lines known as address lines.
As an example, the 80286 microprocessor has 24 address lines, referred to as
A[23:0]. Refer to figure 1-3.

When the microprocessor must read data from or write data to an external
device, it will place the address on the address bus signal lines as a pattern of
ones and zeros. This address pattern identifies the external device and the lo
cation within the device. In Figure 1-3, the microprocessor has placed address
00010Sh on the address bus. For a review of the hexadecimal numbering sys
tem, refer to the appendix.

17

ISA System Architecture

A23 0

A22
A21

0

0
Oh

A20 0

A19 0

A18

A17

0

0
Oh

A16 0

A15 0

A14

A13

0
0 Oh

A12 0

A11 0

A10 0 1h
A9 0

A8 1

A7 0

A6

A5

0

0
Oh

A4 0

A3 0

A2

A1

1

0
5h

AO 1

BHE# 0

80286

Figure 1-3. The 80286 Address Bus

Each device has an address decoder that detects if the address currently on
the address bus is one assigned to its respective device. If it is, the address de
coder then informs its associated device that the microprocessor is communi
cating with it. The addressed device then examines the address further to
identify the exact location the microprocessor is communicating with within
the device. This subject is covered in the chapter entitled "The Address De
code Logic."

18

Chapter 1: Intro to Microprocessor Communications

Control Bus - Transaction Type and Synchronization

The control bus basically consists of all the microprocessor's signal lines other
than the address bus and data bus lines. The fundamental purposes of the
control bus are to:

• 	 Identify the type of transaction (for example, as a read or write transac
tion).

• 	 Synchronize the fast processor to the slow external devices it is reading
from or writing to.

The Data Bus - Data Transfer Path

The microprocessor's only purpose in performing a read or write transaction
is to transfer data between itself and the currently addressed external device.
The sole purpose of the data bus is to provide a data path for the transmission
of the data between the two devices. As an example, the 80286 microprocessor
has 16 data bus signal lines, designated D[15:0]. This means that the 80286 mi
croprocessor can read or write 16 bits of information between itself and an ex
ternal device during a single transaction.

The data bus is often referred to as a bi-directional bus. This doesn't mean that
data can be transferred in both directions simultaneously; rather, it means that
data can be transferred from the microprocessor to an external device during
a write operation, or from an external device to the microprocessor during a
read operation. If data is ever sent in both directions at once, something is
broken! Refer to figure 1-4.

19

ISA System Architecture

80286

Figure 1-4. The 80286 Data Bus

Note that the 80286 data bus has been illustrated as two 8-bit data paths,
rather than as one 16-bit data path. This was done for a very good reason that
is covered in the chapter entitled liThe 80286 Microprocessor."

20

Chapter 2: Introduction to the Bus Cycle

Chapter 2
The Previous Chapter

In "Introduction to Microprocessor Communications," the microprocessor's
role in the system, usage of memory, and the role of the address, control and
data buses were defined.

This Chapter

When the microprocessor must communicate with an external device, it uses
its buses. The sequence of events necessary when using the buses to perform a
read or write transaction is referred to as a bus cycle. This chapter introduces
the microprocessor's bus unit, the concept of a state machine, and defines ad
dress time, data time and the wait state.

The Next Chapter

The next chapter, "Addressing I/O and Memory," provides a definition of an
I/O device. It defines the method used by the x86 processors to distinguish
memory and I/O addresses and the range of memory and I/O addresses
available to the 8088, 8086, 80286, 80386, 80486 and Pentium microprocessors.

Introduction

The microprocessor's internal bus unit is a state machine that performs the re
quired bus cycle when the microprocessor must communicate with another
device. The concept of the state machine is introduced, as well as the concept
of the clock, or timebase, used by the state machine to define the duration of
each state.

Automatic Dishwasher - Classic State Machine Example

Any task is easier to perform when divided into logical steps. A state machine
is a device (either mechanical, electronic, or software-based) designed to per

21

ISA System Architecture

form a task that can be divided into steps. Prior to starting the task, the state
machine is said to be idle. When commanded to perform the task, the state
machine leaves the idle state and moves through a series of steps, or states.
Predefined portions of the overall task are performed during each state. The
duration of each state is defined by a clock, or timebase.

In the case of the automatic dishwasher, the dishwasher is idle until you start
it. A timer then begins to run, defining the duration of each state the dish
washer must pass through in order to accomplish the overall task of washing
dishes. These states are:

• During the first state, the state machine wets down the dishes.
• During the second state, the dishes are soaped.
• During the third state, the dishes are rinsed.
• During the fourth and final state, the dishes are dried.
• The state machine then returns to the idle state.

Most dishwashers also have one or more switches the user can manipulate to
alter the sequence of states or possibly to cause the machine to execute a par
ticular state more than once. A perfect example would be the "Pot Scrubber"
button. When pressed, this might cause the state machine to execute the
"rinse" state two times instead of one.

The System Clock - a Metronome

Every x86 microprocessor has an input called CLOCK (or a similar name).
This signal is produced when a voltage is applied to a crystal oscillator. It then
begins to generate an electrical signal of a specific frequency. In essence, the
oscillator acts as a highly accurate electronic tuning fork. The signal looks like
Figure 2-1.

Figure 2-1. Crystal Oscillator Output

All microprocessors perform their operations in a highly organized, pre
defined fashion. Portions of each task are always performed during pre
defined time slots. The duration of each time slot is defined by the output of
the crystal oscillator.

22

Chapter 2: Introduction to the Bus Cycle

Indirectly, the 80286 and 80386 microprocessors use the CLOCK input to de
fine the length of a time slot. They divide the frequency of the CLOCK input
by two to yield an internal timebase referred to as the Processor Clock
(PCLK). The CLOCK input is referred to as a double-frequency clock because
its frequency is double that of the required PCLK. The 486DX microprocessor,
on the other hand, uses the CLOCK input as the PCLK without dividing it.
Clock-doubling or clock-multiplying processors, such as the DX4, use phase
locked loops or similar technology to multiply (instead of divide) the CLOCK
signal to produce a PCLK that is faster than CLOCK.

PCLK is the real metronome that defines the duration of the time slots during
which the microprocessor performs a task or a pre-defined portion of a task.
Refer to Figure 2-2.

PCLK

Figure 2-2. Relationship of CLOCK and PCLK

As illustrated in figure 2-2, PCLK is half the frequency of CLOCK. When a PC
manufacturer refers to the operating speed of their computer as 8MHz
(megahertz, or million cycles-per-second), lOMHz, etc., they are referring to
the microprocessor's PCLK frequency, not that of CLOCK.

Microprocessor's Bus Cycle State Machine

When the microprocessor performs a read or a write operation, it initiates a
sequence of events called a bus cycle.

During a bus cycle, the microprocessor places the address on the address bus,
sets the control bus lines to indicate the type of transaction (such as a memory
read or I/O write bus cycle), and transfers the data between the target loca
tion and itself. This happens in a very orderly fashion, with each step occur
ring at the proper point during the appropriate time slot.

x86 microprocessor chips include a subsystem called a bus unit, tasked with
the job of running bus cycles when required. The bus unit is a state machine

23

ISA System Architecture

that is stepped through its various states by the PCLK signal. The duration of
each state is one cycle of PCLK.

Refer to figure 2-3. As an example, if the CLOCK input frequency is 40MHz
(40 million cycles per second), the PCLK frequency is half that frequency, or
20MHz. In order to determine the duration of one cycle of PCLK, just divide
20 million cycles-per-second into one second. In this example, a PCLK cycle is
SOns in duration (50 nanoseconds; 0.000000050 seconds or 50 billionths of a
second). Since the bus unit state machine's states are each one PCLK in dura
tion, this means that each bus unit state is SOns in duration.

I I

I state state I state I state I state I

IE ~IE ~IE ~IE ~IE ~I
I I I I I

40MHz

PCLK
20MHz

I

50ns I 50ns 50ns 50ns 50ns
I

Figure 2-3. Each Cycle of PCLK Defines the Duration of a State

If not currently engaged in a bus cycle (a read or a write operation), the bus
unit state machine is said to be in the idle state. It remains in the idle state
until the microprocessor must perform a bus cycle.

Address Time

When the microprocessor must perform a read or a write, its bus unit initiates
a bus cycle. The bus unit leaves the idle state and enters a state that will be re
ferred to in this text as address time. Although Intel uses a different name for
this state, address time is the name that will be used in this text for clarity's
sake. During address time, one PCLK cycle in duration, the microprocessor
places the address on the address bus and the bus cycle definition (type of bus
cycle) on the control bus lines.

24

Chapter 2: Introduction to the Bus Cycle

Data Time

After performing all actions required during address time, the bus unit state
machine immediately enters the state we will refer to as data time. As with
address time, Intel uses a different name for this state, but, for clarity's sake,
data time is the name that will be used in this text. During data time, one
PCLK cycle in duration, the microprocessor expects the data to be transferred
between itself and the currently addressed device. At the end, or trailing edge,
of data time (refer to reference point 1 in figure 2-4), the microprocessor sam
ples (tests the state of) its READY# input to see if the currently addressed de
vice is ready to complete the bus cycle. If the READY# input is asserted (low,
as indicated by the pound sign), the bus unit state machine terminates the bus
cycle.

If a read were in progress, the bus unit interprets an asserted level on
READY# to mean that the currently addressed device has placed the re
quested data onto the data bus for the microprocessor. The microprocessor
reads the data from the data bus and terminates the bus cycle.

If a write were in progress, the bus unit interprets an asserted level on
READY# to mean that the currently addressed device has accepted the data
being written to it. The microprocessor terminates the bus cycle. The chapter
entitled "The 80286 System Kernel: the Engine" provides a detailed opera
tional description of the Ready logic. Figure 2-4 illustrates a bus cycle consist
ing of address time and data time.

The O-wait-state bus cycle is the fastest type of bus cycle the 80286, 80386,
80486 and Pentium microprocessors are capable of performing. In other
words, the fastest x86 bus cycle takes two "ticks" (cycles) of PCLK. If this
were an 80386 running at 20MHz (PCLK speed), a O-wait-state bus cycle
would take lOOns (SOns each for address time and data time).

25

ISA System Architecture

I I I D IAddress ataIDLEIDLE I IDLEI Time I Time I
IE)IE)IE)IE)IE)1

I I I

PCLK

READY# sampled by microprocessor ~
Figure 2-4. Bus Cycle Consisting of Address Time and Data Time

The Wait State

All bus cycles consist of at least two states: address time and data time. At the
end of address time and data time, however, not every device will be ready to
end a bus cycle. Some devices are slower than others in responding to the mi
croprocessor's data transfer requests, and are referred to as slow access de
vices.

Refer to figure 2-5. When the microprocessor samples READY# at the end of
the first data time (see reference point 1 in figure 2-5), READY# may not be as
serted. This is the currently addressed device's way of saying "Whoa! Wait up
thar big fella!" When the READY# line is sampled deasserted, it causes the
bus unit state machine to re-enter the data time state again.

During this additional data time, the microprocessor keeps all of its outputs
the same. In other words, nothing changes; the microprocessor just waits one
tick of PCLK. This is referred to as a wait state. At the end of this additional
data time, the microprocessor samples the READY# input again (see reference
point 2 in figure 2-5) to see if the currently addressed device is ready to com
plete the transaction.

26

Chapter 2: Introduction to the Bus Cycle

If READY# is sampled deasserted again, the microprocessor inserts another
data time or Wait State into the bus cycle. When READY# is sampled asserted
at the end of data time, the microprocessor terminates the bus cycle.

By holding off the READY# line, the currently addressed device can force the
microprocessor to stretch out the bus cycle as long as necessary until the de
vice is ready to complete the data transfer. The currently addressed device
deasserts READY# until it's ready to end the transaction.

(Wait
State)

I I I 10 IAddress Data ataIDLE I IOLE
I Time I Time I Time I

1< >1<)1<)1<)1< >1
I I I

PCLK

READY#

READY# sampled by microprocessor

Figure 2-5. Bus Cycle with One Wait State Inserted

27

Chapter 3: Addressing lID and Memory

Chapter 3
The Previous Chapter

The previous chapter, "Introduction To the Bus Cycle," provided a basic de
scription of the microprocessor's communications scheme. Using the three
buses, the microprocessor performs bus cycles to read information from or
write information to memory or II0 devices.

This Chapter

This chapter explores the addressing scheme used by the x86 processors. It
defines the addressing range provided by the 8086, 8088, 286, 386, 486 and
Pentium microprocessors. A basic definition of the term II0 device is also
provided.

The Next Chapter

Having covered the addressing scheme used by the x86 processors in this
chapter, the next chapter, ''The Address Decode Logic," introduces the con
cept of the address decoder. Several examples of address decoders are exam
ined in detail.

Evolution of Memory and 1/0 Address Space

The Intel 8080 microprocessor is the ancestor of the entire x86 microprocessor
family. Many of the family's characteristics stem from this common ancestor.

Intel 8080 Microprocessor Address Space

The 8080 microprocessor's address bus consists of 16 address lines, A[15:0].
With 16 address lines, the microprocessor can place any address pattern on
the address bus from all zeros (OOOOh) to all ones (FFFFh). In other words, the
8080 can place anyone of 65536 addresses on the address bus and can there
fore address anyone of 65536 locations located in external devices. In the

29

ISA System Architecture

computer industry, 65536 is referred to as 64K (K stands for Kilo, Greek for
1,000, but in the computer industry, kilo is to or 1,024). Refer to figure 3-l.
This means that the designer of an 8080-based system can include memory
devices with a total of no more than 64K locations in the system.

location FFFFh

64K

location OOOOh

Figure 3-1. Single 64K Address Space

In addition to memory devices used for program and data storage, the de
signer must also use a number of locations for input/output ports (I/O ports)
used to communicate with I/O devices. In simple terms, any device that the
microprocessor can read data from or write data to that isn't a memory device
(RAM or ROM) is an I/O device. Implementing these ports certainly is neces
sary, but depletes the number of addressable locations available to be as
signed to memory devices.

Rather than use up already scarce memory locations to implement I/O de
vices, Intel provided two new instructions to the 8080 microprocessor: IN and
OUT, and added a way for the 8080 to indicate to the system that the 8080

30

Chapter 3: Addressing liD and Memory

wishes to communicate with an I/0 device instead of a memory device. The
system typically included an Intel 8228 controller chip which detected the
8080's intention to communicate with an I/O device.

Some of the functionality of the 8228 was incorporated in the 8085 microproc
essor, a successor of the 8080. The 8085 has 16 address lines, as does the 8080,
so the 8085 can address 64K locations.

The 8085 has a new output pin called 10/M#. In Intel signal names, the"/"
character should always be read as the English word "or." IO/M# therefore
stands for "10 or Memory." Since there is no pound sign after the "10", a high
on this signal line means an I/O address is being output by the microproces
sor. The pound sign after the "M" portion of the signal name indicates that a
memory address is present on the address bus when 10/M# is low.

The addition of the 10/M# pin actually created two separate address spaces
(or maps), one for Memory and the other for I/O. In essence, the 10/M# pin
"points" to the appropriate address space when the microprocessor places an
address on the address bus.

Refer to figure 3-2. As previously mentioned, the 8085 provides 64K of mem
ory address space. However, due to the limited number of I/O devices typi
cally found in systems, Intel only implemented 256 I/O locations.

31

ISA System Architecture

FFFFh

64K
Memory
Address
Space

OOOOh~____~__~

256
lID

Address
Space

FFh

OOh

\
IO/M#

Figure 3-2. The 8085's Memory and I/O Address Spaces

As an example, if the microprocessor places address OOlOh on the address bus
and places a high on IO/M#, it is addressing I/O location OmOh, not memory
location OOlOh. On the other hand, if the microprocessor places address OOlOh
on the address bus and places a low on IO/M#, it is addressing memory loca
tion OOlOh, not I/O location OOlOh.

In addition to the IO/M# pin, Intel also added two I/O instructions, IN and
OUT, to the 8085's instruction set. When executed, the IN instruction causes
the microprocessor to perform a read from the I/O address specified by the
programmer. This address is placed on the address bus and the IO/M# pin is
set high, thereby indicating the presence of an I/O address on the address bus
to external logic. In the same way, the OUT instruction also causes the micro
processor to place an I/O address on the address bus with 10/M# set high to
indicate the I/O address it wishes to write data to.

32

Chapter 3: Addressing 110 and Memory

A separate instruction, MOV, is used by the programmer to specify a memory
address to move data to or from. When executed, the MOV instruction causes
the specified memory address to be placed on the address bus and the 10/M#
pin to be set low, indicating the presence of a memory address.

These changes allowed the designer to implement I/O ports without en
croaching on memory space.

8086 and 8088 Microprocessor Address Space

When Intel designed the 8086 and 8088 microprocessors, they increased the
number of address lines from 16 to 20. This means that the 8086 and 8088 mi
croprocessors can place any address from OOOOOh to FFFFFh on the address
bus, giving them an address range of 1,048,576 or 1M locations. "M" stands
for the Greek prefix Mega, meaning large or great. In physics, M is 1,000,000,
but in the computer industry, M is 220 or 1,048,576. Some computer companies
use M to mean 1,000,000 when referring to disk storage while still using M to
mean 220 when referring to memory size, so beware!

As with the 8085 microprocessor, the 8086 and 8088 microprocessors have a
pin to indicate memory or I/O addresses. Note that the pin name and func
tion is slightly different (or completely different, depending on your point of
view). It's named M/IO#, meaning that the 8086 and 8088 set the M/IO# pin
low when executing an IN or OUT instruction. The 8086 and 8088 set the
M/IO# pin high when executing a MOV instruction to access memory. This is
just the opposite of the way the 8085 did it.

For the 8086 and 8088 microprocessors, Intel also increased the size of the I/O
address space to 64K. The programmer may specify any memory address
within the 1M memory address range, but is restricted to I/O addresses in the
first 64K locations of address space (OOOOh to FFFFh). There were two reasons
for this decision:

1. 	 The 8086 and 8088 microprocessors remain backward-compatible with the
I/O instructions in the 8080 instruction set, although these instructions
will not take full advantage of the processors address capability.

2. 	 Virtually no designer requires more than 64K I/O ports (locations) to im
plement a full complement of I/O devices, no matter how complex they
might be.

33

ISA System Architecture

If you take the example of an IBM PC/AT fully loaded with every conceivable
type of add-in I/O expansion boards, no more than 768 I/O ports are used.
This is less than 1/64th of the total I/O space available. As previously noted,
64K I/O locations are more than enough for anyone's needs. Figure 3-3 illus
trates the 8086 and 8088 microprocessor memory and I/O address space.

FFFFFh

1M
Memory

Address

Space

FFFFh

64K
liD

Address
Space

OOOOOh OOOOh

MiIO#

Figure 3-3.8086 and 8088 Memory and I/O Address Space

286 and 386SX Address Space

(2

With the introduction of the 286 microprocessor, the number of address lines
was increased from 20 to 24. Refer to figure 3-4. Although this increases the
size of the memory address space available to the designer from 1M to 16M

24; 16,777,216 locations), the I/O space is still restricted to 64K locations. The
386SX microprocessor also has 24 address lines, allowing access to 16M of
memory and 64K 1/0 ports.

34

Chapter 3: Addressing I/O and Memory

FFFFFFh

16M
Memory
Address
Space

FFFFh

64K
1/0

Address
Space

OOOOOOh '--___.....I OOOOh

MlIO#

Figure 3-4. 286 and 386SX Memory and I/O Address Space

386DX, 486 and Pentium Processor Address Space

The 386DX, 486 and Pentium microprocessors each have 32 address lines,
providing 4G possible memory locations (fiG" is borrowed from the Greek
word Giga, meaning giant; used as a prefix in physics, it means 1,000,000,000,
but in the computer industry, it means 230 or 1,073,741,824; thirty-two address
lines yield 232 or 4,294,967,296 locations). Refer to figure 3-5. The I/O space is
still restricted to 64K locations.

35

ISA System Architecture

FFFFFFFFh..-------,

4G
Memory
Address
Space

FFFFh

64K
1/0

Address
Space

0000000 Oh '---___-' 	 OOOOh

\ 	../
MlIO#

Figure 3-5. 386/486/Pentium Processor Memory and I/O Address Space

Memory Mapped I/O

Designers can also map I/O devices into memory space if they so choose.
Care must be exercised when mapping I/O devices into memory so that the
operating system and application software do not conflict with the address
space chosen for the I/O device. For this reason, many designers map I/O
devices in the high ranges of memory address space so that it is well beyond
the maximum memory range supported by most PCs.

The 1/0 Device

I/O Ports fall into these following basic categories:

• 	 Command Port. The data written to this port by the programmer acts as a
command to the associated I/O device. The individual bits of data written

36

Chapter 3: Addressing 110 and Memory

to the command port control different aspects of the device's operation.
As an example, one bit in the data written to the keyboard command port
could be a command to enable or disable the Keyboard.

• 	 Status Port. Data read from this port represents the current status of the
associated I/O device. The individual bits of data read from the status
port reflect different aspects of the device's current status. As an example,
the state of a bit in the data read from the printer status port could indi
cate that the printer is out of paper.

• 	 Data Port. When an I/O device has data to be transferred to the micro
processor, the programmer reads the data from the device's data port.
Similarly, when an I/O device is ready for the next character (for example,
a character for the printer), the programmer writes the character to the
device's data port.

The number of I/O locations needed to control, sense the status of, read data
from, or write data to a particular type of I/O device is device-dependent.
Simple I/O devices may only require a few I/O locations. As an example, the
parallel port requires only one location each for its command port, status port,
and data port.

More complex I/O devices such as the VGA display interface, can require
many more locations.

37

Chapter 4: The Address Decode Logic

Chapter 4
The Previous Chapter

The previous chapter, "Addressing I/O and Memory," explored the address
ing scheme used by the x86 processors. It defined the addressing range pro
vided by the 8086, 8088, 80286, 80386, 80486 and Pentium microprocessors,
and provided a basic definition of the term "I/O device."

This Chapter

This chapter describes the function performed by address decoders, discusses
the address decoder design process, defines data bus contention, and pro
vides a detailed analysis of two example address decoders found in ISA sys
tems.

The Next Chapter

The next chapter, "The 80286 Microprocessor," provides a detailed descrip
tion of the internal hardware architecture of the 80286 microprocessor, de
scribes its register set, and supplies definitions of real and protected modes.

The Address Decoder Concept

Refer to figure 4-1. When the microprocessor must read data from or write
data to an external device, it places the address on the address bus. Every
device that can be read from or written to has an associated piece of logic
called an address decoder. The address decoder selects its associated device
when an address within its defined range is detected.

In most cases, the selected device contains multiple internal locations. When
selected, the addressed device examines the address to identify the exact in
ternallocation with which the microprocessor wishes to perform a data trans
fer.

39

ISA System Architecture

Micro
processor

FloppyBoot KeyboardSystem DriveInterfaceROMs RAM Controlier

Figure 4-1. Relationship of Address Bus, Address Decoders and Devices

A memory or I/O chip does not respond to any pre-assigned address range.
Rather, the device's address decode logic informs it that the address currently
on the address bus is assigned to one of its internal locations by asserting the
device's chip-select input pin.

The overall range of memory and I/O locations addressable by a particular
microprocessor are commonly referred to as address maps. The design of its
associated address decoder, not that of the memory or I/O device itself, de
fines where a device lives within the overall memory or I/O address map of a
microprocessor.

40

Chapter 4: The Address Decode Logic

Data Bus Contention (Address Conflicts)

Under no circumstances should the address decoders for two devices in
stalled in a system be designed in such a fashion that they both detect the
same address ranges. This would cause data bus contention.

Every expansion card installed in an ISA system has its own address decode
logic that defines the address range the card responds to. Address conflicts
are a common problem in the PC world. Consider the problem that arises if
the address decoders on two expansion cards are both designed to detect the
same address range.

As an example, assume that two cards respond to the I/O address range
03FOh to 03F7h. If the microprocessor executes an instruction that causes a
read from 1/0 location 03Flh, both devices are chip-selected by their respec
tive address decoders. Each then places the contents of its respective location
03Flh onto the common data bus simultaneously. One card may be driving a
particular data bus signal line high while the other card is driving the same
data bus signal line low. In this situation, we have two separate current
sources trying to drive five volts and zero volts onto the same piece of wire.

At best, this situation will cause garbled data and, at worst, hardware dam
age. The proper term for this condition is data bus contention, a problem quite
common in the PC world. A user populates a PC with many cards purchased
from various manufacturers. The prospect of an address conflict is very real.

In order to permit resolution of address conflicts, a card designer should al
low the user to easily alter the address range the board responds to. In ISA
systems, this is usually accomplished with configuration switches (or jumpers)
on the board. By changing the switch setting, the user causes the card's ad
dress decoder to detect a different address range, thereby resolving the con
flict.

How Address Decoders Work

The address decoder function is similar to that performed by the post office.
Because it more or less identifies a neighborhood, the zip code is analogous to
the high-order part of the address (upper address bits). The low-order portion
of the address identifies the exact location within the neighborhood.

41

ISA System Architecture

In much the same way, the address decoder associated with a device exam
ines the high-order part of the address being output by the microprocessor. It
determines if the address is within the range assigned to its device. If it is, the
address decoder chip-selects the device. The chip-selected device then exam
ines the lower part of the address to determine the exact location within it the
microprocessor is addressing.

It should be noted that an address decoder doesn't have to look at the entire
address to determine that the current address is within the address range as
signed to its respective device. If you were traveling in a car and were told to
keep an eye out for the two thousand block, you would only need to look at
the thousands digit of the address to determine if it was within the desired
range. The lower digits would be insignificant to you.

The following two sections describe example address decoders and how they
function. The first example is that of the ROM address decoder in an IBM
PC/XT. The second example is that of the address decoder that detects ad
dresses assigned to the 1/0 devices found on a typical ISA system board.

Example 1- PC and PCIXT ROM Address Decoder

Background

The original IBM PC was designed around the 8088 microprocessor. With an
address bus consisting of 20 lines, designated A[19:0], the 8088 could address
anyone of 1,048,576 memory locations. The designers chose to populate this
memory map as illustrated in Figure 4-2.

The memory address range from FOOOOh to FFFFFh was assigned to the sys
tem board ROM. This ROM is frequently referred to as the boot or
POST /BIOS ROM. The 64K addresses from FOOOOh to FFFFFh are set aside for
the boot ROM. It should therefore be selected whenever the uppermost digit
on the address bus is Fh and the M/IO# pin is high (indicating the presence of
a memory address on the address bus). Table 4-1 illustrates the state of the
address lines when any memory address in this range is accessed.

42

Chapter 4: The Address Decode Logic

FFFFFh
64KB
Boot
ROM FOOOOh

EFFFFh
64KB
Option
ROM EOOOOh

DFFFFh
128KB Reserved

For

Device

ROMs
 COOOOh

BFFFFh
128KB
Video

Memory
AOOOOh
9FFFFh

640KB
Conventional

Memory

OOOOOh
Figure 4-2. PC Memory Address Map

Table 4-1. State of the Address Lines When Any Memory Address in Range FOOOOh
to FFFFFh Is Addressed

~I~IE.I~ ~I~I~IE. 2!.1~1~1~ .2..1~1~1~ 2..1~12..1~
1 I 1 I 1 I 1 x I x I x I x x I x I x I x x I x I x I x x I x I x I x

F X X X X

In addition, memory address range EOOOOh to EFFFFh was assigned to the
optional ROM that could be installed in the empty ROM socket provided on
the system board. This capability was provided to allow the installation of a
ROM containing the BIOS routines and interrupt service routines for optional
devices that could be added to the machine. This add-in ROM is commonly
referred to as the option ROM. The 64K addresses from EOOOOh to EFFFFh are
set aside for the option ROM. It should therefore be selected whenever the
uppermost digit on the address bus is Eh and the M/IO# pin is high

43

ISA System Architecture

(indicating the presence of a memory address on the address bus). Table 4-2
illustrates the state of the address lines when any memory address in this
range is accessed.

Table 4-2. State of the Address Lines when any Memory Address in Range EOOOOh to
EFFFFh Is Addressed

~I~IEI~ ~ 114 113 I 12 11 I 10 I 9 I 8 7 I 6 I 5 I 4 3 I 2 I 1 I 0

1 I 1 I 1 I 0 x 1 x I x I x x I x I x I x x I x I x I x x I x I x I x
E X X X X

An address decoder that detects addresses for either ROM must look for any
memory address that has address lines A[19:17] all set to a one. That means its
high-order digit is either Eh or Fh. To discriminate between addresses for the
boot and option ROMs, the decoder would then look at address line A16. If it
is low, the high-order digit of the address is Eh and the option ROM should be
chip-selected. If address line A16 is high, however, the high-order digit of the
address is Fh and the Boot ROM should be chip-selected.

The PCIXT ROM Address Decode Logic

The PC/XT ROM address decoder pictured in figure 4-3 consists of gates Ul,
U2, U3 and U4.

The ROM address decoder's inputs consist of address bits A[19:16] from the
microprocessor. It has two chip-select outputs, CS EXXXX# and CS FXXXX#.
CS EXXXX# is attached to the chip-enable (CE) input of the option ROM,
while CS FXXXX# is attached to the chip-enable (CE) input of the boot ROM.

To chip-select the option ROM, the signal CS EXXXX# (chip-select EOOOOh to
EFFFFh range) would have to be asserted (low, as indicated by the pound
sign). Pins 1 and 2 of gate U4 must both be high in order to set U4-3, CS
EXXXX#, low. U4-2 will be high if pins I, 2 and 4 of U2 are high. In addition,
address bus lines A[19:17] must all be ones.

A zero on A16 is inverted (flipped to its opposite state) by Ul, applying a one
to U4-1. U3-1 will be low, keeping U3-3 high and preventing the boot ROM
from being chip-selected.

44

Chapter 4: The Address Decode Logic

3 CS EXXXX#
CE#

Figure 4-3. Example PCjXT ROM Address Decoder

Since the highest I/O address is FFFFh, there is no conflict between the ROM
address decoder and the I/O address decoders. The ROM address decoder is
looking for addresses that are well above the highest I/O address. The de
signer of the address decoder can therefore ignore the M/IO# signal from the
microprocessor because the 8086, 8088 and 286 microprocessors set the upper
address lines (A16 and higher) to 0 when M/IO# is low.

Address bus lines A[15:0] aren't connected to the ROM address decoder and
are considered to be "don't care" bits (from the ROM address decoder's view
point).

45

ISA System Architecture

Notice, however, that the "don't care" bits are connected to the boot and op
tion ROMs. Neither of the ROMs will look at these address bus lines unless its
respective chip-select signal is asserted by the ROM address decoder.

Table 4-2 illustrates the state the address bus inputs (as defined above) must
assume in order to chip-select the option ROM.

Address bus lines A[15:0] are shown as "x", representing a "don't care" con
dition (can be either a 1 or a 0 because the ROM address decoder doesn't look
at them). If the high-order digit of the memory address on the address bus is
an Eh, the address is considered to be for the option ROM and CS EXXXX# is
asserted (low).

This enables the option ROM, which then examines the low-order portion of
the memory address, A[15:0], to identify the exact location in the ROM that
the microprocessor wishes to read data from. The option ROM then places the
contents of the respective location on the data bus to be sent back to the mi
croprocessor. The microprocessor reads the data from the data bus, complet
ing the memory read operation.

To chip-select the boot ROM, the signal CS FXXXX# (chip-select FOOOOh to
FFFFFh range) must be asserted (low, as indicated by the pound sign).

Pins 1 and 2 of gate U3 must both be high in order to set U3-3, CS FXXXX#,
low. U3-2 will be high if pins I, 2 and 4 of U2 are high. In addition, address
bus lines A[19:I7] must all be ones.

A one on address bus line AI6 places a high on U3-1. AI6 is inverted by UI,
applying a low to U4-I, preventing the option ROM from being chip-selected
by the ROM address decoder.

Address bus bits A[15:0] aren't connected to the ROM address decoder and
are considered to be "don't care" bits (from the ROM address decoder's view
point).

Table 4-1 illustrates the state the address bus lines (as defined in the steps
above) must assume in order to chip-select the boot ROM.

Address bus bits A[15:0] are shown as "x", representing a "don't care" condi
tion (can be either a 1 or a 0 because the ROM address decoder doesn't look at

46

Chapter 4: The Address Decode Logic

them). If the high-order digit of the memory address on the address bus is an
Fh, the address is for the boot ROM and CS FXXXX# is asserted (low).

This will enable the boot ROM, which then examines the low-order portion of
the memory address, A[15:0], to identify the exact location in the ROM the
microprocessor wishes to read data from. The boot ROM then places the con
tents of the respective location on the data bus to be sent back to the micro
processor. The microprocessor reads the data from the data bus, completing
the memory read operation.

Example 2 - System Board 1/0 Address Decoder

When the microprocessor addresses an I/O location, only address bus lines
A[15:0] are used. This is because the microprocessor is restricted to I/O ad
dresses in the range OOOOh to FFFFh. The 8086, 8088 and 286 microprocessors
always set address bus lines above A15 to all zeros when placing I/O ad
dresses on the address bus. The 80386 microprocessor is slightly different. In
tel reserved some of the 80386' s I/O addresses above FFFFh for use with the
80387 numeric coprocessor. This is covered in the chapter entitled "The Nu
meric Coprocessor."

This example describes an I/O address decoder that decodes the chip-selects
for many of the I/O devices that are integrated (included) on ISA system
boards.

The address decoder pictured in figure 4-4 detects most of the I/O addresses
assigned to the I/O devices integrated onto the system board. The overallI/O
address range detected is from OOOOh to OOFFh. The address decoder further
breaks this address range down into sub-ranges of 32 locations each. When an
I/O address within one of these sub-ranges is detected, the respective chip
select line is asserted (set low) to select the addressed I/O device. The sub
ranges and the I/O devices associated with them are listed in Table 4-3. The
I/O devices referred to are described in subsequent chapters.

47

ISA System Architecture

T:abie 4 3 S - . ,ystem Board I/O Address SbR A'u - an~e sSI~nmen s
110 Sub-Range Device(s) Assigned to Sub-Range

OOOOh to OOlFh DMA controller (DMAC) number 1
0020h to 003Fh Programmable interrupt controller (PIC) number 1
0040h to 005Fh Programmable interval timers (PIT) 1 and 2
0060h to 007Fh System control port B, keyboard interface, NMI control and

battery-backed RAM ports
0080h to 009Fp DMA page registers, PS/2 compatibility port
OOAOh to OOBFh Programmable interrupt controller (PIC) number 2
OOCOh to OODFh DMA controller (DMAC) number 2
OOEOh to OOFFh Inte180X87 numeric coprocessor

A7 3 C 0 15 DMAC1 CS# (OOOOh to 001 Fh)

A6 2 B 1 14 PIC1 CS# (OO20h to 003Fh)

A5 1 A 2 13 PITCS# (0040h to 005Fh)

3 12 MISC1CS# (OO6Oh to 007Fh)

M/IO# 4 4 11 MISC2CS# (0080h to 009Fh)

+5Vdc 5 10 PIC2CS# (OOAOh to OOBFh)

6
9 DMAC2CS# (OOCOh to OODFh)

6
'-- 7

7 NCPCS# (OOEOh to OOFFh)

U4
A15 1 74138
A14 2 \

U1
6 1~3 T5

All

AId U2 6 2L7

Figure 4-4. System Board I/O Address Decoder

The system board I/O address decoder consists of three gates and a 74138
three-to-eight line decoder, The operation of the 74138 is described in the fol
lowing paragraphs.

When the microprocessor begins an I/O read or write operation, it places the
I/O address on the address bus and sets the MjIO# line low to indicate the

48

Chapter 4: The Address Decode Logic

presence of an 1/0 address. The system board 1/0 address decoder responds
to the address as described in the following paragraphs.

The enabling of the 74138 is fundamental to the operation of the address de
coder. This chip has 3 enable inputs, pins 4, 5 and 6. All three must be asserted
to enable the chip:

• 	 Pin 6 does not have a state indicator (a bubble), meaning a high is needed
on this pin to enable the 74138. The pin 6 enable is tied to a high (+5Vdc),
so this enable is always present.

• 	 Pin 4 has a state indicator, indicating it requires a low input to provide an
enable to the chip. The pin 4 enable input is tied to the M/IO# signal line
and is therefore only asserted when the microprocessor places an I/O ad
dress on the address bus.

• 	 Pin 5 has a state indicator, indicating it requires a low input to provide an
enable to the chip.

Gates Ul and U2 are used to detect all zeros on address lines A[15:8] (an I/O
address in the range OOOOh to OOFFh). When all of these address lines are low,
both gates output highs to U3. This causes U3 to output a low, providing the
final enable to the 74138. Only I/O addresses in the range OOOOh to OOFFh
cause the 74138 to receive all three enables, enabling it to decode the low
order address lines to assert the appropriate chip-select line.

Assuming that the I/O address currently being output by the microprocessor
is within the range OOOOh to OOFFh, the 74138 is enabled and can perform its
job.

The 74138 is called a three-to-eight line decoder because, when enabled, it uses
its A, Band C inputs to select one of its eight outputs to assert (they are as
serted when low, as indicated by the state indicator on each output). The
74138 uses the binary-weighted value of the three lines on its inputs to select
an output to assert. The A input has a value of I, the B input a value of 2, and
the C input a value of 4. Table 4-4 indicates the output selected for each pos
sible set of inputs.

49

ISA System Architecture

1',able 4 4 741380utput 5 I e ectlOn C't .- rz erza

Output Output
C B A Selected Pin Number

0 0 0 0 15
0 0 1 1 14
0 1 0 2 13
0 1 1 3 12
1 0 0 4 11
1 0 1 5 10
1 1 0 6 9
1 1 1 7 7

Assume that the microprocessor is currently performing a read or write with
I/O address 0012h. Address 0012h is placed on the address bus and the mi
croprocessor's MjIO# output is set low to indicate it's an I/O address. Figure
4-5 illustrates how this address appears on the address bus.

50

Chapter 4: The Address Decode Logic

A23 0

A22
A21

0
0

Oh
A20 0

A19 0

A18

A17

0
0

Oh
A16 0

A15 0

A14
A13

0

0
Oh

A12 0

A11 0

A10

A9

0

0
Oh

AS 0

A7 0

A6

AS

0

0
1h

A4 1

A3 0

A2
A1

0
1

2h
AO 0

MlIO# 0 1/0 operation
~

80286

Figure 4-5. Microprocessor Placing I/O Address 0012h on the Address Bus

Since address bus lines A[15:8] are all zeros and an I/O operation is in prog
ress (as indicated by a low on MjIO#), the 74138 is enabled.

Note that address bus lines A[7:5] are all zeros in this address. Since these
three address lines are connected to the 74138's inputs and have a binary
weighted value of 0, the 74138 will assert (set low) its "0" output, pin 15. This
asserts the chip-select line for DMA controller number one (DMAC1CS# goes
low), enabling DMA controller number one. The DMA controller then uses
address lines A[4:0] to identify the exact location within it the microprocessor
wishes to perform a data transfer with.

51

ISA System Architecture

To summarize, address lines A[15:8] set to all zeros during an I/O operation
enables the system board I/O address decoder. The address decoder then
uses address lines A[7:5] to select the chip-select line to assert.

Address lines A[4:0] aren't connected to the system board I/O address de
coder, so they are "don't care" bits to the address decoder.

This address decoder is designed to detect 32-location I/O address blocks
within the overall address range from OOOOh to OOFFh. Any address within a
given block selects the associated device's chip-select line. The designer could
implement up to 321/0 locations for each device to control it, sense its status
and read data from or write data to it. A read or write to any location in the
32-location block assigned to the device by the address decoder causes the
device to be chip-selected. The device itself can then use address lines A[4:0]
to select the exact location within itself that the microprocessor wishes to talk
to.

Table 4-5 illustrates the I/O address ranges assigned to each of the device
chip-selects.

a e -	 A' dt E hS t B dD .'I bl 4 5 I/O Address RanJ(,e sSIJ(,ne 0 ac ,ys em oar eVlce
110 Sub-Range 	 Device(s) Assigned to Sub-Range

OOOOh to OOlFh 	 DMA controller (DMAC) number 1
0020h to 003Fh 	 Programmable interrupt controller (PIC) number 1
0040h to OOSFh 	 Programmable interval timers (PIT) 1 and 2
0060h to 007Fh 	 System control port B, keyboard interface, NMI control and

battery-backed RAM ports
0080h to 009Fh 	 DMA page registers, PS/2 compatibility port
OOAOh to OOBFh 	 Programmable interrupt controller (PIC) number 2
OOCOh to OODFh 	 DMA controller (DMAC) number 2
OOEOh to OOFFh 	 Intel 80X87 numeric c~rocessor

52

Chapter 5: The 80286 Microprocessor

Chapter 5
The Previous Chapter

The basics of microprocessor communication have been introduced. This in
cludes concept of the bus cycle and the types of devices that the microproces
sor communicates with (memory and I/O), along with how these devices are
addressed.

This Chapter

This chapter provides a description of the 80286 microprocessor. Emphasis is
placed on the hardware interface between the 80286 microprocessor and the
remainder of the system. Memory address formation in real mode is covered
in detail and an introduction to protected mode is provided.

The Next Chapter

The next chapter provides a description of the six possible sources for various
reset signals found in ISA systems and the effect each of them has on the sys
tem. It also explains the actions taken when Ctrl!Alt/Delete are depressed.

The 80286 Functional Units

Any microprocessor is really a system consisting of a number of functional
units. Each unit has a specific job to do and all of the units working together
comprise the microprocessor. Figure 5-1 illustrates the units which make up
the 80286 microprocessor.

53

ISA System Architecture

Address Processor Extension

Unit Interface

(AU) Bus Control

Instruction
Prefetcher

Data
Transceivers

Execution
Unit

(EU) Decoded
Instruction

Queue (3 deep)

Instruction Unit (IU)

Figure 5-1. 80286 Microprocessor Block Diagram

Refer to 5-1. When the microprocessor starts operation, it will automatically
begin fetching (reading) instructions from memory. It is the bus unit's task to
perform the bus cycles required to fetch all instructions from memory. In
structions are read from memory over the data bus and placed into the in
struction Prefetch Queue. From there they go to the instruction unit where
they are decoded and sent to the execution unit one at a time for processing.

Execution of some instructions requires that data be read from or written to
memory or I/O devices. If a memory device is specified, the execution unit di
rects the address unit to form the memory address of the location specified by
the instruction. 1/0 addresses specified by an instruction do not require spe
cial address formation as do memory address. Instead they are sent directly
from the execution unit to the bus unit to run the bus cycle specified by the in
struction..

54

Chapter 5: The 80286 Microprocessor

In summary, two types of information may be read into the microprocessor;
instructions (code) and data. Instructions are read from memory over the data
bus, go through the data transceivers, and are placed into the prefetch queue.
Data to be processed is read from either memory or I/O devices over the data
bus and is transferred via the data transceivers to the execution unit.

An instruction may also specify that data be written to a memory or I/O loca
tion, in which case data is sent from the execution unit to the data transceivers
for transfer over the data bus.

In short, the 80286 microprocessor consists of four functional units:

1. 	 Instruction unit. Decodes the instruction prior to passing it to the execu
tion unit for execution.

2. 	 Execution unit. Handles the actual execution of the instruction.
3. 	 Address unit. When the microprocessor must address a memory location,

the address unit forms the memory address that is driven out onto the
address bus by the bus unit during the bus cycle.

4. 	 Bus unit. Handles communication with the world outside the microproc
essor chip (by performing bus cycles).

The following sections provide a more detailed description of each of these
units.

The Instruction Unit

One at a time, the 80286 instruction unit pops (reads) instructions from the
prefetch queue, decodes them into their component parts and places them into
the decoded instruction queue to be forwarded to the execution unit.

The Execution Unit

Instructions are executed by the 80286 execution unit. In general, instructions
cause either internal processing of data already stored within the execution
unit registers, or reading data from or writing data to devices external to the
microprocessor.

When the currently executing instruction requires writing or reading a mem
ory or I/O location, the execution unit issues a bus cycle request to the bus

55

ISA System Architecture

unit. The execution unit then stalls until the bus unit completes the requested
data transfer.

Two types of information may be read into the microprocessor: instructions
(code) or data. Instructions are always read from memory and are placed into
the instruction prefetch queue. From there, they are routed to the instruction
unit where they are decoded and sent to the execution unit for processing.
Data to be processed goes directly to registers inside the execution unit. These
registers have several functions as described in the following paragraphs.

A register can be thought of as a storage location within the microprocessor.
Some registers can only be read from, and some can only be written to, while
others are both readable and writable. Registers within the execution unit are
used by the programmer or the microprocessor itself for the following pur
poses:

• to temporarily hold values to be used in calculations
• to receive data being read from an external memory or I/O location
• to provide the data to be written to an external memory or I/O location
• to keep track of the microprocessor's current status
• to control certain aspects of the microprocessor's operation

Although they are storage locations, the programmer refers to the microproc
essor's registers by names (rather then by the hex addresses used to address
external memory and I/O locations). Most of the 80286 registers are 100%
backward-compatible with the 8086 and 8088 microprocessor's registers. The
registers inside the execution unit can be logically divided into two categories:

• General Registers
• Status and Control Registers

The following sections describe each of the registers in the General and the
Status and Control register sets.

General Registers

This section offers a description of each of the general registers and examples
of their usage. Figure 5-2 details the registers in the general register set.

56

Chapter 5: The 80286 Microprocessor

7 07 o
AX AH AL

BH BLBX
CH CLCX
OH OLOX

BP
51
01

5P
General

Registers

Figure 5-2. The 80286 General Registers

The AX, BX, ex and DX Registers-Each of these four registers can hold 16
bits (two bytes) of information. As an example, the following instruction will
move the 16-bit value 1234h into the AX register:

MOV AX,1234 ;move the value 1234h into AX

In addition, the programmer can individually refer to each of the 8-bit regis
ters that make up the upper and lower half of each of these 16-bit registers. As
an example, the AX register actually consists of two 8-bit registers: the AL
(Lower half of AX register) and AH (upper half of the AX register) registers.
The same is true of the BX, ex and DX registers.

If the programmer wants to move only one byte of information, he or she
would specify one of the 8-bit registers rather than a 16-bit register. In the
following example, the programmer wants to write the value 02h into I/O lo
cation 60h:

MOV AL,02 ;move value 02h into AL
OUT 60,AL ;write AL contents to I/O port 60h

In the example above, the programmer first moves the value 02h into the 8-bit
AL register and then performs an I/O write instruction to write the contents
of the AL register to I/O location 60h. This will cause an I/O write bus cycle
with address 000060h on the address bus and 02h on the lower part of the
data bus (see cardinal rule 3 later in this chapter - the 80286 always uses
lower data path for data transfers with even addresses).

57

ISA System Architecture

In general, the AX, BX, ex and DX registers are used for the following pur
poses:

• to temporarily hold values to be used in calculations
• to receive data being read from an external memory or I/O location
• to provide the data to be written to an external memory or I/O location
• to hold values to be used in calculating a memory address

The BP Register-Although available for general use by the programmer, the
Base Pointer (BP) register is frequently used in forming a memory address.
The programmer places the start address of a table of data items in memory
(often referred to as a data structure) into the BP register. A move instruction
is then executed that adds an index value to this base address to form the ex
act address of a data item in the table in memory. This is known as indexing
into a table. The BX register can also be used in the same manner. The BP reg
ister is often used to access the stack without affecting the contents of the SP
register.

The index registers-The two index registers are:

• the Source index (S1) register
• the Destination index (D!) register

These two registers are frequently used to implement string operations. This is
an operation that is performed on a string of locations, rather than just one. A
classic example would be the move string operation where the programmer
wants to perform a series of memory reads and writes to transfer a block of
data from one area of memory to another. To accomplish this, the program
mer would code (write) the following instructions:

MOV SI,XXXX ;SI=start address of source
MOV DI,YYYY ;DI=destination start address
MOV CX,ZZZZ ;CX=number bytes to move
REP MOVSB ;move string of bytes

;repeat until done

In this example, the programmer places the start memory address of the area
of memory containing the source data into the SI register and the start mem
ory address of the destination area in memory into the DI register. The num
ber of bytes to move is placed into ex, which acts as the count register in this
context. The programmer then executes the Repeat Move String of Bytes (REP

58

Chapter 5: The 80286 Microprocessor

MOV5B) instruction. When executed, this instruction performs a memory
read from the memory address specified in the 51 register. The byte received
from this location is then written to the memory location specified in the DI
register. The CX register is then decremented and the 51 and DI registers are
incremented. When the count in the CX register is exhausted, all of the bytes
have been moved and the REP MOVSB instruction has completed execution.
The next instruction is then executed. If the count is not exhausted, however,
the REP MOV5B is repeated as many times as necessary until the move is
completed.

The Status and Control Registers

This section describes the Flag and Machine Status Word registers. Three reg
isters comprise the Status and Control Register group as shown in 5-3.

15 o
F
IP

MSW'--_____...J

Status
and

Control
Registers

Figure 5-3. The 80286 Status and Control Registers

The Flag register-Refer to figure 5-4. The 16 bits in the Flag register may be
divided into three fields, or groups:

1. 	 Status Flag bits. Generally speaking, these bits reflect the result of the
previously executed instruction.

2. 	 Control Flag bits. By setting or clearing these bits, the programmer can
modify certain of the microprocessor's operations.

3. 	 System Flag fields. These three bits are related to protected mode opera
tion and are outside the scope of this book.

Refer to table 5-1 for the definition of the status, control and system flag bits.

59

ISA System Architecture

Carry

Pari

Auxiliar

Zero

Si n

Overflow

j

Tra Flag

Interrupt Enable

Direction Flag

'--_____---"I/~O;.......;...P..;..;riv..;..;.;.ilege Level

'--________;...;N..;;,e.;;.;st..;;,e..;;,d'-Task Flag
Figure 5-4. The Flag Register's Status, Control and System Bits

60

Chapter 5: The 80286 Microprocessor

a e - e ag eglster sT bl 51Th Fl R· '5tatus, contro andS,ystem B·Its
Bit Type Description

CF Status Carry Flag. Indicates a carry or a borrow from the high-order bit
in the result. Caused by an arithmetic operation.

PF Status Parity Flag. Set to 1 if low-order 8 bits of result contains an even
number of 1 bits. Cleared to 0 otherwise.

AF Status Auxiliary Carry Flag. Indicates a carry or a borrow on the low-
order 4 bits of the AL. Caused by an arithmetic operation.

ZF Status Zero Flag. Set to 1 if result is o. Cleared to 0 otherwise.
SF Status Sign Flag. Set equal to the high-order bit of the result. 0 = posi

tive result, 1 = negative result.
OF Status Overflow Flag. Set to 1 if the positive numeric result is too large

(or the negative result is too small) to fit in the destination regis
ter.

TF Control Trap Flag. Also called the Single-Step Flag. When set to 1, causes
a Single-Step Exception Interrupt after the execution of each in
struction. Only used by Debug programs to aid in program de
bugging.

IF Control Interrupt Flag. When set to 1, the microprocessor will recognize
interrupts on the INTR line. Programmer can set by executing
STI instruction and clear via the CLI instruction.

DF Control Direction Flag. When cleared to 0, causes string instructions to
increment SI and DI. They are decremented when DF is set to 1.

10PL System I/O Privilege Level. 2-bit field. Causes the processor to generate
an exception before accesses to specified I/O devices if the cur
rently running task's privilege level is less privileged than the
10PL during protected mode operation.

NT System Nested Task Flag. When set to 1 during protected mode opera
tion, indicates that the currently executing task (the nested task)
was started by a CALL or interrupt while another task was
running.

The Machine Status Word (MSW) Register-Refer to figure 5-5. The 80286
MSW register is a 16-bit register, but only the lower four bits are used. They
are defined in table 5-2.

When RESET is asserted, the value FFFOh is forced into the MSW register.
This means that the microprocessor operates in real mode, no Numeric
Coprocessor is installed and the microprocessor will not emulate floating
point instructions. Real mode is described later in this chapter.

61

ISA System Architecture

Bit

PE

MP

EM

TS

'I bl 52Th 80286 MSW R . t B'ta e - e egIs er I s
Description

Protect Enable. When cleared to 0, the 80286 operates in Real Mode (also
known as Real-address Mode). When set to I, microprocessor operates in
Protected Mode.
Monitor Numeric Coprocessor. When set to a I, the microprocessor will
check the 80287 Numeric Coprocessor's BUSY# signal before forwarding all
floating-point instructions to the coprocessor for execution. Described in
detail in the Chapter entitled, "The Numeric Coprocessor."
Emulate Numeric Coprocessor. When set to a I, recognition of a floating-
point instruction causes an Exception 7 Interrupt. The Interrupt Service
Routine, which handles this exception interrupt, emulates the particular
floating-point instruction that would have been executed by the Numeric
Coprocessor if it were present. See the Chapter entitled, "The Numeric
Coprocessor" for details.
Task Switch. This bit is related to protected mode operation and is outside
the scope of this book.

15

not used

Task Switc '-_----'

Emulate Numeric Coprocessor ____---I

Monitor Numeric Coprocessor ______---'

Protected Mode Enable,________.....

Figure 5-5. The 80286 Machine Status Word (MSW) Register

62

Chapter 5: The 80286 Microprocessor

The Address Unit

When the microprocessor needs to read or write a memory location, the ad
dress unit forms the address to be placed on the address bus during the bus
cycle.

The Segment Registers

Four segment registers exist in the 80286. The purpose of the segment register
is to point to the start address of an area of memory containing a specific type
of information (for example, a program or the data used by a program).

When Intel designed the 8086 and 8088 microprocessors (circa 1978), a pro
gramming discipline commonly referred to as structured programming was
becoming very popular. Programmers were paying more attention to building
programs in a logical fashion.

To aid the programmer in organizing complex programs, Intel created the
segment registers. The idea was to identify a particular area (segment) of
memory to hold the program, another to hold the data upon which the pro
gram acts, a "scratchpad" area of memory known as the stack and a fourth
area known as the extra data segment.

In order to implement this feature, Intel included four 16-bit registers known
as the segment registers:

• Code Segment (CS) register
• Data Segment (DS) register
• Stack Segment (SS) register
• Extra Segment (ES) register

Segment Register Usage in Real Mode

The following description provides a detailed view of how the microprocessor
operates when in real mode. A description of how the segment registers are
used when the microprocessor is in protected mode can be found in this chap
ter in the section entitled "Protected Mode."

When an 80286-, 80386-, 80486- or Pentium processor-based system is pow
ered up, RESET is asserted until the power has stabilized. The asserted level

63

ISA System Architecture

on RESET causes certain default values to be forced into the microprocessor's
internal registers. The fact that the microprocessor always starts with the same
values in its registers causes it to begin execution in exactly the same way
every time the system is powered up. The contents of the Machine Status
Word (MSW) register is forced to FFFOh by RESET. Bit 0 in this register is the
PE (Protect Enable) bit. The fact that this bit always starts off cleared to 0 en
sures that the microprocessor will always come up in real mode.

When in real mode, ISA machines based on the 80286, 80386, 80486 and Pen
tium microprocessors operate similarly as an 8086 or 8088 microprocessor. In
other words, although they physically have more than the twenty address
lines possessed by an 8086 or 8088 microprocessor, they aren't able to use all
of these additional lines when running programs written for the 8086 or 8088.
The 80286 has a limited ability to produce addresses above 1MB in real mode,
but logic on ISA system boards defeats this ability so that the 80286 acts as an
8086 or 8088. This is done to ensure software compatibility. (See the section
entitled, /IAccessing Extended Memory in Real Mode.") This restricts the mi
croprocessor to generating memory addresses from OOOOOOh to OFFFFFh. The
upper address bits above A19 are forced to o. The microprocessor is therefore
limited to the lower 1MB of memory address space.

The 80386 and higher microprocessors can address all of their physical mem
ory address space while in real mode, so long as they have at least once been
switched to protected mode and back to real mode since the last reset. The
80286 lacks this capability since it cannot be switched from Protected to real
mode without resetting the microprocessor and thus clearing the contents of
the segment registers.

The address placed in each of the segment registers points to the actual start
address of the segments in memory. Since each of the segment registers is
only a 16-bit register, however, you can only place an address between OOOOh
and FFFFh into a segment register. On the surface, this would mean that the
start address of each segment must be somewhere in the first 64KB of memory
address space (locations OOOOh to FFFFh). Refer to figure 5-6. Although the
8086 and 8088 microprocessors can actually address 1MB of memory address
space, this would mean that the program, data, stack and extra segments
would be limited to the first 64KB of this space and the rest of the memory
would be inaccessible.

In actuality, the address the programmer places in a segment register is the
four high-order hex digits of the address. The least-significant digit is imagi

64

Chapter 5: The 80286 Microprocessor

nary and always considered to be zero. Placing 1000h in a segment register
causes it to point to the memory segment (area) starting at address 10000h
(lOOOh + imaginary Oh). This means that a 16-bit segment register can be used
to point to the start address of an area in memory anywhere from location
OOOOOh to FFFFOh. This encompasses all but the last 16 locations of the 1MB
memory address range of the 8086 and 8088 microprocessors.

OFFFFFh

ES 4000h

SS 3000h

DS 2000h -

CS 1000h -

~ 004000h -----..
 003000h

002000h

001000h

OOOOOOh

Figure 5-6. Result If Segment Registers Were Restricted to 16 Bits

65

ISA System Architecture

OFFFFFh

ES 4000h

SS 3000h

os 2000h

CS 1000h -

l+ 040000h

~ 030000h

020000h

010000h

OOOOOOh

Figure 5-7. Segment Registers Point to Start Address of Memory Segments

In summary, then, the segment registers tell the microprocessor the start ad
dress of the Code, Data, Stack and Extra segments in memory. Figure 5-7 illus
trates how the four segment registers are used to identify the four segments
available to a programmer. The usage of each of the segment registers is de
fined in the following sections.

66

Chapter 5: The 80286 Microprocessor

Code Segment (CS) & Instruction Pointer (IP) Registers

Instructions are frequently referred to as code. The Code Segment (CS) regis
ter is always used in conjunction with another register called the instruction
Pointer (IP) register. Together, their only task is to point to the memory loca
tion the microprocessor should fetch its next instruction from.

Refer to figure 5-8. The CS register points to the start address of the code seg
ment in memory, while the 16-bit IP register points to the exact location within
the code segment where the next instruction should be read from.

The value in the CS register supplies the SEGMENT portion of the address,
while the IP register supplies the OFFSET, or exact location, within the seg
ment. Intel almost always refers to memory addresses using the SEG
MENT:OFFSET format, using the colon as a separator. For instance, if the
current contents of CS and IP are 3000:0010, this means that the next instruc
tion will be fetched (read) from memory location 0010h in the code segment
which starts at memory address 30000h. The 10th (hex) location in the seg
ment starting at 30000h is 30010h. Location 30010h is the actual memory ad
dress the microprocessor will place on the address bus to read the next
instruction from. The address placed on the address bus is called the physical
address.

A severe limitation of the segmentation scheme used by the 8086 and 8088 is
tied to the width of the IP register. This register is only 16 bits wide and is
used to point to the exact location (in the code segment) from which the next
instruction will be fetched. The fact that it's only 16 bits wide means that it's
physically impossible to point to any location within the segment greater than
64KB from the segment's start address (the segment register value). In other
words, FFFFh is the largest value that could be placed in the IP register. The
result- segments are limited to 64KB in length.

67

ISA System Architecture

OFFFFFh

IP lOOOh
1------1

CS 8000h

081000h

080000h

The next instruction

will be fetched from

1OOOth (hex) location

in the code segment

that begins at location

080000h.

OOOOOOh

Figure 5-8. CS and IP Registers

This means that an entire program would have to fit in 64KB of memory
(unless it resides in more than one segment). In order to have a program big
ger than 64KB, the program must occupy several 64KB blocks of memory and
the programmer must constantly be aware of which segment of memory the
next instruction to execute resides in. The start address of the memory seg

68

Chapter 5: The 80286 Microprocessor

ment must then be loaded into the CS register. The offset of the actual in
struction within the new segment is loaded into the IP register.

New values are loaded into the CS and IP registers by executing JUMP in
structions. A JUMP to a location within the same code segment loads a new
value (the offset of the next instruction) into the IP register. Because the JUMP
is within the same segment, this is called a NEAR JUMP.

A JUMP to a location within a different code segment loads new values into
both the CS (loaded with start address of the new code segment) and IP
(loaded with the offset of the instruction to jump to in the new code segment)
registers. Because you're jumping to a different code segment, this is called a
FAR JUMP.

The Data Segment (OS) Register

Refer to figure 5-9. The OS register points to the area of memory that holds
data associated with the program pointed to by the CS register. As an exam
ple, assume that the microprocessor executes the following instructions:

MOV AX,2000 ;value 2000h into AX
MOV DS,AX ;contents of AX into DS
MOV AL, [0100] ;contents of 2000:0100 to AL

This series of instructions will first place the value 2000h into the OS register.
It's illegal to move a value directly into the OS register, so it must be moved
first into AX and then into OS from AX. The data segment then starts at loca
tion 20000h in memory.

The MOV AL,[0100] instruction is then interpreted as "move the contents of
memory location OlOOh in the data segment into the AL register." As a result,
the microprocessor executes a memory read bus cycle from physical memory
location 20100h (20000h + 0100h) and the byte read will be placed into the mi
croprocessor's AL register. The brackets are read as "the contents of memory
location."

When a MOVE instruction doesn't specify what segment, the microprocessor
always assumes the data segment. The value placed within the brackets is the
OFFSET within the segment. Just as the OFFSET portion of the address is re
stricted to 16 bits in the code segment (by the size of the IP register), it is in the

69

ISA System Architecture

other segments as well. It is illegal to specify an OFFSET address larger than
FFFFh within the brackets.

2000:0100 = 20000h + 0100h = 020100h

OFFFFFh

offset OlOOh

DS 2000h I-

020100h
020000hMOV AL,[0100]

The contents of memory

location 020100h is read and

placed in the AL register.
 '--___--' OOOOOOh

Figure 5-9. Illustration of Location within the Data Segment

The Extra Segment (ES) Register

The extra segment register is used in the same manner as the data segment
register. The following series of instructions is the same as that used in the
data segment example above, with one small change:

70

Chapter 5: The 80286 Microprocessor

MOV AX,3000 ;value 3000h into AX
MOV ES,AX ;contents of AX into ES
MOV AL, ES: [0100] ;contents of 3000:0100

;to AL

The "ES:" added just before the brackets is called a Segment Override. In this
way, the programmer tells the microprocessor to use the ES register to supply
the segment portion of the address, rather than the default DS register. The
end result of executing this series of instructions would be exactly the same as
the series illustrated for the data segment above.

Stack Segment (SS) & Stack Pointer (SP) Registers

The area of memory designated as the stack is used as "scratch-pad memory"
by the programmer and the microprocessor. Whenever the programmer needs
to save a value for a little while and get it back later, the stack is frequently
used for this purpose. The programmer doesn't need to specify a memory ad
dress when writing to or reading from stack memory. This makes it a very
easy method for temporarily storing information.

The Stack Segment (SS) regist~r points to the start address of the area of
memory to be used as the stack. The Stack Pointer (SP) register provides the
OFFSET portion of the address and points to the exact location in the stack
segment where the last item was stored. At the beginning of a program, the
programmer places the start address of the program's stack segment in the SS
register. As data items are stored in the program's stack, the stack grows
downward towards the stack segment start address specified in the SS regis
ter. The value placed in the SP register determines the size of the program's
stack. As an example, if the programmer wishes this program's stack to be 512
bytes in size, the SP register should be initialized to 0200h to point to the five
hundred-twelfth location in the stack.

71

ISA System Architecture

8000:FFFF = 80000h + FFFFh = 08FFFFh

OFFFFFh

FFFFh

88 8000h t-

8P

~ 08FFFFh

080000h

OOOOOOh

Figure 5-10. The Stack

Refer to figure 5-10. When the programmer wants to store a value on the
stack, a PUSH instruction is executed. As an example, PUSH AX will cause
the contents of the AX register to be written into stack memory where SS:SP is
currently pointing. Assume that the SS register contains 8000h and the stack is
empty. The SP register contains FFFFh. Also assume that the AX register cur
rently contains 1234h and BX contains AA55h. Now consider the following:

1. 	 When the PUSH AX is executed, the microprocessor first decrements the
SP by 2. It then writes the two bytes from AX, 12h and 34h, into memory
starting at 8FFFDh (80000h + FFFDh). AL is stored in memory location
8FFFDh and AH is stored in 8FFFEh because of the Little-Endian Byte
Ordering rule which is described later in this chapter.

72

Chapter 5: The 80286 Microprocessor

2. 	 If BX were now pushed onto the stack, the SP is first decremented by 2
and the two bytes from BX, AAh and 55h, are then stored in memory
starting at location SFFFBh.

3. 	 Each time the microprocessor executes a subsequent push operation, it
will first decrement the SP by 2 and then store the data into stack mem
ory.

As you can see, the stack grows downward in memory from the highest
memory location in the stack towards the segment start address.

To read data back from the stack, the programmer uses the POP instruction.
When the programmer executes a POP instruction, such as POP BX, the mi
croprocessor reads two bytes off the stack using the current value in SS:SP to
form the memory address.

1. 	 Continuing the example used above, a POP BX would cause the micro
processor to read the two bytes (55h and AAh) from locations SFFFBh and
SFFFCh and place them into the BX register.

2. 	 The microprocessor then increments SP by two, so SS:SP are now pointing
at SOOO:FFFD.

3. 	 A POP AX would then cause the microprocessor to read the two bytes
(34h and 12h) from locations SFFFDh and SFFFEh and place them into the
AX register.

4. 	 The microprocessor then increments SP by two, so SS:SP are now pointing
at SOOO:FFFF, the top of the stack.

As implemented by the Intel xS6 microprocessors, the stack is a LIFO (Last In,
First Out) buffer- the last object in is the first out.

If the programmer attempts to pop more data off the stack than was pushed
onto it, the microprocessor will generate a special type of interrupt called a
Stack Underflow Exception interrupt to indicate that the stack is empty. Con
versely, if the programmer pushes data onto the stack until the entire 64KB
stack segment (maximum possible size) is full and then attempts to push one
more word onto the stack, the microprocessor will generate a Stack Overflow
Exception interrupt. Interrupts are covered in the chapter entitled "Interrupt
Subsystem."

73

ISA System Architecture

Little-Endian Byte-Ordering Rule

When the microprocessor writes two bytes from a 16-bit register to memory,
then there are two possibilities for how the data could appear in memory. As
sume that the data segment starts at OOOOOOh CDS register contains OOOOh) and
consider the following code:

MOV AX/1234 ;move 1234h into AX
MOV [0200 J / AX ;move the contents of AX to

;memory locations 0200h and
;0201h

AH contains 12h and AL contains 34h after the first instruction is executed.
When the microprocessor executes the second instruction, it will fill in mem
ory with the following values:

~ ble . e-Ed·zan BOdr ermg .a 5 3 L"ttlI 5yte- n
Memory Address Data Byte

0OO200h 34h
0OO201h 12h

Notice that the other possibility is that the microprocessor theoretically could
have put data byte 12h at memory address 000200h and byte 34h at address
000201h. That's only theoretical, because the x86 microprocessors use the Lit
tle-Endian Byte-Ordering Rule to determine which byte goes where, so only
one way is actually used. Little-Endian Byte Ordering requires that the least
significant byte must be associated with the lowest address. In this case, the
lowest address is 000200h and the least-significant byte is 34h.

The other byte-ordering method is Big-Endian Byte Ordering, which is used
on most non-x86-based computers. The Big-Endian Byte-Ordering Rule re
quires that the most significant byte must be associated with the lowest ad
dress. Table 5-4 shows how the data would appear in memory.

Table 5 4 B· - Ig-Ed·n Ian BOd5yte r erm. (not used on x86)

Memory Address Data Byte

0OO200h 12h
0OO201h 34h

74

Chapter 5: The 80286 Microprocessor

When the x86 microprocessor reads data from memory, it once again uses the
Little-Endian Byte-Ordering Rule to route the data bytes to the proper ends of
the registers. For example, consider the following code and memory contents:

~able55- . Memory Contents
Memory Address Data Byte

OOlOO3h 56h
OOlOO4h 78h

MOV AX, [1003] ;move the contents of memory
;locations 1003h and 1004h
;to AX

What's in AX when the instruction is finished? The Little-Endian Rule says
that the least-significant end of AX (AL) must be associated with the lowest
address (1003h), so AX contains 7856h.

An easy way to remember the Little-Endian Byte-Ordering Rule is "Little End
First." (The Big-Endian Byte-Ordering Rule is "Big End First.") Note that the
Little-Endian Byte-Ordering Rule applies to I/O accesses as well as to mem
ory accesses.

Definition of Extended Memory

Refer to figure 5-11. Simply put, extended memory is any memory that resides
at address 1MB or higher (above address OFFFFFh). Memory in the lower 1MB
(OOOOOOh to OFFFFFh) is frequently referred to as conventional memory. Since
the 8086 and 8088 microprocessors only have twenty address lines, they are
only capable of addressing memory in conventional memory space. This
means that extended memory doesn't exist in machines based on these micro
processors.

Unless the microprocessor has been set to protected mode at least once since
the last reset, then the 80286/80386/80486/Pentium microprocessors cannot
access Extended Memory, with one exception. The next section describes the
exception.

75

ISA System Architecture

1
Extended
Memory

lOOOOOh
OFFFFFh

Conventional
Memory

OOOOOOh

Figure 5-11. Extended Memory

Accessing Extended Memory in Real Mode

It is possible to access a small amount of extended memory (memory above
1MB) while in real mode. Consider the following example:

76

Chapter 5: The 80286 Microprocessor

MOV AX,FFFF iFFFFh to AX
MOV DS,AX ;transfer FFFFh to DS
MOV AL, [0010] itransfer contents of memory

;location FFFF:0010 to AL

In order to form the physical memory address to place on the address bus
when executing the third instruction, the microprocessor would place a 0 on
the end of the data segment value (FFFFh) to point to the start address of the
data segment (FFFFOh). It would then add the offset (OOlOh) to the data seg
ment start address to create the physical memory address:

DS + Oh = FFFFOh
OFFSET = 0010h

Physical memory address = 100000h

Refer to figure 5-12. The microprocessor then performs a memory read bus
cycle, driving the resultant physical memory address, 100000h, onto the ad
dress bus. Notice that the 21st address bit, A20, is high. The processor is ad
dressing the first memory location of the 2nd megabyte of memory address
space. This is extended memory and the processor is addressing it in real
mode!

Now consider this example:

MOV AX,FFFF iFFFFh to AX
MOV DS,AX itransfer FFFFh to DS
MOV AL, [FFFF] iread byte from memory address

iFFFF:FFFF to AL

Just as before, in order to form the physical memory address to place on the
address bus when executing the third instruction, the microprocessor would
place a Oh on the end of the data segment value (FFFFh) to point to the start
address of the data segment (FFFFOh). It would then add the offset (FFFFh) to
the data segment start address to create the physical memory address:

DS + Oh = FFFFOh
OFFSET = FFFFh

Physical memory address = 10FFEFh

77

ISA System Architecture

A23 0

A22
0 1h0

A21
A20 1

A19 0
A18 0

0A17 Oh
A16 0

0A15
A14 Oh0

0

A12
A13

0

A11 0
A10 0

0 Oh
A9
AB 0
A7 0

0A6
A5 Oh0

0A4
0A3

A2
 0 Oh
0
0

A1
AO

80286

Figure 5-12. A20 High

The microprocessor then performs a memory read bus cycle, driving the re
sultant physical memory address, lOFFEFh, onto the address bus. With the
value FFFFh in the segment register and by supplying any offset in the range
OOlOh to FFFFh, we are able to access any extended memory location from
100000h to 10FFEFh. This is a total of 65520 extended memory locations we
can access while still in real mode.

78

Chapter 5: The 80286 Microprocessor

This method is used by many MS-DOS memory management programs to ac
cess extended memory while remaining in real mode. This memory area is
usually referred to as the High Memory Area (HMA).

The 80386 and higher microprocessors can address all of their physical mem
ory address space while in real mode, so long as they have at least once been
switched to protected mode and back to real mode since the last reset. The
80286 lacks this capability since it cannot be switched from Protected to real
mode without resetting the microprocessor and thus clearing the contents of
the segment registers.

Notice that the code fragments shown above are valid to execute on an 8086
or 8088 microprocessor. The results are different, however. If an 8086 or 8088
executes that code, address bit A20 will not be high since the 8086 and 8088 do
not have such a bit. Therefore, the 8086 or 8088 produces an address that is be
tween OOOOOh and OFFEFh, for the examples shown above. This is called ad
dress wraparound or segment wraparound. The address space of the segment
wraps around from the highest physical addresses to the lowest physical ad
dresses.

Some programs written for the 8086 and 8088 may be depending on the seg
ment wraparound to occur so that they can access data that is in the low ad
dresses, such as the Interrupt Table or the BIOS Data Area. If these programs
are executed on an 80286 or higher microprocessor, they will fail to operate
correctly because they will not be accessing the same memory locations that
they were expecting to access. In order for machines based on the 80286 and
higher microprocessors to be compatible with such old code, the microproces
sor's address must be truncated (cut off) to simulate the 20-bit address of the
8086 and 8088.

Notice that the highest address bit that was set when the largest segment
value and largest offset were used is address bit 20, A20. Therefore, only A20
needs to be truncated. A23, A22 and A21 will not be high when executing the
old code. Refer to figure 5-13. On the system board, outside the microproces
sor, A20 is connected to one input of an AND gate. The other input of the
AND gate is A20 GATE (also named A20 MASK#, FORCE A20, etc.). The out
put of the AND gate becomes the new A20 address bit that is broadcast with
the rest of the microprocessor's address bits to the system. When A20 GATE is
deasserted (low), the AND gate's output is low, so the system's A20 bit is low,
simulating an address coming from an 8086 or 8088. The A20 GATE signal

79

ISA System Architecture

comes from the keyboard controller. See the chapter entitled "The Key
board/Mouse Interface" for more information.

Keyboard

Controller

A20GATE ~

A23 a a
a a

A21
OhA22

a a

1 aA2a
A19 a a

AlB a a
a aA17

Oh
A16 a a

a aA15
a a

A13
OhA14

a a
a aA12

All a a
Ala aa Oh a aA9
AB a 0

A7 a a

a a

AS OhA6
a a
a aA4
D aA3
a aA2 Oh a
D a

Al a

AD

80286

Figure 5-13. A20 Gate

80

Chapter 5: The 80286 Microprocessor

The Bus Unit

Whenever the 80286 microprocessor must communicate with an external de
vice, the bus unit performs the required bus cycle using the address, data and
control buses. The bus unit consists of the following sub-units:

• Address Latches and Drivers
• Instruction prefetcher
• Processor Extension Interface
• Bus Control Logic
• Data Transceivers
• 6-byte prefetch queue

The following sections describe the purpose of each of the sub-units that com
prise the bus unit.

Address Latches and Drivers

When the microprocessor must place an address on the address bus, the ad
dress is latched into (held by) the bus unit's internal address latch. This should
not to be confused with the external address latch that is discussed in a subse
quent chapter. The address drivers then drive the latched address out onto
the address bus.

Instruction Prefetcher and 6-byte Prefetch Queue

As described in chapter one, the microprocessor is performing in-line
(sequential) code fetches (instruction fetching) on an on-going basis. Only
jump instructions alter program flow and they are statistically rare. Intel de
signed the instruction prefetcher to take advantage of this characteristic.
Rather than wait for the execution unit to request the next instruction fetch,
the prefetcher gambles that the next instruction fetch requested will be from
the next sequential memory location and, on its own, performs a memory read
bus cycle to get the next instruction. The 80286 instruction prefetcher always
fetches two bytes at a time when fetching instructions from memory. It then
places these two instruction bytes into the 6-byte prefetch queue.

Since the queue isn't full yet, the prefetcher initiates another memory read bus
cycle to get the next two instruction bytes. These two bytes are also placed
into the prefetch queue. The prefetcher then initiates a third memory read bus

81

ISA System Architecture

cycle to get the next two bytes and places them into the prefetch queue. The
queue is now full.

The instructions are decoded by the instruction unit and placed into the de
coded instruction queue one at a time. This takes place in parallel with in
struction execution by the execution unit and prefetching.

Once the prefetch queue is full, the instruction prefetcher ceases prefetching
instructions. If the currently executing instruction isn't a JUMP instruction,
upon execution completion the execution unit gets the next decoded instruc
tion from the instruction unit's decoded instruction queue. The instruction
unit then, in turn, gets the next instruction from the 6-byte prefetch queue, de
codes it and places it into the decoded instruction queue. When two or more
bytes open up in the prefetch queue, the instruction prefetcher resumes op
eration to fill the queue back up again.

Most of the time, the execution unit's request for the next instruction can be
filled from the on-chip queues rather than forcing the microprocessor to per
form a memory read bus cycle to get the next instruction.

When the execution unit executes a JUMP instruction, however, the prefetch
queue and decoded instruction queue are "flushed." In other words, the pre
fetcher gambled and lost. All of the entries in the two queues are marked as
invalid. The instruction prefetcher must then initiate a memory read bus cycle
to get the requested instruction from memory. This stalls the execution unit
until the next instruction becomes available.

Once the instruction has been fetched and placed in the prefetch queue, the
prefetcher begins to prefetch once again to get ahead of the game.

Since JUMP instructions really don't occur very frequently in most programs,
the execution unit may feed off the decoded instruction queue most of the
time without having to wait for memory read bus cycles to be performed. In
the overall scheme of things, the time lost when the queue must be flushed is
minimal when compared with the advantage gained by prefetching.

Processor Extension Interface

This bus unit logic allows the microprocessor to communicate with the nu
meric coprocessor (if it is installed). This subject is discussed in the chapter
entitled "The Numeric Coprocessor."

82

Chapter 5: The 80286 Microprocessor

Bus Control Logic

This is the bus unit's state machine that performs bus cycles upon request. Bus
cycles are performed under the following circumstances:

• 	 Memory read bus cycle request from the instruction prefetcher.
• 	 Request from the execution unit to perform a memory read, memory

write, I/O read or I/O write bus cycle.
• 	 In response to an interrupt request (refer to the chapter entitled liThe In

terrupt Subsystem").

Data Transceivers

A transceiver is a device that passes data through itself from left to right or
visa versa. During read bus cycles, the bus unit's data transceivers pass the
data coming from the currently addressed device into the microprocessor.
During write bus cycles, the transceivers pass data from the microprocessor
onto the data bus to be written to the currently addressed device.

80286 Hardware Interface to External Devices

This section provides a detailed description of the signal lines the 80286 mi
croprocessor uses to communicate with the rest of the system. They have been
grouped into the following categories:

• 	 Address Bus
• 	 Data Bus
• 	 Control Bus

The Address Bus

The 80286 microprocessor's address bus consists of twenty-five signal lines:

• 	 twenty-four address lines, A[23:0]
• 	 BHE# (Bus High Enable)

Figure 5-14 illustrates the 80286 address bus.

During a bus cycle, the microprocessor places the full 24-bit address of the
target location on the address lines, A[23:0]. A 24-bit address bus gives the

83

ISA System Architecture

80286 the ability to address any of 16,777,216 individual addresses from loca
tion OOOOOOh to FFFFFFh.

In addition, the microprocessor asserts BHE# (low) when performing a data
transfer between itself and an odd address.

0A23

A2.2 0 Oh
0A2.1
0

A19
A20

0

A18 0 Oh
A17 	 0

0A16

A1S
 0

A14 0
0 Oh

A13

A12
 0

0

A10 0 1h
A9

A11

0

A8 1
A7 0

A6 0 Oh0AS
0
0

A4

A3

A2

0
1 5h

A1
1AO

0BHE#

80286

Figure 5-14. The 80286 Address Bus

84

Chapter 5: The 80286 Microprocessor

How 80286 Addresses External Locations

During a bus cycle, the 80286 microprocessor can address just an even
addressed location, just an odd-addressed location, or an even location and
the next sequential odd-addressed location simultaneously.

Refer to table 5-6. Address bit 0 (AO), has a weighted value of 1. When the mi
croprocessor outputs an address, a 0 on AO indicates that the address is an
even address and a 1 on AO indicates that it is an odd address. For example,
address 000100h is an even address (AO = 0), while address 000509h is an odd
address (AO = 1).

Since the microprocessor can only place one 24-bit address on the address bus
at a time, it is incapable of telling external logic that it wants to address an
even address and an odd address during the same bus cycle. AO would have
to be low and high at the same time; an impossibility.

To indicate that it wishes to address an even and an odd address simultane
ously, the 80286 microprocessor places the even address out on the address
bus and asserts its BHE# output (Bus High Enable). External logic interprets
this to mean that the microprocessor wishes to perform a data transfer with
the currently addressed even address and the next sequential odd address
during the same bus cycle.

The data to be transferred between the microprocessor and the even address
will be routed over the lower data path, D[7:0], while the data to be trans
ferred with the odd address will be transferred over the upper data path,
D[15:8]. This is stated as Rule 3 in the next section entitled, liThe Cardinal
Rules of the Intel World."

When the microprocessor outputs an address at the start of a bus cycle, exter
nal logic interprets AO and BHE# as indicated in table 5-7. Remember that
BHE# is asserted when low.

85

ISA System Architecture

Table 5-6. Binary Weif?hted Value of each Address Line

Address

Line

AO

Al

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12

A13

A14

A15

A16

A17

AlB
A19
A20
A21
A22
A23

Binary

Weighted

Value

1
2
4
8

16
32
64

128
256
512

1024
2048
4096
8192

16384
32768
65536

131072
262144
524288

1048576
2097152
4194304
8388608

86

Chapter 5: The 80286 Microprocessor

Table 5-7. Transfer Size Indicated bV AD and BHE#
AO BHE# Type of Transfer

0 0 The microprocessor is addressing an even address (AO=O) and will
therefore use the lower data path to transfer the data byte between
itself and the addressed location. Since the microprocessor only uses
the upper data path to transfer data between itself and odd ad
dresses, the asserted level on BHE# indicates that it wants to per
form a data transfer with the odd location immediately following the
even address it is outputting. This is a 16-bit data transfer using both
data paths.

0 1 The microprocessor is addressing an even address (AO = 0) and will
therefore use the lower data path to transfer the data byte between
itself and the addressed location. The deasserted level on BHE# indi
cates that the microprocessor will not be using the upper data path
to talk to an odd address. This is therefore an 8-bit data transfer us
ing the lower data path.

1 0 The microprocessor is addressing an odd address (AO = 1) and will
therefore use the upper data path to transfer the data byte between
itself and the addressed location. The asserted level on BHE# indi
cates that the microprocessor will use the upper data path to talk to
the odd address. This is an 8-bit data transfer using the upper data
path.

1 1 Illegal (will not occur).

The Data Bus

Although it is technically correct to say that the 80286 microprocessor has a
16-bit data bus, it is more correct to say that it has two 8-bit data paths. The
lower data path consists of data lines D[7:0], while the upper path consists of
D[15:8]. Rule three describes the usage of these two data paths. Figure 5-15
illustrates them.

87

ISA System Architecture

80286

Figure 5-15. The 80286 Data Bus

The Cardinal Rules

The three rules stated in this section apply directly to the operation of the
80286 and the 80386SX microprocessors. The 80386DX, 80486 and Pentium mi
croprocessors use a slight variation on rule number three, The chapter on the
80386 microprocessor explains the differences.

Cardinal Rule Number One

In any system based on the X86 microprocessors, every memory and I/O storage loca
tion contains one byte (8 bits) of information, no more, no less.

The temptation is great to say that storage locations in a system based on the
80286 microprocessor each contain one word (two bytes) of information.
Many people think this is the case because the 80286 has a 16-bit data bus and
can transfer a word at a time. Its 16-bit data bus gives the 80286 the ability to

88

Chapter 5: The 80286 Microprocessor

access two locations simultaneously. This doesn't alter the fact that each loca
tion contains one byte of information.

Cardinal Rule Number Two

Every memory and I/O address is considered to be either an even address or an odd
address.

When the 80286 microprocessor must read data from or write data to an ex
ternal device, it begins a bus cycle. The address is placed on the address bus
signal lines. Logic external to the microprocessor looks at the least-significant
address line, AO, to determine if the address is even or odd. Consider the
sample addresses in table 5-8.

Table 5-8. Examples of Even and Odd Addresses
Address State of AO Address Type

OOOOOOh 0 Even
000001h 1 Odd
OAFC12h 0 Even I
F12345h 1 Odd
101003h 1 Odd

In each case where AO is 0, the address is even. The address is odd if AO is a 1.

In itself, this rule may not seem important, but in light of Rule 3, it assumes a
great deal of importance.

Cardinal Rule Number Three

When the 80286 microprocessor reads from or writes to an even address, the data (one
byte) is transferred over the lower data path, D[7:0]. When reading from or writing to
an odd address, the data (one byte) is transferred over the upper data path, D[15:8].

The Control Bus

The control bus consists of all the 80286 signal lines other than the address bus
and the data bus. The control bus signal lines can be separated into the follow
ing subcategories:

89

ISA System Architecture

• Bus Cycle Definition lines
• Bus Mastering lines
• Ready line
• Interrupt lines
• Processor Extension lines
• The Clock line
• The Reset line

The following sections describe each of these signal groups.

Bus Cycle Definition Lines

When the 80286 bus unit must read data from or write data to an external lo
cation, it must run a bus cycle to do so. During the bus cycle, the microproces
sor indicates the type of bus cycle by placing the proper pattern on the bus
cycle definition signal lines. Table 5-9 indicates each type of bus cycle and the
respective pattern which is output onto the bus cycle definition lines.

Table 5-9. Bus Cycle Definition
M/IO# 51# 50# Bus Cycle Type

0 0 0 Interrupt Acknowledge
0 0 1 I/O Read
0 1 0 I/O Write
1 0 0 Halt or Shutdown
1 0 1 Memory Read
1 1 0 Memory Write

Technically speaking, there is a fourth bus cycle definition line, COD/INTA#.
It is the Code or Interrupt Acknowledge line and has something in common
with your appendix- if you lost it you wouldn't miss it. A system only needs
to use this line if it must differentiate between a memory read to get data ver
sus a memory read to get an instruction. In most systems, this pin isn't even
hooked up.

Bus Mastering Lines

Most of the time, the microprocessor on the system board "owns" the three
buses and uses them to communicate with external devices. The microproces
sor is the Bus Master. However, there are situations where it is necessary to
surrender the buses to other bus masters.

90

Chapter 5: The 80286 Microprocessor

When a device other than the microprocessor wishes to use the buses to com
municate with another device, it asserts the microprocessor's HOLD (Hold
Request) input. When HOLD is asserted, the manner in which the microproc
essor responds depends on whether or not a microprocessor bus cycle (data
transfer) is currently in progress.

If a bus cycle is in progress when HOLD is asserted by the prospective bus
master, the microprocessor completes the current bus cycle prior to respond
ing to the HOLD. If a bus cycle isn't in progress, the microprocessor responds
to the hold request immediately.

In response to HOLD, the microprocessor electrically disconnects itself from
the address, data and control buses. It's just as if the microprocessor opens
dozens of switches, disconnecting itself from the external buses. This discon
nect process is commonly referred to as "floating" the buses.

The microprocessor then asserts its Hold Acknowledge (HLDA) output to in
form the requesting bus master that it now owns the buses and is therefore
bus master. The new bus master may now use the buses to run one or more
bus cycles. It may keep the buses as long as necessary by keeping HOLD as
serted. When it no longer requires the use of the buses, the bus master releases
HOLD. In response, the microprocessor's bus unit re-attaches itself to the
buses and initiates a bus cycle (if it has one pending).

In addition to HOLD and HLDA, there is a third microprocessor line involved
in bus mastering. In a system designed to take advantage of it, the 80286's
LOCK# output can be used by the programmer to prevent other bus masters
from stealing the buses away from the microprocessor. Refer to figure 5-16.

The microprocessor automatically asserts the LOCK# signal during certain
operations that require multiple bus cycles to complete such as:

• Interrupt Acknowledge Bus Cycles
• Execution of Exchange instructions
• Segment Descriptor Reads

There are times when the programmer must force the microprocessor to assert
the LOCK# signal. These situations are described in the next section.

91

ISA System Architecture

80286

LOCK#

Internal
Hold

Figure 5-16. The Lock Output

Protecting Access To Shared Resource

Two processes (programs in a multi-tasking system) or two processors (in a
multi-processing system) may need to access a shared resource at the same
time. Shared resources are things that each of the processes or processors can
access, such as the printer and data structures in memory. Assume that two
microprocessors, CPU A and CPU B, need to print a file. In order for CPU A
and CPU B to share the printer, they must share the bus that connects to the
printer. An arbiter prevents bus contention between CPU A and CPU B by
controlling the HOLD inputs to both microprocessors. Only one microproces
sor owns the bus at a time.

If CPU A were granted the buses by the arbiter, it could start writing to the
printer. It may take CPU A several bus cycles to write the entire file to the
printer. CPU B might request the buses from the arbiter before CPU A fin
ished writing the entire file to the printer. If the arbiter granted the buses to
CPU B, then CPU A would have to give up the buses. When CPU B started
writing to the printer, the result would be a mish-mash of printout from CPU
A and CPU B, all mixed up.

92

Chapter 5: The 80286 Microprocessor

CPU B needs to be told to wait until CPU A has finished the print job. This is
usually handled by "semaphores," meaning "sign bearers." (Did you realize
you'd learn Greek while reading this?) Somewhere in memory, a semaphore
indicates whether the printer is available for use. Don't confuse this with the
printer status byte which indicates whether the printer is busy or out of paper.
The semaphore is like a reservationist. Both microprocessors would have to
check the semaphore before beginning a print job.

CPU A would read a copy of the semaphore into one of its internal registers.
CPU A would then test the copy in its register to see if the printer is available.
If the printer is available, CPU A would set the value in its register. Then CPU
A would write the register'S value (the new semaphore value) back to the
semaphore's location in memory. This is sometimes referred to as a read
modify-write operation and the "modify" portion of the operation may be a
test-and-set operation.

Once CPU A has written the new value of the semaphore back to memory, it
may start writing to the printer, so long as the arbiter has still granted the
buses to CPU A.

CPU B has to obey the same rules that CPU A does, so before CPU B writes to
the printer, it must read and test the semaphore. CPU A has already written a
new value back to the semaphore in memory, so when CPU B reads the sema
phore, CPU B will see that the printer is not available. CPU B will go into a
"spin loop," sometimes referred to as a "spin lock," re-reading the semaphore
occasionally until it sees that the printer is once again available. This solves
the mish-mash problem, or so it seems.

If CPU A and CPU B needed to write to the printer at the same time, they
would both need to access the semaphore at the same time. The arbiter would
only allow one of them to use the buses at a time. Assume CPU A has higher
priority, so the arbiter grants the buses to CPU A, and CPU A reads the sema
phore first. Let's start off assuming that the semaphore has a 0 in it to indicate
that the printer is available. CPU A tests the semaphore and finds it to be 0,
meaning the printer is available. CPU A then sets its copy of the semaphore
(its general purpose register) to 1, to indicate that the printer is unavailable.
While CPU A is testing and setting its copy of the semaphore, it does not need
to use the buses, since the test and set operations occur entirely within its gen
eral purpose registers which are inside the microprocessor. During this time,
CPU B is still requesting the buses, so the arbiter grants the buses to CPU B.
CPU A hasn't had a chance to write the semaphore back to memory yet. CPU

93

ISA System Architecture

B reads a copy of the semaphore and begins to test it. The semaphore in mem
ory is still 0, so when CPU B tests it, CPU B thinks that the printer is available.

CPU A has determined that the printer is available and requests the buses
from the arbiter so it can write the new value of the semaphore to memory.
CPU A then requests the buses so it can begin writing to the printer. Mean
while, CPU B has also determined that the printer is available because the
semaphore was 0 when CPU B read it. CPU B believes that it owns the printer
and we have the same mish-mash problem that we started with.

The intended operation was for CPU A to read the semaphore, test it, set it
and write it back without interference from CPU B. These operations were in
tended to be indivisible, or "atomic" (yes, it's Greek). That's one of the pur
poses of LOCK#. By asserting LOCK#, CPU A prevents the arbiter from
granting the buses to CPU B until after CPU A has written the updated sema
phore to memory. After writing the semaphore, CPU A deasserts LOCK# and
the arbiter can grant the buses to CPU B. Now, when CPU B reads the sema
phore, it sees that the printer is not available and it goes into a spin loop.

If the programmer doesn't want the microprocessor to give up the buses dur
ing a series of instructions, each of the instructions should be prefaced by a
LOCK prefix. Each time that the microprocessor sees a LOCK prefix in front
of an instruction, it will assert the LOCK# output while the instruction is exe
cuted. The low on the LOCK# line will force the microprocessor's internal
Hold request to remain deasserted and the HLDA output will also remain
deasserted, preventing any bus master from stealing the buses.

The preceding discussion of atomic operations is just an example to illustrate
the lock mechanism of the x86 microprocessors. The memory addresses of the
semaphores and the meanings of the semaphores are system software issues.
There are other ways of protecting access to shared resources other than using
LOCK#. Also, it is rare for ISA machines to have multiple processors in them.
The DMA controllers (which are non-intelligent bus masters) should not ac
cess semaphores since they cannot make decisions on their contents.

Ready Line

The READY# input allows slow access devices to stretch out the microproces
sor's bus cycles to match their own slow response time. This subject was in
troduced in the chapter entitled "Introduction to the Bus Cycle" and is

94

Chapter 5: The 80286 Microprocessor

explored in more depth in the chapter entitled "Detailed View of the Bus Cy
cle."

Interrupt Lines

The 80286 microprocessor has two inputs used by external logic to interrupt
the microprocessor's program execution. These two inputs are INTR and
NMI.

The microprocessor's Interrupt Request input (INTR) is frequently referred to
as maskable interrupt request. INTR is generated by the Intel 8259A Pro
grammable Interrupt Controller when an external hardware device requires
servicing (for example, the keyboard interface has a keystroke for the micro
processor).

INTR is called the maskable interrupt request input because the programmer
has the ability to mask out, or ignore, this input. If the programmer has a sec
tion of critical code (series of instructions) that he or she doesn't want inter
rupted, the instructions can be prefaced with a CLI (Clear Interrupt Enable)
instruction. Once the microprocessor executes this instruction, it will ignore
the INTR input until recognition of external hardware interrupts is once again
re-enabled by the programmer. When the critical series of instructions has
been executed without interruption, the programmer should then execute the
STI (Set Interrupt Enable) instruction, re-enabling recognition of external
hardware interrupts on the INTR input line.

Since interrupts arriving on the INTR line will not be recognized while the
programmer has interrupts disabled, the programmer shouldn't disable inter
rupt recognition for extended periods of time. If INTR is ignored for too long,
important events can be missed by the microprocessor.

The Non-Maskable Interrupt request (NMI) input to the microprocessor is
typically used by external logic to alert the microprocessor that a critical
hardware or software failure has been detected (for example, a memory parity
error). It's called the non-maskable interrupt request line because the pro
grammer has no way of masking out recognition of NMI if it should become
asserted. The microprocessor will service NMI interrupts immediately.

A complete explanation of both maskable and non-maskable interrupts can be
found in the chapter entitled "The Interrupt Subsystem."

95

ISA System Architecture

Processor Extension Interface Lines

Processor extension is another name for the numeric coprocessor. These four
signal lines are used to connect the numeric coprocessor to the microproces
sor.

Refer to figure 5-17. Processor Extension Request (PEREQ) is an output from
the numeric coprocessor and an input to the microprocessor. It is used by the
numeric coprocessor to ask the microprocessor to perform a memory transfer.
Processor Extension Acknowledge (PEACK#) is an output from the micro
processor and an input to the numeric coprocessor. The microprocessor uses
PEACK# to respond to the PEREQ issued by the numeric coprocessor. It in
forms the numeric coprocessor that the requested memory transfer is in prog
ress.

80287 80286
MicroprocessorNumeric

Coprocessor

PEREQ PEREQ

PEACK# PEACK#

BUSY# BUSY#

+SVdc

L
ERROR# ERROR#

IRQ13 --" L{::

Figure 5-17. Relationship of the Microprocessor and the Numeric Coprocessor

BUSY# is an output from the numeric coprocessor to the microprocessor. The
numeric coprocessor asserts BUSY# when it begins execution of an instruction
received from the microprocessor. While BUSY# is asserted, the microproces
sor shouldn't forward any more instructions to the numeric coprocessor.

ERROR# is an output from the numeric coprocessor to the microprocessor. It
informs the microprocessor that the numeric coprocessor has incurred an er
ror while executing an instruction. In ISA machines, the numeric coprocessor's

96

Chapter 5: The 80286 Microprocessor

ERROR# output isn't connected to the ERROR# input of the microprocessor.
Instead, IBM chose to attach the ERROR# output to IRQ13 (Interrupt Request
Level 13). In other words, interrupts are used to report numeric coprocessor
errors.

This subject is covered in more depth in the chapters entitled "The Numeric
Coprocessor" and "The Interrupt Subsystem." Figure 5-17 illustrates the inter
face between the microprocessor and the numeric coprocessor.

The Clock Line

Frequently referred to as CLK2, this is the microprocessor's double-frequency
clock input. Internally, the microprocessor then divides CLK2 by two to yield
PCLK, the real heartbeat of the microprocessor.

The Reset Line

Among the possible RESET sources, the RESET input to the microprocessor is
derived from the power supply's POWERGOOD output signal. In addition,
RESET also fans out and is applied to many other system components, includ
ing cards plugged into the ISA slots. When the power supply is first turned
on, its output voltages are not yet stable. The power supply will keep the
POWERGOOD signal deasserted until power has stabilized. While POWER
GOOD is deasserted, RESET will be asserted. When the power supply output
voltages have stabilized, the POWERGOOD signal is asserted and RESET is
deasserted.

While RESET is asserted, it has two effects on the microprocessor and other
system components:

1. 	 Keeps any activity from occurring until power has stabilized.
2. 	 Presets the microprocessor and other system devices to a known state

prior to letting them begin to do their job. This ensures that the machine
will always start up the same way.

Refer to figure 5-18. In order to guarantee proper operation of the microproc
essor, the RESET input must change state in synchronism with the double
frequency clock. The Reset Sync flip-flop in the illustration accomplishes this
task. On each rising-edge of CLK2, the output of the flip-flop is set to the op
posite state of the POWERGOOD input. During the period immediately fol
lowing system power-up, POWERGOOD is deasserted and RESET will

97

ISA System Architecture

therefore be asserted (because the flip-flop is continuously clocking ones
through to the RESET line). When the power supply output voltages have
stabilized, however, the POWERGOOD signal goes high and the flip-flop be
gins to continuously clock zeros onto the RESET line.

POWERGOOD 	 ..

, 0

ClK2 	 RESET
-" , -Q

Reset
Sync 80286

Power

Supply

Figure 5-18. The Reset Logic

More information regarding RESET's effect on the microprocessor can be
found in the chapter entitled "The Power-Up Sequence."

Protected Mode

This section provides a description of how the 80286 microprocessor forms
physical memory addresses when protected mode is enabled. It does not

98

Chapter 5: The 80286 Microprocessor

provide an in-depth programmer's guide to all aspects of protected mode op
eration. For two reasons, that subject is outside the scope of this book:

• 	 It is purely a programming issue and has absolutely nothing to do with
the hardware interface between the microprocessor and the rest of the sys
tem.

• 	 To provide an in-depth description would require a separate volume of
sizable proportions. Since there are already a number of good books
available on the subject, it would be an unnecessary duplication of effort.

Intro to Protected Mode and Multitasking Operating
Systems

The 80286 microprocessor's protected mode was designed to facilitate the
implementation of multitasking operating systems like OS/2 and UNIX. Un
like MS-DOS, which was designed to handle a single-task (applications pro
gram) at a time, a multitasking operating system is designed to run and keep
track of multiple tasks.

A multitasking operating system will typically let a task run until either:

• 	 a predetermined period of time has elapsed or
• 	 the task requires something that isn't immediately available.

Assume that an applications program referred to as task A has not yet run for
its allotted period of time, but it requires something that isn't immediately
available. Good examples would be waiting for a keystroke or the completion
of a disk read operation. Since these operations will take some time, it would
be wasteful to have the microprocessor wait for the operation to complete. In
stead, the operating system will store all of the microprocessor's registers in a
special segment of memory, known as a Task State Segment (TSS). There is a
separate TSS for every program that the microprocessor is running. This
stored information will later allow the microprocessor to pick up where it had
suspended Task A once the requested operation has completed.

Having stored task A's Task State, the microprocessor can then give control to
a task which was previously suspended while waiting for completion of some
other operation. We'll call this task B. The microprocessor loads all of the mi
croprocessor's registers from the TSS belonging to task B. This TSS holds the

99

ISA System Architecture

information describing the microprocessor's state at the point when task B
was suspended.

Task B will then run until either its allotted time has elapsed or it again needs
something it has to wait for, at which point it will be suspended and control
will pass to another task. A multitasking operating system can be viewed as a
juggler who has to keep a number of balls in the air without dropping any.

With the help of the 80286's protected mode features, the operating system
must:

1. 	 Protect application programs from each other. In other words, don't allow
one application program to play with another application program's data
or code segments. Any attempt on the part of one application program to
access another program's areas of memory should result in an Exception
Interrupt which will be handled by the operating system software.

2. 	 Protect itself from the application programs it is supervising.
3. 	 Provide the interface between applications programs and I/O devices. It

could be catastrophic if an application program manipulates an I/O de
vice (for example, a disk) without the Operating System's knowledge. The
operating system wouldn't know data on a disk or the state of an I/O de
vice had been altered.

In order to prevent this possibility, any attempt on the part of an application
program to execute an I/O read or write will cause an Exception Interrupt
when the IOPL bit in the flag register is set. This informs the operating system
of the attempt to access an I/O device. He may then choose to cast out the
demon application program who has violated sacred ground.

In protected mode, segments can be described as:

1. 	 belonging to (accessible by) all programs. This is referred to as a Global
Segment.

2. 	 belonging to a particular application program. This is referred to as a Lo
cal Segment because it's local to the currently running application pro
gram. Any attempt by a program other than the application program that
U owns" this Local Segment or the operating system to access a Local Seg
ment will cause an Exception Interrupt.

3. 	 belonging to the operating system software. This is referred to as a System
Segment. Any attempt by a program other than the operating system to
access a System Segment will cause an Exception Interrupt.

100

Chapter 5: The 80286 Microprocessor

4. 	 read-only segments. Any attempt to write to a read-only segment will
cause an Exception Interrupt.

5. 	 execute-only code segments. Any attempt to access an execute-only seg
ment for anything other than an instruction fetch will cause an Exception
Interrupt. Even an attempt to read the instructions as data (using MOV
instructions) will cause this exception. This means that another program
can't disassemble the instructions in a program's code segment to figure
out what makes it tick.

6. 	 read/write segments. This would be a normal data segment.
7. 	 only accessible by programs with a privilege level equal to or greater than

the segment's privilege level.

As will be seen in the next section, the operating system software maintains a
group of tables in memory that describe:

• 	 the Global segments that anyone can access. The Global Descriptor Table
(GDT) resides in memory. Each entry contains a segment descriptor, de
scribing a globally accessible segment.

• 	 the Local segments that belong to a particular application program. The
Local Descriptor Table (LDT) resides in memory. Each entry contains a
segment descriptor, describing a segment belonging to a particular pro
gram.

• 	 Interrupt Service Routines. The Interrupt Descriptor Table (IDT) resides in
memory. Each entry contains an Interrupt Descriptor which describes the
location and accessibility of the Interrupt Service Routine.

Segment Register Usage in Protected Mode

The microprocessor can be placed in protected mode by setting bit 0, the PE
bit, in the MSW register. Prior to actually setting this bit, however, the pro
grammer must write certain tables of information into memory. Failure to do
so will cause all hell to break loose when protected mode is enabled.

With the one exception already described, it is impossible to address extended
memory (memory above 1MB) while in real mode. In real mode, the segment
registers can only be used to form a S-digit address, thus limiting you to ad
dresses in the range OOOOOOh to OFFFFFh (the lower 1MB). Since the 80286 mi
croprocessor actually has 24 address lines, A[23:0], it is capable of generating
memory addresses from OOOOOOh to FFFFFFh (a 16MB address range). The
80286 must be switched into protected mode to do this, however.

101

ISA System Architecture

When in protected mode, the value in the segment register is interpreted dif
ferently than when in real mode. In real mode, the value in the segment regis
ter (with the imaginary Oh on the end) was the actual start address of the
respective segment (CS, OS, SS or ES) in memory. In protected mode, though,
the value placed in the segment register (usually referred to as the Segment
Selector when in protected mode) actually contains the following information:

• Requester Privilege Level (RPL) field
• Table Indicator (TI) bit
• Table index field

Refer to figure 5-19. The RPL field indicates the privilege level of the program
that is attempting to access the target segment. The Table Indicator (TI) bit
points to one of two tables in memory:

• 0 = the Global Descriptor Table
• 1 = the Local Descriptor Table

The index portion of the value placed in the segment register (or segment se
lector) provides an index into the table indicated by the Table Indicator bit.

15 3 2 1 o
Table Index TI RPL

~I'

Table Indicator (0 = Global, 1 = Local)

Requestor Privile9e Level

Figure 5-19. The Segment Selector

In addition to the segment registers, the 80286 also has three registers known
as the Global Descriptor Table Register (GDTR), the Local Descriptor Table
Register (LDTR) and the Interrupt Descriptor Table Register (IDTR). The op
erating system programmer must load the start memory addresses of each of
the three tables into these registers.

Loading a new value into a segment register causes the 80286 microprocessor
to automatically generate a series of four memory read bus cycles to get the 8

102

Chapter 5: The 80286 Microprocessor

byte segment descriptor from the indicated entry in the table identified by the
TI bit. The microprocessor computes the start memory address of the 8-byte
segment descriptor by multiplying the index by 8 (because each table entry is
8-bytes long) and adding the resulting offset to the contents of the respective
Descriptor Table Register (either Global or Local).

The 8-byte segment descriptor read from memory is loaded into a special mi
croprocessor register known as a descriptor cache register. There is a corre
sponding cache register for each of the four segment registers.

As an example, when a value is loaded into the CS register, the microproces
sor uses the TI bit to identify the table to access (Global or Local), multiplies
the index by eight and adds it to the table start address from the GDTR or
LDTR. The 8-byte code segment descriptor is read into the microprocessor's
code segment cache register. Only when the microprocessor has the segment
descriptor can it add the offset supplied by IP register to the code segment's
actual start address and generate the bus cycle to access the desired memory
location in the code segment.

This rather involved process may seem tremendously inefficient, and would
be if the microprocessor had to go through all of this every time it needed to
access a memory location. In actuality, the microprocessor only has to read a
segment descriptor from memory when a new value is placed in a segment
register by the programmer. All subsequent memory accesses within the same
segment happen quickly because all of the segment's descriptive information
is already on-board the microprocessor chip in the cache register and can be
used immediately in forming the actual physical memory address.

Refer to figure 5-20. A segment descriptor is 8 bytes in length and describes
everything you ever wanted to know about the segment:

1. 	 The 24-bit start address of the segment in memory. This means the pro
grammer can specify a start memory address anywhere in the microproc
essor's 16MB address range.

2. 	 Unlike real mode, where the segment length is fixed at 64KB, the length of
the segment can be specified as anywhere between 1 byte and 64KB.

3. 	 Segment access rights byte. The bits in this byte allow the operating sys
tem to specify protection features associated with the segment being de
scribed.

103

ISA System Architecture

Byte 7 Not used by 80286

Byte 6 Not used by 80286

Byte 5 P IDPd s I Type IA Attribute Byte

Byte 4 Upper Byte of Base Address

Byte 3 Middle Byte of Base Address

Byte 2 Lower Byte of Base Address

Byte 1 Upper Byte of Size

Byte 0 Lower Byte of Size

Figure 5-20. The Segment Descriptor

Bytes 0 and 1, the first two bytes in the descriptor, specify the size of the seg
ment being described. The next three bytes supply the actual start address of
the segment in memory. Since this is a 24-bit value, the start address may be
anywhere in the 16MB memory address space of the 80286 microprocessor.
The next byte is referred to as the attribute byte and defines the following
characteristics of the segment:

104

Chapter 5: The 80286 Microprocessor

Table 5-10. Attribute Byte Definition
Field
Name Purpose

A 	 Accessed bit. This bit will be 0 if the segment has not been accessed.
TYPE 	 This 3-bit field defines the type of segment. Using this field, the segment

may be defined as:
-an executable code segment (only instruction fetches may be performed
from the segment). This prevents another program from reading these
instructions so they can be disassembled.
-a code segment that may be read as data or instructions. This code seg
ment may be read by another program so it can be disassembled.
-a read/writable data segment.
-a read-only data segment.

S 	 S = 1 for a Data or code segment. S = 0 for a Control Descriptor.
DPL 	 Descriptor Privilege Level. The program attempting to access the segment

must have a Requester Privilege Level (RPL) equal to or greater than the
DPL specified here.

P 	 If 0, descriptor isn't valid (doesn't describe a segment of memory). If 1,
descriptor is valid.

Note: An in-depth description of segment descriptors and other Protected
Mode subjects is outside the scope of this book.

105

Chapter 6: The Reset Logic

Chapter 6
The Previous Chapter

The first five chapters introduced the concepts of microprocessor communi
cations and provide a detailed understanding of the 80286 microprocessor's
interface signals.

This Chapter

ISA products usually have six separate source for reset, two of which are gen
erated only by hardware and four that can be initiated by software com
mands. This chapter details the reset sources within typical ISA systems.

The Next Chapter

The next chapter explains the sequence of events that occur immediately after
an ISA system is powered on.

The Power Su pply Reset

The power supply provides the operating voltages necessary for system op
eration. When the power switch is first placed in the on position, it takes some
time for the power supply's output voltages to reach their proper operating
levels. If the system components were allowed to begin operating before the
voltages stabilized, it would result in erratic operation.

Every PC power supply produces an output signal commonly called POW
ERGOOD. On the system board, the POWERGOOD signal is used to produce
the RESET signal. During the period required for stabilization of the output
voltages, the POWERGOOD signal is kept deasserted by the power supply.
While POWERGOOD is deasserted, the RESET signal is kept asserted.

While RESET is asserted, it has two effects on the microprocessor and other
system components:

107

ISA System Architecture

1. 	 Keeps any activity from occurring until power has stabilized.
2. 	 Presets the microprocessor and other system devices to a known state

prior to letting them begin to do their job. This ensures that the machine
will always start up the same way.

When POWERGOOD becomes asserted, the RESET signal is deasserted and
the microprocessor can begin to fetch and execute instructions. The first in
struction is always fetched from the power-on restart address which is always
located 16 locations from the very top of the memory address space. For the
8088 microprocessor, this would be FFFFOh, FFFFFOh for the 80286 and
80386SX, and FFFFFFFOh for the 80386DX, 80486 and Pentium microproces
sors. This location contains the first instruction of the POST.

Reset Button

Some systems provide a momentary-contact switch which the user may press
to force the RESET signal to be asserted to the microprocessor and to the rest
of the system. The effect on the system is the same as deasserting POWER
GOOD from the power supply, but the power supply is not actually turned
off.

Shutdown Detect

When the microprocessor detects an exception while attempting to execute the
handler for a prior exception, the two exceptions are generally handled seri
ally. Certain combinations of exceptions cannot be handled serially, however.
These exceptions are caused by protection violations in protected mode. For
example, in protected mode, if an application attempts to access data that is
outside its data segment, the microprocessor will start running the general
protection fault exception handler. If, say, a stack overflow were to occur
while the microprocessor ran the general protection fault exception handler,
the microprocessor would not be able to handle the two faults serially. The
microprocessor would invoke the double-fault exception instead.

If the microprocessor detects another exception while attempting to service
the double-fault, it goes into a shutdown condition. This is sometimes referred
to as a triple fault. The microprocessor indicates the shutdown condition to
external logic by running the halt or shutdown bus cycle. Since the microproc
essor has abnormally ceased to fetch and execute instructions, it can't run a
program to inform the user that a severe error has occurred. Therefore, in an

108

Chapter 6: The Reset Logic

ISA machine, the shutdown detect logic outside the microprocessor detects
the shutdown and toggles the microprocessor's RESET line, causing the sys
tem to reboot.

See the chapters entitled "Detailed View of the 80286 Bus Cycle" and
"Detailed View of the 80386 Bus Cycle" for additional information on the halt
or shutdown bus cycle.

Hot Reset

MS-DOS was written specifically for the Intel 8088 microprocessor using 8088
specific instructions. Since the 8088 only has 20 address lines, it is incapable of
generating a memory address greater than FFFFFh, or 1MB. Furthermore, pro
tected mode wasn't introduced until the advent of the 80286 microprocessor.
Consequently, MS-DOS can only address the lower 1MB and doesn't under
stand protected mode.

When an 80286 is powered up, it operates in real mode. In other words, it op
erates as if it were an 8088. This means that, although the 80286 has twenty
four address lines and can physically address up to 16MB of memory address
space, it is limited to the lower 1MB when in real mode.

Most current applications programs are written to run under MS-DOS. Many
of these programs require access to more memory space than allowed under
MS-DOS. As an example, many Lotus 1-2-3 spreadsheets require very large
amounts of memory space, well in excess of that allowed under MS-DOS and
the 8088 microprocessor.

If a system is based on the 80286 microprocessor, the problem can be solved
by switching the microprocessor into protected mode. This allows the micro
processor to access up to 16MB of memory space, but MS-DOS presents a
problem. It doesn't understand protected mode and is therefore incapable of
generating addresses above 1MB.

Special software that understands protected mode operation prepares the
segment descriptor tables in memory prior to switching into protected mode.
It also must save the address of the next instruction to be executed when the
microprocessor returns to real mode so MS-DOS can continue to run at the
point where it went to protected mode. The 80286 is then switched into pro
tected mode and the extended memory above 1MB accessed (for example, to
store spreadsheet data).

109

ISA System Architecture

Once the extended memory access has been completed, the microprocessor
must be switched back into real mode so the applications program can con
tinue to run under MS-DOS. Here's where the problem comes in. In order to
switch the 80286 microprocessor from protected to real mode, the microproc
essor must be reset.

To do this, the following actions must be taken:

1. 	 The programmer stores an address pointer that points to the address of
the real mode instructions that are responsible for restoring the system to
its previous operating condition. This pointer is stored in locations
0040:0067 to 0040:006A. The contents cif these locations will be used later
when the processor returns to real mode to find the address in memory
where the real mode instructions reside.

2. 	 A special value (OSh or OAh) is stored in the configuration CMOS RAM
location (OFh) to indicate the reason for the reset. Refer to table 6-1 for
definitions of the reset byte in CMOS RAM.

3. 	 The system has now been prepared to return to real mode. The Hot Reset
command must now be issued to the keyboard/mouse interface.* This is
accomplished by writing a FEh to the keyboard/mouse interface's com
mand port at II0 address 0064h.

4. 	 In response, the keyboard/mouse interface pulses its Hot Reset output
one time, causing the hardware to generate a reset to the 80286.

5. 	 When reset becomes deasserted, the microprocessor begins to fetch and
execute instructions at the power-on restart address exactly as if a power
up had just occurred.

6. 	 At the beginning of the POST, the programmer reads the value stored in
the configuration RAM location to ascertain the reset's cause. In this case,
the value (OSh or OAh) indicates that it was caused by Hot Reset to get
back to real mode and continue program execution.

7. 	 POST then retrieves the previously stored real mode address pointer
found at location 0040:0067 and jumps to the indicated address and picks
up where it left off in real mode.

* Some manufacturers employ a Hot Reset "intercept" where external circuitry
recognizes an FEh written to the keyboard controller and immediately gener
ates a Fast Hot Reset. This provides a faster reset signal compared to the
slower generation via a command to the keyboard controller. Later versions of
Intel's microcontrollers (typically used as keyboard controllers) provide an in
ternal intercept that also results in a fast Hot Reset.

110

Chapter 6: The Reset Logic

Another method used to produce a fast Hot Reset is to cause the microproces
sor to go into the shutdown condition by intentionally causing faults using
software. This causes the shutdown detect logic to reset the microprocessor.

Alternate (Fast) Hot Reset

The Alternate or Fast Hot Reset command is found in some ISA systems that
implement system control port A at I/O address 0092h, sometimes called the
PS/2 compatibility port. Alternate Hot Reset performs the same function as
the Hot Reset command. However, the microprocessor is reset more quickly
using this method than when using Hot Reset. The Hot Reset command must
be interpreted by the ROM-based program inside of the keyboard/mouse in
terface, while the Alternate Hot Reset command is executed by the !tardware
much more quickly.

Alternate Hot Reset is generated by setting bit 0 in system control port A to a
one. This generates a pulse on the Alternate Hot Reset signal line which, in
turn, causes a pulse on the Hot Reset signal. This resets the microprocessor.
For a more extensive explanation of Hot Reset, see the previous section.

Ctrl-Alt-Del Soft Reset

When the control and alternate keys are depressed and held, followed by the
delete key being depressed, three "make" codes for these keys are stored in
the keyboard buffer in memory. When the sequence of "make" codes are de
tected by the keyboard interrupt service routine, the soft reset routine is in
voked. The soft reset routine causes the system to:

1. 	 Place the value 1234h into the reset flag location (0040:0072) in main mem
ory. This value tells the system to skip a portion of the POST when reboot
ing.

2. 	 Store a special value (OOh)in configuration RAM to indicate that a Con
trol/Alternate/Delete is causing the reset (also used for power-on reset).

3. 	 Depending on the computer model and manufacturer one of two methods
is typically used to reset the processor.
• 	 Write a FEh to port 64h, causing a CPU reset. When the reset is re

moved, the microprocessor begins to fetch and execute code from lo
cation FFFFOh, the beginning of POST.

• 	 Jump to location FFFFOh and begin program execution.

111

ISA System Architecture

4. 	 Near the beginning of the POST, the programmer reads the value stored
in the configuration RAM location to ascertain the reset's cause. In this
case, the value indicates that it was caused by Control!Alternate/Delete
or power-on reset.

5. 	 Next, the reset flag at location 0040:0072 is checked for the value 1234h.
1234h indicates a Ctrl-Alt-Del has caused the reset condition and as a re
sult, only a subset of the POST is executed.

Table 6-1. CMOS Reset Code Definition
Value 	 Meaning

OOh 	 Normal Power-Up reset or Ctrl-Alt-Del reset depending on the value of the Reset flag word in
memory at location 0040:0072. When the reset flag contains the value 1234h, the POST memory
test is skipped.

04h 	 POST is skipped. Causes OOS to be loaded from disk.
OSh 	 POST is skipped and memory preserved. The 80286 microprocessor cannot be switched from

protected mode into real mode without resetting the processor. This presents problems when
the programmer wishes to temporarily switch to protected mode to access extended memory
and then switch back into real mode to continue execution. When a program must temporarily
leave real mode and enter protected mode, the programmer first stores a four byte memory
address (pointer) into memory location 0040:0067. This pointer specifies the address at which
real mode execution will resume. Having done this, the program may switch the processor into
protected mode and access extended memory. Upon completing the protected mode function,
the programmer must place the value OSh or OAh into the reset code byte in CMOS RAM and
then reset the 80286 microprocessor. When reset goes away, the processor is in real mode and
begins executing the POST. The POST code checks for a OSh or a OAh in the reset code byte,
and, if present, jumps to the memory address specified in memory starting at location
0040:0067 to resume execution at the point where it left off in real mode. In addition, if the reset
code byte value is OSh, an EOI command is issued to the interrupt controller.

09h 	 Block-move return. This value is placed in the reset code byte by a BIOS call to INT ISh to
move a block of information between conventional and extended memory. In order to accom
plish this move, the processor must switch into protected mode. On an 80286-based system, the
!NT ISh routine sets the reset code byte to 09h prior to resetting the processor to return to real
mode after the block move. When reset, the processor starts executing the POST, checks the
reset code byte value, and then performs an interrupt return, or IRET, instruction to return to
the original program after completion of the call to the INT ISh BIOS routine.

OAh 	 Jump to real mode pointer 0040:0067 without issuing EOr. See the explanation for reset code
byte = OSh.

112

Chapter 7: The Power-Up Sequence

Chapter 7
The Previous Chapter

The previous chapter, "The Reset Logic," provided a detailed description of
the possible sources for RESET.

This Chapter

This chapter provides a description of the ISA machine power-up sequence
from the moment power is applied until the microprocessor begins to fetch
and execute instructions.

The Next Chapter

The next chapter, "The 80286 System Kernel: the Engine," describes the sup
port logic necessary to allow the 80286 microprocessor to communicate with
8- and 16-bit devices.

The Power Supply - Primary Reset Source

The power supply provides the operating voltages necessary for system op
eration. When the power switch is first placed in the on position, a period of
time is required for the power supply's output voltages to reach their proper
operating levels. If the system components are allowed to begin operation be
fore the supply voltages have stabilized, erratic operation would result.

Figure 7-1 illustrates the power supply-related logic that produces the micro
processor's RESET signaL Every ISA PC power supply produces an output
signal commonly called POWERGOOD. On the system board, the RESET sig
nal is derived from the POWERGOOD signal. In order to guarantee proper
operation of the microprocessor, the RESET input must change state in syn
chronism with the CLK2 signal (the microprocessor's double-frequency clock
input). On each rising edge of CLK2, the state of the POWERGOOD input is
latched by the flip-flop, inverted to its opposite state, and presented on the
flip-flop's output, RESET. During the period required for stabilization of the

113

ISA System Architecture

output voltages, the POWERGOOD signal is held deasserted by the power
supply. While POWERGOOD is deasserted, the RESET signal is held asserted.
The flip-flop in the figure provides a RESET output that is synchronized with
CLK2 and is the invert of the POWERGOOD signal from the power supply.

POWERGOOD

D

CLK2 	 RESET-Q

Reset
Sync 80286

Power

Supply

Figure 7-1. RESET Is Derived from POWERGOOD

While RESET is asserted, it has two effects on the microprocessor and other
system components:

1. 	 Keeps any activity from occurring until power has stabilized.
2. 	 Presets the microprocessor and other system devices to a known state

prior to letting them begin normal operation. This ensures that the ma
chine will always start up the same way.

114

Chapter 7: The Power-Up Sequence

How RESET Affects the Microprocessor

Table 7-1 defines the values forced into the 8086 and 8088 microprocessor's
registers when RESET is asserted.

Table 7-1. Values PresetItno 8086 and 8088 M'lcroprocessor Rezisters by RESET
Register Contents

FLAGS 0OO2h

M5W FFFOh

IP FFFOh

CS FOOOh

OS OOOOh

ES OOOOh

S5 OOOOh

While RESET is asserted, the microprocessor cannot fetch and execute in
structions and its outputs are set as illustrated in tables 7-2 and 7-3.

Table 7-2. State of 80386DX Outputs While RESET is Asserted
Pin Name Pin State

LOCK#, O/C#, AOS#, A[31:2] high
W /R#, M/IO#, HLOA, BE#[3:0] low
0[31:0] tri-state (floating)

Table 7-3. State of 80286 Outputs While RESET Is Asserted
Pin Name Pin State

A[23:0], SO#, S1#, PEACK#, BHE#, LOCK# high
M/IO#, COD/INTA#, HLDA low
0[15:0] tri-state (floating)

Processor Reaction When Output Voltages Stabilize

When the power supply output voltages have stabilized, the POWERGOOO
signal is asserted and the logic on the system board responds by deasserting
RESET. The deasserted level on RESET allows the microprocessor to begin
functioning. It should be noted that the 386, 486 and Pentium microprocessors
can perform a self-test when RESET becomes deasserted. Details of the proc

115

ISA System Architecture

essor self-test are discussed in the chapter entitled liThe 80386DX and SX Mi
croprocessors" and in the MindShare Architecture Series books 80486 System
Architecture and Pentium Processor System Architecture published by Addison
Wesley. The microprocessor initiates the fetching and executing of instruc
tions from memory, using the code segment (CS) and instruction pointer (IP)
register contents to point to the memory location containing the first instruc
tion.

While RESET was asserted, the machine status word (MSW) register had
FFFOh forced into it. Since the protect enable bit, bit 0, is therefore 0, the mi
croprocessor always begins operation in real mode. In real mode, the micro
processor always appends an extra Oh on the end of the CS register contents,
FOOOh, resulting in a code segment start address of FOOOOh. It then adds the
offset portion of the address, FFFOh, contained in the IP register, to the seg
ment start address:

CS FOOOOh
IP + FFFOh

FFFFOh = physical memory address

The resultant memory address, FFFFOh, is referred to as the power-on restart
address. Since the address is formed exactly the same way every time the sys
tem is powered up, the 8086 or 8088 microprocessor always fetches its first in
struction from the power-on restart address.

The First Bus Cycle

The microprocessor then initiates a memory read bus cycle to fetch the first
instruction from the power-on restart address in memory. The power-on re
start address is always located in the boot ROMs. This is because the first in
struction must be located in non-volatile memory. If the first instruction were
fetched from RAM memory, the information returned would be junk. This is
because RAM memory is volatile.

The first instruction fetched from the power-on restart address is always the
first instruction of the power-on self-test, or POST. The POST program is con
tained in the boot ROMs and is always the first program to be run.

Although they always begin operation in real mode and should therefore
function as a fast 8086, the 286, 386, 486 and Pentium microprocessors have
more than twenty address lines. When the 286 or higher microprocessors

116

Chapter 7: The Power-Up Sequence

place the power-on restart address on A[19:0] of the address bus, the address
lines above A19 are automatically set high. This results in address FFFFFOh
being placed on the 286 and 386SX address bus, rather than OFFFFOh. The
386DX, 486 and Pentium processors place FFFFFFFOh on the address bus.

The processor keeps these upper address lines high until the program per
forms a jump to another code segment; in other words, until a new value is
loaded into the CS register. A jump instruction that reloads both the CS and
the IP registers is referred to as an "inter-segment jump" or a "far jump." The
upper address lines are then set low and remain low unless the processor is
switched into Protected Mode by the program. In practice, the first instruction
executed from system ROM is always a jump instruction, thus a new CS value
is immediately loaded when the first instruction is executed.

After the upper bits are set low, they will not be set high again while the proc
essor remains in real mode. This means that the processor cannot access ex
tended memory (memory above the lower megabyte) while in real mode.
There is one exception to this rule. It is discussed in the chapter entitled "The
80286 Microprocessor" under the heading "Accessing Extended Memory in
Real Mode."

117

Chapter 8: The 80286 System Kernel: The Engine

Chapter 8
The Previous Chapter

The preceding chapters have explained how the 80286 microprocessor com
municates with memory and I/O devices and how the 80286 interfaces with
external devices. Sources of system reset and the power-up sequence have
also been covered.

This Chapter

This chapter introduces and explains the external logic required by the 80286
microprocessor to communicate with 8- and 16-bit devices. Additional logic
needed to synchronize memory and I/O devices of varying speeds is also
covered. A thorough understanding of this chapter is crucial to understanding
the 80386 kernel.

The Next Chapter

The next chapter provides a detailed look at the bus cycles that an 80286 can
run. The chapter includes timing diagrams and explanations for read, write,
and the halt or shutdown bus cycles.

The Bus Control Logic

In order to perform all of the actions required to complete a bus cycle, the
80286 microprocessor requires the aid of external logic. One of the major
pieces of logic involved in this process is referred to as the bus control logic.
Refer to figure 8-1.

Logic external to the microprocessor can detect the beginning of a bus cycle by
looking at the 80286's bus cycle definition outputs. When either SO# or Sl# is
detected going low, this indicates the start of the bus cycle. This triggers the
bus control logic's state machine that works with the microprocessor's Bus
Unit to accomplish a data transfer during a bus cycle. The bus control logic
uses CLK2, the double frequency clock, to define time slots for its state ma

119

ISA System Architecture

chine. At the proper points during a bus cycle, the bus control logic performs
the appropriate actions to accomplish the bus cycle.

The functions performed by the bus control logic are described in this chapter.

/ /

RESET

CLK2

~ 80286

SOt. '
S1<

1013#
M16#

M/IO#~
AO ~

Bus
Control
Logic

NOWS#
CHRDY

CPU READY#

Figure 8-1. The Bus Control Logic

120

Chapter 8: The 80286 System Kernel: The Engine

The Address Latch

Refer to figure 8-2. Intel dictates that every 80286-based system must incorpo
rate an external device known as an address latch. When the microprocessor
outputs the address onto its local address bus during a bus cycle, the bus con
trol logic signal ALE (address latch enable) commands the address latch to
hold (latch) the address and remember it. Once latched, the address latch out
puts the address to the system on the system address (SA) bus, SA[I9:1]. Ad
dress decoders throughout the system can then examine the latched address
to see if the microprocessor is attempting to communicate with their respec
tive device.

121

ISA System Architecture

802861-H=~

CPU READY#

Figure 8-2. The Address Latch

The address latch and LA lines Oatchable address lines) must be included to
support the 80286's address pipelining capability. Notice that address lines
A[23:20] are not latched. These address lines go directly to the LA bus through
a buffer, along with address lines A[19:17]. From the buffer, the LA bus is
connected directly to the 16-bit slots on the ISA bus. The purpose of the LA
bus will be described later.

122

Chapter 8: The 80286 System Kernel: The Engine

Notice that the address latch only latches A[19:1], but not AO (address bit AO).
The reason for this is clarified later. Rather than going to the address latch, AO
goes to the bus control logic where it is allowed to pass through onto SAO at
the same time as A[19:1] are latched and presented on SA[19:1].

Address Pipelining

When the 80286 microprocessor must perform back-to-back memory transfers,
it uses address pipelining. This involves placing the address for the next cycle
on the microprocessor's local address bus during the current bus cycle. This is
possible because the current address will have been latched on the system ad
dress bus (SA Bus) and held for the duration of the current bus cycle. As a re
sult, the address for the next bus cycle can be output by the microprocessor
since the address for the current bus cycle has already been latched.

A portion of the next bus cycle's address, LA[23:17], goes directly to the ISA
bus via an address buffer. LA[23:17] (the latchable address bus) are simply a
buffered version of the uppermost bits of the microprocessor's address bus.
16-bit memory expansion boards are designed to decode the LA address lines.
This allows 16-bit memory expansion boards to chip select their memory de
vices much earlier than would be possible if they waited for the latched ad
dress (SA lines).

At the end of address time of the next bus cycle, the bus control logic again
pulses the address latch enable (ALE) line, commanding the address latch to
latch address lines SA[19:0] and SBHE#. Since the high order bits (LA[23:17])
have already been used to generate the chip select, address decoding can be
completed very quickly. Additional information regarding address pipelining
can be found in the chapter entitled "Detailed View of the Bus Cycle."

Although the 80286 microprocessor pipelines out its entire 24-bit address, the
ISA bus only provides seven of those lines, LA[23:17]. It would have been
more expensive to include all 24 of the pipelined address lines and system
designers are always looking for ways to reduce cost while maintaining or
improving performance. If the designers had provided all 24 lines, the cost
would have gone up but the performance would not have improved. There
are two reasons for this: 1) the vast majority of bus cycles are memory reads
since the processor is constantly fetching instructions and 2) the 4164 memory
chip was popular when the PCIAT was designed. The 4164 has 64Kbits of in
formation in it, but it's only one bit wide. Sixteen 4164's are needed to make a
bank of memory for the 80286 microprocessor. Sixteen times 64Kbits yields

123

ISA System Architecture

128KB, which is the smallest block of addresses that can be produced using
LA[23:17]. With LA[23:17], the memory subsystem has enough information to
select the proper bank of memory chips. Additional information about mem
ory banks can be found in the chapter entitled "RAM Memory: Theory of Op
eration."

All I/O addresses are below 128K, so the LA bus always has zeros on it when
I/O devices are addressed. Therefore, I/O devices can't benefit from the LA
bus because the I/O address decoders don't see enough address lines to dis
tinguish one I/O device from another. Although the I/O devices could, in
theory, have benefited from seeing the rest of the pipelined address, that
benefit would have been too slight to justify the increased cost.

The Data Bus Transceivers

Refer to figure 8-3. In addition to the address latch, Intel also requires the in
clusion of two devices known as transceivers.

124

Chapter 8: The 80286 System Kernel: The Engine

CPU READY#

Figure 8-3. The Data Bus Transceivers

125

ISA System Architecture

As can be seen in figure 8-3, each of the two data bus transceivers is connected
between the CPU's local data bus and the system data (SD) bus. One of the
transceivers is referred to as the lower data bus transceiver and the other as
the upper data bus transceiver.

During a read bus cycle, the bus control logic places the transceivers into re
ceive mode to pass data from right-to-Ieft. In this way, the data flows from the
currently-addressed device, over the system data bus, through the transceiv
ers to the microprocessor. During a write bus cycle, the microprocessor drives
data onto its local data bus. The transceivers are placed in transmit mode by
the bus control logic, thereby allowing the data to flow onto the system data
bus so it can be written to the currently-addressed device.

A transceiver has two control lines that allow the bus control logic to control
its actions.

1. 	 DTlR#. Data transmit or receive is set high to place the transceiver in
transmit mode (left-to-right) during write bus cycles. It is set low during
read bus cycles to place it in receive mode (right-to-Ieft).

2. 	 DATA ENABLE. When asserted (high), data enable allows the transceiver
to actually pass the data in the direction selected by the state of the DT /R#
control line. Note that the DATA ENABLE lines are called ENABLE UP
PER for the upper data transceiver and ENABLE LOWER for the lower
data transceiver.

At the proper moment during a bus cycle, the bus control logic always sets the
direction line (DT /R#) to the appropriate level, and then asserts the appropri
ate data enable control line slightly afterwards to enable one or both of the
data bus transceivers.

Data Bus Steering Logic

Refer to figure 8-4. Since 8-bit devices are not connected to the upper data
path, any data transfer between the microprocessor and an 8-bit device must
take place over the lower data path, one byte per bus cycle. The 80286 micro
processor, however, transfers data over the lower and upper data paths in ac
cordance with the cardinal rules. Recall that the microprocessor transfers data
between itself and odd locations using only the upper path. This means that
when an odd location is involved in a transfer with an 8-bit device that exter
nal logic must "steer" the data between the upper and lower path. This en

126

Chapter 8: The 80286 System Kernel: The Engine

sures that both the microprocessor and the 8-bit device transfer data over the
expected data path.

CPU READY#

Figure 8-4. The Data Bus Steering Logic

127

ISA System Architecture

Whenever an address decoder associated with a 16-bit device detects an ad
dress within its assigned range, in addition to chip-selecting its respective
device it also asserts the ISA signal M16# (Memory size 16) or 1016# (I/O size
16). This tells the bus control logic that the microprocessor is communicating
with a 16-bit device (as opposed to an 8-bit device). Note that the bus control
logic samples either the M16# or 1016# signal depending on whether the bus
cycle is referencing a memory or I/O location. Sampling the appropriate sig
nal is important because both the M16# and 1016# signal may be asserted at
the same time, since the generation of M16# is not qualified by whether the
access is to a memory location or not.

Since two bytes can be transferred between the microprocessor and a 16-bit
device during each bus cycle, data can be transferred twice as fast as it can
with 8-bit devices and can be done without data path steering.

Circumstances requiring the use of the data bus steering logic are described in
the following paragraphs.

Scenario One - Read Even-Addressed Location
in a-Bit Device

Assume that the microprocessor executes the following instructions:

MOV DX,03FO ;Floppy Status port to DX
IN AL,DX iread Controller Status to AL

The first of these two instructions (MOV DX,03FOh) causes the value 03FOh to
be placed in the microprocessor's DX register. This is the I/O address of the
floppy disk controller's status register.

The second instruction (IN AL,DX) will cause the microprocessor to perform
an I/O read bus cycle from the I/O address specified in the DX register (I/O
location 03FOh). The data byte read from the status register is placed in the
microprocessor's AL register.

While executing the second instruction, the microprocessor initiates an I/O
read bus cycle, placing address 0003FOh on the address bus with BHE# deas
serted and setting the bus cycle definition lines to the following:

128

Chapter 8: The 80286 System Kernel: The Engine

Mj10# = O', indicates an I/O operation
SO# = l', deasserted, so it's not a write operation
SI# 0; asserted, so it's a read operation

The bus control logic pulses the address latch enable (ALE) signal, causing the
address to be latched into the address latch and presented on the system ad
dress (SA) bus. Address decoders throughout the system examine the ad
dress, but only the floppy disk controller logic is chip-selected. The bus
control logic decodes the microprocessor's bus cycle definition outputs and
asserts its IORC# (I/O Read Command line). Since it is a read operation, the
floppy disk controller's status is placed onto the data bus by the floppy disk
controller. The floppy disk controller is an 8-bit device, so the byte of status
information is placed on the only part of the data bus available to an 8-bit de
vice, SD[7:0].

Recall that, according to rule three, the microprocessor expects data read from
even-addressed locations to come back over the lower data path. The bus con
trollogic senses that the microprocessor is communicating with an 8-bit I/O
device because 1016# is not asserted. Since the data from the floppy disk con
troller status register is already on the proper path (SD[7:0]), the bus control
logic sets the lower data bus transceiver to receive mode (DT jR# = 0) and en
ables it to pass the data through (ENABLE LOWER = 1) to the microproces
sor. The byte flows through the lower data bus transceiver onto the lower data
path on the microprocessor's local data bus.

At the end of data time, CPU READY# is sampled asserted by the microproc
essor. The microprocessor reads the data byte off the lower data path and the
bus cycle ends. The status byte is placed in the microprocessor's AL register,
completing the execution of the IN instruction.

In this example, everything worked just fine and no additional logic was re
quired to complete the data transfer.

Scenario Two - a-Bit Read from Odd-Addressed
Location in a-Bit Device

Assume that the microprocessor executes the following instruction:

IN AL,61 iread contents of Port 61 to AL

129

ISA System Architecture

I/O port (address) 61h is an 8-bit I/O address that the programmer reads to
ascertain the cause of a Non-Maskable Interrupt (NMI). The microprocessor
will initiate an I/O read bus cycle, placing address 000061h on the address bus
with BHE# asserted and setting the bus cycle definition lines to the following
states:

M/IO# = O·, indicates an I/O operation
50# 1·, not asserted, so it's not a write operation
51# = O·, asserted, so it's a read operation

The bus control logic pulses the address latch enable (ALE) signal, causing the
address to be latched into the address latch and to be presented on the system
address (SA) bus. Address decoders throughout the system examine the ad
dress, but only the port 61h logic is chip-selected. Since port 61h is an 8-bit
device, the byte of information being read is placed on the only part of data
bus available to an 8-bit device, 50[7:0].

According to cardinal rule number three, the microprocessor expects data
read from odd-addressed locations to come back over the upper data path.
The bus control logic determines that the microprocessor is communicating
with an 8-bit I/O device because 1016# is not asserted. Since the data coming
from port 61h is on the wrong path, something must be done. How would you
fix this problem? All you have to do is copy the data to the proper data path.
Another transceiver is added in between the upper and lower system data bus
paths. This is referred to as the HilLo Byte Copier.

The bus control logic sets the upper path data bus transceiver to receive mode
(OT/R# =0) and enables it to pass the data through (ENABLE UPPER =1) to
the microprocessor. The low on OT/R# also sets up the Hi/Lo Byte Copier to
pass data from the lower data path to the upper. The bus control logic then
asserts the ENABLE COPY line. This enables the Hi/Lo Byte Copier to pass
the data byte to the upper system data bus path, 50[15:8].

The byte flows through the upper data bus transceiver onto the upper data
path on the microprocessor's local data bus. At the end of data time, CPU
REAOY# is sampled asserted by the microprocessor. The microprocessor
reads the data byte off the upper data path and the bus cycle ends. The byte is
placed in the microprocessor's AL register, completing the execution of the IN
instruction.

130

Chapter 8: The 80286 System Kernel: The Engine

In this example, the additional logic referred to as the data bus steering logic
was required to complete the data transfer. The data bus steering logic con
sists of:

1. 	 Logic in the bus control logic that senses whether the bus cycle is to a
memory or I/O location, and samples the appropriate "data size 16" signal
line (either M16# or 1016#) so it can tell if the microprocessor is communi
cating with an 8- or 16-bit device.

2. 	 Logic in the bus control logic that observes the AO and BHE# outputs of the
microprocessor to see what kind of transfer the microprocessor is attempt
ing to perform (8-bit transfer with an even address; 8-bit transfer with an
odd address; 16-bit transfer starting at an even address).

3. 	 Hi/Lo Byte Copier.

Scenario Three - 8-Bit Write to Odd-Addressed
Location in 8-Bit Device

Assume that the microprocessor executes the following instructions.

MOV DX,03F5 iset up I/O address 03F5h in DX
OUT DX,AL iI/O write AL to I/O port 03F5h

When executing the OUT instruction, the microprocessor outputs the byte to
be written to the odd address on the upper path of the local data bus (rule
number three). The bus control logic sets the OT /R# control line high, placing
the data bus transceivers into transmit (left-to-right) mode and asserts the
ENABLE UPPER signal to enable the upper data bus transceiver. The byte
flows from the upper path of the local data bus to the upper path of the sys
tem data (SO) bus. The bus control logic also decodes the microprocessor's
bus cycle definition outputs and asserts its 10WC# (I/O Write command) line.

The bus control logic examines AO and BHE# and determines that the micro
processor is performing a one byte transfer over the upper data path; and
determines that the currently-addressed device is an 8-bit device by checking
1016#. This means that it must enable the Hi/Lo Byte Copier to copy the data
byte from the upper to the lower data path so it can be written to the 8-bit
device. To accomplish this, the bus control logic asserts its ENABLE COPY
output.

131

ISA System Architecture

Because DT /R# is set to transmit mode during write operations, the Hi/Lo
Byte Copier copies the byte being output by the microprocessor on SD[15:8]
down to SD[7:0] on the system data bus. This allows the data byte to get to the
currently-addressed 8-bit device, which will place the byte into the odd
addressed location.

Scenario Four - 16-Bit Write to a-Bit Device

Assume that the microprocessor executes the following instructions:

MOV DX,03F4 ;set up I/O address 03F4h in DX
OUT DX,AX ;write AX to ports 3F4 and 3F5h

The microprocessor drives the two bytes from the AX register onto the two
data paths, places I/O address 03F4h on the address bus and asserts BHE#.
The bus control logic sets DT /R# high to set the data bus transceivers to pass
from left to right. It also asserts ENABLE LOWER and ENABLE UPPER, al
lowing both transceivers to pass the two data bytes onto the SD bus.

The data bus steering logic recognizes that the current bus cycle is a 16-bit
transfer by the lows on address bit AO and BHE#. During this single bus cycle,
the microprocessor will perform a 16-bit write transfer using both halves of
the data bus simultaneously. When the bus control logic samples 1016# and
finds it deasserted, however, it must perform two separate one-byte transfers
over the lower data path.

Initially, AO is allowed to flow through the bus control logic onto SAO and the
IOWC# line is asserted. The floppy disk controller is chip-selected and the
data byte on the lower data path is written into location 03F4h in the floppy
disk controller. After the bus control logic samples CHRDY asserted, it blocks
AO and forces SAO to a one. This increments the address on the SA bus to
03F5h. The bus control logic also momentarily deasserts and then asserts the
IOWC# line to fool the floppy controller into thinking another bus cycle has
started. ENABLE LOWER is deasserted, blocking the data byte on the lower
data path from getting through the lower data bus transceiver. ENABLE
COpy is asserted and the data byte on the upper half of the SD bus is copied
down to SD[7:0] so it can get to the floppy controller. The data byte is then
written into location 03F5h in the floppy controller. When the bus control logic
samples CHRDY asserted, it then sets CPU READY# asserted, allowing the
microprocessor to end the bus cycle.

132

Chapter 8: The 80286 System Kernel: The Engine

Although it may appear that this was two bus cycles, it was really one pro
longed bus cycle that was stretched out by deasserting CPU READY# until the
operations were completed.

Scenario Five - 16-Bit Read from a-Bit Device

Assume that the microprocessor executes the following instructions:

MOV DX,03F4 iset up I/O address 03F4 in DX
IN AX,DX i2 bytes from ports 3F4 & 3F5

The microprocessor places I/O address 03F4h with BHE# asserted on the ad
dress bus and sets the bus cycle definition lines to indicate that an I/O read
bus cycle is in progress. The bus control logic sets DT /R# low to set the data
bus transceivers to pass from right to left. It also asserts ENABLE LOWER
and ENABLE UPPER, allowing both transceivers to pass the two data bytes
from the SD bus to the CPU's local data bus.

The data bus steering logic recognizes that the current bus cycle is a 16-bit
transfer by the lows on address bit AO and BHE#. During this single bus cycle,
the microprocessor will perform a 16-bit read transfer using both halves of the
data bus simultaneously. When the bus control logic samples 1016# and finds
it deasserted, however, it must perform two, separate one-byte transfers over
the lower data path.

Initially, AO is allowed to flow through the bus control logic onto SAO and the
IORC# line is asserted. The floppy disk controller is chip-selected and the data
byte from location 03F4h in the floppy disk controller is driven onto SD[7:0].
After the bus control logic samples CHRDY asserted, it asserts LATCH LOW,
causing the lower data bus transceiver to latch the data byte from location
03F4 and hold it in an internal register.

The bus control logic blocks AO and forces SAO to a one. This increments the
address on the SA bus to 03F5h. The bus control logic also momentarily deas
serts and then asserts the IORC# line to fool the floppy controller into thinking
another bus cycle has started. ENABLE COPY is asserted and the data byte on
the lower half of the SD bus is copied up to SD[15:8] so it can get to the mi
croprocessor on the correct data path. When the bus control logic samples
CHRDY asserted, it asserts ENABLE UPPER and ENABLE LOW simultane
ously, causing the upper byte to pass through the transceiver to the micro

133

ISA System Architecture

processor and the lower byte to be output to the microprocessor from the
lower data bus transceiver's internal register.

The bus control logic then asserts CPU READY#, allowing the microprocessor
to read the two bytes and end the bus cycle. The two bytes are then placed in
the AX register, ending the execution of the IN instruction.

Although it may appear that this was two bus cycles, it was really one pro
longed bus cycle that was stretched out by deasserting CPU READY# until the
operations were completed.

Scenario Six - a-Bit Read from 16-Bit Device

No intervention required by the data bus steering logic.

Scenario Seven - 16-Bit Read from 16-Bit Device

No intervention required by the data bus steering logic.

Scenario Eight - a-Bit Write to 16-Bit Device

No intervention required by the data bus steering logic.

Scenario Nine - 16-Bit Write to 16-Bit Device

No intervention required by the data bus steering logic.

The Ready Logic

Access Time

The access time for a device is both device and manufacturer-dependent. This
means that the access time for different types of RAM, ROM and I/O devices
will differ. This being the case, you would expect each device type to have a
READY# output pin that will be asserted when the device is ready to com
plete a data transfer. In reality, though, they have no such pin.

Figure 8-5 illustrates the concept of access time.

134

Chapter 8: The 80286 System Kernel: The Engine

,

: Access Time:
I()1

~ L
Device chip-selected j j

READY# sampled asserted _______---'_
and bus cycle completed

Figure 8-5. Access Time

Stretching the Transfer Time

When you begin to access a slow access device, the microprocessor's bus cycle
must be stretched out to match the access time of the device. This is the pur
pose of the CPU READY# input on the microprocessor. Since there is no ready
output from I/O or memory devices, some other method for deasserting the
CPU READY# signal until the currently-addressed device is ready to complete
the bus cycle had to be devised.

The Default Ready Timer

ISA systems use a single Default Timer for the different types of devices in the
system. This default timer is located on the system board and is usually em
bedded within the bus control logic. Table 8-1 illustrates the number of wait
states that are inserted into a bus cycle by the default timer when accessing
I/0 and memory.

Table 8-1. Number 0 Wait States-Default Read 1/ Timer
Type of Device Number of Wait States

16-bitRAM 1

16-bit I/O 1

8-bitRAM 4

8-bit I/O 4

135

ISA System Architecture

It should be noted that the values stated in table 8-1 are based on an 80286
running at 8MHz. This was the speed of the processor in the version of the
IBM PCIAT that became the industry standard. In other words, a bus cycle
accessing an 8-bit device would cause the Default Ready Timer to deassert the
8MHz processor's CPU READY# input long enough to insert four wait states
in the bus cycle. At 8MHz, a wait state is 125ns in duration. The total duration
of the bus cycle would therefore consist of address time plus data time plus
four wait states, for a total of 6 x 125ns = 750ns. A bus cycle accessing a 16-bit
device would cause the Default Ready Timer to deassert the 8MHz micro
processor's CPU READY# input long enough to insert one wait state in the
bus cycle. The total duration of the bus cycle would therefore consist of ad
dress time plus data time plus one wait state, for a total of 3 x 125ns =375ns.

In later ISA machines, the processors are usually running substantially faster
than 8MHz; however, the actual timing of the ISA bus is governed by the bus
control logic to provide the same timing as an 80286 microprocessor running
at 8MHz to 8.33MHz. This means that the actual number of wait states in
serted in the microprocessor's bus cycle by the Default Ready Timer when
communicating with 8- and 16-bit devices may be substantially greater than
those stated in table 8-1.

This default timing is based on compatibility requirements for 8-bit boards
designed for the original 8088-based IBM PC and on the speed of typical RAM
chips at the time the IBM PCIAT was designed. The 8088 takes four ticks of
its 4.77MHz clock to run a O-wait-state bus cycle, so a O-wait-state bus cycle
takes 838ns (4 x 209.5ns = 838ns). Cards built for the original PC considered
838ns to be O-wait-state performance, so the Default Ready Timer provides
approximately that same delay (750nsec) as a default for 8-bit cards. The De
fault Ready Timer was also designed such that designers of ISA expansion
boards could modify the default timing using custom ready timers as de
scribed in the following section.

Custom Ready Timers

Designers of ISA expansion boards may need to extend the default timing if
the access time of their device is too long for the ISA defaults or they may
want to shorten the default timing if their access time is shorter than the ISA
default. Signals provided on the ISA bus permit designers flexibility in select
ing devices with differing access times. The actual timing differs between 8
and 16-bit devices. Refer to figure 8-6. The following list shows the possible

136

Chapter 8: The 80286 System Kernel: The Engine

number of ISA wait states that can be achieved with both 8- and 16-bit de
vices.

• Shortened 8-bit device bus cycle: 1, 2 or 3 wait states
• Stretched 8-bit device bus cycle: more than 4 wait states
• Shortened 16-bit device ISA bus cycle (Memory only): 0 wait state
• Stretched 16-bit device ISA bus cycle: more than 1 wait state

ISA Expansion Connectors ,
I

MicroprocessorrdO

M16# Default1016#

NOWS# Ready

CHRDY Timer READY#

Logic

Figure 8-6. Custom Ready Timer Logic

Extending the Default Timing

When designing an ISA card, the access time for the device may be longer
than the ready timeout provided by the Default Ready Timer. Designers can
override the default timer and stretch out the bus cycle by the required num
ber of wait states to match the access time of the device. This is implemented
with the CHRDY signal (Channel Ready) on the ISA bus.

137

ISA System Architecture

When the address decoder on an ISA card decodes an address assigned to its
respective device, it not only chip-selects the device, but also triggers the cus
tom ready timer on the card. When triggered, the timer forces the normally
asserted CHRDY signal to become deasserted. When the default timer logic
on the system board sees CHRDY become deasserted, the default timer is
overridden and CPU READY# will not be asserted to the microprocessor until
the CHRDY signal is seen to become asserted again. When the access time for
the card has elapsed, the custom timer will then allow CHRDY to become as
serted again. The default ready timer logic on the system board will then im
mediately assert CPU READY#, thus informing the microprocessor that it's
OK to end the bus cycle. In this way, the designer of an add-in card can insert
any number of additional wait states into a bus cycle when a particular device
is addressed.

Shortening the Default Timing

The NOWS# (No Wait State) line provides a method to reduce the number of
wait states associated with the default timing. When a fast ISA board is capa
ble of delivering data faster than the default timing calls for, the board can as
sert the NOWS# line as soon as it recognizes it is being addressed; however,
only 16-bit memory boards are capable of ending an ISA bus cycle in zero wait
states. The default timer generates the CPU READY# signal as soon as it sees
the NOWS# line become asserted, thereby ending the cycle earlier than the de
fault time. Note that NOWS# doesn't necessarily or always mean no wait
states; it means fewer wait states. Refer to the Chapter entitled "ISA Bus Cy
cles" for detailed information and timing requirements.

The IBM PCIAT was designed to permit zero-wait-state accesses only to 16
bit memory devices because only they can decode the LA (Latchable Address)
lines. The LA lines are present on the ISA bus earlier than the latched System
Address (SA) lines, meaning 16-bit memory devices can decode the address
earlier than 16-bit I/O and 8-bit devices. Designers of 16-bit memory devices
should latch the result of the current decode in the event of the LA lines being
pipelined prior to the end of the current bus cycle. Failure to do so might
cause the current device to be deselected when the new address is placed on
the LA bus.

138

Chapter 9: Detailed View of the 80286 Bus Cycle

Chapter 9
The Previous Chapter

Previous chapters have covered how the microprocessor communicates with
memory and I/O devices and have explained the support logic needed to al
low the microprocessor to communicate with both 8- and 16-bit devices.

This Chapter

The exact timing of read and write bus cycles for both memory and I/O are
covered in this chapter. Detailed explanations of the halt and shutdown bus
cycles, along with the causes of each are also covered.

The Next Chapter

The next several chapters detail the 80386 microprocessor and the support cir
cuitry required for the 80386 kernel.

Address and Data Time Revisited

The concept of the bus cycle was introduced in the chapter entitled
"Introduction to the Bus Cycle." The microprocessor performs a bus cycle
when it has to transfer information between itself and a memory or I/O loca
tion. The microprocessor's bus unit uses the address, data and control buses to
address a device, indicate the type of transaction in progress and to transfer
the data between the microprocessor and the currently addressed location.

The microprocessor uses the bus cycle definition lines to indicate the type of
transaction. The types of bus cycles are indicated in table 9-1.

With the exception of the interrupt acknowledge bus cycle, this chapter pro
vides a detailed description of each bus cycle type. The interrupt acknowledge
bus cycle is described in the chapter entitled 'The Interrupt Subsystem."

139

ISA System Architecture

Table 9-1. 80286 Bus Cycle Definition
M/IO# 51# 50# Bus Cycle Type

0 0 0 Interrupt Acknowledge
0 0 1 I/O Read
0 1 0 I/O Write
1 0 0 Halt or Shutdown
1 0 1 Memory Read
1 1 0 Memory Write

When it must perform a bus cycle, the microprocessor's bus unit leaves the
idle state and enters address time. During this "tick" of PCLK, the microproc
essor places the address and bus cycle definition on the buses. Address de
coders throughout the system start decoding the address during this time slot.

Address time is always followed by data time. During this state, the micro
processor expects the data to be transferred between itself and the currently
addressed device.

In reality, these aren't the state names Intel uses for the 80286 and 80386 bus
unit states. Table 9-2 lists the state names used by Intel:

~abl - and 80386 B C-lie1 St t e a e e 9 2 . 80286 us Names
Nickname 80286 Name 80386 Name

Address Time Ts T1
Data Time Tc T2

These states were renamed for clarity's sake because the names Ts and Tc
provide little information regarding the actions that occur during these states.
Intel calls address time Ts, meaning "Send Status" time, because one of the
things that occurs during Ts is the output of the bus cycle definition on
M/IO#, SO#, and S1#. Intel refers to SO# and S1# as the microprocessor's status
outputs, hence the name "Send Status" time. Data time is called Tc, "Perform
Command" time, because it's time to perform the command, or data transfer,
that the microprocessor initiated.

The various actions that must take place during a bus cycle have been de
scribed in previous chapters. This chapter provides an in-depth look at the se
quence and exact timing of these actions in relation to each other.

140

Chapter 9: Detailed View of the 80286 Bus Cycle

The Read Bus Cycle

With the exception of the MjIO# output, 1/0 and memory read bus cycles are
identical. This section describes the exact timing of the actions performed
during a read bus cycle. Figure 9-1 is a timing diagram illustrating a series of
typical 80~86 read bus cycles.

PCLK has been placed across the top of the timing diagram as a point of refer
ence. Remember that each cycle of PCLK defines the duration of one bus unit
state. Vertical dotted lines have been superimposed on the diagram to define
each cycle of PCLK (and, therefore, each state). In addition, the name of each
state is written across the top of the diagram.

A general idea of the information presented can be derived from the state
names across the top. In this example, the sequence of states is as follows:

Tc Data Time
Ts Address Time
Tc Data Time
Ts Address Time
Tc Data Time
Tc Data Time
Ts Address Time

Every bus cycle consists of at least an address time and data time pair. Addi
tional data times (wait states) may be inserted in the bus cycle if the micro
processor samples its READY# input deasserted at the end of data time. Based
on these rules, the states illustrated on the diagram can be interpreted as fol
lows:

Tc Data Time
Ts Address Time
Tc Data Time
Ts Address Time
Tc Data Time
Tc Data Time
Ts Address Time

end ofprevious bus cycle
start of bus cycle A
1st data time of bus cycle A
start of bus cycle B
1st data time of bus cycle B
wait state inserted in bus cycle B
start of next bus cycle

In other words, the diagram illustrates the end of a bus cycle followed by a 0
wait-state bus cycle (bus cycle A), a I-wait-state bus cycle (bus cycle B) and
the start of another bus cycle.

141

ISA System Architecture

When reading a timing diagram, one scans from left-to-right (from earlier in
time to later in time) looking for the signals that change first, second, and so
on. Since PCLK should always be pulsing (changing), it's not necessary to note
the fact that it changes.

(Bus cycle A) (Bus Cycle B)
1 I -r 1 I 1 1 1

PCLK~TC~T' ~, Tc Ts

11~8~1 1 1

A23:AO I 1 1 1 ~

1 1 1 1 1

SA19:SAO: X : X............:_-+-_-+---,X :

10- 1 1

ALE 1
1 Y --r----In IL11--.

1

MlIO# 1

80# ~
OT/R# 1-:--"'---~ rI!--_----"__........L._1L
:

:Ic;>-ie1~~ I r
Enable '--__.:........I 1-__...:....< .!

015:00: ~:~ ... {\...._~_-(>..... C
1 1 1

READY# i1--J

Figure 9-1. The Read Bus Cycle

Figure 9-2 shows the 80286 system engine. Referencing both the timing dia
gram and the functional block diagram will help tie the timing and functions
together for a more complete understanding.

142

Chapter 9: Detailed View of the 80286 Bus Cycle

CPU READY#

Figure 9-2. The 80286 System Engine

143

ISA System Architecture

Bus Cycle A

Bus cycle A starts at reference point two, the beginning of the Ts time slot
(address time). Scanning from left-to-right, however, the address and M/IO#
change state prior to the start of bus cycle A. Halfway through the first Tc
time in the previous bus cycle (at reference point 1), the microprocessor starts
to output the address for the up-coming bus cycle (bus cycle A) before the ac
tual start of bus cycle A. The address change is illustrated by the crossover
point at reference point 1, the crossover indicating that the address starts to
change to the new address at this point. This early address output is caused
by the 80286's address pipelining capability. Refer to Figure 9-2.

Since the address for the current bus cycle has already been latched into the
address latch, the microprocessor can safely output a new address onto its lo
cal address bus during the current bus cycle without interfering with the cur
rent bus cycle. Its address is already latched and being presented to the rest of
the system on the System Address (SA) bus for examination. The latchable
address (LA) bus is only used by 16-bit ISA memory boards and provides
early decoding for these expansion devices. The early address change on the
LA bus does not interfere with the current cycle because 16-bit boards are de
signed to decode the LA lines and latch the chip select for the current cycle.
Since the chip select for the current bus cycle is latched, the next LA address
can be decoded and latched once the current cycle is completed.

In addition to outputting the address for the up-coming bus cycle early, the
microprocessor also sets the M/IO# line (reference point one) to the appropri
ate state for the up-coming bus cycle. This will be a one for a memory opera
tion or a zero for an I/O operation.

At reference point two, bus cycle A actually begins. The 80286 outputs the re
mainder of the bus cycle definition on SO# and SI#. In the case of a read bus
cycle, SI# will be asserted (low) and SO# will stay high. In addition, 16-bit ex
pansion boards are free to examine the LA address to determine if it is their
address.

At reference point three (the midpoint of Ts), the bus control logic asserts ad
dress latch enable (ALE) and keeps it asserted until the end of Ts. The address
latch latches the address on the falling edge of ALE (when it goes low again).
Once latched, the address is continuously presented on the system address
(SA) bus where it can be examined by address decoders throughout the sys
tem. At this point, the microprocessor can safely output the address for the

144

Chapter 9: Detailed View of the 80286 Bus Cycle

next bus cycle without having any effect on the latched address. If the micro
processor does have another bus cycle to perform, it will start to output the
address halfway through Tc (at reference point eight). In this example, the mi
croprocessor is, in fact, performing back-to-back bus cycles, so you can see the
address changing at reference point eight.

At reference point four, the microprocessor removes the asserted level from
the S1# line. The bus control logic should have already decoded the micro
processor's bus cycle definition lines and determined the type of bus cycle
currently in progress.

At reference point five, the bus control logic sets the DT/R# line (Data
Transmit or Receive) line low because this is a receive (read) operation. This
pre-conditions the Data Bus Transceivers to pass the data being read from the
currently addressed device from right-to-left through the Data Bus Transceiv
ers to the microprocessor. Slightly after setting the DT /R# line low (at refer
ence point six), the bus control logic asserts ENABLE UPPER and/or
ENABLE LOWER (transceiver enables), enabling one or both of the Data Bus
Transceivers to actually pass the data. The bus control logic asserts one of its
command outputs (IORC#, IOWC#, MRDC# or MWTC#). At this point
(reference point seven), the data coming from the currently addressed device
may begin to show up on the microprocessor's local data bus.

The microprocessor expects the currently addressed device to complete the
data transfer during Tc. At the end of Tc, in bus cycle A, the microprocessor
samples its READY# input asserted (low) at reference point nine. This tells the
microprocessor that the currently addressed device is ready to end the bus
cycle. Since this is a read operation, the microprocessor will read the data the
device is supplying (at reference point ten) and end the bus cycle. This com
pletes bus cycle A.

Bus Cycle B

Even though its address and M/IO# setting are output during bus cycle A (at
reference point eight, due to pipelining), bus cycle B actually begins at refer
ence point eleven with the output of SO# and S1#. Since this is another read
bus cycle, S1# will be asserted (low) and SO# deasserted (high).

Bus cycle B proceeds the same as bus cycle A right up until the end of Tc time
(reference point twelve). When the 80286 microprocessor samples READY# at
this point, the currently addressed device hasn't yet asserted it to indicate its

145

ISA System Architecture

readiness to end the bus cycle. Sampling READY# deasserted tells the micro
processor to "stretch" the bus cycle by inserting another Tc time (wait state).

The microprocessor leaves all signals exactly the same, waiting until the end
of this extra Tc to sample READY# again. At the trailing edge (the end) of the
extra Tc (reference point thirteen), the microprocessor samples READY#
again. This time it is sampled asserted (low), telling the microprocessor that it
can safely read the data from its local data bus and end the bus cycle.

Since another Ts time slot follows this bus cycle, another bus cycle is begin
ning.

The Write Bus Cycle

During a write bus cycle, just as with the read bus cycle, 1/0 and memory
write bus cycles are identical with the exception of the M/IO# setting. This
section describes the exact timing of the actions performed during a write bus
cycle. Figure 9-3 is a timing diagram illustrating a typical 80286 write bus cy
cle.

A general idea of the information presented can be derived from the state
names across the top. In this example, the sequence of states is as follows:

Tc Data Time end of previous bus cycle
Ts Address Time start of bus cycle
Tc Data Time end of bus cycle
Ts Address Time start of next bus cycle
Tc Data Time 1st data time of bus cycle
Tc Data Time wait state
Ts Address Time start of next bus cycle

This timing diagram illustrates one O-wait-state bus cycle bracketed by the end
of the previous bus cycle and the start of the next bus cycle.

The address and M/IO# setting for the bus cycle is pipelined out early at ref
erence point one. At the start of the bus cycle (reference point two), the micro
processor outputs the remainder of the bus cycle definition on SO# and Sl#.
SO# is asserted (low) to indicate a write operation and Sl# is deasserted.

Because this is a transmit (write) operation, the bus control logic sets DT /R#
(Data Transmit or Receive) high at reference point three. Since the quiescent

146

Chapter 9: Detailed View of the 80286 Bus Cycle

(idle) state for the DT/R# line is high, no change is actually seen on this line,
but it is nonetheless important that it is high at this point. This pre-conditions
the Data Bus Transceivers to pass the data being output by the microprocessor
(on the local data bus) to the system data, or SO, bus. Immediately after set
ting DT /R# high, the bus control logic asserts ENABLE UPPER and/or EN
ABLE LOWER (transceiver enables), enabling one or both of the Data Bus
Transceivers to pass the data onto the system data bus (reference point four).
At the same time, the microprocessor begins to output the data to be written
to the device (reference point five).

147

ISA System Architecture

PCLK

A23:AO I
I

SA19:SAO:"------'------'X=_:_-+-~X,--_:_-+-_-+-~X :

ALE: -----'"---IP1 ri r-L

I

M/IO# ~ L

S1#

SO# ~ ~ ~
OT/R# :CP I

I I
Tranceiver

Enable I L9 I U
I
I

015:00 I
q?'. :

I

~:.<
I

>..(
I

REAOY# il
I

: I
I

l{)
I

II
I

I

q
I

Figure 9-3. The Write Bus Cycle

Address latch enable (ALE) is pulsed by the bus control logic at reference
point six, causing the address to be latched into the address latch (at the trail
ing edge of ALE). The latched address is now presented on the system ad
dress (SA) bus for examination by all address decoders in the system.

148

Chapter 9: Detailed View of the 80286 Bus Cycle

At reference point seven, the microprocessor deasserts the 50# line. The bus
control logic and logic associated with the currently addressed device should
have decoded the bus cycle definition lines by now to determine the type of
bus cycle (write).

If the microprocessor is going to run another bus cycle immediately after this
one, it will pipeline the next address out at reference point eight.

At the trailing edge of Tc (reference point rune), the microprocessor will sam
ple its READY# input to see if the currently addressed device has accepted the
data yet. In this example, READY# is sensed asserted (low), so the microproc
essor ends the bus cycle.

It should be noted, however, that the bus control logic continues to keep EN
ABLE LOWER and/or ENABLE UPPER asserted, and the microprocessor
continues to drive the data onto the local data bus for half a PCLK tick longer.
The microprocessor placed the data on the data bus early (reference point
five) and keeps it out there after the actual end of the bus cycle (reference
point ten) for the reason described in the following paragraphs.

To guarantee that information is received correctly by the device being written
to, every digital device capable of receiving data requires that a manufacturer
specified setup time and hold time be satisfied. In other words, the data must
be present on the device's inputs for at least the specified setup time before the
latch point and must remain present for at least the specified hold time after
the latch point or the device may not receive the data correctly.

Since the microprocessor has no idea what the setup and hold times are for
the individual device types it may be writing to, Intel's design takes worst
case setup and hold times into account by placing the data out very early in
the bus cycle and keeping it out there as long as possible after the actual end
of the bus cycle.

Continuing to drive the data onto the data bus for half of a PCLK tick into the
next bus cycle will not disturb the next bus cycle. It takes time for an address
decoder to detect an address and chip-select the next device. The fact that the
data from the previous write bus cycle is still present on the data bus can't af
fect a device which hasn't even been chip-selected yet.

149

ISA System Architecture

The Halt or Shutdown Bus Cycle

When the microprocessor executes a halt or shutdown bus cycle, the bus cycle
definition lines and will reflect the following states:

• Sl# and SO# are asserted (low).
• M/IO# is set high.

Notice there is no way to distinguish between a halt or shutdown during the
bus cycle when looking only at the bus cycle definition lines. However, the
state of address bit 1 (A1) indicates whether a halt or shutdown bus cycle is in
progress.

• A1=1 for a halt
• A1=0 for a shutdown

During a halt or shutdown, the 80286 may service PEREQ (processor exten
sion request) or HOLD requests. For further information on PEREQ and
HOLD, refer to the chapters entitled "The Numeric Coprocessor" and "Direct
Memory Access (DMA)" respectively.

Either NMI (non-maskable interrupt request) or RESET will force the 80286
out of either a halt or a shutdown. If interrupts are enabled, an INTR
(maskable interrupt request) will also force the microprocessor out of a halt
(but not out of shutdown). For information on interrupts, refer to the chapter
entitled "The Interrupt Subsystem."

Halt

When the microprocessor executes a HLT instruction, it will initiate a halt or
shutdown bus cycle and cease fetching and executing instructions. The micro
processor indicates it is running a halt bus cycle by placing the values on the
bus cycle definition lines and address bit 1 as shown above.

It should be noted that SO# and Sl# are only low during the bus cycle itself.
The bus cycle ends when the microprocessor samples READY# asserted at the
end of data time. After the bus cycle has ended, the halt condition can be rec
ognized externally by the following signs:

150

Chapter 9: Detailed View of the 80286 Bus Cycle

• SI# and SO# are high.
• M/IQ# is high.
• Address bit 1 is high.

These conditions are static - that is, they are constant, and therefore easily
recognizable.

Shutdown

The indications of a shutdown are the same as those for a halt (shown above),
with the exception that Address bit Al is low.

When the 80286 microprocessor detects an exception while attempting to exe
cute the handler for a prior exception, the two exceptions are generally han
dled serially. Certain combinations of exceptions cannot be handled serially,
however. These exceptions are caused by protection violations in protected
mode. For example, in protected mode, if an application attempts to access
data that is outside its data segment, the microprocessor will start running the
general protection fault exception handler. If, say, a stack overflow were to
occur while the 80286 microprocessor ran the general protection fault excep
tion handler, the microprocessor would not be able to handle the two faults
serially. The microprocessor invokes the double-fault exception instead.

If the 80286 microprocessor detects another exception while attempting to
service the double-fault, it goes into a shutdown condition. This is sometimes
referred to as a triple fault. The microprocessor indicates the shutdown con
dition to external logic by running the halt or shutdown bus cycle. In an ISA
machine, the shutdown detect logic outside the microprocessor detects the
shutdown and toggles the microprocessor's RESET line, causing the system to
reboot.

151

Chapter 10: The 80386DX and SX Microprocessors

Chapter 10
The Previous Chapter

A detailed analysis of the 80286 microprocessor, the kernel logic necessary to
interface it to external devices, and its bus cycle types were covered in prior
chapters.

This Chapter

This chapter provides a detailed description of the 80386DX and SX micro
processors. It covers the functional units, processor self-test, enhancements to
protected mode, virtual paging, virtual 8086 mode, and the processor's hard
ware interface to external devices.

The Next Chapter

The next chapter, liThe 80386 System Kernel," defines the support logic neces
sary to interface the 80386DX and SX microprocessors to external devices.

Introduction

This chapter describes the 80386DX and SX microprocessors. The 80386DX
and SX microprocessors are identical internally and only differ in their inter
face to external devices. This chapter is therefore divided into three parts:

• 	 a discussion of the internal structure and operation of the 80386 micro
processor.

• 	 a discussion of the 80386DX interface to external devices.
• 	 a discussion of the 80386SX interface to external devices.

153

ISA System Architecture

The 80386 Functional Units

General

Figure 10-1 illustrates the units that make up the 80386 microprocessor.

Instruction

Decoder

Instruction

Queue

Decode

Unit

Memory

Management

Unit

Paging
Unit

Prefetch

Queue

Prefetcher

Prefetch

Unit

Figure 10-1. 80386 Microprocessor Block Diagram

154

Chapter 10: The 80386DX and SX Microprocessors

The 80386 microprocessor consists of five functional units:

• 	 Bus Unit. Handles communication with devices external to the microproc
essor chip.

• 	 Code Prefetch Unit. Fetches instructions from memory before the micro
processor actually requests them.

• 	 Instruction Decode Unit. Decodes the instruction prior to passing it to the
execution unit for execution.

• 	 Execution Unit. Handles the actual execution of the instruction.
• 	 Memory Management Unit (MMU). When the microprocessor must ad

dress a memory location, the MMU forms the physical memory address
that is driven out onto the address bus by the bus unit during a bus cycle.

Code Prefetch Unit

The code prefetch unit capitalizes on the predictability of program execution.
Statistically, program instructions are fetched from memory sequentially most
of the time. Only jump instructions alter program flow, causing it to jump to
another area of memory. Once the flow alteration has occurred, however, the
program returns to sequential instruction processing until another jump in
struction is encountered.

When the bus unit isn't performing bus cycles for the execution unit, the code
prefetch unit uses the bus unit to fetch the next sequential instruction from
memory and stores it in the 16-byte prefetch queue. The code prefetch unit
always attempts to maximize the bus unit's throughput by fetching an entire
doubleword (four bytes) at a time. The prefetched instructions are placed in
the prefetch queue to await processing by the instruction decode unit.

Code prefetch requests are given a lower priority by the bus unit than re
quests from the execution unit. This ensures that the execution unit will not be
stalled while waiting for a memory or I/O data transfer to complete. For all
practical purposes, instruction prefetching reduces the time the execution unit
spends waiting for the next instruction to zero.

Instruction Decode Unit

The instruction decode unit takes an instruction from the 16-byte prefetch
queue, converts it into microcode and stores it in a three-deep decoded in
struction queue for use by the execution unit. Any immediate data and offset

155

ISA System Architecture

associated with the instruction is also taken from the prefetch queue and
stored in the decoded instruction queue.

Execution Unit

General

The execution unit executes each instruction received from the decoded in
struction queue. It communicates with the other microprocessor functional
units on an as needed basis in order to execute each instruction. The execution
unit is comprised of three sub-units:

• 	 The control unit's microcode and special parallel hardware speeds mul
tiplies, divides and effective address calculation.

• 	 The data unit contains the arithmetic logic unit, or ALU, eight general
purpose registers and a 64-bit barrel shifter. The data unit performs data
operations requested by the control unit.

• 	 The protection test unit checks for segmentation violations.

The Registers

The 80386 execution unit incorporates the following registers:

• 	 The general registers
• 	 The status and control registers
• 	 The debug registers
• 	 The test registers

The following sections describe each of these register groups.

General Registers

The general registers implemented in the 80386 microprocessor are a superset
of those found in the earlier implementations of the X86 processor family. Fig
ure 10-2 illustrates the general registers.

156

Chapter 10: The 80386DX and SX Microprocessors

31 23 15 87 o
EAX AH .~

P< AL
EBX BH EP< BL
ECX CH cP< CL
EDX DH [P< DL
ESP BP
E81 81
EDI DI

ESP SP

Figure 10-2. The 80386 General Registers

Extended versions of the AX, BX, CX, DX, BP, 51, DI and 5P registers are now
available to the programmer. The names of each of the extended registers
starts with the letter "E". Referring to the EAX, EBX, ECX or EDX registers
within a MOV instruction allows the programmer to specify a doubleword, or
32-bit, object to be moved. Extending the width of BP, 51, DI and 5P registers
to 32 bits permits the programmer to specify any memory address within the
4GB addressing range of the microprocessor without changing the contents of
the segment registers.

Status, MSW and Instruction Registers

Figure 10-3 illustrates the 80386's status and instruction registers.

157

ISA System Architecture

31 	 EIP a
IP

31 eRa 	 a
ET TSEM MP PE I

MSW

31 EFlags 	 a
VM RF I Flags

Figure 10-3. The 80386 Status and Instruction Registers

An extended version of the 80286 Flags register, the Eflags register, contains
two new control bits:

• 	 The RF, or resume flag, bit allows the programmer to disable debug ex
ceptions so that the instruction can be restarted after a debug exception
without immediately causing another debug exception.

• 	 The VM, or virtual mode, bit allows the programmer to enable or disable
virtual 8086 mode. Virtual 8086 mode is discussed later in this chapter.

Control register 0, or CRO, is a superset of the 80286 machine status word
(MSW) register. CRO contains two new bits not found in MSW. The extension
type, or ET, bit (bit 4) indicates the type of numeric coprocessor present in the
system (80287 or 80387). The ET bit is set to one when an 80387 coprocessor is
detected. The paging bit, PG (bit 31), enables virtual paging when the bit is set
to one. Virtual paging is described later in this chapter in the section entitled
"Page Translation./I

After reset, the 80386 MSW register has a value of OOOOh in it. The 80286 MSW
register has FFFOh in it after reset. Since the upper bits in the register aren't
used by either processor, the difference has no effect.

158

Chapter 10: The 80386DX and SX Microprocessors

Debug Registers

Figure 10-4 illustrates the 80386 debug registers. These registers support the
implementation of both code and data breakpoints. In the case of a ccide
breakpoint, the microprocessor monitors every instruction fetch for a match
on the specified memory address. When a match is detected, a debug excep
tion occurs and alerts the programmer. In the case of a data breakpoint, the
microprocessor monitors for a data read from or a data write to the specified
memory address defined by the programmer. When a match is detected, a
debug exception occurs and alerts the programmer.

Linear Breakpoint Address 0 DRO

Linear Breakpoint Address 1 DR1

Linear Breakpoint Address 2 DR2

Linear Breakpoint Address 3 DR3

Reserved DR4

Reserved DRS

Breakpoint Status DR6

Breakpoint Control DR?

Figure 10-4. The 80386 Debug Registers

Debug register 7, or DR7, is the debug control register. It is used to define up
to four breakpoints as being enabled or disabled. If enabled, a breakpoint may
take one of three forms:

• break on instruction execution only.
• break on data writes only.
• break on data reads or writes, but not on instruction reads.

In addition, bits in DR7 may be used to define a breakpoint as local to a par
ticular task or global in nature.

159

ISA System Architecture

The debug status register, DR6, permits the programmer to determine which
breakpoint condition has been met. DR4 and DR5 aren't used by the 80386.
ORO through DR3 are used to specify up to four breakpoint addresses.

For additional information about the debug registers, refer to Chapter 12 of
Intel's 80386 Programmer's Reference Manual, order number 230985.

Test Registers

The 80386 test registers are used to test the paging unit's translation lookaside
buffer, or TLB. Figure 10-5 illustrates the two registers.

TLB Test Control TR6

TR7TLB Test Status

Figure 10-5. The 80386 Test Registers

TR6 is the command register for TLB accesses, while TR7 is the data register.
Addresses and commands are written to the TLB using the command register,
while data is read from or written to the TLB using the data register.

For further information about the test registers, refer to Chapter 12 of Intel's
80386 Hardware Reference Manual, order number 231732.

Segmentation Unit

The microprocessor must access memory under the following circumstances:

• 	 To fetch the next instruction for the code prefetch unit.
• 	 When the execution unit must read data from memory to satisfy a MOV

instruction.
• 	 When the execution unit must write data to memory to satisfy a MOV in

struction.
• 	 To fetch a segment descriptor from memory when a segment register is

loaded with a new value in protected mode.
• 	 To fetch a page directory or page table entry from memory.

160

Chapter 10: The 80386DX and SX Microprocessors

When the microprocessor must access memory, the segmentation unit forms
the memory address by adding the offset within the target segment to the
segment start address contained within the respective segment register. The
resulting 32-bit memory address, known as the linear address, is then either
submitted to the paging unit (if paging is enabled) or output onto the address
bus during the resulting memory bus cycle.

Refer to figure 10-6. In real mode, all of the segment registers, including FS
and GS, are available to the programmer. The FS and GS segment registers
give the programmer the ability to create two new data segments in addition
to the DS and ES data segments available in the earlier processors. The pro
grammer also has access to the debug, control and test registers while in real
mode.

A description of segment register usage in both real and protected modes can
be found in the chapter entitled "The 80286 Microprocessor." The differences
in protected mode operation on the 80286 and 80386 microprocessors are dis
cussed later in this chapter.

Segment
Registers

15 0

CS
OS
SS
ES
FS

GS

Figure 10-6. The 80386 Segment Registers

Paging Unit

A description of the paging unit can be found later in this chapter under the
heading "Page Translation."

161

ISA System Architecture

Bus Unit

The bus unit provides the interface between the microprocessor and external
memory and I/O devices. When the microprocessor must read information
from or write information to an external device, the bus unit uses the address,
data, and control buses to run one or more bus cycles. The bus unit runs bus
cycles when a request is received from:

• 	 Execution unit to run an I/O or memory read or write.
• 	 the code prefetch unit to read the next instruction from memory.
• 	 the execution unit to fetch a segment descriptor from memory when a

segment register is loaded with a new value in protected mode.
• 	 the paging unit to fetch a page directory or page table entry from memory.

The bus unit also provides the interface between the microprocessor and the
numeric coprocessor. A description of processor/coprocessor inter
communication can be found in the chapter entitled "Numeric Coprocessor."

Protected Mode

Figure 10-7 illustrates the segment descriptor format in the 80286 protected
mode environment. Bytes 0 and 1 describe the length, or limit, of the segment.
Since this is only a 16-bit field, the 80286 can only describe segments up to
64KB in length. Bytes 2, 3 and 4 supply the start address of the segment, al
lowing the segment to start anywhere in the 16MB memory space of the 80286
microprocessor. Byte 5 is the attribute byte and describes various characteris
tics of the segment. Bytes 6 and 7 are not used by the 80286.

Figure 10-8 illustrates the segment descriptor format in the 80386 protected
mode environment. Bytes 0 and 1 and the lower four bits of byte 6 specify the
length of the segment. With a 20-bit field, a segment length of from one byte to
1Mbyte (1,048,576) can be specified. In addition, bit 7 of byte 6 is used to fur
ther define the segment length. Known as the granularity, or G, bit, it indicates
how the limit (segment length) field is to be interpreted. If G = 0, the length is
in bytes. This allows a segment to be anywhere from one byte to 1MB long. If
G = 1, the length is specified as the number of 4KB pages of memory. This al
lows a segment to be anywhere from 4KB to 4GB in length.

162

Chapter 10: The 80386DX and SX Microprocessors

Bytes 2, 3, 4 and 7 are used to specify the start address of the segment, allow
ing the segment to be located anywhere in the 4GB address range of the mi
croprocessor.

A description of the protected mode concept can be found in the chapter enti
tled "The 80286 Microprocessor."

Byte 7 Not used by 80286

Byte 6

Byte 5 P

Not used by 80286

IDPLI s I Type IA Attribute Byte

Byte 4 Upper Byte of Base Address

Byte 3 Middle Byte of Base Address

Byte 2 Lower Byte of Base Address

Byte 1

Byte 0

Upper Byte of Size

Lower Byte of Size

Figure 10-7. The 80286 Segment Descriptor Format

163

ISA System Architecture

Byte 7 Upper Byte of Base Address

Byte 6 GI Upper Nibble
of Size

Byte 5 P 1 DPLI S Type IA Attribute Byte

Byte 4
Upper Middle Byte
of Base Address

Byte 3
Lower Middle Byte
of Base Address

Byte 2 Lower Byte of Base Address

Byte 1 Middle Byte of Size

Byte a Lower Byte of Size

Figure 10-8. The 80386 General Segment Descriptor Format

Page Translation

Virtual Paging

The 80386 microprocessor incorporates logic to facilitate the implementation
of virtual paging (also referred to as demand paging) in an operating system.

Paging is enabled by setting the PG bit in eRO (bit 31). When enabled, the ad
dress produced by the segmentation unit, called the linear address, is used as
an input to the paging unit. The linear address output by the segmentation
unit is used by the paging unit to identify a page table, a page described
within that table, and an offset within that page.

Before describing the function performed by the paging unit, the concept of
the page should be defined.

The 80386 paging system provides an indexing system to keep track of the lo
cation and status of up to 1,048,576 four kilobyte pages (a total of 4GB) of pro

164

Chapter 10: The 80386DX and SX Microprocessors

gram and/or data that "belongs" to a task (applications program). At a given
moment in time, a page of program and/or data can be:

• on disk or
• on disk and in main memory

When paging is enabled, the paging unit uses the linear address produced by
the segmentation unit to locate:

• 	 the page directory entry that points to the respective page table.
• 	 the page table entry that describes the page containing the location the

programmer is attempting to access.
• 	 the offset within the main memory page.

As illustrated later in this text, each 32-bit page table entry contains a page
present bit that defines whether or not the desired page is currently resident
in main memory. If it is, the entry also defines the start address of the desired
page in main memory. The lower part of the linear address from the segmen
tation unit is then used to identify the offset of the desired location in the tar
get main memory page and a bus cycle is generated to access the desired main
memory location. If the entry indicates the desired page isn't currently present
in main memory, a page fault (exception 14) occurs, causing the 80386 to jump
to the page fault handler program. In addition, the microprocessor also
pushes a 16-bit error code onto the stack.

In the page fault handler, the operating system can then read CR2 (see figure
10-9) to ascertain the actual 32-bit linear address that caused the page fault.
The linear address can be used to locate the page table entry that defined the
page as "not present." Since only one bit of the 32-bit entry was used to define
the page as not present, the operating system can use the other 31 bits to de
fine a disk address where the actual 4KB page of code and/or data can be
found on the disk. The page fault handler can then locate an unused page in
main memory and read the desired page into the respective main memory
page. The page table entry will then be updated to mark the page present in
main memory and point to the page's start address in main memory. The ac
tual bus request to access the desired code or data is then initiated.

When a task begins execution, CR3 (see figure 10-9) is automatically loaded
with the start address of the page directory in main memory. Only the upper
20 bits, 31:12, of the page directory start address are actually found in CR3
(the least-significant 12 bits of the start address are assumed to be 0).

165

ISA System Architecture

31 o
Page Fault Register

CR2

31 12 o
Page Directory

Base Register

CR3

Figure 10-9. Control Registers CR2 and CR3

Figure 10-10 illustrates the page directory, page tables, and the translation of
the segmentation unit's linear address output to the physical memory address.
The page directory starts at the location specified in CR3 and is one page
(4KB) in size. It can contain up to 1K 0,024) 32-bit page directory entries, each
consisting of 32 bits. Bits 31:22 of the linear address identify which of the 1,024
32-bit page directory entries to use. A page directory entry has the format il
lustrated in table 10-1. It should be noted that page directory and page table
entries have the same format.

Only the upper 20 bits, 31:12, of the page table start address are actually found
in bits 31:12 of the page directory entry (the least-significant 12 bits of the start
address are assumed to be 0). The other bits in the page table entry are de
fined in table 10-1.

166

Chapter 10: The 80386DX and SX Microprocessors

Linear Address from Segment Unit
31 2221 12 11 o

Page Directory I Page Table Entry J Lcx;atiOn in ~fgeI Entry (1 of 1024) (1 of 1024) 1 of 4096 I
Page Page Tables

Directory
~ P P P

P P 15 P
I-' P 15 P
P P 15 JS
P P P J5
P P P J5
P P P P
P P P P
P P P .,....

:::---------- .,.... P P Memory
P P P
P :::----------- P P j5 Pages

P P J5 P (4KB each)

P ~ J5 P

Ip P P
IP P P P

IP P P PIlnde~ IP p 15 P
P "' p 15 P
P P 15 P
P P 15 P
P P P

~ pI-'a e Table ..
stan aaaress

Index
~

y Page Directory
start address

CR3

----Memory Paae ..
~start aaaress

Figure 10-10. Translation of Linear Memory Address to Physical Memory Address

167

ISA System Architecture

Table 10-1. Format of Pa:.;e Table Entry Attribute Bits
Bit(s) Designator Definition

0 P Page Present bit. Set to one if the target page is
currently resident in main memory. Cleared to
zero if thepage containing the target page table
must be read from disk.

1 R/W Read/Write bit. When set to one, it is permitted
to both read and write the target page. Cleared
to zero, the page can only be read.

2 U/S User/Supervisor bit. A one in this bit indicates
that the page is accessible by both the operating
system and applications programs. Cleared to
zero, it indicates that the page may only be ac
cessed by the operating system.

4:3 none Intel reserved, do not use (defined on 80486).
5 A Accessed bit. Set to one by hardware before a

read or write access to the target page. The op
erating system can use the state of this bit to de
termine whether the page has been used
(accessed). If not, the operating system may
choose to read a different page from disk into
this 4KB page of main memory.

6 D Dirty bit. This bit is undefined in a page direc
tory entry. In a page table entry, the dirty bit is
set before a write to the page described by the
page table entry. When set, it indicates that the
operating system should insure that the page is
written back to disk to maintain coherency be
tween disk and main memory.

8:7 none Intel reserved, do not use.
11:9 none These three bits aren't used by the 80386 micro

processor. They may be used by the systems
programmer in a programmer-specified fashion.

As stated above, the page directory entry describes the page which contains
the page table. The upper 20 bits (31:12) point to the start address of the page
table.

Bits 21:12 of the linear address are then used to index into the page table
pointed to by the page directory entry. Starting at this address, the page table

168

Chapter 10: The 80386DX and SX Microprocessors

can contain up to 1,024 32-bit entries. The format of the page table entry is
identical to that of the page directory entry described in table 10-1. If the page
is present in memory (P = 1), bits 31:12 of the page table entry point to the ac
tual start address of the page in main memory. Bits 11:0 of the linear address
provide the offset within the main memory page. The start address of the
page and the offset within the page are then combined to form the physical
memory address that will be driven onto the address bus.

As stated earlier, if the page table describing the page or the page itself isn't
currently in memory, a page fault will be generated and the page can then be
read from disk into an available page of main memory.

Figure 10-11 shows another view of the page directory, page tables and mem
ory pages. The page directory and page tables form a tree that provides the
start addresses of the memory pages. Notice that if the present bit, the least
significant bit of a page directory entry, is set to one, then that entry contains
the start address of one of the page tables. If the bit is cleared to zero, the en
try is not currently in use and the entry doesn't point to anything. Likewise, if
the present bit of a page table entry is one, that entry contains the start ad
dress of a memory page. Remember that the bits of the linear address are used
to select the page directory and page table entries, as shown in figure 10-10.

169

•••

ISA System Architecture

Page
Directory ~~
(only one) 0

111

L-::-L1 L-::-L1 L-::-L1Page ~~I~
1 1 0Tables 1 0 0

(up to 0
 0 11

1,024)

- - r-- r-

Memory
Pages •••
(up to
1,024)

Figure 10-11. Another View of the Page Directory, Page Tables and Memory Pages

Translation Lookaside Buffer

Performance would degrade substantially if the microprocessor had to access
two levels of memory-based tables each time memory had to be accessed. To
solve this problem, the 80386 microprocessor maintains an on-chip cache of
the most recently accessed page table entries. This cache is called the transla
tion lookaside buffer (TLB).

Refer to figure 10-12. The TLB is a four-way set-associative 32-entry page table
cache (set-associative caches are described in the chapter entitled "Cache
Memory Concepts"). The TLB automatically keeps the most-recently-used
page table entries on-board the processor. The 32-entry TLB coupled with a
4KB page size results in coverage of up to 128KB of memory addresses.

For many multi-tasking operating systems, the TLB will exhibit a hit rate of
about 98%. This means that the processor will only have to access the two
level page structure on 2% of all memory references.

170

Chapter 10: The 80386DX and SX Microprocessors

Translation

Look-Aside

Buffer

Bus
Unit

Segment
Unit

Figure 10-12. The Translation Look-Aside Buffer

Reading a new entry into the TLB (referred to as a TLB Refresh) is a two step
process handled by the 80386 microprocessor hardware. The sequence of data
cycles to perform a TLB refresh are:

• 	 Read the correct page directory entry, as pointed to by the page base reg
ister (CR3) and the upper ten bits of the linear address. Optionally per
form a locked read/write to set the accessed bit in the page directory
entry. The page directory entry will actually get read twice if the 80386
microprocessor needs to set any of the bits in the entry. If the page direc
tory entry changes between the two reads, the data returned from the sec
ond read will be used.

• 	 Read the correct entry in the page table and place the entry in the TLB.
Optionally perform a locked read/write to set the accessed and/or dirty
bits in the page table entry. Again, note that the page table entry will ac
tually get read twice if the 80386 microprocessor needs to set any of the
bits in the entry. If the page table entry changes between the two reads,
the data returned from the second read will be used.

171

ISA System Architecture

Note that the TLB contains page table entries only. It does not contain page di
rectory entries. Nevertheless, if there is a miss on the TLB, the microprocessor
must access both the page directory entry and the page table entry in order to
refresh the TLB. This is because the page directory entry contains the start ad
dress of the page table. Since both tables are being accessed on a TLB miss,
page faults can be signaled from either the page directory read or the page
table read.

The paging unit hardware receives a 32-bit linear address from the
segmentation unit. The upper 20 linear address bits are compared with four
entries in the TLB (the entries in the four-way-associated set) to determine if
there is a match. If there is a match (a hit), then the 32-bit physical address is
calculated and will be placed on the address bus.

Virtual-SOS6 Mode

The 80386 microprocessor can execute 8086 code in either of two modes:

• Real mode
• Virtual 8086 mode

Virtual 8086 Mode establishes an 8086 execution environment within the pro
tected mode environment of the 80386. Where real mode governs everything
that the 80386 does, virtual 8086 mode can be applied to selected 80386 tasks.
When executing a virtual 8086 mode task, the processor behaves like an 8086,
but upon a switch to a normal task, the processor operates as an 80386. Thus,
virtual 8086 mode enables an operating system to support the execution of
8086, 80286 and 80386 tasks concurrently.

The VM flag bit in the Eflags register, which is loaded from the tss (task state
segment), defines the running task's virtual processor as an 8086 or as an
80386. When the 80386 loads its registers from a TSS whose VM flag bit is set,
the processor enters virtual 8086 mode. When, on a subsequent task switch,
the processor loads its registers from a TSS where the VM bit is clear, it leaves
virtual 8086 mode. Thus, on a task-by-task basis, the processor emulates an
80386 or an 8086 according to the value of the VM bit. The 80386 also leaves
virtual 8086 mode when it raises an exception or is interrupted, making the
full resources of the architecture available to interrupt and exception handlers.
On return from a handler invoked while in virtual 8086 mode, the 80386
automatically re-enters virtual 8086 mode when the Eflags register is reloaded
from the stack.

172

Chapter 10: The 80386DX and SX Microprocessors

Because the address space of an 8086 is one megabyte, the logical addresses
generated by a virtual 8086 mode task fall into the first megabyte of the 80386
linear address space. Multiple virtual 8086 mode tasks could interfere with
each other, since they would all share the low megabyte of the linear address
space. An operating system can use 80386 paging to relocate the linear ad
dress spaces of virtual 8086 mode tasks to different areas of the physical ad
dress space. Using paging in this way not only prevents interference between
virtual 8086 mode tasks, but enables a virtual memory operating system to
swap the pages of virtual 8086 mode tasks just as if they were 80386 tasks.

A virtual 8086 mode task may execute a program that was written for execu
tion on a single-task personal computer. Such a program can contain instruc
tions that are potentially disruptive if executed. in a multi-tasking
environment. For example, allowing a virtual 8086 mode task to execute the
clear interrupt enable (eLI) instruction, thereby disabling recognition of inter
rupts, could bring the entire system to a halt. To prevent such disruptions, the
80386 raises an exception when a virtual 8086 mode task attempts to execute
an I/O or interrupt-related instruction. These instructions are referred to as
"sensitive" because their execution depends on (is sensitive to) the state of the
I/O privilege level bits in the Eflag register.

I/O instructions are prevented from being executed when in virtual 8086
mode on the basis of an I/O permission map included as part of the TSS.
When a real mode program attempts to access an I/O location, the processor
checks the address against entries within the I/O permission map. Each bit in
the permission map represents a single I/O location. If the corresponding bit
for an I/O location is set, access is allowed. The first bit in the map is assigned
to I/O address zero, the second bit to I/O location one, and so forth up to
64Kbits (8KB). In this way, all of the possible 64KB of I/O addresses can be
mapped to allow or deny access.

Preventing the execution of such instructions protects the rest of the system
from a virtual 8086 mode task, but does not satisfy the virtual 8086 mode
task's need to execute the instructions. The solution is to simulate the
"sensitive" instructions in an operating system procedure known as a virtual
machine monitor. When an exception handler is invoked, it can inspect the
VM flag bit in the Eflags image on the stack to determine if the source of the
exception is a virtual 8086 mode task; if so, the exception handler can call the
virtual machine monitor which can simulate the instruction and return to the
virtual 8086 mode task. Note that a virtual machine monitor program simu
lates only a few 8086 instructions and that both the simulated instructions and

173

ISA System Architecture

those the 80386 executes directly benefit from the much higher performance of
the 80386 compared to the 8086.

Working together, the 80386 and a virtual machine monitor implement the full
8086 instruction set, and paging can provide each virtual 8086 mode task with
its own protected address space. However, mgst 8086 programs need addi
tional resources provided by an operating system and peripheral hardware.
An example of the former type of resource is a file system; an example of the
latter is a display controller manipulated directly by an applications program.
These resources may not exist in the same form in the 80386-based system as
they did in the system for which the 8086 program was designed. To simplify
the job of providing these resources in a different environment, the 80386 can
trap operating system and peripheral references made by virtual 8086 mode
tasks.

For example, most 8086 operating systems use the INT (Interrupt) instruction
to implement operating system calls. If a virtual 8086 mode task's current
privilege level is less privileged than the task's 10PL (I/O privilege level), the
80386 raises an exception when the virtual 8086 mode task attempts to execute
an INT instruction. The virtual machine monitor can then translate the 8086
operating system call into a call on the 80386 operating system.

Peripheral references made by a virtual 8086 mode task using IN and OUT in
structions are always checked against the I/O permission map, regardless of
the 10PL. The 80386 paging facility can be used to redirect references to mem
ory-mapped peripherals to other addresses, if necessary. Such references can
also be trapped by marking the corresponding pages as read-only (to trap
writes), or not-present (to trap both reads and writes).

Automatic Self-Test

The 80386 microprocessor has the ability to perform a self-test of its three
major logic arrays and to verify the contents of its internal microcode control
ROM. The automatic self-test is initiated by asserting the microprocessor's
BUSY# input during initialization (while the RESET signal is asserted). The
test result is stored in the EAX register, and will be non-zero if an error was
incurred. The self-test provides 100% coverage of single-bit faults, which sta
tistically comprise a high percentage of total faults.

The RESET input to the 80386 must remain asserted for at least 80 CLK2 peri
ods if the self-test is to be performed. On the high-to-low transition of RESET,

174

Chapter 10: The 80386DX and SX Microprocessors

the BUSY# input is sampled. If asserted, the microprocessor initiates the self
test which will take approximately 220 + 60 CLK2 cycles to complete. When the
test completes, the microprocessor initiates program execution without exam
ining the test results.

80386DX External Interface

This section provides a detailed description of the signal lines the 80386DX
microprocessor uses to communicate with the rest of the system. Many of
these signal lines serve the same purpose as on the 80286 microprocessor.
These signals are listed in table 10-2.

Table 10 2 s·19na s h 80286 an sors- 1 Cammon to t e d 80386DX M·lcroproces
Signal Name Description

CLK2 Double Frequenc~clock input .
M/IO# Memory or 1/0 output
LOCK# Lock output

READY# Ready input
HOLD Hold Request input
HLDA Hold Acknowledge output
PEREQ Processor Extension Request input
BUSY# Processor Extension Busy input

ERROR# Processor Extension Error input
INTR Interrupt Request input
NMI Non-Maskable Interrupt Request input

RESET Reset input

The remainder of the 80386DX signals have been grouped into the following
categories:

• Address Bus
• Data Bus
• Control Bus

The Address Bus

The 80386DX address bus consists of two sets of signal lines:

175

ISA System Architecture

• the address bus, consisting of 30 signal lines designated A[31:2].
• the byte enable bus, consisting of the 4 signal lines designated BE#[3:0].

As demonstrated later in this chapter, the 80386DX uses the address bus,
A[31:2], to identify a group of four locations, known as a doubleword.

The 80386DX uSes the byte enable lines to identify one or more of the four lo
cations it actually wishes to perform a data transfer with.

Internally, the 80386DX microprocessor actually generates 32-bit addresses. A
32-bit address bus gives it the ability to address anyone of 4GB (4 gigabytes;
4,096 megabytes) individual memory locations. When the microprocessor at
tempts to place this 32-bit address on the address bus, however, the two least
significant address bits, AO and AI, get stripped off. This is because these two
address lines don't physically exist on an 80386DX microprocessor.

When designing an 80386DX based system, one should always assume that,
whenever the microprocessor outputs an address during a bus cycle, AO and
Al are always O. Let's examine the result. Table 10-3 illustrates a number of
addresses being output by the 80386DX. Remember that address bits 0 and 1
are stripped off during address output and are always assumed to be O.

Chapter 10: The 80386DX and SX Microprocessors

utpu~able 10-3 E xample1 Addresses Ott b?yan 80386DX

Address to be Output (in hex) Address Placed on Address Bus (in hex)

00000000 00000000
00000001 00000000
00000002 00000000
00000003 00000000
00000004 00000004
00000005 00000004
00000006 00000004
00000007 00000004
00000008 00000008
00000009 00000008
OOOOOOOA 00000008
OOOOOOOB 00000008
OOOOOOOc OOOOOOOC
OOOOOOOD OOOOOOOC
OOOOOOOE OOOOOOOC
OOOOOOOF OOOOOOOC
00000010 00000010 I
00000011 00000010
00000012 00000010
00000013 00000010

The result of always forcing AO and Al to 0 is that the 803860X microproces
sor is only capable of outputting every fourth address. It is physically incapa
ble of addressing any of the intervening addresses. When the 803860X
outputs an address, it is really identifying a group of four locations, called a
doubleword, starting at the address presented on the address bus.

In addition to identifying the doubleword address on A[3l:2], the microproc
essor also asserts one or more of the byte enable lines to indicate which of the
four locations it really wants to communicate with during the current bus cy
cle. Asserting a byte enable line also identifies which of the 803860X's four
data paths will be used to communicate with the identified location(s) in the
doubleword.

The BEO# line is associated with the first location in the group of four
(doubleword) and with the lowest data path, 0[7:0]. BEI# is associated with
the second location in the doubleword and with the second data path, 0[15:8].
BE2# is associated with the third location in the doubleword and with the

177

ISA System Architecture

third data path, D[23:16]. BE3# is associated with the fourth location in the
doubleword and with the fourth data path, D[31:24]. Table 10-4 illustrates this
relationship.

Table 10-4. Relationship of 80386DX Byte Enables, Data Paths and Locations in the
Currentlly-Addressed Daubleword

Location Addressed
Byte Enable Data Path Used In Doubleword

BEO# D[7:0] first
BEl # D[15:8] second
BE2# D[23:16] third
BE3# D[31:24] fourth

Figure 10-13 illustrates this same relationship. A[31:2] identify the double
word. The asserted byte enable lines identify the location(s) within the ad
dressed doubleword and the data path(s) to be used when communicating
with them.

178

Chapter 10: The 80386DX and SX Microprocessors

Doublewords

80386DX

BE3#
BE2#
BE1#
BEO#

Figure 10-13. 80386DX Address/Byte Enable Relationship

Table 10-5 summarizes the relationship between the address and byte enables
by showing the address specified by the programmer (in both binary and hex)
along with the address and byte enables that the microprocessor outputs.

179

ISA System Architecture

Table 10-5. Relationship of Addresses and Byte Enables Output by an 80386DX
Address Address

to be Placed on
Address to be Accessed (binary) Accessed Address Byte

A3I A30 - - - AS A4 A3 A2 Al AO (in hex) Bus (in hex) Enable
X X - - - X X 0 0 0 0 XXXXXXXO XXXXXXXO BEO# = 0
X X - - - X X 0 0 0 I XXXXXXXI xxxxxxxo BEI# = 0
X X - - - X X 0 0 I 0 XXXXXXX2 XXXXXXXO BE2# = 0
X X - - - X X 0 0 1 1 XXXXXXX3 XXXXXXXO BE3# = 0
X X - - - X X 0 I 0 0 XXXXXXX4 XXXXXXX4 BEO# = 0
X X - - - X X 0 I 0 I XXXXXXXS XXXXXXX4 BEI# = 0
X X - - - X X 0 1 1 0 XXXXXXX6 XXXXXXX4 BE2# = 0
X X - - - X X 0 I 1 I XXXXXXX7 XXXXXXX4 BE3# = 0
X X - - - X X I 0 0 0 xxxxxxX8 XXXXXXX8 BEO# = 0
X X - - - X X I 0 0 1 XXXXXXX9 XXXXXXX8 BE1# = 0
X X - - - X X I 0 I 0 XXXXXXXA XXXXXXX8 BE2# = 0
X X - - - X X I 0 1 1 XXXXXXXB XXXXXXX8 BE3# = 0
X X - - - X X I I 0 0 XXXXXXXC XXXXXXXC BEO# = 0
X X - - - X X 1 1 0 I XXXXXXXD xxxxxxxc BE1# = 0
X X - - - X X 1 I I 0 XXXXXXXE xxxxxxxc BE2# = 0
X X - - - X X I I I I XXXXXXXF xxxxxxxc BE3# = 0

Table 10-6 illustrates several example addresses and a description of how they
are interpreted by external logic.

'Iable 10 6 80386DX Add ressm~- Exampl es

Address on Data

A[3l:2] BE3# BE2# BEl# BEO# Location(s) addressed Path

OOOOlOOOh 1 1 1 0 OOOOlOOOh 0
FA026S04h 0 0 1 1 FA026S06h, FA026507h 2,3
OOOOOlO8h 0 0 0 0 OOOOOI08h to OOOOOlOBh 0,1,2,3
OlADOFOCh 1 0 0 1 OIADOFODh, IADOFOEh i 1,2

In the first example, the microprocessor is identifying the doubleword starting
at location 00001000h. By asserting the BEO# line, it indicates its intention to
communicate with the first location in the doubleword using the first data
path (0[7:0]).

In the second example, the microprocessor is identifying the doubleword
starting at location FA026504h. By asserting the BE2# and BE3# lines, it indi
cates its intention to communicate with the third and fourth locations in the
doubleword using the third (0[23:16]) and fourth (0[31:24]) data paths.

180

Chapter 10: The 80386DX and SX Microprocessors

In the third example, the microprocessor is identifying the doubleword start
ing at location 00000108h. By asserting all four of the byte enable lines, it indi
cates its intention to communicate with all four locations in the doubleword
using all four data paths.

In the fourth example, the microprocessor is identifying the doubleword
starting at location 01ADOFOCh. By asserting the BE1# and BE2# lines, it indi
cates its intention to communicate with the second and third locations in the
doubleword using the second (D[15:8]) and third (D[23:16]) data paths.

The 80386DX microprocessor is capable of performing 8-, 16-, 24- and 32-bit
transfers. When asserting multiple byte enables, it may only assert adjacent
byte enables, however. Table 10-7 shows the valid and invalid combinations of
byte enables that can be generated during a bus cycle.

'Iable 10-7 80386DX B5yte Enable Comb·ma t"lOns
BE3# BE2# BEl# BEO# Transfer Description

1 1 1 1 invalid
1 1 1 0 8-bit transfer with one location
1 1 0 1 8-bit transfer with one location
1 1 0 0 16-bit transfer with two locations
1 0 1 1 8-bit transfer with one location
1 0 1 0 invalid
1 0 0 1 16-bit transfer with two locations
1 0 0 0 24-bit transfer with three locations
0 1 1 1 8-bit transfer with one location
0 1 1 0 invalid
0 1 0 1 invalid
0 1 0 0 invalid
0 0 1 1 16-bit transfer with two locations
0 0 1 0 invalid
0 0 0 1 24-bit transfer with three locations
0 0 0 0 32-bit transfer with f01..lr locations

Table 10-8 shows the address and byte enables generated in the bus cycle
caused by execution of the indicated instruction. All examples assume that the
data segment register has OOOOh in it.

181

ISA System Architecture

-~a e bl 108 ExampleI InstructlOns andResu tant Addresses
Instruction Address BE3# BE2# BE1# BEO# Transfer Type
MOV AL, [0100] 0OOOO100h 1 1 1 0 8-bit transfer
MOV AL, [0101] 0OOOO100h 1 1 0 1 8-bit transfer
MOV BL, [0102] OOOOOlOOh 1 0 1 1 8-bit transfer
MOV AH, [0103] 0OOOO100h 0 1 1 1 8-bit transfer
MOV AX, [0100] 0OOOO100h 1 1 0 0 16-bit transfer
MOV AX, [0101] 00000100h 1 0 0 1 I6-bit transfer
MOV ..(I..X, [0102] 00000100h 0 0 1 1 I6-bit transfer
MOV EAX, [0100] 00000100h 0 0 0 0 32-bit transfer

With regard to the last table entry, the EAX register is the 80386's 32-bit ver
sion of the AX register. It stands for extended AX register.

A 24-bit transfer occurs if the programmer attempts to perform a transfer that
crosses a doubleword address boundary. As an example, assume the DS regis
ter contains OOOOh and the programmer attempts to execute the following in
struction:

MOV [010 1] I EAX

This tells the 80386DX to write the four bytes in the 32-bit EAX register to
memory starting at location 000001OIh. To do this, the microprocessor must
write the lower three bytes in the EAX register to locations 0000010Ih to
00000I03h in the doubleword starting at OOOOOIOOh. It must then write the
most-significant byte in the EAX register to the first location (00000104h) in
the doubleword starting at location 00000I04h. Because it can't address two
doublewords at the same time, this causes the microprocessor to generate two
back-to-back bus cycles.

During the first bus cycle, the microprocessor attempts to place address
OOOOOIOIh on the address bus, but AO and Al are stripped off on the way out.
The resultant address placed on the address bus is OOOOOIOOh. This identifies
the doubleword starting at memory location OOOOOIOOh. Since the program
mer instructed the microprocessor to write the four bytes in the EAX register
to memory starting at location OOOOOI01h, the microprocessor asserts BEI#,
BE2# and BE3# (but not BEO#) during the first bus cycle. This tells external
logic that the microprocessor wants to communicate with the upper three lo
cations in the doubleword (OOOOOlOIh to 00000I03h), but not the first one
(OOOOOIOOh). The least-significant three bytes in the EAX register are driven

182

Chapter 10: The 80386DX and SX Microprocessors

out onto the upper three data paths by the microprocessor and are written
into memory locations 00000101h to 00000103h.

After the first bus cycle has completed, the microprocessor automatically ini
tiates a second bus cycle, placing the next doubleword address, 00000104h, on
the address bus. This identifies the doubleword starting at memory location
00000104h. Since the programmer instructed the microprocessor to write the
four bytes in the EAX register to memory locations 00000101h to 00000104h,
the microprocessor now asserts only BEO#. This tells external logic that the
microprocessor wants to communicate with the first location in the double
word, but not the upper three. The most-significant byte in the EAX register is
driven out onto the lowest data path, D[7:0], by the microprocessor and is
written into memory location 00000104h. This completes the second bus cycle
and also the execution of the MOV instruction.

The 80386DX microprocessor is inefficient when attempting transfers that
cross doubleword address boundaries. To obtain optimum data throughput
(transfer speed), Intel therefore urges programmers to perform data transfers
that don't cross doubleword address boundaries.

The Data Bus

The 80386DX microprocessor has a 32-bit data bus. It is more correct, how
ever, the think of it as having four 8-bit data paths:

• Data Path 0 is comprised of D[7:0]
• Data Path 1 is comprised of D[15:8]
• Data Path 2 is comprised of D[23:16]
• Data Path 3 is comprised of D[31:24]

Refer to figure 10-14. Every doubleword consists of four locations and starts at
an even address that is divisible by four. The microprocessor communicates
with the first location over data path 0 (0[7:0]), the second over data path 1
(0[15:8]), the third over data path 2 (0[23:16]) and the fourth over data path 3
(D[31:24]).

183

ISA System Architecture

80386DX

Figure 10-14. The 80386DX Data Bus

The Control Bus

The control bus consists of all the 80386DX signal lines other than the address
bus, byte enables and the data bus. These signal lines can be separated into the
following subcategories:

• Bus cycle definition outputs
• Clock input
• Reset input
• Ready input
• Bus mastering lines
• Interrupt inputs
• Processor extension lines
• Address status output
• Pipelining control input
• Bus size 16 input

184

Chapter 10: The 80386DX and SX Microprocessors

The following paragraphs only describe the 80386DX signal lines that are dif
ferent from the 80286's control bus lines.

Bus Cycle Definition Outputs

To read data from or write data to an external location, the 80386DX bus unit
must run a bus cycle. During the bus cycle, the microprocessor indicates the
type of bus cycle by placing the proper pattern on the bus cycle definition sig
nallines. Table 10-9 shows each type of bus cycle and the respective pattern
which will be output onto the bus cycle definition lines.

Table 10-9. 80386 Bus Cycle Definition
MlIO# D/C# W/R# Bus Cycle Type

0 0 0 Interrupt Acknowledge
0 1 0 I/O Read
0 1 1 I/O Write
1 0 I 0 Memory Code (instruction) Read I
1 1 0 Memory Data Read
1 1 1 Memory Data Write
1 0 1 Halt or Shutdown

Processor Extension Lines

With one exception, the 80386 microprocessor uses the same signal lines as the
80286 microprocessor to interface to the numeric coprocessor. The PEACK#
(processor extension acknowledge) signal line has been eliminated and the
READY# line is now connected to the 80387 coprocessor as well as to the
80386 microprocessor. A detailed description of the processor extension signal
lines can be found in the chapter entitled "Numeric Coprocessor."

Address Status Output

At the start of a bus cycle, during"Address Time," the 80386 microprocessor
places the address on the address bus and the bus cycle definition on the con
trol bus. It also asserts the address status (ADS#) output to indicate that a
valid address and bus cycle definition are present on the buses.

185

ISA System Architecture

Pipelining Control Input

Discussion of 80286 address pipelining can be found in the chapter entitled
"Detailed View of the Bus Cycle." The 80386 handles address pipelining dif
ferently than the 80286. The 80386 microprocessor has an input called NA#
(next address). The following actions occur during a bus cycle:

1. 	 The microprocessor outputs the address of the device it wishes to com
municate with.

2. 	 The device's address decode logic decodes the address on the address bus
and chip-selects its device.

3. 	 Logic associated with the addressed device latches the decoded chip
select and lower address bits on the address bus.

4. 	 Since the addressed device's logic has now latched the address informa
tion, it no longer needs the address the microprocessor is presenting on
the bus. It then asserts the 80386's NA# (next address) signal, alerting the
microprocessor that it can place the address for the next bus cycle onto the
address bus early (during the current bus cycle). This is a variation on the
address pipelining scheme used by the 80286 microprocessor. Permitting
the microprocessor to place the address for the upcoming bus cycle onto
the address bus early allows the next device to be addressed to see its ad
dress early. This allows the designer to use relatively slow access devices.
The early decoding of the address and selection of the addressed device
allows the slow device to be ready to complete the bus cycle earlier than if
it hadn't received the address for decoding until the microprocessor had
caused the address to be latched into the external address latch.

When addressed devices allow the microprocessor to place the next address
on the bus early for a number of back-to-back bus cycles, the 80386 micro
processor is using the buses to their fullest potential. These back-to-back,
pipe lined bus cycles provide the highest bandwidth (transfer rate) on the
buses.

Dynamic Bus Sizing (BS16#)

The 80386DX microprocessor's bus size 16 (BS16#) input is used to inform the
80386DX that the currently addressed device is a 16-bit device rather than a
32-bit device. When BS16# is sampled asserted, the 80386DX performs data
transfers with the addressed device using only the lower two data paths,
D[7:0] and D[15:8]. This feature is known as dynamic bus sizing. In cases
where the 80386DX requires the transfer of more than 16 bits, the microproc

186

Chapter 10: The 80386DX and SX -Microprocessors

essor will automatically generate additional bus cycles to fulfill the data trans
fer request if BS16# is sampled asserted.

As an example, consider the actions caused by the execution of the following
instruction (assume OS = OOOOh and the processor is in real mode):

MOV EAX, [lF08]

Assume that the addressed device is a 16-bit device. The programmer is re
questing the transfer of a doubleword (the EAX register is four bytes in size)
starting at memory location 00001F08h. At the beginning of the first bus cycle,
the microprocessor places address 00001 F08h on the address bus (A[31:2]) and
asserts all four byte enable outputs. When the currently addressed device's
address decoder detects the address, it asserts BS16#, informing the micro
processor that the currently addressed device is only capable of communicat
ing over the lower two data paths.

The contents of location 00001F08h is placed on 0[7:0] and the contents of lo
cation 00001F09h is placed on 0[15:8] by the addressed 16-bit memory device.
At the end of the bus cycle, when READY# is sampled asserted, the micro
processor reads the two data bytes and places them in the lower two bytes of
the EAX register.

The microprocessor then automatically begins a second bus cycle with the
same address (00001F08h) on the address bus and BE2# and BE3# asserted.
The addressed 16-bit device's address decoder once again asserts BS16#, and
the contents of OOOOlFOAh and OOOOlFOBh are transferred back to the micro
processor over the two lower data paths. At the end of the bus cycle, the mi
croprocessor reads the two data bytes from the two lower data paths and
places them into the upper two bytes of the EAX register, completing the
overall transfer. More examples of dynamic bus sizing can be found in the
chapter entitled liThe 80386 System Kernel."

80386SX External Interface

Interface Signal Differences

Functionally, the 80386SX is identical to the 803860X microprocessor. The
80386SX microprocessor's interface to external devices differs from that of the

187

ISA System Architecture

80386DX in the structure of its address and data buses. Table 10-10 details the
differences.

Table 10-10. Interface Signals That Differentiate the 80386SX from the 80386DX
M'lcroprocessor

Signal(s) Description

Address Bus Unlike the DX address bus consisting of A[31:2] and the four byte
enable lines, the SX address bus consists of A[23:0] and BHE#. In
other words, its address bus and its addressing scheme is identical
to that of the 80286 microprocessor.

Data Bus Like the 80286 microprocessor, the SX only has two data paths,
versus four for the OX microprocessor.

BS16# Since the SX does not have a 32-bit data bus, the BS16# input isn't
necessary.

AO or BLE#

The AO output of the 80386SX is called BLE#. This is because the 80386SX uses
the same rules as the 80286 regarding the usage of its two data paths. This
being the case, the 80386SX uses its lower data path to communicate with
even-addressed locations. Since all even addresses have AO set to a zero, a low
on AO indicates that the SX will use its lower data path during a bus cycle. AO
can therefore be thought of as BLE#, or bus low enable.

Addressing Scheme, Data Bus Width Ramifications

Consider the following instruction:

MOV EAX, [0100]

Assume that the processor is in real mode and the OS register currently is set
to OOOOh. When executed, this instruction will instruct the microprocessor to
transfer four bytes of information from memory starting at location 0100h into
the microprocessor's EAX register. Where the 803860X microprocessor would
only have to run one bus cycle to address all four locations and transfer all
four bytes simultaneously, the 80386SX must run two bus cycles to accomplish
the four byte move.

188

Chapter 10: The 80386DX and SX Microprocessors

First, the address OOOlOOh is placed on the address bus, A[23:0], and the BHE#
signal is asserted. The 16-bit memory will interpret this as a read from loca
tion OOOlOOh and the next sequential odd location, 000101h. The addressed
memory will place the contents of the even address, 000100h, on the lower
data path and that of the odd address, 000101h, on the upper data path. At the
end of the bus cycle, the microprocessor inputs the two bytes and places them
in the lower two locations in the target register, AL and AH. Half of the re
quested data has now been moved from memory into the target register.

Now, the 80386SX microprocessor initiates a second bus cycle, placing the ad
dress 000102h on the address bus, A[23:0]' and asserting the BHE# signal
again. The 16-bit memory will interpret this as a read from location 000102h
and the next sequential odd location, 000103h. The addressed memory will
place the contents of the even address, 000102h, on the lower data path and
that of the odd address, 000103h, on the upper data path. At the end of the
bus cycle, the microprocessor inputs the two bytes and places them in the up
per two locations in the target register. All of the requested data has now been
moved from memory into the target register.

It should also be noted that the 80386SX microprocessor is limited to a maxi
mum of 16MB of installed memory. This is the maximum amount of memory
that can be addressed with a 24-bit address bus.

Throughput and Compatibility Considerations

Due to a couple of factors! the 80386SX microprocessor has substantially
slower throughput then an 80386DX.

• 	 Two data paths versus four. This means that, at the same clock rate, the
80386DX has twice the throughput as that of the SX. This is true even if
the DX is running 80286 code that doesn't attempt any 32-bit reads or
writes, because the instruction prefetcher always fetches four bytes at a
time.

• 	 The 80386DX microprocessor is available in substantially higher clock
rates than the SX. Where the SX is available in clock rates up to 25M Hz,
the DX is available in clock rates up to 40MHz.

The 80386SX and DX microprocessors are both capable of running any code
written for the 8086, 80286 or 80386 microprocessors. The 80286 microproces
sor, on the other hand, cannot run code written for the 80386 microprocessor.

189

Chapter 11: The 80386 System Kernel

Chapter 11

The Previous Chapter

The previous chapter, "The 80386DX and SX Microprocessors," provided a
detailed description of these processors.

This Chapter

This chapter provides a detailed description of the kernel support logic neces
sary to interface the 80386DX and SX processors to the rest of the system.
Sample instructions are used to illustrate the actions of the processor and
support logic when performing various types of transfers. Interfacing issues
are covered for the 80386DX with and without dynamic bus sizing imple
mented.

The Next Chapter

The next chapter, "Detailed View of the 80386 Bus Cycle," provides a detailed
description of bus cycle timing when the 80386 is performing a read or write
transfer. The other types of bus cycles are discussed as well.

Introduction

This chapter covers the essential logic that must surround an 80386 micro
processor in order to allow it to communicate with 8-, 16- and 32-bit devices.
This is known as the kernel logic. Three variations are covered:

• The 80386SX system kernel
• The 80386DX system kernel with dynamic bus sizing implemented
• The 80386DX system kernel without dynamic bus sizing implemented

191

ISA System Architecture

The 80386SX System Kernel

Figure 11-1 illustrates the kernel logic surrounding an 80386SX microproces
sor. It should be immediately apparent that it is virtually identical with the
80286 kernel logic detailed in the chapter entitled "The 80286 System Kernel:
the Engine." The only differences are the renamed bus cycle definition signals,
W/R# and D/C#, and the ADS# signal is used to trigger the bus control logic
at the start of a bus cycle. In an 80286-based kernel, the falling edge of SO# or
Sl# is used to trigger the bus control logic at the start of a bus cycle.

192

Chapter 11: The 80386 System Kernel

Figure 11-1. The 80386SX-Based Kernel

193

ISA System Architecture

The 80386DX System Kernel

80386DX System Kernel with Dynamic Bus Sizing

Introduction

Figure 11-2 illustrates the kernel logic surrounding an 80386DX microproces
sor. In this implementation, the designer has taken advantage of the
80386DX's dynamic bus sizing capability by hooking up the microprocessor's
BS16# input.

If the device addressed during a bus cycle is a 16-bit memory or I/O device, it
will assert either the M16# or 1016# signal. An asserted level on either of these
signals causes an asserted level to be placed on the microprocessor's BSI6# in
put. When the microprocessor samples BSI6# asserted at the end of TI, dy
namic bus sizing is activated and multiple bus cycles are performed as
necessary to transfer the object. The transfer takes place only over the lower
two data paths when communicating with a 16-bit device. A detailed descrip
tion of dynamic bus sizing can be found in the chapter entitled liThe 80386DX
and SX Microprocessors."

When the 80386DX microprocessor initiates a bus cycle, the target double
word address is output onto A[3l:2] and the appropriate byte enable outputs
are asserted. 32-bit devices recognize this address format, but 8- and 16-bit
devices require additional address information. In addition to A[31 :2], 8-bit
devices require AO and AI, while 16-bit devices require AO, Al and BHE#.
Since the 80386DX microprocessor is incapable of producing these signals, the
bus control logic must convert the microprocessor's byte enable outputs into
these three signals.

Every doubleword consists of four locations. The first of these locations is al
ways an even address, the second an odd address, the third even and the
fourth odd. If the microprocessor intends to communicate with the first loca
tion in the doubleword, an even address, it asserts its BEO# output. When
communicating with the second location in the doubleword, an odd address,
it asserts its BE1# output, and so on for the third and fourth locations.

When a bus cycle is initiated, the bus control logic examines the microproces
sor's byte enable outputs and determines the locations within the target dou
bleword that the microprocessor is communicating with. The following
paragraphs describe the interaction between the microprocessor and 8-, 16
and 32-bit devices. Figure 11-2 illustrates the kernel of an 80386DX-based sys
tem with dynamic bus sizing implemented. In all of the example instructions,

194

Chapter 11: The 80386 System Kernel

it is assumed that the microprocessor is in Real Mode and the Data Segment
(OS) register contains OOOOh.

Data Bus Steering Logic

Figure 11-2. The 80386DX-Based Kernel with Dynamic Bus Sizing Implemented

195

ISA System Architecture

Reading from an 8-Bit Device

One-Byte Read from an a-Bit Device

In this example, the following instruction is addressing an 8-bit device.

MOV AL, [0100]

The microprocessor must read the contents of memory location OOOOOlOOh
and place the resulting byte in the AL register. Address 00000100h is placed
on A[31:2] and BEO# is asserted. In this way, the microprocessor indicates that
it wishes to communicate with location 00000100h in the doubleword that
starts at location OOOOOlOOh. When the microprocessor is addressing either of
the first two locations in a doubleword, the bus control logic sets SAl to O. The
bus control logic also sets SAO to a 0 because the asserted level on BEO# indi
cates that the microprocessor is addressing the first even address in the target
doubleword. BE1# is deasserted, indicating that the microprocessor isn't ad
dressing the odd location immediately following the addressed even location.
As a result, the bus control logic deasserts SBHE#.

Since the target device is an 8-bit device, M16# remains deasserted. As a re
sult, the microprocessor finds BS16# deasserted when sampled at the mid
point of the processor's first data time. This indicates to the microprocessor
that it is communicating with a 32-bit device. Note that the 80386DX micro
processor can only sense that it is communicating with 16-bit or 32-bit devices
and has no knowledge of 8-bit devices. If BS16# is asserted, the 80386DX
knows it is communicating with a 16-bit device. If BS16# isn't asserted, the
80386DX assumes that it is communicating with a 32-bit device.

The 80386DX assumes it is communicating with a 32-bit device and runs a
single bus cycle. Since the target device is an 8-bit memory device, it asserts
neither M16# nor M32#. The bus control logic samples M16# and M32# at the
end of ISA address time and finds them deasserted. Note that the bus control
logic does not sample 1016# because it has previously sampled M/IO# and
knows that a memory location is being accessed.

Sensing neither M16# nor M32# asserted, the bus control logic determines that
it is communicating with an 8-bit memory device and that the data will there
fore be sent back over the lower data path. The 8-bit device sees address
00000100h on the address bus and the MRDC# line asserted and returns the
requested byte over the lower data path. The bus control logic gates the byte

196

Chapter 11: The 80386 System Kernel

through the lower data bus transceiver to the microprocessor and asserts the
CPU READY# line. When the microprocessor samples CPU READY# asserted,
it reads the byte from the lower data path and places it in the target register,
AL, completing the execution of the MOV instruction.

Two-Byte Read from an 8-Bit Device

In this example, the following instruction is addressing an 8-bit memory de
vice.

MOV AX, [0100]

The microprocessor must read the contents of memory locations 000001 OOh
and 00000101h and place the resulting word in the AX register. Address
00000100h is placed on A[31:2] and BEO# and BE1# are asserted. In this way,
the microprocessor indicates that it wishes to communicate with locations
00000100h and 00000101h in the doubleword that starts at location 00000100h.
When the microprocessor is addressing either of the first two locations in a
doubleword, the bus control logic sets SAl to o. The bus control logic also sets
SAO to a 0 because the asserted level on BEO# indicates that the microproces
sor is addressing the first even address in the target doubleword. Since BEl #
is also asserted, the microprocessor is also addressing the odd location im
mediately following the addressed even location. As a result, the bus control
logic asserts SBHE#.

Since the target device is an 8-bit device, M16# remains deasserted. As a re
sult, the microprocessor finds BS16# deasserted when sampled at the mid
point of the processor's first data time. This indicates to the microprocessor
that it is communicating with a 32-bit device. Note that the 80386DX micro
processor can only sense that it is communicating with 16-bit or 32-bit devices
and has no knowledge of 8-bit devices. If BS16# is asserted, the 80386DX
knows it is communicating with a 16-bit device. If BS16# isn't asserted, the
80386DX assumes that it is communicating with a 32-bit device.

The 80386DX assumes it is communicating with a 32-bit device and runs a
single bus cycle. Since the target device is an 8-bit memory device, it asserts
neither M16# nor M32#. The bus control logic samples M16# and M32# at the
end of ISA address time and finds them deasserted. Note that the bus control
logic does not sample 1016# because it has previously sampled M/IO# and
knows that a memory location is being accessed.

197

ISA System Architecture

Sensing neither M16#, 1016#, nor M32# asserted, the bus control logic deter
mines that it is communicating with an 8-bit device and that the data will
therefore be returning over the lower data path. This also means that the de
vice can only return one byte at a time. The 8-bit device sees address
00000100h on the address bus and the MRDC# line asserted and returns the
requested byte over the lower data path. The bus control logic latches the byte
into the lower data bus transceiver. It then increments the address by placing
a 1 on the SAO line. The MRDC# line is momentarily deasserted and then reas
serted again to trick the addressed device into thinking a second bus cycle has
begun. The device then places the contents of memory location 00000101h on
the lower data path. The bus control logic causes the data bus steering logic to
copy the byte to the second data path. All of the requested information has
now been assembled, so the bus control logic simultaneously enables the
lower data bus transceiver to output the first byte to the microprocessor on
the lower data path, while enabling the second data bus transceiver to pass
the other byte through to the microprocessor on the second data path.

It then asserts the CPU READY# line. When the microprocessor samples CPU
READY# asserted, it reads the two bytes from the two lower data paths and
places them in the target register, AX. The byte from location 00000100h is
placed in AL and that from 00000101h in AH.

Four-Byte Read from an a-Bit Device

In this example, the following instruction is addressing an 8-bit memory de
vice.

MOV EAX, [0100]

The microprocessor must read the contents of memory locations 00000100h
through 00000103h and place the resulting doubleword in the EAX register.
Address 00000100h is placed on A[31:2] and all four byte enables are asserted.
In this way, the microprocessor indicates that it wishes to communicate with
locations 00000100h through 00000103h in the doubleword that starts at loca
tion 000001 OOh. When the microprocessor is addressing either of the first two
locations in a doubleword, the bus control logic sets SAl to o. The bus control
logic also sets SAO to a 0 because the asserted level on BEO# indicates that the
microprocessor is addressing the first even address in the target doubleword.
Since BEl # is also asserted, the microprocessor is also addressing the odd lo
cation immediately following the addressed even location. As a result, the bus
control logic asserts SBHE#.

198

Chapter 11: The 80386 System Kernel

Since the target device is an 8-bit device, M16# remains deasserted. As a re
sult, the microprocessor finds BS16# deasserted when sampled at the mid
point of the processor's first data time. This indicates to the microprocessor
that it is communicating with a 32-bit device. Note that the 80386DX micro
processor can only sense that it is communicating with 16-bit or 32-bit devices
and has no knowledge of 8-bit devices. If BS16# is asserted, the 80386DX
knows it is communicating with a 16-bit device. If BS16# isn't asserted, the
80386DX assumes that it is communicating with a 32-bit device.

The 80386DX assumes it is communicating with a 32-bit device and runs a
single bus cycle. Since the target device is an 8-bit memory device, it asserts
neither M16# nor M32#. The bus control logic samples M16# and M32# at the
end of ISA address time and finds them deasserted. Note that the bus control
logic does not sample 1016# because it has previously sampled M/IO# and
knows that a memory location is being accessed.

Sensing neither M16# nor M32# asserted, the bus control logic determines that
it is communicating with an 8-bit memory device and that the data will there
fore be returning over the lower data path. This also means that the device can
only return one byte at a time. The 8-bit device sees address 00000100h on the
address bus and the MRDC# line asserted and returns the requested byte over
the lower data path. The bus control logic latches the byte into the lower data
bus transceiver. It then increments the address by placing a 1 on the SAO line.
The MRDC# line is momentarily deasserted and then reasserted again, trick
ing the addressed device into thinking a second bus cycle has begun. The de
vice then places the contents of memory location 00000101h on the lower data
path. The bus control logic causes the data bus steering logic to copy the byte
to the second data path and commands the second data bus transceiver to
latch and hold the byte.

Two of the four requested bytes have now been assembled and the bus control
logic must address the next two bytes that have been requested. BE2# is as
serted, indicating that the microprocessor is requesting the byte from the sec
ond even address in the doubleword. The bus control logic therefore sets SAO
to a O. Since this location is in the second word of the doubleword, the bus
control logic sets SAl to a 1. The microprocessor has also asserted BE3#, indi
cating that it wants the contents of the odd location immediately following the
even location addressed by BE2#. As a result, the bus control logic asserts
SBHE#.

199

ISA System Architecture

The bus control logic again deasserts and then reasserts the MRDC# line to
trick the 8-bit device into thinking another bus cycle has been initiated. The 8
bit device now sees address 00000l02h. It places the requested byte on the
lower data path and the bus control logic commands the data bus steering
logic to copy it to the third data path, where it is latched by the third data bus
transceiver.

The bus control logic then increments the address by one by setting SAO to a 1,
and again deasserts and then reasserts the MRDC# line to trick the 8-bit de
vice into thinking another bus cycle has been initiated. The 8-bit device now
sees address 00000103h. It places the requested byte on the lower data path
and the bus control logic commands the data bus steering logic to copy it to
the fourth data path.

All of the requested information has now been assembled, so the bus control
logic simultaneously enables the first, second and third data bus transceivers
to pass the first three bytes to the microprocessor on the three lower data
paths, and also enables the fourth data bus transceiver to pass the other byte
through to the microprocessor on the fourth data path.

It then asserts the CPU READY# line. When the microprocessor samples CPU
READY# asserted, it reads the four bytes from all four data paths and places
them in the target register, EAX. The byte from location OOOOOlOOh is placed in
AL and that from 00000101h in AH, etc. This completes the execution of the
MOV instruction.

Writing to an a-Bit Device

One-Byte Write to an a-Bit Device

In this example, the following instruction is addressing an 8-bit memory de
vice.

MOV [0100] ALI

The microprocessor must write the byte in the AL register to memory location
00000100h. Address 00000100h is placed on A[31:2] and BEO# is asserted. In
this way, the microprocessor indicates that it is addressing location 00000100h
in the doubleword that starts at location 00000100h. The data byte from the
AL register is driven out onto data path 0, D[7:0], by the microprocessor
starting at the midpoint of Tl. When the microprocessor is addressing either

200

Chapter 11: The 80386 System Kernel

of the first two locations in a doubleword, the bus control logic sets SAl to O.
The bus control logic also sets SAO to a 0 because the asserted level on BEO#
indicates that the microprocessor is addressing the first even address in the
target doubleword. Since BEl # is deasserted, the microprocessor isn't address
ing the odd location that immediately follows the addressed even location. As
a result, the bus control logic deasserts SBHE#.

Since the target device is an 8-bit device, M16# remains deasserted. As a re
sult, the microprocessor finds BS16# deasserted when sampled at the mid
point of the processor's first data time. This indicates to the microprocessor
that it is communicating with a 32-bit device. Note that the 80386DX micro
processor can only sense that it is communicating with 16-bit or 32-bit devices
and has no knowledge of 8-bit devices. If BS16# is asserted, the 80386DX
knows it is communicating with a 16-bit device. If BS16# isn't asserted, the
80386DX assumes that it is communicating with a 32-bit device.

The 80386DX assumes it is communicating with a 32-bit device and runs a
single bus cycle. Since the target device is an 8-bit memory device, it asserts
neither M16# nor M32#. The bus control logic samples M16# and M32# at the
end of ISA address time and finds them deasserted. Note that the bus control
logic does not sample 1016# because it has previously sampled M/IO# and
knows that a memory location is being accessed.

Sensing neither M16# nor M32# asserted, the bus control logic determines that
it is communicating with an 8-bit memory device and that the data must
therefore be sent to the device over the lower data path. The 8-bit device sees
address 00000100h on the address bus and the MWTC# line asserted and ac
cepts the byte from the lower data path. The bus control logic asserts the CPU
READY# line. When the microprocessor samples CPU READY# asserted, it
ends the bus cycle. This completes the execution of the MOV instruction.

Two-Byte Write to an 8-Bit Device

In this example, the following instruction is addressing an 8-bit memory de
VIce.

MOV [010 0] , AX

The microprocessor must write the two bytes in the AX register to memory
locations 00000100h and 00000101h. Address OOOOOlOOh is placed on A[31:2]
and BEO# and BE1# are asserted. In this way, the microprocessor addresses
locations 00000100h and 00000101h in the doubleword that starts at location

201

ISA System Architecture

OOOOOlOOh. The two bytes from the AX register are driven out onto the two
lower data paths starting at the midpoint of Tl. The contents of the AL regis
ter is driven out onto D[7:0], while the contents of AH is driven out onto
D[15:8]. When the microprocessor is addressing either of the first two loca
tions in a doubleword, the bus control logic sets SAl to o. The bus control
logic also sets SAO to a 0 because the asserted level on BEO# indicates that the
microprocessor is addressing the first even address in the target doubleword.
Since BEl # is also asserted, the microprocessor is also addressing the odd lo
cation immediately following the addressed even location. As a result, the bus
control logic asserts SBHE#.

Since the target device is an 8-bit device, M16# remains deasserted. As a re
sult, the microprocessor finds BS16# deasserted when sampled at the mid
point of the processor's first data time. This indicates to the microprocessor
that it is communicating with a 32-bit device. Note that the 80386DX micro
processor can only sense that it is communicating with l6-bit or 32-bit devices
and has no knowledge of 8-bit devices. If BS16# is asserted, the 80386DX
knows it is communicating with a l6-bit device. If BS16# isn't asserted, the
80386DX assumes that it is communicating with a 32-bit device.

The 80386DX assumes it is communicating with a 32-bit device and runs a
single bus cycle. Since the target device is an 8-bit memory device, it asserts
neither M16# nor M32#. The bus control logic samples M16# and M32# at the
end of address time and finds them deasserted.

Sensing neither M16# nor M32# asserted, the bus control logic determines that
it is communicating with an 8-bit memory device and that the data must
therefore be transferred over the lower data path. This also means that the
device can only accept one byte at a time. The bus control logic gates the two
bytes through the two lower data bus transceivers. The 8-bit device detects
address OOOOOlOOh on the address bus and the MWTC# line asserted, accepts
the byte from the lower data path and writes it int~ location OOOOOlOOh. The
bus control logic then increments the address by placing a 1 on the SAO line.
The MWTC# line is momentarily deasserted and then reasserted again, trick
ing the addressed device into thinking a second bus cycle has begun. The bus
control logic also disables the lower data bus transceiver and commands the
data bus steering logic to copy the second byte from the second data path to
the first. The device detects a write to address OOOOOlOlh and accepts the data
byte from the lower path and writes it into location OOOOOlOlh.

202

Chapter 11: The 80386 System Kernel

All of the requested information has now been written to the target device, so
the bus control logic asserts the CPU READY# line. When the microprocessor
samples CPU READY# asserted, it ends the bus cycle, completing the execu
tion of the MOV instruction.

Four-Byte Write to an a-Bit Device

In this example, the following instruction is addressing an 8-bit memory de
vice.

MOV [01 0 0] , EAX

The microprocessor must write the contents of the EAX register to memory
locations 00000100h through 00000103h. Address 00000100h is placed on
A[31:2] and all four byte enables are asserted. In this way, the microprocessor
indicates that it is addressing locations 00000100h through 00000103h in the
doubleword that starts at location 00000100h. The four bytes from the EAX
register are driven out onto the four data paths starting at the midpoint of Tl.
When the microprocessor is addressing either of the first two locations in a
doubleword, the bus control logic sets SAl to O. The bus control logic also sets
SAO to a 0 because the asserted level on BEO# indicates that the microproces
sor is addressing the first even address in the target doubleword. Since BE1#
is also asserted, the microprocessor is also addressing the odd location im
mediately following the addressed even location. As a result, the bus control
logic asserts SBHE#.

Since the target device is an 8-bit device, M16# remains deasserted. As a re
sult, the microprocessor finds BS16# deasserted when sampled at the mid
point of the processor's first data time. This indicates to the microprocessor
that it is communicating with a 32-bit device. Note that the 80386DX micro
processor can only sense that it is communicating with 16-bit or 32-bit devices
and has no knowledge of 8-bit devices. If BS16# is asserted, the 80386DX
knows it is communicating with a 16-bit device. If BS16# isn't asserted, the
80386DX assumes that it is communicating with a 32-bit device.

The 80386DX assumes it is communicating with a 32-bit device and runs a
single bus cycle. Since the target device is an 8-bit memory device, it asserts
neither M16# nor M32#. The bus control logic samples M16# and M32# at the
end of ISA address time and finds them deasserted.

Sensing neither M16# nor M32# asserted, the bus control logic determines that
it is communicating with an 8-bit memory device and that the data must

203

ISA System Architecture

therefore be transferred over the lower data path. This also means that the
device can only accept one byte at a time. All four data bus transceivers are
enabled by the bus control logic, allowing all four data bytes to be driven onto
the four System Data Bus paths (SO bus) by the microprocessor.

The 8-bit device detects address 00000100h on the address bus and the
MWTC# line asserted, accepts the byte from the lower data path and writes it
into location 00000100h. The bus control logic then increments the address by
placing a 1 on the SAO line. The MWTC# line is momentarily deasserted and
then reasserted again, tricking the addressed device into thinking a second
bus cycle has begun. The bus control logic also disables the first data bus
transceiver and enables the data bus steering logic to copy the byte from the
second path to the first. The device then accepts the data byte from the lower
path and writes it into memory location 00000101h.

Two of the four requested bytes have now been transferred and the bus con
trollogic must address the next two locations in the doubleword. BE2# is as
serted, indicating that the microprocessor is writing to the second even
address in the doubleword. The bus control logic therefore sets SAO to a O.
Since this location is in the second word of the doubleword, the bus control
logic also sets SAl to a 1. The microprocessor has also asserted BE3#, indicat
ing that it is writing to the odd address immediately following the even loca
tion addressed by BE2#. As a result, the bus control logic asserts SBHE#.

The second data bus transceiver is disabled and the bus control logic com
mands the data bus steering logic to copy the byte from the third data path to
the first. It again deasserts and then reasserts the MWTC# line, tricking the 8
bit device into thinking another bus cycle has been initiated. The 8-bit device
now detects address 00000102h, accepts the byte on the lower data path and
writes it into location 00000102h. The bus control logic then increments the
address by setting SAO to a 1, again tricking the 8-bit device into thinking an
other bus cycle has been initiated by deasserting and reasserting the MWTC#
line. The 8-bit device now detects address 00000103h. The third data bus
transceiver is disabled and the data bus steering logic is commanded to copy
the byte from the fourth data path to the first data path. The addressed device
accepts the fourth and final data byte and writes it into memory location
00000103h.

All of the requested information has now been written to the target device, so
the bus control logic then asserts the CPU READY# line. When the microproc

204

Chapter 11: The 80386 System Kernel

essor samples CPU READY# asserted, it ends the bus cycle, completing exe
cution of the MOV instruction.

Reading from a 16-Bit Device

Two-Byte Read from a 16-Bit Device

In this example, the following instruction is addressing a l6-bit memory de
vice.

MOV AX, [0102]

The microprocessor will read the contents of memory locations OOOOOl02h and
00000103h and place the resulting word in the AX register. Address OOOOOlOOh
is placed on A[31:2] and BE2# and BE3# are asserted. In this way, the micro
processor indicates that it is addressing locations OOOOOl02h and 00000103h in
the doubleword that starts at location OOOOOlOOh. When the microprocessor is
addressing either of the last two locations in a doubleword, the bus control
logic sets SAl to 1. The bus control logic sets SAO to a 0 because the asserted
level on BE2# indicates that the microprocessor is addressing an even address
in the addressed doubleword. Since BE3# is also asserted, the microprocessor
is also addressing the odd location immediately following the addressed even
location. As a result, the bus control logic asserts SBHE#.

Since the target device is a l6-bit memory device, it asserts M16#. As a result,
the microprocessor finds BS16# asserted when sampled at the mid-point of the
processor's first data time. This indicates to the microprocessor that it is com
municating with a l6-bit device. The bus control logic samples M16# at the
end of ISA address time and finds it asserted. Since this is a read bus cycle,
both the microprocessor and the bus control logic then expect the data to
come back over the two lower data paths.

The l6-bit device sees address OOOOOl02h on the address bus with SBHE# as
serted and the MRDC# line asserted and returns the two requested bytes over
the two lower data paths. The bus control logic passes the bytes through the
two lower data bus transceivers to the microprocessor.

The bus control logic then asserts the CPU READY# line. When the micro
processor samples CPU READY# asserted, it reads the two bytes from the two
lower data paths and places them in the target register, AX. The byte from 10

205

ISA System Architecture

cation 00000102h is placed in AL and that from 00000103h in AH. This com
pletes execution of the MOV instruction.

Four-Byte Read from a 16-Bit Device

In this example, the following instruction is addressing a l6-bit memory de
vice.

MOV EAX, [0 1 0 0]

The microprocessor will read the contents of memory locations OOOOOlOOh
through 00000103h and place the resulting doubleword in the EAX register.
Address 00000100h is placed on A[3l:2] and all four byte enables are asserted.
In this· way, the microprocessor indicates that it is addressing locations
00000100h through 00000103h in the doubleword that starts at location
00000100h. When the microprocessor is addressing either of the first two lo
cations in a doubleword, the bus control logic sets SAl to O. The bus control
logic sets SAO to a 0 because the asserted level on BEO# indicates that the mi
croprocessor is addressing the first even address in the target doubleword.
Since BEl # is also asserted, the microprocessor is also addressing the odd lo
cation immediately following the addressed even location. As a result, the bus
control logic asserts SBHE#.

Since the target device is a l6-bit memory device, it asserts M16#. As a result,
the microprocessor finds BS16# asserted when sampled at the mid-point of the
processor's first data time, indicating to the microprocessor that it is commu
nicating with a l6-bit device. The bus control logic samples M16# at the end of
ISA address time and finds it asserted. Since this is a read bus cycle, both the
microprocessor and the bus control logic then expeCt the data to come back
over the two lower data paths. This also means that the device can only return
two bytes at a time. Since the microprocessor has requested four bytes, it must
run two back-to-back bus cycles to get all four bytes.

The l6-bit device detects address OOOOOlOOh on the address bus with SBHE#
and the MRDC# line asserted and returns the first two of the requested bytes
over the two lower data paths. The bus control logic passes both bytes
through the lower two data bus transceivers to the microprocessor and asserts
CPU READY#. When the microprocessor samples CPU READY# asserted at
the end of the current data time, it reads the two bytes from the bus and stores
them in the lower two bytes of the target EAX register. This completes the first
of the two bus cycles necessary to fulfill the request. Although the microproc

206

Chapter 11: The 80386 System Kernel

essor had asserted all four byte enable lines, it expected just two bytes on the
lower data paths because BS16# was sampled asserted.

Two of the requested four bytes have now been read and the microprocessor
initiates a second bus cycle using the same address. The same doubleword is
addressed, OOOOOlOOh on A[3l:2], but only BE2# and BE3# are now asserted.
BE2# is asserted, indicating that the microprocessor is requesting the byte
from the second even address in the doubleword. The bus control logic there
fore sets SAO to a O. Since this location is in the second word of the double
word, the bus control logic sets SAl to a 1. The microprocessor has also
asserted BE3#, indicating that it must also read the contents of the odd ad
dress immediately following the even location addressed by BE2#. As a result,
the bus control logic asserts SBHE#.

When the microprocessor and bus control logic sample their respective size
inputs, the l6-bit memory device being addressed has asserted M16#. The as
serted level on the microprocessor's BS16# input indicates that the 16-bit de
vice will return the two requested bytes over the lower two data paths, rather
than the upper two as expected. The asserted level on the M16# input to the
bus control logic indicates that the addressed device is a l6-bit memory device
and the requested data will be transferred over the lower two data paths.

The bus control logic asserts the MRDC# line. The l6-bit device now sees ad
dress OOOOOl02h and SBHE# asserted and places the two requested bytes on
the two lower data paths. The bus control logic passes the two bytes through
the lower two data bus transceivers to the microprocessor and asserts the
CPU READY# line. When the microprocessor samples CPU READY# asserted
at the end of the current data time, it reads the two bytes from the data bus
and stores them in the upper two bytes of the target EAX register. This ends
the second bus cycle, completing the execution of the MOV instruction.

Writing to a 16-Bit Device

TWO-Byte Write to a 16-Bit Device

In this example, the following instruction is addressing a 16-bit memory de
vice.

MOV [0 102] , AX

207

ISA System Architecture

The microprocessor must write the contents of the AX register (2 bytes) to
memory locations 00000102h and OOOOOl03h. Address OOOOOlOOh is placed on
A[3l:2] and BE2# and BE3# are asserted. In this way, the microprocessor indi
cates that it is addressing locations OOOOOl02h and OOOOOl03h in the double
word starting at location OOOOOlOOh. When the microprocessor is addressing
either of the last two locations in a doubleword, the bus control logic sets SAl
to 1. The bus control logic sets SAO to a 0 because the asserted level on BE2#
indicates that the microprocessor is addressing the second even address in the
target doubleword. Since BE3# is also asserted, the microprocessor is also ad
dressing the odd location immediately following the addressed even location.
As a result, the bus control logic asserts SBHE#.

The two bytes from AX register are not only driven onto the two upper data
paths by the 80386DX microprocessor, but are also duplicated on the lower
two paths.

Since the target device is a l6-bit memory device, it asserts M16#. As a result,
the microprocessor finds BS16# asserted when sampled at the mid-point of the
processor's first data time. The bus control logic samples M16# at the end of
ISA address time and finds it asserted. This indicates to both the microproces
sor and the Bus Controller Logic that they are communicating with a l6-bit
device.

Sensing M16# asserted, the bus control logic determines that it is communicat
ing with a l6-bit memory device and that the data must therefore be trans
ferred to the device over the two lower data paths. The two lower data bus
transceivers are enabled, allowing the two bytes from the AX register to be
driven out onto SD[7:0] and SD[15:8]. The l6-bit device sees address
OOOOOl02h on the address bus with SBHE# asserted and the MWTC# line as
serted and accepts the two bytes from the two lower data paths.

All of the information has now been written to the target device, so the bus
control logic asserts the CPU READY# line. When the microprocessor samples
CPU READY# asserted, it ends the bus cycle, completing execution of the
MOV instruction.

Four-Byte Write to a 16-Bit Device

In this example, the following instruction is addressing a l6-bit memory de
vice.

MOV [0100] ,EAX

208

Chapter 11: The 80386 System Kernel

The microprocessor must write the contents of the EAX register (4 bytes) to
memory locations 00000100h through 00000103h. Address 00000100h is placed
on A[31:2] and all four byte enable lines are asserted. In this way, the micro
processor indicates that it is addressing locations 00000100h through
00000103h in the doubleword starting at location OOOOOlOOh. When the micro
processor is addressing either of the first two locations in a doubleword, the
bus control logic sets SAl to o. The bus control logic also sets SAO to a 0 be
cause the asserted level on BEO# indicates that the microprocessor is address
ing the first even address in the target doubleword. Since BEl # is also
asserted, the microprocessor is also addressing the odd location immediately
following the addressed even location. As a result, the bus control logic as
serts SBHE#. The four bytes from EAX register are driven onto the four data
paths by the 80386DX microprocessor.

Since the target device is a 16-bit memory device, it asserts M16#. As a result,
the microprocessor finds BS16# asserted when sampled at the mid-point of the
processor's first data time, indicating to the microprocessor that it is commu
nicating with a 16-bit device. The bus control logic samples M16# at the end of
ISA address time and finds it asserted.

Sensing M16# asserted, the bus control logic determines that it is communicat
ing with a 16-bit memory device and that the data must therefore be trans
ferred to the device over the two lower data paths. All four data bus
transceivers are enabled, allowing the four bytes from the EAX register to be
driven out onto the four SD paths. The 16-bit device sees address 00000100h
on the address bus with SBHE# asserted and the MWTC# line asserted and
accepts the two bytes from the two lower data paths.

The bus control logic asserts CPU READY# to the microprocessor. When the
microprocessor samples CPU READY# asserted at the end of the current data
time, its asserted state allows the microprocessor to end the first bus cycle.
Two of the four bytes from the EAX register have been written to the target
16-bit device.

The second bus cycle is automatically initiated by the microprocessor. Ad
dress 00000100h is placed on A[31:2] and BE2# and BE3# are asserted. In this
way, the microprocessor indicates that it is addressing locations 00000l02h
and 00000103h in the doubleword starting at location 00000100h. When the
microprocessor is addressing either of the last two locations in a doubleword,
the bus control logic sets SAl to 1. The bus control logic sets SAO to a 0 be
cause the asserted level on BE2# indicates that the microprocessor is address

209

ISA System Architecture

ing the second even address in the target doubleword. Since BE3# is also as
serted, the microprocessor is also addressing the odd location immediately
following the addressed even location. As a result, the bus control logic as
serts SBHE#.

The two upper bytes from EAX register are not only driven onto the two up
per data paths by the 803860X microprocessor, but are also duplicated on the
lower two paths.

Since the target device is a 16-bit memory device, it asserts M16#. As a result,
the microprocessor finds BS16# asserted when sampled at the mid-point of the
processor's first data time, indicating to the microprocessor that it is commu
nicating with a 16-bit device. The bus control logic samples M16# at the end of
ISA address time and finds it asserted.

Sensing M16# asserted, the bus control logic determines that it is communicat
ing with a 16-bit memory device and that the data must therefore be trans
ferred to the device over the two lower data paths. The two lower data bus
transceivers are enabled, allowing the two upper bytes from the EAX register
to be driven out onto SO[7:0] and SO[15:8]. The 16-bit device sees address
00000102h on the address bus with SBHE# asserted and the MWTC# line as
serted and accepts the two bytes from the two lower data paths.

All of the information has now been written to the target device, so the bus
control logic asserts the CPU REAOY# line. When the microprocessor samples
CPU REAOY# asserted at the end of the current data time, it ends the bus cy
cle, completing execution of the MOV instruction.

Reading from a 32-Bit Device

In an ISA system, the only 32-bit device is the system board RAM memory.
When addressed, it asserts the M32# signal to indicate that it is a 32-bit device.
In this example, the following instruction is addressing a 32-bit memory de
vice.

MOV EAX, [0 1 0 0]

The microprocessor must read the contents of the memory locations
00000100h through 00000103h into the EAX register. Address 00000100h is
placed on A[31:2] and all four byte enable lines are asserted. In this way, the
microprocessor indicates that it is addressing locations OOOOOlOOh through

210

Chapter 11: The 80386 System Kernel

OOOOO103h in the doubleword starting at address OOOOOlOOh. When the micro
processor is addressing either of the first two locations in a doubleword, the
bus control logic sets SAl to O. The bus control logic also sets SAO to a 0 be
cause the asserted level on BEO# indicates that the microprocessor is address
ing the first even address in the target doubleword. Since BEl # is also
asserted, the microprocessor is also addressing the odd location immediately
following the addressed even location. As a result, the bus control logic as
serts SBHE#.

Since the device is a 32-bit memory device, it asserts M32#. When the micro
processor checks its BS16# input at the mid-point of the first data time, it is
sensed deasserted. When the bus control logic checks M16# and M32# at the
end of address time, M32# is sensed asserted. Since this is a read bus cycle,
both the microprocessor and the bus control logic then expect the data to
come back over all four data paths. This also means that the device can return
four bytes at a time. Since the microprocessor has requested four bytes, it
must only run one bus cycle to get all four bytes.

The bus control logic sets MRDC# asserted. When the 32-bit memory detects
address 00000100h with all four byte enables asserted, it sends the contents of
all four locations in the doubleword back to the microprocessor over the four
data paths. The bus control logic enables all four data bus transceivers, allow
ing the four bytes of data to flow through to the microprocessor.

The bus control logic then asserts CPU READY#. When the microprocessor
samples CPU READY# asserted at the end of the current data time, it reads
the four bytes from the four data paths, places them in the EAX register, and
ends the bus cycle. This completes the execution of the MOV instruction.

Writing to a 32-Bit Device

In an ISA system, the only 32-bit device is the system board RAM memory.
When addressed, it asserts the M32# signal to indicate that it is a 32-bit device.
In this example, the following instruction is addressing a 32-bit memory de
vice.

MOV [0100], EAX

The microprocessor must write the contents of the EAX register to memory
locations OOOOOlOOh through OOOOO103h. Address OOOOOlOOh is placed on
A[31:2] and all four byte enable lines are asserted. In this way, the microproc

211

ISA System Architecture

essor indicates that it is addressing locations OOOOOlOOh through OOOOO103h in
the doubleword starting at address 00000100h. The four bytes from the EAX
register are driven out onto the four data paths by the microprocessor.

When the microprocessor is addressing either of the first two locations in a
doubleword, the bus control logic sets SAl to o. The bus control logic sets SAO
to a 0 because the asserted level on BEO# indicates that the microprocessor is
addressing the first even address in the target doubleword. Since BEl # is also
asserted, the microprocessor is also addressing the odd location immediately
following the addressed even location. As a result, the bus control logic as
serts SBHE#.

Since the device is a 32-bit memory device, it asserts M32#. When the micro
processor checks its BS16# input at the mid-point of the first data time, it is
sensed deasserted. When the bus control logic checks M16# and M32# at the
end of address time, M32# is sensed asserted. Since this is a write bus cycle,
both the microprocessor and the bus control logic then expect the data to be
transferred over all four data paths. Since the microprocessor is communicat
ing with a 32-bit device, only one bus cycle is necessary.

The bus control logic asserts MWTC# and enables all four data bus transceiv
ers, allowing the four data bytes to pass through onto the System Data (SD)
bus. When the 32-bit memory detects address 00000100h with all four byte en
ables and the MWTC# line asserted, it accepts the four data bytes and stores
them in the four locations within the target doubleword. The bus control logic
asserts CPU READY#. When the microprocessor samples CPU READY# as
serted at the end of the current data time, it ends the bus cycle, completing
execution of the MOV instruction.

80386DX System Kernel without Dynamic Bus Sizing

Introduction

Figure 11-3 illustrates the kernel logic surrounding an 80386DX microproces
sor. In this implementation, the designer has not taken advantage of the
80386DX microprocessor's dynamic bus sizing capability (BS16# is deasserted
by a pull-up resistor to Vcc). The data bus steering logic is used to handle
communication with 8-,16- and 32-bit devices.

The kernel of a DX-based system without dynamic bus sizing operates identi
cally to a kernel with this feature, except when the microprocessor is commu
nicating with 16-bit devices. The examples for communication with 8- and 32
bit devices described in the section entitled, "The 80386DX System Kernel

212

Chapter 11: The 80386 System Kernel

with dynamic bus sizing Implemented," are also true for the DX-based system
without dynamic bus

Data Bus Steering Logic

Figure 11-3. The 80386DX-Based Kernel without Dynamic Bus Sizing Implemented

213

ISA System Architecture

Reading from a 16-Bit Device

Two-Byte Read from a 16-Bit Device

In this example, the following instruction is addressing a 16-bit memory de
vice.

MOV AX, [0102]

The microprocessor will read the contents of memory locations 00000102h and
00000103h and place the resulting word in the AX register. Address 00000100h
is placed on A[31:2] and BE2# and BE3# are asserted. In this way, the micro
processor indicates that it is addressing locations 00000102h and 00000103h in
the doubleword that starts at location 00000100h. When the microprocessor is
addressing either of the last two locations in a doubleword,' the bus control
logic sets SAl to 1. The bus control logic sets SAO to a 0 because the asserted
level on BE2# indicates that the microprocessor is addressing an even address
in the addressed doubleword. Since BE3# is also asserted, the microprocessor
is also addressing the odd location immediately following the addressed even
location. As a result, the bus control logic asserts SBH1?#.

Since the device is a 16-bit memory device, it asse~s M16#. When the micro
processor checks its BS16# input at the mid-point of the processor's first data
time, it is sensed deasserted (because of the pull-up to Vcc). When the bus
control logic checks M16# at the end of address time, it is sensed asserted.
Note that the bus control logic does not sample 1016# because it has previ
ously sampled M/IO# and knows that a memory location is being accessed.

Sampling BS16# deasserted indicates to the microprocessor that it is commu
nicating with a 32-bit device, while the bus control logic recognizes that the
target is really a 16-bit memory device when it samples M16# asserted. In this
read bus cycle, the microprocessor expects the two requested bytes to come
back over the upper two data paths, while the bus control logic expects the
data to come back over the tWo lower data paths.

The 16-bit device detects address 00000102h on the address bus with SBHE#
and the MRDC# line asserted and returns the two requested bytes over the
two lower data paths. The bus control logic c()mmands the data bus steering
logic to copy the two data bytes from the lower two to the upper two data
paths. The bus control logic then enables the two upper data bus transceivers,

214

Chapter 11: The 80386 System Kernel

passing the bytes through the two upper data bus transceivers to the micro
processor.

The bus control logic then asserts the CPU READY# line. When the micro
processor samples CPU READY# asserted, it reads the two bytes from the two
upper data paths and places them in the target register, AX. The byte from lo
cation 00000102h is placed in AL and that from 00000103h in AH, completing
execution of the MOV instruction.

Four-Byte Read from a 16-Bit Device

In this example, the following instruction is addressing a 16-bit memory de
vice.

MOV EAX, [010 0]

The microprocessor will read the contents of memory locations 00000100h
through 00000103h and place the resulting doubleword in the EAX register.
Address 00000100h is placed on A[31:2] and all four byte enables are asserted.
Tn this way, the microprocessor indicates that it is addressing locations
00000100h through 00000103h in the doubleword that starts at location
00000100h. When the microprocessor is addressing either of the first two lo
cations in a doubleword, the bus control logic sets SAl to O. The bus control
logic sets SAO to a 0 because the asserted level on BEO# indicates that the mi
croprocessor is addressing the first even address in the target doubleword.
Since BE1# is also asserted, the microprocessor is also addressing the odd lo
cation immediately following the addressed even location. As a result, the bus
control logic asserts SBHE#.

Since the device is a 16-bit memory device, it asserts M16#. When the micro
processor checks its BS16# input at the mid-point of the processor's first data
time, it is sensed deasserted (because of the pull-up to Vcc). When the bus
control logic checks M16# at the end of ISA address time, it is sensed asserted.
Note that the bus control logic does not sample 1016# because it has previ
ously sampled M/IO# and knows that a memory location is being accessed.

Sampling BS16# asserted indicates to the microprocessor that it's communicat
ing with a 32-bit device. The bus control logic, on the other hand, detects that
it is communicating with a 16-bit memory device when it samples M16# as
serted. Since this is a read bus cycle and the microprocessor thinks it's com
municating with a 32-bit device, the it expects all four data bytes to be
returned to it simultaneously using all four data paths. The bus control logic

215

ISA System Architecture

expects the data to come back over only the two lower data paths. This also
means that the device can only return two bytes at a time.

Because the microprocessor has requested four bytes and will only run one
bus cycle because it thinks it's communicating with a 32-bit device. The bus
control logic must trick the 16-bit device into thinking two separate bus cycles
have been generated by the microprocessor.

The 16-bit device detects address 00000100h on the address bus with SBHE#
and the MRDC# line asserted and returns the first two of the requested bytes
over the two lower data paths. The bus control logic causes these two bytes to
be latched into the lower two data bus transceivers. Seeing that the upper two
byte enable lines are also asserted, the bus control logic sets SAl to I, SAO to 0,
and asserts SBHE#. It also deasserts and then reasserts the MRDC# line to
simulate a second bus cycle.

The 16-bit device now detects address 00000102h with SBHE# and MRDC# as
serted and returns the contents of 00000102h and 00000103h on the lower two
data paths. The bus control logic then causes the data bus steering logic to
copy the two bytes to the upper two paths. It then enables the upper two data
bus transceivers to pass the upper two bytes to the microprocessor and simul
taneously commands the lower two data bus transceivers to pass the two
previously latched bytes to the processor on the lower two data paths.

The bus control logic then asserts CPU READY#. When the microprocessor
samples CPU READY# asserted at the end of the current data time, it reads
the four bytes from the bus and stores them in the EAX register. This com
pletes the bus cycle and completes the execution of the MOV instruction.

Writing to a 16-Bit Device

Two-Byte Write to a 16-Bit Device

In this example, the following instruction is addressing a 16-bit memory de
vice.

MOV [01 0 2 1 ,AX

The microprocessor must write the contents of the AX register (2 bytes) to
memory locations 00000102h and 00000103h. Address 00000100h is placed on
A[31:2] and BE2# and BE3# are asserted. In this way, the microprocessor indi

216

Chapter 11: The 80386 System Kernel

cates that it is addressing locations 00000102h and 00000103h in the double
word starting at location 00000100h. When the microprocessor is addressing
either of the last two locations in a doubleword, the bus control logic sets SAl
to 1. The bus control logic sets SAO to a 0 because the asserted level on BE2#
indicates that the microprocessor is addressing the second even address in the
target doubleword. Since BE3# is also asserted, the microprocessor is also ad
dressing the odd location immediately following the addressed even location.
As a result, the bus control logic asserts SBHE#.

The two bytes from the AX register are not only driven onto the two upper
data paths by the 80386DX microprocessor, but are also duplicated on the
lower two paths.

Since the device is a 16-bit memory device, it asserts M16#. When the micro
processor checks it BS16# input at the mid-point of the processor's first data
time, it is sensed deasserted (because of the pull-up to Vcc). When the bus
control logic checks M16# at the end of ISA address time, it is sensed asserted.
Note that the bus control logic does not sample 1016# because it has previ
ously sampled M/I0# and knows that a memory location is being accessed.
Sampling BS16# deasserted indicates to the microprocessor that it's communi
cating with a 32-bit device, while the bus control logic detects that it's com
municating with a 16-bit memory device when sampling M16# asserted.

Sensing M16# asserted, the bus control logic determines that it is communicat
ing with a 16-bit memory device and that the data must therefore be trans
ferred to the device over the two lower data paths. Because the 80386DX
duplicates the data from the upper paths on the lower paths, the two lower
data bus transceivers are enabled, allowing the two bytes from the AX register
to be driven out onto SD[7:0] and SD[15:8]. The 16-bit device sees address
00000102h on the address bus with SBHE# asserted and the MWTC# line as
serted and accepts the two bytes from the two lower data paths.

All of the information has now been written to the target device, so the bus
control logic asserts the CPU READY# line. When the microprocessor samples
CPU READY# asserted, it ends the bus cycle, completing execution of the
MOV instruction.

Four-Byte Write to a 16-Bit Device

In this example, the following instruction is addressing a 16-bit memory de
vice.

217

ISA System Architecture

MOV [0100] I EAX

The microprocessor must write the contents of the EAX register (4 bytes) to
memory locations 00000100h through 00000103h. Address 00000100h is placed
on A[31:2] and all four byte enable lines are asserted. In this way, the micro
processor indicates that it is addressing locations 00000100h through
00000103h in the doubleword starting at location 00000100h. When the micro
processor is addressing either of the first two locations in a doubleword, the
bus control logic sets SAl to o. The bus control logic also sets SAO to a 0 be
cause the asserted level on BEO# indicates that the microprocessor is address
ing the first even address in the target doubleword. Since BEl # is also
asserted, the microprocessor is also addressing the odd location immediately
following the addressed even location. As a result, the bus control logic as
serts SBHE#. The four bytes from EAX register are driven onto the four data
paths by the 803860X microprocessor.

Since the device is a 16-bit memory device, it asserts M16#. When the micro
processor checks its BSl6# input at the mid-point of the processor's first data
time, it is sensed deasserted (because of the pull-up to Vcc). As a result, the
microprocessor thinks that it's communicating with a 32-bit device and can
transfer the entire doubleword in one bus cycle. However, when the bus con
trollogic checks M16# at the end of address time it is sensed asserted. This
indicates that it is communicating with a 16-bit device. This means that the
bus control logic must trick the 16-bit device into thinking two separate bus
cycles occur, while the microprocessor only performs one.

Sensing M16# asserted, the bus control logic determines that it is communicat
ing with a 16-bit memory device and that the data must therefore be trans
ferred to the device over the two lower data paths. All four data bus
transceivers are enabled, allowing the four bytes from the EAX register to be
driven out onto the System Data (SO) bus. The 16-bit device sees address
00000100h on the address bus with SBHE# asserted and the MWTC# line as
serted and accepts the two bytes from the two lower data paths.

The bus control logic now deasserts and then reasserts the MWTC# line to
trick the 16-bit device into thinking another bus cycle has begun. In addition,
the bus control logic alters the address by setting SA 1 to 1, SAO to 0 and by as
serting SBHE#. This is done because the microprocessor must also write the
upper two bytes into the doubleword and the 16-bit device must see the ad
dress for these two locations. The bus control logic disables the lower two
data bus transceivers and commands the data bus steering logic to copy the

218

Chapter 11: The 80386 System Kernel

upper two bytes to the two lower paths. The 16-bit device then accepts the
two bytes and writes them into the addressed locations, OOOOOl02h and
OOOOOl03h.

The bus control logic asserts CPU READY# to the microprocessor. When the
microprocessor samples CPU READY# asserted at the end of the current data
time, its asserted state allows the microprocessor to end the bus cycle. The
four bytes from the EAX register have been written to the target 16-bit device,
completing execution of the MOV instruction.

219

Chapter 12: Detailed View of the 80386 Bus Cycles

Chapter 12
The Previous Chapter

The chapters prior to this one provided a detailed description of the 80386DX
and SX microprocessors, as well as the basic structure and operation of the
kernel logic associated with these two variations of the 80386 microprocessor.

This Chapter

This chapter provides a detailed description of the 80386 bus cycle. Timing
diagrams are used to illustrate the sequence of events during the 80386 micro
processor's communication with external devices.

The Next Chapter

Part 2, "Memory Subsystems," follows immediately after this chapter, provid
ing a detailed description of RAM memory, cache architecture and ROM
memory. Since the processor spends more of its time accessing memory then
any other subsystem, it is imperative that the linkage between memory and
the processor be optimized to provide the fastest possible throughput. The
chapter on cache provides a detailed look at the most common method of
achieving this optimization.

The Bus Cycle Types
The 80386 microprocessor is capable of running precisely the same seven
types of bus cycles that the 80286 microprocessor can run:

• Memory instruction read

• Memory data read

• Memory data write

• I/O data read

• I/O data write

• Interrupt Acknowledge

• Halt or Shutdown

221

ISA System Architecture

Address Pipelining Overview

The subject of address pipelining was discussed in the chapter entitled "The
80386DX and SX Microprocessors." Unlike the 80286 microprocessor, how
ever, the 80386 microprocessor can turn address pipelining on and off on a
bus-cycle-by-bus-cycle basis. This is accomplished by asserting or deasserting
the processor's NA#, next address, input. During the current bus cycle, the
80386 microprocessor samples NA# to determine whether or not to output the
address for the upcoming bus cycle early. If NA# is sampled deasserted, the
processor will not output the address and bus cycle definition for the upcom
ing bus cycle until the bus cycle has actually begun. If, on the other hand, NA#
is sampled asserted during the current bus cycle, the processor will place the
addressand bus cycle definition for the upcoming bus cycle on the bus during
the current bus cycle. The following discussion of the read and write bus cy
cles assumes that pipelining is disabled - the NA# input is sampled deassert
ed during each bus cycle. The section entitled, "Address PipeliningExample,"
provides a detailed discussion of bus cycle timing when the 80386 microproc
essor is using address pipelining.

Memory or 1/0 Read Bus Cycle

Figure 12-1 illustrates the sequence of events during a memory or an I/O read
bus cycle. The following numbered steps can be cross-referenced to the num
bered referenced points in the timing diagram. The 80386's address time is re
ferred to as Tl, while data time is referred to as T2. The small, dark rectangles
identify the points at which a signal is sampled.

222

I

Chapter 12: Detailed View of the 80386 Bus Cycles

PCLK

A31 :A2

BE3#:BEO#

M/IO#, O/C#

W/R#

AOS#

NA#

B816#

REAOY#

031 :00

I Ti I T1 ; T2 I T1 ; T2 ; Ti

I I
.
i .. ·I~--~--~I--~--~r I

I
I

0
 1

....... :r+l~ ...:r--t:....

10: 101
 1

1 1 1 1

r . . ·1· .. I~r .Ir--tl... 1

: . . .:. . . : . ·1 ~I· .:. . I~. . :
1 1 1 1 1

1 liD 1 1 1

1 . . T . . 1 . ~ . .1. 0· .1

1 1 I~ 1 1 ~ 1

• • 1 • 1 1 •

Figure 12-1. Non-Pipelined Read Bus Cycle

223

ISA System Architecture

1. 	 Because the processor's bus unit is in the idle state prior to this bus cycle,
the address for the next bus cycle is not output early. Intel documentation
shows that the 80386's internal clock (PCLK) is different than the 80286's
PCLK. The 80386's PCLK is inverted when compared to the 80286's.

2. 	 The processor places the memory or I/O address on A[31:2] and asserts
the appropriate byte enable lines at the start of Tl. The microprocessor
also indicates the bus cycle type on its bus cycle definition lines and as
serts ADS# to indicate the start of the bus cycle and the presence of a valid
address and bus cycle definition.

3. 	 At the end of Tl, the microprocessor deasserts the ADS# signal.
4. 	 At the midpoint of T2, the microprocessor samples its BS16# and NA# in

puts. In this example, NA# is sampled deasserted, causing the microproc
essor to maintain the address for the current bus cycle on the address bus
until the bus cycle ends. In this example, BS16# is sampled deasserted,
indicating that the currently addressed device is a 32-bit device.

5. 	 The currently addressed device begins to drive the requested data onto
the data bus. The exact moment this occurs is dependent upon the ad
dressed device's access time.

6. 	 At the end of T2, the microprocessor samples its READY# input to de
termine if the currently addressed device is ready to end the bus cycle. In
this example, READY# is sampled asserted. The microprocessor reads the
requested data from the data bus and ends the bus cycle. The microproc
essor immediately initiates the next bus cycle, placing the new address
and bus cycle definition on the buses and asserting ADS# again.

If READY# had been sampled deasserted, the microprocessor inserts a
wait state into the bus cycle to provide additional time for the addressed
device to respond to the request for data. The wait state consists of an
additional T2 time.

Memory or 1/0 Write Bus Cycle

Figure 12-2 illustrates the sequence of events during a memory or an I/O
write bus cycle. The following numbered steps can be cross-referenced to the
numbered referenced points in the timing diagram. The 80386's address time
is referred to as Tl, while data time is referred to as T2. The small, dark rec
tangles identify the points at which a signal is sampled.

224

I

Chapter 12: Detailed View of the 80386 Bus Cycles

I Ti I T1 I T2 I T1 I T2 I Ti

PCLK

W/R#

AD8#

NA#

8816#

READY#

031:00

Figure 12-2. Non-Pipelined Write Bus Cycle

225

ISA System Architecture

1. 	 Because the processor's bus unit is in the idle state prior to this bus cycle,
the address for the next bus cycle is not output early. Intel documentation
shows that the 80386's internal clock (PCLK) is different than the 80286's
PCLK. The 80386' s PCLK is inverted when compared to the 80286's.

2. 	 The processor places the memory or I/O address on A[31:2] and asserts
the appropriate byte enable lines at the start of T1. The microprocessor
also indicates the bus cycle type on its bus cycle definition lines and as
serts ADS# to indicate the start of the bus cycle and the presence of a valid
address and bus cycle definition.

3. 	 The microprocessor begins to drive the data to be written onto the data
bus at the midpoint of TI.

4. 	 At the end of TI, the microprocessor deasserts the ADS# signal.
5. 	 At the midpoint of T2, the microprocessor samples its BS16# and NA# in

puts. In this example, NA# is sampled deasserted. This causes the micro
processor to maintain the address for the current bus cycle on the address
bus until the bus cycle ends. In this example, BS16# is sampled deasserted,
indicating that the currently addressed device is a 32-bit device.

6. 	 At the end of T2, the microprocessor samples its READY# input to de
termine if the currently addressed device is ready to end the bus cycle. In
this example, READY# is sampled asserted, indicating that the currently
addressed device has accepted the data being written by the microproces
sor. The microprocessor immediately initiates the next bus cycle, placing
the new address and bus cycle definition on the buses and asserting ADS#
again. If READY# had been sampled deasserted, the microprocessor in
serts a wait state into the bus cycle to provide additional time for the ad
dressed device to respond to the request for data. The wait state consists
of an additional T2 time.

7. 	 The microprocessor continues to drive the write data onto the data bus
until the midpoint of TI in the next bus cycle, thus ensuring that it satis
fies the hold time for the target device.

Address Pipelining Example

Figure 12-3 illustrates the transition from non-pipelined to pipelined opera
tion. Table 12-1 defines the states used in the example. The small, dark rec
tangles identify the points at which a signal is sampled.

1. 	 The microprocessor's bus unit is idle because no internal bus cycle re
quests are pending. The prefetch queue is full and the currently executing
instruction doesn't require a bus cycle. Intel documentation shows that the

226

Chapter 12: Detailed View of the 80386 Bus Cycles

80386' s internal clock (PCLK) is different than the 80286' s PCLK. The
80386' s PCLK is inverted when compared to the 80286's.

2. 	 At the start of Tl, the microprocessor initiates a bus cycle to fulfill an in
ternal bus cycle request from the prefetcher or the execution unit. The mi
croprocessor drives the address and bus cycle definition onto the buses
and asserts AD5#. W /R# is set high, indicating that this is a write bus cy
cle. Address decoders begin to see the new address shortly after the start
of Tl. Address pipelining isn't in effect because the bus unit is just coming
out of the idle state. The address can't be placed on the address bus dur
ing the prior bus cycle because there isn't one.

3. 	 At the midpoint of Tl, the microprocessor begins to drive the write data
on the data bus.

4. 	 AD5# is deasserted at the end of Tl. Address decoders may latch the ad
dress or their chip select on the rising edge of ADS#.

5. 	 At the midpoint of T2, the microprocessor samples its B516# and NA# in
puts. At this point, the deasserted state of B516# indicates that the micro
processor is communicating with a 32-bit device. The deasserted state on
NA# indicates that the currently addressed device does not support ad
dress pipelining. As a result, the microprocessor will not place the address
and bus cycle definition for the next bus cycle on the buses until the end of
the current bus cycle.

6. 	 The microprocessor samples READY# asserted at the end of T2, indicating
that the currently addressed device has accepted the write data and is
ready to end the bus cycle. In response, the microprocessor ends the bus
cycle, but continues to drive the data onto the data bus until the midpoint
of Tl in the next bus cycle to ensure that the device successfully latches
the data. The microprocessor initiates the next bus cycle at the start of Tl.
This bus cycle is a read, as indicated by the low on W /R#.

7. 	 At the midpoint of T2, the microprocessor samples B516# and NA#. B516#
is again deasserted, indicating that the currently addressed device is a 32
bit device. NA# is asserted, however, indicating that the currently ad
dressed device supports address pipelining. The microprocessor must
therefore output the address and bus cycle definition for the upcoming
bus cycle early (during this bus cycle).

If READY# is sampled asserted at the end of T2, however, NA# is ignored
because the asserted READY# causes the bus cycle to terminate.

8. 	 READY# is sampled deasserted, causing the microprocessor to insert a
wait state (T2p) in the bus cycle.

9. 	 At the leading edge of T2p, the microprocessor places the address and bus
cycle definition for the next bus cycle on the buses and asserts AD5#.

227

ISA System Architecture

W/R# is set high, indicating that the next bus cycle is a write. The pipelin
ing of the address and bus cycle type allows the device to be addressed in
the next bus cycle to begin its access early so it will be ready to end the
bus cycle earlier.

10. 	At the end of T2p, the microprocessor samples READY# asserted and
reads the data from the data bus, ending the current bus cycle. The micro
processor deasserts ADS# and the microprocessor's bus unit enters the
Tl p state. This is the first PCLK cycle of a pipelined bus cycle.

ADS# is only asserted for one PCLK cycle when the microprocessor out
puts a new address and bus cycle type onto the buses. Since the address
and bus cycle type for a pipelined bus cycle are output during T2p of the
previous bus cycle, ADS# isn't asserted during Tlp.

11. 	 At the midpoint of Tl p, the microprocessor begins to drive the write data
onto the data bus. At this point, the microprocessor samples NA#
asserted, indicating that the currently addressed device supports address
pipelining. BSI6# is sampled deasserted, indicating that the device ad
dressed in the current bus cycle is a 32-bit device.

12. 	At the leading edge of T2p, the microprocessor outputs the address and
bus cycle type for the upcoming bus cycle and asserts ADS#. W /R# is set
low, indicating that the next bus cycle is a read.

13. 	 At the end of T2p, the microprocessor samples READY# asserted, indicat
ing that the device addressed in the current bus cycle is ready to end the
write transfer. The microprocessor ends the bus cycle, but continues to
drive the write data onto the data bus to ensure the device latches the data
correctly. The microprocessor deasserts ADS#.

14. 	 The next bus cycle begins with Tl p.
15. 	 At the midpoint of Tlp, the microprocessor samples NA# asserted, indi

cating that the currently addressed device supports address pipelining. In
this case, however, the microprocessor's bus unit doesn't have another bus
cycle to run, so the next address and bus cycle type are not pipelined out
early. The microprocessor samples BSI6# deasserted at the midpoint of
Tlp, indicating that the device addressed in the current bus cycle is a 32
bit device.

16. 	The microprocessor's bus unit enters the T2i state. This is data time and
the bus unit is preparing to go back to the idle state after this bus cycle
completes. At the start of T2i, the microprocessor ceases to drive the ad
dress and bus cycle type.

17. 	 At the end of T2i, the microprocessor samples READY# asserted, indicat
ing that the device addressed in the current bus cycle is ready to end the
bus cycle. The microprocessor reads the data from the data bus and ends
the bus cycle.

228

Chapter 12: Detailed View of the 80386 Bus Cycles

18. 	The microprocessor's bus unit enters the idle state until the prefetcher or
the execution unit request another bus cycle.

1 Ti 1 T1 1 T2 1 T1 1 T2 1T2p 1T1 P1T2p 1T1 P1T2i 1 Ti 1

PCLK

. . 	 II . . i
""---....I

1 1 1

1.....------11 . . 1 . . 1

AD8# 1 4 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

NA# I·· ·1· · .1'@1. · .1 101' ..11 I" .II@I· . I· · I
1 1 1 1 IL-I1 IL-I1 IL-I1 1 1

8816# l .. l . . lr+l...Ir'l...Ir'l...Ir'l .. J .. J

III@I®II@III

READY# ! · · ! · . I. . I 6 r · ! · rtI. I®r · ! · 11_31' • ! . 1~ • !
11314-1 II L+J 1 LtJ 1 LtJ 1

D31:DO
1 1i .. i

Figure 12-3. Transition from Non-Pipelined to Pipelined Operation

229

ISA System Architecture

Table 12-1 80386 Bus Unit States
State Description

Ti The idle state. The bus unit remains in the idle state when it has no bus
cycles to run (the prefetch queue is full and the currently executing in
struction does not require a bus cycle).

Tl Address time. The microprocessor places the address and bus cycle type
on the buses and asserts ADS#. If pipelining is in effect, the address is out
put prior to Tl. If this is a write bus cycle, the microprocessor also begins
to drive the data onto the data bus at the midpoint of Tl.

T2 Data time. Time period allocated to allow data to be transferred between
the microprocessor and the target device. NA# is sample at the T2 mid
point to determine if the processor should initiate early address output
(address pipelining). BS16# is also sampled at the T2 midpoint to deter
mine if the microprocessor is communicating with a 16- or 32-bit device.
READY# is sampled at the end of T2 to determine if the currently ad
dressed device is ready to end the bus cycle.

Tlp Address time in a pipelined bus cycle. NA# is sampled at the Tl p mid
point to determine if the next address and bus cycle definition should be
output early (at the start of T2p). BS16# is also sampled at the midpoint of
Tl p to determine if the currently addressed device is a 16- or 32-bit device.
If this is a write bus cycle, the microprocessor begins to drive the data onto
the data bus at the midpoint of Tl p.

T2p Data time in a pipelined bus cycle. The address and bus cycle definition
for the upcoming bus cycle are placed on the buses at the start of T2p.
ADS# is asserted for the duration of T2p. READY# is sampled at the end
of T2p to determine if the currently addressed device is ready to end the
bus cycle.

Interrupt Acknowledge Bus Cycle

The interrupt acknowledge bus cycle is discussed in the chapter entitled "The
Interrupt Subsystem."

Halt or Shutdown Bus Cycle

The processor runs the halt or shutdown bus cycle under either of the follow
ing circumstances:

230

Chapter 12: Detailed View of the 80386 Bus Cycles

• 	 The HLT (HALT) instruction causes the microprocessor to cease fetching
and executing instructions.

• 	 The microprocessor detects a fault while running the double-fault handler.

When the microprocessor executes the HLT instruction, it runs the halt or
shutdown bus cycle to indicate its intention to halt to external logic. In an ISA
machine, this has no effect on external logic.

When the 80386 microprocessor detects an exception while attempting to exe
cute the handler for a prior exception, the two exceptions are generally han
dled serially. Certain combinations of exceptions (including page faults and
what Intel refers to as "contributory exceptions") cannot be handled serially,
however, so the 80386 microprocessor invokes a double-fault exception in
stead. If the microprocessor detects an exception while attempting to service
the double-fault, it goes into a shutdown condition. It indicates this to external
logic by running the halt or shutdown bus cycle. In an ISA machine, the shut
down detect logic outside the microprocessor detects the shutdown and tog
gles the microprocessor's RESET line, causing the system to reboot.

The contributory exceptions are mostly caused by protection violations in pro
tected mode. For example, in protected mode, if an application attempts to ac
cess data that is outside its data segment, the microprocessor will start
running the general protection fault exception handler. If, say, a stack over
flow were to occur while the microprocessor ran the general protection fault
exception handler, the microprocessor would not be able to handle the two
faults serially. The microprocessor would invoke the double-fault exception
instead. If the microprocessor detected another exception while attempting to
service the double-fault, it would go into a shutdown condition. This is some
times referred to as a triple fault.

The halt or shutdown bus cycle is indicated by ADS# being asserted and:

• 	 M/IO# and W/R# driven high.
• 	 D/C# driven low.

In addition, the microprocessor asserts BEO# to indicate a shutdown, or as
serts BE2# to indicate a halt. The address bus outputs are driven low.

During a halt or shutdown, the 80386 may service PEREQ (processor exten
sion request) or HOLD requests. For further information on PEREQ and

231

ISA System Architecture

HOLD, refer to the chapters entitled "Numeric Coprocessor" and "Direct
Memory Access (DMA)" respectively.

Either NMI (non-maskable interrupt request) or RESET will force the 80386
out of either a halt or a shutdown. If interrupts are enabled, an INTR
(maskable interrupt request) will also force the microprocessor out of a halt
(but not out of shutdown). For information on interrupts, refer to the chapter
entitled "The Interrupt Subsystem."

232

Part 2

Memory

Subsystems

Part 2 covers the major memory subsystems that can be found in ISA systems.
The memory chapters cover specific devices along with implementations of
these devices found within the ISA environment.

Part 2 includes the following chapters:

• Chapter 13: RAM Memory: Theory of Operation
• Chapter 14: Cache Memory Concepts
• Chapter 15: ROM Memory

Two of the memory subsystems, "RAM memory" often referred to as system
memory, and the "system ROM" are found in all ISA systems. The other sub
system covered, "cache memory," is typically found in 80386 or higher sys
tems running at 20MHz and above.

Chapter 13: RAM Memory: Theory of Operation

Chapter 13
The Previous Chapter

Part 1 of the book provided a detailed description of microprocessor com
munications and the kernel support logic.

This Chapter

Many memory designs can be found in ISA systems. These designs are based
on two broad classifications of memory devices: dynamic RAM and static
RAM. The primary emphasis of any memory design revolves around per
formance and cost, but other factors such as physical space available, power
consumption, and external support circuitry play important roles in determin
ing the design of a RAM subsystem. This chapter details the most commonly
found memory types and memory implementations.

The Next Chapter

Chapter 14 explains the concept of cache memory.

Dynamic RAM (DRAM) Memory

Dynamic RAM (DRAM) memory is the most commonly used RAM device in
PCs due to its lower cost when compared to static RAM, or SRAM. Though its
cost is less than SRAM, DRAM chips are much slower. Many innovations
have occurred in DRAM designs to increase speed. As a result, much of this
chapter focuses on the various types of DRAM and associated subsystem de
sign.

A DRAM memory chip contains many storage locations. Depending on the
manufacturer and the chip type, a DRAM memory chip may contain 64K,
256K, 1M, 4M, or more storage locations. Internally, the storage locations are
laid out in rows and columns.

235

ISA System Architecture

As it is with any other device in the system, DRAM is accessed by the current
bus master. The current bus master is the device that currently owns the ad
dress, data and control buses. It is the device that runs the bus cycle that is
currently under way and it broadcasts the address. It may be the system mi
croprocessor, one of the DMA controllers or a 16-bit bus master plugged into
the ISA bus. In order to identify the specific location that the current bus mas
ter wants to communicate with, the DRAM chip must receive the address in
two steps:

• 	 the row address
• 	 the column address

DRAM must always be addressed in that order: row, then column. The inter
section of the row and column defines the exact location the current bus mas
ter wants to communicate with. The state of the DRAM's read/write pin, high
or low, defines the type of memory operation. The data bus is connected to
the DRAM chip so that the data can be transferred from the DRAM chip to the
current bus master during a read or from the current bus master to the DRAM
chip during a write.

DRAM Addressing Sequence

The following paragraphs describe the exact sequence of events that must oc
cur when addressing a DRAM memory location. Refer to figure 13-1.

1. 	 First, the row address must be routed to the DRAM's address pins on the
memory address bus.

2. 	 The RAS# (row address strobe) line must then be asserted by the DRAM
addressing logic. This causes the row address present on the DRAM's ad
dress inputs to be latched into the row latch inside the DRAM. The
DRAM's row address decoder begins to decode the latched row address,
selecting one row line to be activated.

3. 	 The DRAM addressing logic then delays a fixed amount of time before
giving the column address to the DRAM chip. This is called the RAS/CAS
delay and is described later in this chapter.

4. 	 After the RAS/CAS delay has elapsed, the DRAM addressing logic routes
the column portion of the address to the DRAM's address inputs on the
memory address bus and asserts CAS# (column address strobe). This
causes the column address to be latched into the column address latch in
side the DRAM chip.

236

Chapter 13: RAM Memory: Theory of Operation

5. 	 The DRAM chip now has all the information it needs to identify the loca
tion that the current bus master is attempting to communicate with. The
DRAM's internal row address decoder has already selected the specified
row line. The DRAM's internal column address decoder now selects and
activates the specified column line. The point at which the row and the
column lines intersect identifies the storage location that the current bus
master is attempting to communicate with.

6. 	 The state of the DRAM's read/write input pin indicates whether the cur
rent bus master is attempting to read the information stored in the speci
fied storage location or write information into that location.

Column Latch

Data
Column Address Decoder

RowRow AddressLatch Decoder

Figure 13-1. Block Diagram of a DRAM Memory Chip

237

ISA System Architecture

If a read operation is in progress, the contents of the indicated location are
placed on the data bus by the DRAM so they can be read by the current bus
master. If a write operation is in progress, the information that the current bus
master is presenting on the data bus is written into the specified storage loca
tion, completing the bus cycle.

Rowand Column Address Source

The fact that the DRAM expects to see the address presented in two steps,
row and column, presents a special problem. The DRAM expects the address
in a form other than that output by the current bus master. This necessitates
the inclusion of some type of logic to translate the address being output by the
current bus master into a row and column address. This address translation
logic is commonly referred to as the DRAM addressing logic.

Bus masters always output 24- (the 80286 and 80386SX microprocessors) or
32-bit (the 80386DX, 80486 and Pentium microprocessors) addresses onto the
address Bus. From the DRAM addressing logic's perspective, the address is
treated as three packets of information. Refer to figure 13-2.

• 	 The upper-most bits on the address bus are used by the DRAM address
decoder to determine if the address currently on the bus is within the ad
dress range assigned to the DRAM.

• 	 The lower portion of the address is divided into two packets of equal size:
• 	 The row address
• 	 The column address

238

Chapter 13: RAM Memory: Theory of Operation

A23

DA22

A21
 To DRAM Address Decoder
A20
A19
A18
A17
A16
A15 Row Address
A14

A13

A12

A11

A10

A9

A8

A7

A6

A5
 Column Address
A4

A3

A2

A1

AO

Current
Bus Master

Figure 13-2. The Address Output by the Current Bus Master

DRAM Addressing Logic

As stated earlier, the steps involved in addressing DRAM must occur in an
exact sequence and at specified intervals. A special timer device is included in
the DRAM addressing logic, sequencing the actions of the DRAM addressing
logic at the proper intervals. This timer is usually implemented using a time
delay device.

The time delay device has one input called a trigger and a series of outputs.
Once triggered by an asserted level on its trigger input, the time delay device
asserts each of its outputs at precise intervals. As an example, the time delay
device shown in figure 13-3 has a ten nanosecond (lOns) resolution. IOns after
it is triggered, its first output is asserted; IOns later the second output is as
serted, etc. By tapping off selected outputs of the time delay device, the de

239

ISA System Architecture

signer can choose the exact moment in time (relative to the trigger point) for a
specific event to occur.

Ons
10ns
20ns
30ns
40ns
50ns
60ns
70ns
BOns
gOns

Trigger

chipcselect from Input

DRAM address
 Timedecoder

Delay
Device

Figure 13-3. The Time Delay Device

The major components of the DRAM addressing logic are:

• the DRAM address decoder
• the time delay
• the DRAM addressing multiplexer, or MUX
• the RAS/CAS generation logic

Refer to figure 13-4. The DRAM address multiplexer (MUX) has two sets of
inputs and one set of outputs. It has only one control line, called a select line,
that controls its function, and this line can be set either high or low. A low se
lects the "A" set of inputs to be gated through to the MUX's outputs. When
the select line is high, the "B" set of inputs is selected and gated through to the
MUX's outputs. In other words, a MUX is nothing more than a switch, in this
case a two position switch, that can select one of two groups of input signals
to gate through to its output lines.

The upper-most bits on the address bus are connected to the DRAM address
decoder so it can determine if the address currently on the bus falls within
those assigned to this DRAM.

240

Chapter 13: RAM Memory: Theory of Operation

Chip
Select

Time
Delay
Device

Current
Bus

Master
D7

DRAM

Memory

Bank

I
Portion of I

DRAM Controller I

Figure 13-4. Block Diagram of DRAM Addressing Logic

The lower bits on the address bus are connected to the two sets of inputs on
the DRAM address multiplexer. One half of these bits are connected to the
MUX's 1/A" set of inputs, and the other half to its liB" set of inputs. Initially,
the select line on the MUX is set to zero, selecting the 1/A" set of inputs to be
gated through to the MUX's outputs. The outputs of the MUX are connected
to the memory address bus, which is attached to the address inputs of the
DRAM.

241

ISA System Architecture

Detailed Description of DRAM Addressing Sequence

The following paragraphs describe the sequence of events during the address
ing of a DRAM memory location. Refer to the block diagram in figure 13-4
and the timing diagram illustrated in figure 13-5.

1. 	 DRAM address decode. At the beginning of the bus cycle, the current bus
master places the address on the address bus, and the bus cycle definition
on the bus cycle definition lines. The DRAM address decoder determines
that it is a memory address by the high on the M/IO# line, and decodes
the upper-most bits on the address bus to determine if the address is
within the range of addresses assigned to the DRAM. If it is, the DRAM
address decoder's chip-select output is asserted, providing a trigger to the
time delay device.

2. 	 The row address. When initially triggered, the time delay outputs are all
deasserted, causing the MUX's select input to be set low. This selects the
MUX's "A" set of inputs, address bits A[19:1O], to be gated onto the mem
ory address bus. This portion of the address provides the row address to
the DRAM memory.

3. 	 Row address strobe (RAS#). In the example DRAM addressing logic
(figure 13-4), IOns is allowed to permit the row address to settle on the
memory address bus prior to latching it into the DRAM chips. IOns after
the time delay was triggered by the chip-select, the first output of the time
delay is asserted (high), causing RAS# (row address strobe) to be asserted.
The high-to-low transition on the RAS# line causes the DRAM's internal
row address latch to latch the row address presented to it on the memory
address bus.

4. 	 RAS/CAS delay. For correct operation, the designer must delay a DRAM
specific amount of time prior to presenting the column address to the
DRAM chips. If the column address is presented too soon, the DRAM
chips will not function correctly. This delay between the presentation of
the row address and the presentation of the column address is known as
the RAS/CAS delay. The exact duration of the delay is specific to the type
of DRAM chips being used.

5. 	 The column address. In the example DRAM addressing logic, 30 nano
seconds after the trigger, the time delay's second output is asserted, set
ting the MUX's select line to a one. This selects the MUX's "B" set of
inputs, A[9:0], to be gated onto the memory address bus. This portion of
the address provides the column address to the DRAM memory.

6. 	 Column address strobe (CAS#). In the example logic, IOns is allowed to
pass to allow the column address to settle on the memory address bus

242

Chapter 13: RAM Memory: Theory of Operation

prior to latching it into the DRAM chip. IOns later, the time delay's third
output is asserted, causing CAS# (column address strobe) to be asserted
(low). The high-to-Iow transition on CAS# causes the DRAM chip's inter
nal column address latch to latch the column address being presented to it
on the memory address bus.

7. 	 Read or write? Internally, the DRAM chip has now latched the row and
column addresses and activates one row and one column line. The point
at which they intersect defines the location the current bus master is at
tempting to access. The DRAM addressing logic uses the SO# and Sl#
(80286-specific lines; W /R# if an 80386,80486 or Pentium processor-based
system) bus cycle definition lines (or signals derived from them) to de
termine if a read or write operation is in progress. The read/write control
input of the DRAM chip is set accordingly.

8. 	 The data transfer. Assuming a read operation is in progress, the contents
of the addressed DRAM storage location are placed on the data bus so
they may be read by the current bus master. If a write operation, the data
sent to the DRAM by the current bus master is written into the addressed
storage location.

Access Time ..
I

I
I

RAS#

CAS# r
Memory
Address <Row Address X.....~_C_o_l_u_m_n_A_d_d_re_s_s--:'__
Bus @

SELECT
_-----I.__~®
f----~------~~--~~~~-

RJW# L

~~~a ____ ~ _______:_____ < @) 
Figure 13-5. DRAM Addressing Timing Diagram 

243 



ISA System Architecture 


How Data is Stored in DRAM 

A typical DRAM location can only store one bit of information, a one or a 
zero. This one-bit storage location is referred to as a bit cell and consists of a 
capacitor and a transistor. As an example, an electrical charge is placed on the 
capacitor to store a one, while the capacitor is discharged to store a zero in the 
location. 

The most important operational characteristic of a capacitor is its tendency to 
lose a charge, or drain, over a period of time. The discharge time is related 
partly to the size of the capacitor. The capacitors in DRAM cells are quite 
small. They have a capacity of around 100 femtofarads, or 1O-14F. When a bit is 
stored in a DRAM bit cell by placing a charge on its capacitor, therefore, the 
capacitor discharges in a relatively short period of time and loses the bit 
stored in it. This would appear to be a highly inefficient form of storage. 

DRAM Refresh 

To ensure that information stored in DRAM memory isn't lost, the bit cells 
containing charges must be periodically recharged to a good level. The proc
ess of rejuvenating DRAM locations with information stored in them is known 
as "refreshing" the DRAM. DRAM memory is called "dynamic" because it 
must be refreshed on a dynamic, ongoing basis or it will lose the information 
stored in it. 

Storage locations within a row in a typical DRAM chip are refreshed by acti
vation of the row line. When a row line is activated with the DRAM's 
read/write pin in the read state, every bit cell (every storage location) that 
contains a charge along the row is automatically recharged up to a good level. 
In other words, it is refreshed. 

Since a row line is activated whenever any location along the row is ad
dressed, one way to refresh DRAM memory would be to create a program 
that reads from one DRAM location within each row on an on-going basis. 
This would cause the activation of every row line within every DRAM chip 
and therefore refresh every location. This method for refreshing DRAM isn't 
feasible because the microprocessor would be tied up refreshing DRAM 
memory all of the time and would not have any time left over to do any useful 
work. 

244 



Chapter 13: RAM Memory: Theory of Operation 

Refresh Logic and RAS-only Refresh 

DRAM refresh is actually handled by logic separate from the microprocessor 
known as the refresh logic. In ISA machines, the refresh logic consists mainly 
of a refresh row counter and timer #1, the refresh timer. Refer to figure 13-6. 
When the system is first powered up, the system's RESET signal is asserted 
until the power has come up and stabilized. The asserted level on reset causes 
the refresh row counter to be preset to a count of zero (row zero). Timer #1, 
the refresh timer, is designed to assert REFRESH TRIGGER once every 15 mi
croseconds. 

When the power has stabilized and RESET becomes deasserted, the system 
begins to run, meaning the microprocessor begins to fetch and execute in
structions. Fifteen microseconds after the system begins to run, the refresh 
timer asserts the REFRESH TRIGGER signal. 

In order to refresh a row of DRAM memory, the refresh logic must send a row 
address to the DRAM and set the DRAM's read/write control line to the read 
state. To do this, the refresh logic must run a special memory read bus cycle. 
In other words, the refresh logic must become bus master before running the 
refresh bus cycle. The numbered list that follows figure 13 - 6 describes the se
quence of events involved in DRAM refresh. 

245 



ISA System Architecture 


Refresh RefreshTimer 66.4KHz 
Logic 

Trigger 

RowRESET 
Counter 

HOLD 

HLDA 

MRDC# 

REFRESH# 

Micro
processor 

To system board 

RAM and ISA 

RAM boards 


Figure 13-6. The Refresh Logic 

1. 	 The refresh timer sends a REFRESH TRIGGER to the refresh logic on the 
system board. 

2. 	 The refresh logic sends a Hold Request (HOLD) to the microprocessor to 
request the buses and awaits HLDA from the CPU. 

3. 	 The refresh logic asserts the ISA bus cycle definition line MRDC# to indi
cate that a memory read bus cycle is in progress. 

246 



Chapter 13: RAM Memory: Theory of Operation 

4. 	 The refresh row counter outputs its current row number (initially, row 
zero) onto the lower portion of the address bus. At the same time, the row 
counter is internally incremented by one (to row one). 

5. 	 The ISA REFRESH# signal informs every memory card in the system that 
a refresh bus cycle is in progress. Consequently, on every memory card, 
the row address from the refresh row counter is applied to the"A" set of 
inputs of the card's DRAM Address MUX. The row address, currently 
row zero, is gated through every memory card's MUX onto its memory 
address bus. The card's DRAM addressing logic then asserts RAS# to 
latch the row address into every DRAM chip in the system simultane
ously. 

6. 	 Since the ISA bus is indicating a memory read bus cycle is in progress, the 
read/write pin on every DRAM chip will be set to the read state. 

7. 	 This set of actions causes the exact same row line (initially, row zero) 
within every DRAM chip in the system to be activated at the same time, 
thereby refreshing every location along that row in every DRAM chip. 

8. 	 After completion of the refresh bus cycle, the refresh logic returns bus 
ownership to the system board microprocessor by deasserting HOLD. 

9. 	 The microprocessor reconnects itself to the buses and deasserts HLDA to 
indicate that it is bus master again. Normal operation (program execution) 
then resumes and continues until another fifteen microseconds has 
elapsed. At that time, the refresh timer asserts REFRESH TRIGGER again 
to request another refresh bus cycle. 

10. 	When the refresh logic has once again been granted bus mastership, it 
again outputs the contents of the refresh row counter (incremented by one 
during the previous refresh bus cycle) onto the portion of the address bus 
that supplies the row address to the DRAMs. 

In this way, the next sequential row in every DRAM chip in the system is re
freshed. This action continues once every fifteen microseconds as long as the 
system is powered on. When the last row within the DRAM chips has been re
freshed, the row counter rolls over to all zeros again and the process starts 
over at the first row in the DRAM chips. 

The actions described earlier in step 5 are for what's called RAS-only refresh. 
There are three other ways that the DRAM addressing logic can handle a re
fresh bus cycle: CAS-before-RAS refresh, hidden refresh and self refresh. 

247 



ISA System Architecture 

CAS-before-RAS Refresh 

A DRAM chip capable of doing CAS-before-RAS refresh (CBR refresh) has an 
internal refresh row counter, so it does not need to receive a row address from 
the refresh logic. To refresh a CBR refreshed DRAM, the DRAM controller as
serts CAS# first, then RAS#, without regard to the row or column address on 
the memory address bus. The DRAM chip responds by refreshing the row 
pointed to by its internal refresh row counter and then incrementing that row 
counter. 

Hidden Refresh 

Hidden refresh is just a variation of CBR refresh. Normally, an access to a 
DRAM chip is terminated by deasserting both RAS# and CAS#. When CAS# is 
deasserted at the end of a read cycle, the DRAM chip stops driving the data 
out on its data pin. However, if CAS# is left asserted when RAS# is deasserted 
at the end of the access, then a DRAM chip capable of hidden refresh will get 
ready to refresh the row pointed to by its refresh row counter. The DRAM 
chip will actually do the refresh if RAS# becomes asserted again while CAS# is 
still asserted. Simultaneously, the DRAM chip will continue to drive the data 
from the previously accessed bit cell onto the data bus, as long as CAS# re
mains asserted. The DRAM is thus providing data and doing refresh simulta
neously, thus the refresh appears to be hidden. 

Self-Refresh 

Each of the preceding types of refresh requires intervention by the system 
board to tell the DRAM chip to do the refresh. Self-refreshing DRAMs are dif
ferent. They have the ability to do refreshes based on their internal refresh 
row counters and based on their own internal refresh timer, without waiting 
for a signal from the system board. Self-refreshing DRAMs are used in lieu of 
static RAM for low power, battery-backed storage. 

To understand self-refreshing DRAM, it may help to understand what the al
ternatives are for battery-backed storage. Often, SRAM or a variation of ROM 
called non-volatile RAM (NVRAM) are used to store critical data immediately 
during a power failure. SRAM is well suited to this task due to its infinitesi
mally small current drain when it is not being accessed. The contents of the 
SRAM can be maintained by a small battery. NVRAM requires no power at all 
to maintain its contents since it is actually SRAM and EEPROM put together 
(EEPROM is described in the chapter entitled "ROM Memory"). Neither the 

248 



Chapter 13: RAM Memory: Theory of Operation 


SRAM nor the NVRAM need to be refreshed, so no logic has to be running on 
the system board to maintain the SRAM or NVRAM contents while the main 
power supply is off. 

Standard DRAM requires refresh logic to be running, and it is thus not as well 
suited for battery-backed applications as SRAM due to this complexity and 
due to the power drain caused by the standard refresh logic. Self-refreshing 
DRAM eliminates this complexity and is thus competitive with SRAM for bat
tery-backed use. 

Self-refreshing DRAM initiates its refresh operation when it sees CAS# as
serted followed by RAS#, just as with a CBR-refresh DRAM. If CAS# and 
RAS# both remain asserted for a long time (like a dog's life, a long time is 
relative), typically 100 microseconds (forever in computer time), then the 
DRAM's internal timer takes over and begins self-refresh. The self-refreshing 
DRAM continues to refresh itself until it sees RAS# and CAS# deasserted. 

As noted above, RAS-only refresh, CBR-refresh and hidden refresh require a 
REFRESH TRIGGER from the system board. In an ISA system, timer #1 pro
vides that trigger. The refresh interval of timer #1 is programmable, allowing 
a programmer to change the refresh interval to something other than fifteen 
microseconds. This practice is dangerous, however, because alteration of the 
refresh interval raises the possibility that some DRAM memory locations will 
have entirely discharged by the time the refresh logic gets around to refresh
ing their respective rows again. In other words, data in DRAM memory may 
be lost. 

It should be noted that a refresh bus cycle may also be triggered by an ISA bus 
master. In the event that an ISA bus master has control of the buses for a pe
riod longer than 15 microseconds, it can trigger a refresh cycle by asserting the 
REFRESH# signal. When the refresh controller detects that the REFRESH# 
signal is asserted, it will run a refresh cycle. During the refresh cycle the ISA 
bus master will not use the buses. See the chapter entitled urSA Bus Masters" 
for more details. 

249 



ISA System Architecture 


Destructive Read: Pre-Charge Delay and Cycle Time 

When a DRAM location is read, the DRAM must have some way of determin
ing if the location contains a charge (if it contains a one or a zero). The only 
way it can ascertain the presence of a charge is to discharge the bit cell. In 
other words, DRAM chips use a destructive read process. It must discharge 
the capacitor used to store a bit in order to determine if there was in fact a bit 
stored in that location. A storage device that can only be read one time would 
be useless. 

Every DRAM chip contains logic that recharges a DRAM location back to a 
good level after the destructive read takes place. The location is only re
charged if it is determined that it originally held a charge. It takes an appre
ciable amount of time to recharge a DRAM location back to a good level 
again. This period of time is known as the pre-charge delay. 

Refer to figure 13-7. This timing diagram illustrates the pre-charge delay im
mediately following the access time. If a bus master attempts to read data 
from any memory location during the pre-charge period, the data received 
may very well be garbage (because the DRAM logic is tied up recharging the 
row last read from). 

To ensure that the data read from the DRAM is good data, the hardware 
should not allow a bus master to access the DRAM again until the pre-charge 
delay has elapsed. The bus master can be held off by keeping its READY# line 
deasserted until both the access time and pre-charge delay has elapsed. When 
READY# is then asserted, the bus master is allowed to complete the first 
transfer and can immediately and safely initiate a subsequent transfer. 

When a DRAM chip manufacturer specifies the access time on a DRAM (for 
example, 60ns, 70ns, 80ns or lOOns access time), it doesn't paint an entirely ac
curate picture. Although the first access to a 60ns DRAM chip can be safely 
accomplished in 60ns, the hardware must delay initiation of a subsequent ac
cess until the DRAM's pre-charge delay has elapsed. Since the pre-charge de
lay is typically equal to the access time for the DRAM, the access time should 
be doubled to ascertain how often the DRAM chip may be safely accessed. As 
an example, a DRAM chip with a rated access time of 60ns could only be ac
cessed safely once every 120ns (60ns access time + 60ns pre-charge delay). The 
overall period of time consisting of the access time and the pre-charge delay is 
known as the cycle time, and this factor should be considered when designing 
a memory system using DRAM chips. 

250 



Chapter 13: RAM Memory: Theory of Operation 


Cycle ~ime 

:III( Accesf Time Precharge Delay 

I RAS/CAS Delay I .... 

AAS# I . 

I 
 L 
CAS# 

I 

Memory 
Address Column Address <RON ~ffi5SBus 

I 
SELECT I 

I I I 

Data __ L L_ ~ _ ______ L 

Bus ~ 


Figure 13-7. Pre-Charge Delay and Cycle Time 

DRAM Bank 

Refer to figure 13-8, the DRAM bank. The typical DRAM chip used in per
sonal computers stores one bit of information per location. Since the current 
bus master expects to be able to read or write at least one byte of information 
at a time, the ability to store and retrieve one bit per location appears rela
tively useless. 

To create a usable design, the engineer combines a series of eight DRAM chips 
so that, taken collectively, they can store one byte of information per location. 
This is referred to as a bank of DRAM. The designer connects the memory ad
dress bus in parallel to all eight DRAM chips. The RAS# and CAS# lines are 
also connected to all eight DRAM chips, as well as the read/write control line. 

251 



ISA System Architecture 


This give the bus master the ability to address the exact same location in all 
eight DRAM chips simultaneously. 

The designer connects each individual data bus line to the data input/output 
pin on a separate DRAM chip within the bank of DRAM. 

When the bus master performs a memory write operation and places the ad
dress on the address bus, the DRAM addressing logic performs the necessary 
breakdown of the address into the row and column addresses and selects the 
exact same row and column within each of the eight DRAM chips within the 
bank. The read/write pin on the DRAM chips is set to the write state and each 
of the eight data bits that make up the byte to be written into the memory lo
cation is presented to its respective DRAM chip within the bank. The eight 
data bits are then written into exactly the same location within the eight indi
vidual DRAM chips. 

When the bus master performs a memory read operation to read a byte of in
formation from DRAM, it simultaneously addresses precisely the same row 
and column location within each of the eight DRAM chips. The bit stored in 
that location within each of the eight DRAM chips is driven out onto the re
spective data bus line by the individual DRAM chip. From the bus master's 
perspective, it's communicating with DRAM memory that can store one byte 
of information per location. 

252 



Chapter 13: RAM Memory: Theory of Operation 


07 

DRAM 

Memory 


Bank 


Figure 13-8. The DRAM Bank 

DRAM Bank Width 

The original IBM PC and PC/XT were based on the Intel 8088 microprocessor, 
which had an 8-bit data bus. A bank of DRAM in those machines consisted of 
eight DRAM chips plus a parity bit (parity is discussed later in this chapter). 

Refer to figure 13-9. The IBM PC/AT (or any PC based on the 80286 or 
80386SX microprocessors) has a 16-bit data bus, so a bank of DRAM consists 
of 16 DRAM chips, divided into two halves. All even-addressed locations are 
located in the lower half (connected to the lower data path, D[7:0]), while all 
odd-addressed locations are in the upper half (connected to the upper data 
path, 0[15:8]). Each half consists of eight data DRAMs and a parity DRAM. 

253 



ISA System Architecture 


Upper half of DRAM bank 

RAS LOWER# 

Lower half of DRAM bank 

Figure 13-9. 16-Bit DRAM Bank 

Refer to figure 13-10. Systems based on the 80386DX or 80486 microprocessor 
have a 32-bit data bus, so each bank of DRAM consists of thirty-two data 
DRAM chips, plus four parity DRAMs. 

In other words, a bank of DRAM is sized to match the width of the data bus 
so the microprocessor can transfer the maximum amount of information per 
bus cycle. 

254 



3 

Chapter 13: RAM Memory: Theory of Operation 


Parity 2 


Figure 13-10. 32-Bit DRAM Bank 

255 



ISA System Architecture 


DRAM Error Detection and Correction 

The tiny capacitors used to store data in DRAM are susceptible to soft errors. 
Soft errors are data bits that were initially stored correctly but which have 
subsequently lost their charge due to electrical and cosmic interference or due 
to improper refresh. It's possible for the bus master to read incorrect data or 
instructions from DRAM that has suffered a soft error. If this happens, the bus 
master may execute the wrong instruction or make a bad decision on data 
without realizing that an error has occurred. 

Crosstalk and noise on the data bus can cause data that was stored and re
trieved correctly by the DRAM chip to become garbled between the DRAM 
chip and the bus master. This isn't necessarily the fault of the DRAM chip. As 
it is with soft errors, the bus master may execute the wrong instruction or 
make a bad decision on data. 

Parity memory and error-checking-and-correcting memory are two ap
proaches to solving these problems. 

DRAM Parity 

The DRAM memory subsystem used in most ISA products incorporates par
ity generation and checking logic. Consider the DRAM bank pictured in figure 
13-11. This bank of DRAM consists of eight DRAM chips and an additional, 
ninth DRAM chip referred to as the parity DRAM. All of the address lines, as 
well as the RAS# and CAS# lines and the read/write control line are con
nected in parallel to all nine DRAM chips. The eight data lines are connected 
to the eight data DRAM chips. The data bus is not only connected to the data 
DRAM chips, but also to the parity generator/checker chip. 

When the bus master writes a byte of information to the DRAM chips, it is 
presented to the DRAM chips and to the parity generator/checker. During a 
memory write operation, parity is generated and written into the parity 
DRAM chip. Parity is not checked for correctness during memory write op
erations, only during memory reads (as described further on). 

When the data byte is presented to the parity generator/ checker chip during a 
write operation, it checks the number of one bits in the data byte. If the parity 
generator is using "even parity" and the number of one bits in the data byte is 
even, then the parity generator places a zero on the P ARlTY line going to the 
parity DRAM chip. The parity bit and the data byte are simultaneously writ

256 



Chapter 13: RAM Memory: Theory of Operation 

ten into the same address within the parity DRAM and the data DRAM. That 
means that a total of nine bits of information is written into the addressed 
memory location during a write operation. 

If the parity generator is using "even parity" and it had not detected an even 
number of one bits in the data byte being written to the data DRAM, it would 
place a one on the PARITY line to the parity DRAM. The total number of one 
bits in the 9-bit pattern written into the addressed memory location is there
fore always an even number of one bits. In other words, the parity generator's 
job is to force the 9-bit pattern written into memory to always consist of an 
even number of one bits. 

When the data is later read back from memory, the nine bits of information 
are driven out onto the data bus and the parity line by the data and parity 
DRAMs. The data byte is sent back to the bus master over the data bus and is 
also presented to the parity generator / checker, now acting as a parity checker, 
rather than a parity generator. In addition to the 8-bit data byte being pre
sented to the parity checker, the parity bit is also being presented to it. The 
parity checker examines the 9-bit pattern and checks it to see if it contains an 
even number of one bits (which it always should if even parity is being used). 

If the 9-bit pattern doesn't contain an even number of one bits, an error has 
occurred and the parity check logic generates a parity error. The parity error 
causes a non-maskable interrupt (NMI) request to the microprocessor, and the 
microprocessor is forced to jump to the NMI interrupt service routine. In this 
routine, the programmer performs an I/O read from system control B at I/O 
address 0061h to ascertain the cause of the NMI. If bit 7 is set to a 1, a parity 
check was encountered while reading from system board DRAM memory. 
The NMI routine then reports a DRAM parity error on the screen and halts 
the system. The parity error is not recoverable because the parity genera
tor/checker can't correct the parity error. It only knows that one or more bits 
in a byte are bad, but it can't determine which bit is bad. Nevertheless, it is 
better for the system to halt before further (possibly worse) damage is done. 

The preceding discussion assumes that the parity generator/checker is using 
even parity. If, instead, the parity generator / checker is using odd parity, then 
it will force the 9-bit pattern written into memory to always consist of an odd 
number of one bits. Likewise, on a read bus cycle, the parity checker examines 
the 9-bit pattern and checks it to see if it contains an odd number of one bits. 

257 



ISA System Architecture 


__"+-+-~f-+-+-~f-+--f Parity Bit 

Parity 

Generator 

Checker 


DRAM 

Memory 


Bank 


Figure 13-11. The System Board DRAM Parity Logic 

Since parity memory systems have 9 bits for every 8-bit byte of data, they re
quire one-eighth or about 13% more memory (and cost) than non-parity mem
ory systems. Since the amount of DRAM in modern PC's is much greater than 
it was in the original PC (about 100 to 2,000 times more), system designers 
must consider the cost of parity versus its error catching benefit. Modern 
DRAMs protect the capacitors in a semiconductor "well" which deflects the 
radiation that caused soft errors in older DRAMs. Also, improved board 
manufacturing and component handling techniques have reduced the manu
facturing-induced failure rates on DRAMs. As a result, many systems do not 
use parity memory. But then, consider that PCs are depended on more heavily 
today than they were over a decade ago and there is a lot more memory being 
used. 

258 



Chapter 13: RAM Memory: Theory of Operation 


Error-Checking-and-Correcting Memory 

On very high-end pes such as file servers for reservation systems ("mission 
critical" systems), error detection and correction is vital. Users of these sys
tems do not want the system to crash when a soft error occurs. These systems 
may have hundreds of megabytes of memory in them, so the chances for a soft 
error are greater than on a typical Pc. 

Since the parity generator/checker can only detect errors and cannot correct 
them, the mission critical systems use error-checking-and-correcting (Eee) 
memory. Eee memory may be wider than 9 bits. When the bus master writes 
data to Eee memory, the Eee memory controller encodes the bytes before 
storing them. There are more bits in the Eee memory than there are in the 
original data byte, so some of the possible bit patterns that could exist in Eee 
memory do not correspond to data bytes. Those bit patterns are invalid. If the 
Eee memory controller subsequently reads one of these invalid patterns from 
the Eee memory, it knows that an error has occurred because it did not write 
that pattern into memory. The Eee memory controller can then usually cor
rect the error by finding the valid bit pattern that it "closest" to the invalid bit 
pattern. 

Page-Mode DRAM and Its Variations 

Some ISA systems incorporate page mode DRAM in one of its various forms. 
The following sections explain the advantages of page-mode, enhanced page
mode, burst-mode (nibble-mode), static column page-mode memory and syn
chronous DRAM. 

Page Mode DRAM 

Page mode DRAM is just a variation on standard DRAM memory. In most re
spects, its operation is identical. As with standard DRAM, sequential page 
mode DRAM locations are laid out or distributed sequentially along a row. In 
other words, location 0 in a page mode DRAM chip is located in row 0, col
umn 0; location 1 is located in row 0, column 1; location 2 at row 0, column 2, 
etc. 

If the currently executing program is performing sequential memory accesses, 
sequential locations within a row are accessed. Since the majority of program 
execution is sequential in nature (in-line code fetches), program execution 
very often proceeds along a row of memory. At the end of a row in a page 

259 



ISA System Architecture 


mode DRAM chip, the next sequential location is in column 0 at the beginning 
of the next row. Subsequent locations are located along that row. 

As an example, a 1Mbit (1 megabit) page mode DRAM chip consists of a 
l,024-by-1,024 row/column matrix. This means that each row contains 1,024 
locations. The microprocessor could perform 1,024 memory accesses within 
the row before having to cross over into the next row. Page mode DRAM is 
called by that name because the designer considered one row of RAM mem
ory to be a page of DRAM memory. 

In a standard DRAM chip, a memory location is addressed in the following 
fashion: 

1. 	 The row address is placed on the memory address bus. 
2. 	 The RAS# line is asserted. 
3. 	 RAS/CAS delay to ensure proper operation. 
4. 	 The column address is placed on the memory address bus. 
5. 	 The CAS# line is asserted. 

At that point, the DRAM chip has the row and the column address and can 
therefore identify the addressed memory location. The data transfer can be 
performed. 

Refer to figure 13-12. To take full advantage of the operational characteristics 
of page mode DRAM chips, some external support logic is necessary. This 
consists of a row latch and a row comparator. 

The first access to a page mode DRAM is identical to that for a standard 
DRAM. The row address is placed on the memory address bus and RAS# is 
asserted. When RAS# is asserted in a page mode DRAM system, two things 
occur: 

• 	 The DRAM chips latch the row address. 
• 	 The row address is latched into the row latch that is external to the DRAM 

chips. 

The output of the row latch is applied to one side of the row comparator. Af
ter the RAS/CAS delay has elapsed, the DRAM addressing logic places the 
column address on the memory address bus and asserts CAS#. This causes 
the column address to be latched by the DRAM. Up to this point, the page 
mode DRAM addressing scheme is identical to that for standard DRAM. 

260 



Chapter 13: RAM Memory: Theory of Operation 

One other ingredient that is necessary for the page mode DRAM architecture 
to work efficiently is the address pipelining capability of the 80286, 80386 and 
Pentium microprocessors. These microprocessors have the ability to place the 
address for the upcoming bus cycle on the address bus during the current bus 
cycle. 

The row comparator compares the row address currently held by the row 
latch to the portion of the address bus that contains the row address for the 
next upcoming DRAM access. If equal, it means that the upcoming DRAM ac
cess is going to be within the same row (or page) within the page mode 
DRAM chips. This is called a page hit. When the row comparator detects that 
they are equal, it informs the DRAM addressing logic. The DRAM addressing 
logic responds by keeping RAS# asserted at the end of the current bus cycle. 

The continued assertion of RAS# tells the page mode DRAM chips to remem
ber the previously latched row address because the upcoming access to going 
to be within the same row. Since the page mode DRAM chip already has the 
row address, the new column address can be immediately gated through the 
DRAM addressing MUX onto the memory address bus and CAS# can be as
serted. This commands the DRAM chips to latch the new column address. 

When sequential accesses fall within the same row of page mode DRAM 
memory, it isn't necessary to wait for the RAS/CAS delay to elapse before 
giving the DRAM chip the next column address. Since the RAS/CAS delay is 
approximately 50% of the overall access time for the DRAM chips, the access 
time can effectively be cut in half by eliminating this delay. 

261 



ISA System Architecture 


-------------------, 

Row 
Latch 

HIT 

DRAM 

Addressing 


Logic 


DRAM 

Address 


MUX 

DRAM 
Memory 

Bank 

Portion of I 
DRAM Controller I 

Figure 13-12. Page Mode DRAM Support Logic 

262 



Chapter 13: RAM Memory: Theory of Operation 


Refer to figure 13-13. As an example, page mode DRAM chips rated at lOOns 
per access would require lOOns for the first access, but subsequent sequential 
accesses within the same row could be performed in approximately SOns, sub
stantially improving the transfer rate. As long as subsequent, back-to-back 
memory reads are within the same row, the RAS# line stays asserted through
out multiple accesses, while new column addresses appear on the memory 
address bus and CAS# is asserted once for each new column address. 

When the row comparator detects that the upcoming bus cycle will access a 
row other than the one internally latched within the DRAM chips, it must in
struct the DRAM addressing logic that a miss has occurred and the page 
mode DRAM chips must therefore forget the currently latched row address. 
This is accomplished by deasserting RAS#. This is called a page miss. 

The next access is exactly the same as a standard DRAM access. The new row 
address must be sent to the DRAMs and latched, followed by the RAS/CAS 
delay and the latching of the column address. If, however, subsequent ac
cesses past that point are within the same row, then the memory logic can cut 
the access time in half by doing away with the RAS/CAS delay again. 

Page mode DRAM takes advantage of one very important characteristic of 
any microprocessor. What is the microprocessor always doing on an ongoing 
basis? The answer is fetching instructions. Since the majority of program exe
cution is sequential in nature (in-line code fetches), program execution very 
often proceeds along a row of memory. A series of memory reads from loca
tions located within the same row can take place quickly because the DRAM 
access time is cut approximately in half by keeping RAS# asserted thus elimi
nating the RAS/CAS delay. 

Anything that can be done to increase the rate at which instructions are sent to 
the microprocessor has a substantial impact on the overall performance of a 
Pc. In addition, any program that tends to access large blocks of data from 
page mode DRAM memory sequentially will take advantage of this architec
ture as well. 

263 



ISA System Architecture 


I I 

RAS# t~--:-------.-------.-------!! 
CAS# r 

1st access 


(same row) 


La~~~d---1 t 
column latched~ 
new column latched--------' 

new column latched------------' 

new column latched------------------' 

RAS# deasserted when new row detected ------------' 

Figure 13-13. Page Mode DRAM RAS/CAS Timing 

Enhanced Page Mode DRAM 

Enhanced page mode DRAM provides faster access time than standard page 
mode DRAM by beginning the column address decode as soon as a new col
umn address appears on the memory address bus, even before CAS# is as
serted. The column address latch is a transparent latch, so that its input (the 
column address) is immediately available to its output (the column address 
decoder) while CAS# is deasserted. Since the column address decoder starts 
its decode early, the DRAM's access time is improved. As with standard page 
mode DRAM, when CAS# is subsequently asserted, the column address latch 
latches the column address. 

264 



Chapter 13: RAM Memory: Theory of Operation 


Burst and Nibble Mode DRAM 

Burst mode and nibble mode DRAMs are designed to provide optimum per
formance when the cache is reading or writing lines of information from main 
RAM. The next chapter describes caches and defines cache lines in detail, but 
briefly, a cache line is the minimum information that the cache can store. 
Cache lines are typically many bytes in length, requiring that the cache con
troller perform multiple accesses to main DRAM in order to read an entire 
cache line. Each of those cache accesses are to DRAM locations that are adja
cent to one another. In other words, the DRAM locations are contiguous. 

Normally, an x86 microprocessor bus cycle consists of one address time (Ts or 
Tl) followed by one or more data times or wait states (Tc or T2). The maxi
mum amount of information that can be transferred during the bus cycle is 
limited to the width of the microprocessor's data bus. For example, if the 
cache controller needed 16 bytes of information (so the cache line size is 16 
bytes) and if the microprocessor's data bus were four bytes wide, then the mi
croprocessor would have to run four bus cycles to fill a cache line. Each of 
those bus cycles would have an address time. But since all 16 of the bytes are 
contiguous with one another, some time could be saved by not broadcasting 
the addresses of all of the bytes. In a burst bus cycle, as used by the 80486 mi
croprocessor, the starting address of the cache line is broadcast during the 
address time (Tl) and 16 bytes come back, a doubleword at a time, in the fol
lowing data times, without any further Tl times. (The memory subsystem still 
has the ability to insert wait states in the transaction.) The memory subsystem 
must have its own address counter internally so that it can calculate the ad
dress of the second and subsequent doublewords that the cache is requesting. 
The Pentium processor uses a burst bus cycle as well, but its cache line size is 
larger than the 80486' s. 

Burst and nibble mode DRAM take advantage of the fact that the cache ac
cesses several contiguous locations in rapid succession. Refer to figure 13-14. 
As with standard DRAM, burst and nibble mode DRAM accept a row address 
and a starting column address from the DRAM controller. Burst and nibble 
mode DRAM have internal column counters, so they do not need to see new 
column addresses during the burst. This eliminates the setup and hold time 
for the second and subsequent column addresses and thus improves the 
DRAM access time when compared to standard page mode DRAM. CAS# is 
toggled to cause the DRAM to increment its internal column counter and to 
access that column. 

265 



ISA System Architecture 


The second and subsequent column addresses that the DRAM generates in
ternally must match the column portion of the address that the cache control
ler is producing. The burst mode DRAM must be designed to work with the 
cache controller or the burst mode DRAM must be programmed for a column 
address sequence that matches the sequence used by the cache controller. The 
length of the burst is cache-dependent and the burst mode DRAM must like
wise be designed or programmed to generate as many column addresses as 
the cache controller does. 

1 1 

RAS# 

If--~--:---'''''''''------! 
CAS# r 

Column __ __I _ _ _I _ _ __I __ _ 
Address 1.1. .1. .1. .1 

1st access 1 2nd access 1 3rd access 14th access 1 
I 

(same row) (same row) (same row) 

La~~~d--1 j~ 
start column latched 

next column accessed 

next column accessed _________---1 

next column accessed -----------------' 

RAS# deasserted at end of burst ---------.,....------' 

Figure 13-14. Burst Mode Access Timing 

Notice that burst mode and nibble mode DRAM lack the ability to do random 
accesses along the current row. Standard page mode DRAM can provide in
formation from any column in the currently selected row, but burst and nibble 

266 



Chapter 13: RAM Memory: Theory of Operation 

mode DRAM can only provide information from the contiguous columns that 
were selected with the starting column number. 

The access time improvement in burst and nibble mode DRAM comes from 
saving the setup and hold time on the second and subsequent column ad
dresses, at the expense of no longer being able to do random page mode ac
cesses along the currently selected row. The next section describes static 
column page mode DRAM, which retains the ability to do random accesses 
along the same row and has access times similar to burst mode DRAM. 

Static Column RAM (SCRAM) 

Static column RAM, or SCRAM, probably has one of the most misleading 
names in the industry. Many people believe that static column RAM is a form 
of static RAM. It is not. Static RAM is discussed later in this chapter. Static 
column RAM is another form of DRAM memory. It is extremely similar to 
page mode DRAM, so much so that they are frequently mixed up in trade ar
ticles. Just as with page mode DRAM, SCRAM is structured with sequential 
memory locations distributed along a row. SCRAM also requires the same ex
ternal support logic as page mode RAM. That is, it requires a row latch and a 
row comparator and takes advantage of address pipelining. 

The only difference between the two technologies lies in how SCRAM recog
nizes that a new column address has been presented to it. Whereas page mode 
DRAM requires that CAS# be asserted each time a new column address is 
presented to it, SCRAM is slightly more intelligent. 

Refer to figure 13-15. When the SCRAM chip detects RAS# and CAS# remain
ing asserted from one access to another, it recognizes that it will not be receiv
ing a new row address, only a, column address. It then observes the memory 
address bus. When it sees the value on the address lines begin to change, it in
terprets this as a new column address appearing and waits a predetermined 
amount of time for the column address to stabilize. It then generates its own 
CAS internally, latching the new column address. The name static column 
RAM stems from the fact that the column address strobe line, CAS#, stays 
static asserted for multiple accesses within the same row. 

It is possible to design a memory subsystem that accommodates either 
SCRAM or page mode DRAM chips. This is possible because, although the 
SCRAM chip doesn't need to have CAS# reasserted each time a new column 
address is presented to it, it still operates properly if CAS# is reasserted. In 

267 



ISA System Architecture 


other words, if a memory subsystem is designed for page mode DRAM, it 
would also work with SCRAM. 

I I 

RAS# l~_.,-.....,.....--------.---------!I

I I 

CAS# lL..-_----I------&-------.lr 

1st access 

L;g~d~ t 
column latched ~ 
new column latched -----..... 

new column latched ----------...... 

new column latched ------------------1 
RAS# deasserted when new row detected -------------' 

Figure 13-15. SCRAM Access Timing 

Synchronous DRAM 

Synchronous DRAM isn't a type of DRAM by itself. Instead, it is a way that 
the DRAM chip interfaces its internal storage array to its pins. The preceding 
sections described asynchronous DRAM interfaces which do not require a 
clock. Synchronous interfaces are based on a clock so that the memory ad
dress and control signals (RAS# and CAS#) are only valid at appropriate 
edges of the clock. 

Synchronous DRAM interfaces can simplify the design of the interface be
tween the DRAM chips and the microprocessor because the microprocessor is 

268 



Chapter 13: RAM Memory: Theory of Operation 


a synchronous (clocked) device. To achieve optimum performance with the 
microprocessor, the DRAM must be synchronized to the microprocessor, and 
thus to the microprocessor's clock. For asynchronous DRAM, the system de
signer must provide logic external to the DRAM to synchronize it to the mi
croprocessor. Synchronous DRAM can be run from the same clock that runs 
the microprocessor, thus reducing the amount and complexity of the external 
logic. 

Synchronous DRAM interfaces are often used on burst mode DRAM. 

Interleaved Memory Architecture 

Interleaved memory architecture takes advantage of the sequential nature of 
program execution. The problem addressed by the interleaved memory archi
tecture is the period of time the microprocessor is forced to wait when per
forming back-to-back accesses to the same DRAM chip. This wait is necessary 
because the DRAM chip is charging back up again after a destructive read. 
This is referred to as the pre-charge delay. 

When an interleaved memory architecture is used, what would ordinarily be 
one bank of DRAM memory is split up into two banks. As an example, refer 
to figure 13-16. In an S03S6DX- or S04S6-based system, the microprocessor is 
capable of fetching a doubleword (four bytes) per bus cycle. The memory ad
dress decode logic is designed so that the doubleword consisting of the first 
four memory locations, locations OOOOOOOOh through 00000003h, is physically 
located in DRAM bank A. The second doubleword, consisting of locations 
00000004h through 00000007h, is physically located in DRAM bank B. The 
next doubleword is physically located in DRAM bank A and consists of loca
tions OOOOOOOSh through OOOOOOOBh, while the following doubleword is physi
cally located in DRAM bank B and consists of locations OOOOOOOCh through 
OOOOOOOFh, and so on. 

Assume that the S03S6DX microprocessor has just fetched an instruction from 
the doubleword starting at location OOOOOOOOh in DRAM bank A. That means 
that the microprocessor will more than likely fetch the next instruction from 
the doubleword starting at memory address 00000004h in DRAM bank B. 
While the microprocessor is performing the second instruction prefetch from 
the doubleword in bank B, the DRAMs that make up bank A are going 
through pre-charge delay and charging back up again. 

269 



ISA System Architecture 


When the microprocessor completes the fetch from the doubleword in bank B, 
the next instruction fetch is more than likely going to be from the next dou
bleword in bank A starting at location OOOOOOOSh. While the microprocessor is 
fetching the third doubleword from bank A, the DRAMs that make up bank B 
will be charging back up again. 

Bank B Bank A 

04h OOh
1-+--+-+--1 1-+--+-1--1 

OCh OSh
1-+--+-+--1 

14h 10h
1-+--+-+--1 1-+--+-1--1 

lCh ISh 

Ready to CPUMemory 
- A2 r-- Ready 

LogicLatch 

isame Bank 

A2 A2 
Comparator 

Figure 13-16. Interleaved Memory Architecture 

The microprocessor is able to perform back-to-back read operations (in this 
case, instruction fetches) without waiting for the pre-charge delay. The only 
times that the microprocessor will have to wait for the pre-charge delay to 
elapse will be when the next memory access is within the same bank as the 

270 



Chapter 13: RAM Memory: Theory of Operation 

previous access. This occurs, for instance, when a jump instruction instructs 
the microprocessor to fetch its next instruction from a location residing in the 
same bank that the previous instruction was read from. 

It also occurs when the currently executing instruction instructs the micro
processor to access a memory location within the same bank as the previous 
access. 

Refer to figure 13-16. Support logic within the interleaved memory subsystem 
keeps track of which bank was accessed last. Using address pipelining, the 
subsystem can detect that the upcoming access is from the same bank or the 
other bank. If from the other bank, then the memory logic doesn't have to al
low for the pre-charge delay and can let the microprocessor access it immedi
ately. Address bit A2 indicates which bank is to be accessed in the upcoming 
bus cycle. The support logic remembers which DRAM bank is currently being 
accessed via the A2 Latch. The A2 Comparator compares this to the state of 
A2 for the upcoming access (using address pipelining). The timeout value for 
the Memory Ready Logic is adjusted accordingly. 

On the other hand, if the upcoming access is within the same bank, the mem
ory logic keeps the READY# line deasserted until the pre-charge delay has 
elapsed. The memory logic then asserts READY#, letting the current bus cycle 
end and letting the microprocessor safely begin the next bus cycle within the 
same bank. 

If page mode DRAM is used in the interleaved banks, then the pre-charge de
lay may be avoided even if the current bus master accesses the same bank 
consecutively. Of course, accesses to the same bank would have to be to the 
same row in order to avoid the pre-charge delay. By combining page mode 
DRAM and interleaving, the system designer can eliminate most of the pre
charge delays. 

Static RAM (SRAM) 

Unlike DRAM, static RAM, or SRAM, memory doesn't require refreshing at 
regular intervals in order to maintain the information stored in memory. This 
is because, unlike a DRAM bit cell which uses a capacitor and a transistor to 
store information, SRAM uses single-bit latches known as D flip-flops. A typi
cal SRAM bit cell consists of four or six transistors. A four transistor design 
costs less and a six transistor design consumes less power. 

271 



ISA System Architecture 


Once a bit of information has been written into one of these latches (or flip
flops), the SRAM chip continues to hold the data as long as power is applied 
to the SRAM chip. The information doesn't degrade (discharge) over a period 
of time as it does with DRAM. SRAM is called static because, once the infor
mation is written into it, it remains static, or steady, without being refreshed 
at regular intervals. 

Another important characteristic of SRAM is its relatively short access time. 
This is mainly due to the fact that, rather than providing it the address in two 
steps (as with DRAMs), the SRAM receives the entire address at once. Once 
chip-selected, the SRAM uses the address on its address inputs to identify the 
addressed memory location and the data transfer takes place. 

Although SRAM is typically much faster than DRAM memory, it is cost
prohibitive to populate an entire system with it. SRAM chips typically cost ten 
times more than DRAMs, are physically larger, consume more power and 
generate more heat. All of these factors, taken collectively, substantially add to 
the overall cost of a system. In the faster 80386, 80486 and Pentium processor
based systems, limited amounts of high-speed SRAM are used as cache mem
ory to improve the microprocessor's overall transfer rate when addressing 
memory. This subject is covered in the chapter entitled "Cache Memory Con
cepts." 

As with DRAM, SRAM can be designed to operate either asynchronously or 
synchronously. Likewise, SRAM can be designed to use a burst mode, which 
simplifies the interface of SRAM used in caches, since caches usually operate 
synchronously, in burst mode. 

272 



Chapter 14: Cache Memory Concepts 


Chapter 14 
The Previous Chapter 

Earlier chapters described the 80386DX microprocessor and DRAM memory. 
The 80386DX microprocessor is capable of performing data transfers at sub
stantially higher clock rates than the 80286 microprocessor. Combine the in
creased performance of the 80386DX microprocessor with the relatively slow 
access time of DRAM memory and a problem presents itself. Whenever the 
microprocessor attempts to access memory, wait states will be inserted into 
the bus cycles to accommodate the DRAM's slow access time. Since the mi
croprocessor accesses memory far more than any other system element (to 
fetch instructions), processor performance would suffer severe degradation. 

This Chapter 

In this chapter, cache memory is discussed. This is the most common method 
used to achieve superior memory performance while holding down the cost of 
implementation. Various memory cache strategies found in 80386-, 80486- and 
Pentium processor-based systems are discussed, along with advantages and 
disadvantages of each. 

The Next Chapter 

The next chapter discusses the types and configurations of ROM memory 
typically found in ISA systems. 

The Problem 

When the IBM PC was introduced, it was based on the Intel 8088 microproc
essor running at 4.77MHz. The 8088 takes four ticks of its 4.77MHz PCLK to 
run a O-wait-state bus cycle, so a O-wait-state bus cycle takes 838ns (4 x 209.5ns 
= 838ns). Virtually any DRAM or ROM on the market at the time could re
spond well within this period of time, so wait states really weren't an issue. 

273 



ISA System Architecture 


As processor speeds have rapidly increased, the speed of economical dynamic 
RAM (DRAM) has increased at a slower pace. Thus, in order to gain the 
maximum performance benefit of the faster and more powerful processors, 
faster and more expensive static RAM devices must be used. Static RAM is 
easily capable of providing zero-wait-state performance; however, for several 
reasons, this solution is seldom considered: 

• 	 SRAM is typically ten times more expensive than DRAM memory. 
• 	 SRAM chips are typically larger than DRAMs, requiring more real estate 

for the same amount of memory. 
• 	 During normal operation, SRAMs consume more power than DRAMs and 

may require a more powerful, and therefore more expensive, power sup
ply. 

• 	 During normal operation, SRAMs generate more heat than DRAMs and 
may therefore require a larger cooling fan. 

To be fair, it's true that SRAM consumes less power than DRAM when it is 
not being accessed. But why put of expensive SRAM in a system and then not 
access it repetitively at high speed? 

The Sol ution 

The solution chosen by most manufacturers of fast 80386-, 80486- and Pentium 
processor-based pes is cache memory. Implementation of a cache memory 
subsystem is an attempt to achieve acceptable system cost and a high percent
age of O-wait-state bus cycles when accessing DRAM memory. 

A cache memory subsystem is implemented by populating main memory with 
relatively slow access, cheap DRAM, while also incorporating a relatively 
small amount of high cost, fast access SRAM into the system. The SRAM 
memory is referred as cache memory and a cache memory controller attempts 
to maintain copies of frequently accessed information read from DRAM 
memory in the cache. 

Refer to figure 14-1. The cache memory controller keeps track of the informa
tion it has copied into the cache memory. When the cache memory controller 
sees the microprocessor initiate a memory read bus cycle, it checks to deter
mine if it has a copy of the requested information in cache memory. If a copy 
is present, it immediately reads the information from the cache, sends it back 
to the system board microprocessor over the microprocessor's data bus, and 
asserts the microprocessor's READY# signal. This is known as a read hit. The 

274 



Chapter 14: Cache Memory Concepts 


access can be completed in 0 wait states because the information is fetched 
from the fast access cache SRAM. 

Microprocessor 

Cache 

Controller 


Main System Memory 

Figure 14-1. The Cache Memory Concept 

If, on the other hand, the cache memory controller determines that it does not 
have a copy of the requested information in cache, the information must be 
read from DRAM memory. This is known as a read miss and, due to the slow 
access time of the DRAM memory, results in wait states. The requested in
formation is sent from DRAM back to the microprocessor to fulfill the request. 
In addition, the information is also copied into the cache memory by the cache 
memory controller. The cache controller updates an internal directory that 
keeps track of information stored in cache memory. 

275 



ISA System Architecture 


On the surface, it may not be evident how this can speed up the microproces
sor's memory accesses. However, most programs, such as Lotus 1-2-3, contain 
program loops that are executed many times. A program loop is a series of in
structions that must be executed a number of times in succession to produce 
the desired results. 

As an example, Lotus 1-2-3 uses a program loop to recalculate spreadsheet 
cells. Depending on the number of calculations to be made during a recalc, 
this program loop may have to be executed hundreds or even thousands of 
times. 

Assume that the cache memory is empty - it contains no copies of informa
tion from DRAM memory. The first time the program loop is executed, the 
following series of events takes place: 

1. 	 The microprocessor initiates a memory read bus cycle to fetch the first in
struction from memory. 

2. 	 The cache memory controller uses the memory address to determine if a 
copy of the requested information is already in the cache memory. Since 
the cache is initially empty, a copy doesn't exist and a read miss occurs. 

3. 	 The cache memory controller initiates a memory read bus cycle on its own 
buses to fetch the requested information (the instruction) from DRAM 
memory. This will take one or more wait states, depending on the access 
time of the DRAM. 

4. 	 The information from DRAM memory (the instruction) is sent back to the 
microprocessor and the cache memory controller also copies it into the 
cache memory and updates a directory within the controller to reflect the 
presence of the new information. No advantage was realized during this 
memory read because the information had to be read from slow DRAM 
memory. 

5. 	 Upon completion of the first instruction in the program loop, the micro
processor initiates a series of memory read bus cycles to fetch the remain
ing instructions in the program loop. If the cache is sufficiently large, all of 
the instructions in the program loop will be resident in cache memory af
ter the last instruction in the loop has been read from DRAM memory and 
copied into the cache. No advantage was realized during the first execu
tion of this program loop. 

6. 	 The last instruction in the program loop is an instruction to jump to the 
beginning of the loop and start over again. In other words, the microproc
essor starts fetching and executing instructions at the memory address of 
the first instruction in the program loop again. 

276 



Chapter 14: Cache Memory Concepts 

7. 	 When the microprocessor initiates the memory read bus cycle to fetch the 
first instruction again, the cache memory controller checks its cache direc
tory and detects the presence of the requested information in cache mem
ory. The cache memory controller immediately reads the information 
from the fast access SRAM that makes up the cache and sends it back to 
the microprocessor with 0 wait states incurred. 

The microprocessor is thus able to fetch and begin executing the instruction 
faster than it was able to the first time through the loop. This proves true for 
the remaining instructions in the program loop as well. The second and sub
sequent times through the program loop, the microprocessor incurs no wait 
states in fetching the instructions, so the program runs substantially faster. 

Principles of Locality 

The term used to explain the characteristics of programs which run in rela
tively small loops in consecutive memory locations is the "locality of refer
ence." As shown in the previous example, cache subsystems work because 
most programs that run on pes require the same information from consecu
tive memory locations over and over again. The locality of reference principle 
is comprised of two components: temporal locality and spatial locality. 

Temporal Locality 

Since programs run in loops, the same instructions must be fetched from 
memory on a frequent and continuing basis, meaning that programs tend to 
use the most recently used information again. The older the information in 
cache, the less likely it is to be used again. This is known as the principle of 
"temporal" locality. How well a cache subsystem performs is tied directly to 
how often the software requests the same information from memory. If a pro
gram were intentionally designed to never access information more than one 
time, the cache subsystem would provide absolutely no performance increase. 

Spatial Locality 

Programs and the data they request tend to reside in consecutive memory lo
cations. This means that programs are likely to need code or data that are 
close to or adjacent to locations already in use. This characteristic is called the 
principle of spatial locality. 

277 



ISA System Architecture 


Cache Performance 

Performance of cache subsystems depends primarily on the frequency of 
cache hits. Performance is usually stated in terms of a percentage of cache hits 
or hit rate. Hit rate can be expressed as: 

Hit Rate % = 	 _____C==ac=h=e~H~it=s~___ X 100% 
Total Memory Requests 

Since cache hits only occur on subsequent accesses to the same location, per
formance of cache systems then can be linked directly to the way in which 
software runs or how well it satisfies the principle of locality of reference. If 
the program runs in a fairly small area of memory and repeats or loops, a high 
percentage of accesses to memory will be cache hits. If on the other hand, the 
program runs long strings of non-looping code, every access will be a cache 
miss. Fortunately, most programs run in a looping fashion and therefore cache 
hits occur a high percentage of the time (approximately 85 to 95%). 

Several factors contribute to the cache hit rate in addition to the principle of 
locality of reference. These include the cache's architecture, size of the cache 
memory and the cache memory organization, which are discussed later in this 
chapter. 

Overall System Performance 

In addition to providing fast access to the memory subsystem, cache subsys
tems can also provide performance advantages by improving bus utilization. 
Bus utilization is of particular concern when multiple processors and bus mas
ters are used. The percentage of the time that any bus master occupies the sys
tem bus is called its bus utilization. If the total bus utilization of all bus master 
devices add up to over 100%, performance would drop due to exceeding the 
bandwidth of the bus. Well designed cache subsystems reduce the amount of 
time processors spend on the system bus by making access to the bus as short 
as possible (zero wait states). 

An additional benefit related to bus utilization, called bus concurrency, is 
possible when look-through cache architectures are used. Bus concurrency 
means that a processor can gain access to memory from its cache memory, 
while another bus master accesses main memory over the system bus at the 
same time. Look-through cache designs permit concurrency because they de

278 



Chapter 14: Cache Memory Concepts 


couple the processor's local bus from the main system bus. See the section on 
look-through cache designs for additional information. 

Cache Consistency 

In order for cache subsystems to work properly, the contents of cache and 
main memory must be exact duplicates. There are several possible instances in 
which locations stored in cache memory are updated in cache or in main 
memory while the duplicate copy remains unchanged. When either the cache 
memory or main memory is updated, the duplicate copy will contain old in
formation called "stale" data. Cache systems must be designed to eliminate 
potential cache consistency problems. See the section on cache consistency for 
details. 

Components of a Cache Subsystem 

Cache subsystems are comprised of three basic parts as shown in figure 14-2: 

• The cache Memory (High speed Static RAM) 
• The cache management logic 
• The cache memory directory (tag RAM) 

Cache Memory 

The cache memory is comprised of SRAM chips that can provide the proces
sor with data at zero wait states. Cache memory is accessed when a copy of an 
address being accessed in main memory is found in the cache memory direc
tory by the cache management logic. 

Some literature refers to the cache memory as the "data cache RAM" to dis
tinguish it from the cache memory directory or "tag RAM." But beware that 
"data cache RAM" is easily confused with a "data cache" (which would be 
half of a split-cache system, described in the "Cache Architectures" section). 

The size and organization of the memory cache varies according to design and 
is covered in the section entitled "Cache Organization and Size." 

279 



ISA System Architecture 


Microprocessor 


Cache Memory 

Directory 


Main System Memory 

Figure 14-2. Cache Subsystem Components 

280 



Chapter 14: Cache Memory Concepts 

Cache Management Logic 
During a read access to main memory, the cache management logic compares 
the memory address output by the processor with the cache memory direc
tory which contains a record of which locations are stored in cache memory. If 
a match occurs, the cache management logic enables cache memory to output 
information from the addressed location, and the bus cycle is completed in 
zero wait states. If a match does not occur, the requested information is sup
plied by main memory. The information is sent back to the processor from 
main memory and also stored in cache memory so that the latest information 
is now available in cache. 

Cache Memory Directory 
The cache memory directory, also called tag RAM, contains a listing of all the 
memory addresses that have copies stored in cache memory. Each cache loca
tion (sometimes referred to as a set) has a corresponding entry in the cache di
rectory as shown in figure 14-3. The contents of the directory are compared to 
the memory address from the processor to determine if a copy of the re
quested information is contained in cache memory. The contents of the direc
tory are updated each time new information is stored in cache memory. 

Directory Cache Bank 
A A 

Entry Set 0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

499 499 
500 500 
501 501 
502 502 
503 503 
504 504 
505 505 
506 506 
507 507 
508 508 
509 509
510 510 

Entry 511 Set 511 

Figure 14-3. Relationship of Cache Directory to the Cache Memory 

281 



ISA System Architecture 

Intro to Cache Architecture, Coherency, Write 
Policies and Organization 

The next several sections describe various parameters which specify caches. 
These parameters and some of their possible values are listed below. A cache 
may be designed by selecting one parameter from each of the lists. For exam
ple, a cache could be designed as an 8KB, look-through, levell, split, write
back policy, two-way set-associative cache with a 32-byte line size, that main
tains coherency by snooping the system bus. An example of that type of cache 
is the data cache in the Pentium processor. There are three lists for Architec
ture because three independent parameters define the physical layout 
(architecture) of the cache. 

Architecture 
• Look-through 
• Look-aside 

Architecture 
• Levell 
• Level 2 
• Level 3, etc. 

Architecture 
• Combined (unified) 
• Split (dedicated) 

Coherency Protocol (ways of maintaining coherency) 
• Flushing 
• Snooping (bus watching) 
• Software-enforced coherency 

Write Policy 
• Write-through policy 
• Buffered write-through policy 
• Write-back policy 

Organization or Set Associativity 
• fully-associative cache 
• direct-mapped cache 

282 



Chapter 14: Cache Memory Concepts 


• two-way set-associative cache 
• four-way set-associative cache, etc. 

Line Size 
• bytes per line 

Cache Size 
• KB of data SRAM 

Addressing 
• physical 
• virtual 

Although each of these parameters are independent of one another, it is pos
sible to select values that result in impractical or inefficient cache designs. For 
example, a small (1KB), look-through cache statistically degrades (instead of 
improving) overall system performance due to the lookup penalty imposed by 
the high miss rate of the small cache. 

The cache parameters are defined and described in detail in the sections that 
follow. 

Cache Architectures 

Two basic architectures are used in today's systems: 

• Look-through cache designs 
• Look-aside cache designs 

Each type of cache architecture has its advantages and disadvantages. The 
following sections detail both types of architectures and analyzes their bene
fits and liabilities. 

Look-Through Cache 

Performance in look-through cache designs is typically higher overall than for 
look-aside designs. Figure 14-4 illustrates the look-through cache design. As 
its name implies, the look-through cache "looks through" its internal cache to 
determine if a copy of the requested information is in the cache. If found, in
formation is sent back to the processor in zero wait states. Notice that the 

283 



ISA System Architecture 


memory request from the processor is not automatically transferred to the 
system bus. This keeps the system bus free for use by other bus masters. Only 
on cache misses will a request be passed to the system bus. Look-through 
cache designs isolate the processor's local bus from the system bus, thereby 
reducing the use of the system bus and permitting concurrent operations to 
take place. 

Microprocessor 

Cache 

Bus 
Master 

1 

Main Bus 
System Master 

Memory 2 

Bus 
Master 

n 

Figure 14-4. Look-Through Cache Architecture 

A closer look at the look-through design reveals buffers on the address and 
data buses that isolate the processor and system buses. Refer to figure 14-5. 
These buffers are controlled by the cache management logic. If a request from 
the processor is a cache hit, information is accessed directly from cache mem

284 



Chapter 14: Cache Memory Concepts 


ory and the processor and system bus remain isolated. If the requested infor
mation is not in cache Ca read miss), the cache management logic will enable 
the buffers allowing the request to be sent over the system bus to get the re
quested information from main memory. The information is passed through a 
latch in the data path back to the processor, as well as into the memory cache. 

Microprocessor 

Cache 
Management 

Logic 

Miss 

Hit (cache enable) 

Main System Memory 

Figure 14-5. Look-Through-Concurrent Bus Operation 

A major advantage of look-through designs is that they permit two bus mas
ters to operate simultaneously in the same system. The processor can be run
ning zero-wait-state operations out of the cache memory, while a bus master 

285 



ISA System Architecture 


such as the DMA controller or refresh logic can use the system bus to access 
main memory. These two operations can be run at the same time without af
fecting each other and are typically referred to as system concurrency. 

To expansion devices, look-through cache controllers appear as if they are the 
main microprocessor. In single processor systems, when a bus master needs 
access to main memory it requests use of the system bus directly from the 
cache controller. The cache controller will grant the use of the system bus by 
sending an acknowledge to the bus master just as the microprocessor would 
normally do. 

Since look-through cache controllers isolate the system bus and processor bus 
and since they can be designed to run their own bus cycles to main memory, 
they also provide performance advantages during write operations. During 
memory writes, look-through cache designs can provide zero-wait-state op
eration for write misses. During write operations, many look-through designs 
will trick the microprocessor into thinking the information was written within 
zero wait states, but in fact no write need have taken place at all. The look
through cache subsystem memorizes the entire write operation so that it can 
complete the memory write to main memory later. This is called a posted 
write or buffered write. 

In summary, look-through designs provide performance benefits by: 

• 	 reducing system bus utilization since most memory accesses come from 
cache memory, leaving the system bus free for other bus master's use. 

• 	 allowing system concurrency, where both the processor and another bus 
master can perform bus cycles at the same time, and 

• 	 completing write operations in zero wait states using posted writes. 

The primary disadvantages of look-through designs are: 

• 	 The local CPU's memory requests go first to its cache subsystem to de
termine if there is a copy of the target location is in its cache memory. This 
lookup process delays the request to main memory in the event that the 
memory request is a cache miss. This delay is commonly referred to as the 
"lookup penalty." 

• 	 look-through caches are more complex and difficult to design and imple
ment. 

• 	 look-through designs are costly. 

286 



Chapter 14: Cache Memory Concepts 


Look-Aside Cache 

Refer to figure 14-6. Look-aside caches do not isolate the processor bus from 
the system bus as do look-through caches. When the processor begins a bus 
cycle all devices in the system see the address as they do in non-cache sys
tems. The cache controller monitors each memory request to see if cache 
memory contains a copy of the requested information. The cache controller 
terminates the bus cycle in zero wait states if the operation is a hit, and in
forms the main memory subsystem to abort the request. If the operation is a 
miss, the bus cycle completes in normal fashion from main memory. 

Note that even when a memory request is a cache hit, main system memory 
will start the access thus creating an unnecessary memory precharge cycle in 
many cases. This means that other bus masters in the system needing access to 
memory must wait until the precharge cycle has completed. 

The major advantages of look-aside cache designs are: 

• 	 Response time on cache miss cycles. Cache miss cycles complete faster in 
look-aside caches because the bus cycle is already in progress to main 
memory and no lookup penalty is incurred. 

• 	 Simplicity of design. Look-aside designs need only monitor one address 
bus, whereas, look-through designs must interface with both the proces
sor bus and system bus. 

• 	 Lower cost of implementing due to their simplicity. 

287 



ISA System Architecture 


Microprocessor 

Cache 

Bus 
Master 

1 

Main Bus 
System Master 

Memory 	 2 

Bus 
Master 

n 

Figure 14-6. Look-Aside Cache Architecture 

The disadvantages of look-aside cache designs are: 

• 	 System bus utilization is not reduced. Each access to main memory goes 
to both the cache subsystem and main memory. 

• 	 All memory requests, whether a hit or miss, result in the start of a mem
ory cycle in main memory. This causes a precharge cycle to begin which 
prevents other devices from accessing main memory until the precharge 
time has expired. 

288 



Chapter 14: Cache Memory Concepts 


• 	 Concurrent operations are not possible since all masters reside on the 
same bus. 

First- and Second-Level Caches 

Some systems use two levels of cache to improve overall system performance. 
Figure 14-7 shows the relationship between first- and second-level caches in 
typical 80386- and 80486-based systems. 

First-level caches provide the processor with the most often used code and 
data. These caches are typically small (4KB to 64KB). An example of this type 
of cache is the internal cache used in the 486. 

Figure 14-7. First- and Second-Level Caches 

Second-level caches are sometimes added between the first-level cache and 
main memory. These caches are usually much larger than first-level caches 
(64KB to 512KB) because they hold all the information contained in the first
level cache, as well as information that the first-level cache is unable to retain. 

289 



ISA System Architecture 


Second-level caches improve overall performance since the first-level cache 
can get information from the second-level cache at zero wait states even on 
most misses. 

Most modern microprocessors include a level-one cache on the same silicon 
die as the microprocessor core. The second-level cache is typically a separate 
component or group of components on the motherboard. 

Caches are managed by the cache management logic using hardware algo
rithms that are very similar to the algorithms used by the operating system 
when it manages virtual memory (see "Page Translation" in the chapter enti
tled liThe 80386DX and SX Microprocessors"). The cache contains the most re
cently accessed lines from main memory while main memory contains the 
most recently accessed pages from mass storage. Due to this similarity, main 
DRAM is sometimes referred to as the level three cache in computer main
frame designs, since main DRAM caches the contents of mass storage. 

Combined (Unified) and Split (Dedicated) Caches 

There are two entities in the microprocessor which need efficient access to 
memory: the instruction prefetcher and the execution unit. Unless the micro
processor is halted, the prefetcher is constantly making sure that its prefetch 
queue is full of instruction bytes for the instruction decoder to decode. While 
the prefetcher is fetching bytes, the execution unit may need access to memory 
to read or write data as the result of executing a MOV instruction. The micro
processor's bus unit gives priority to the execution unit since it is the execu
tion unit that actually gets work done in the microprocessor. The prefetcher is 
merely a performance enhancement tool. But if the execution unit is very fast 
and if it is performing many memory accesses, the execution unit may execute 
all of the prefetched instructions, thus emptying the prefetch queue, before the 
prefetcher has had a chance to access memory. When the prefetch queue 
empties out, the execution unit will starve, thus stalling the processor until the 
prefetcher can once again access memory. The access to memory becomes a 
bottleneck. 

Even with a cache, there's still a bottleneck since the prefetcher and the exe
cution unit are still contending for access to the cache. To eliminate this bot
tleneck, the code that the prefetcher needs may be put in a dedicated code 
cache while the data that the execution unit needs may be put in a dedicated 
data cache. As long as there are separate interfaces to these two caches, the 
bottleneck may be avoided. Both the prefetcher and the execution unit may be 

290 



Chapter 14: Cache Memory Concepts 


served simultaneously from their own caches. Caches that are designed this 
way are referred to as split or dedicated caches and the two caches are called 
the instruction cache and the data cache. Sometimes, the instruction cache is 
referred to as the code cache. The Pentium processor has dedicated'internal 
code and data caches while the 486 microprocessor has a combined internal 
cache. After a miss on the internal cache, the microprocessor's external bus 
becomes the bottleneck for access to external memory, so it is rare to see dedi
cated external caches except on microprocessors that have two sets of address 
buses and two sets of data buses, such as high-speed digital signal processors. 

The ability to access code and data simultaneously is a significant advantage 
of split caches vs. combined caches, but that doesn't mean that split caches are 
always better. Unified or combined caches have the ability to dynamically 
reallocate space to store more code and less data, or to store more data and 
less code, depending on what information the microprocessor is actually ac
cessing during a specific period of time. The combined cache decides what to 
keep in the cache by using a least-recently-used algorithm (described later in 
this chapter) based on the principles of locality (described earlier in this chap
ter). The combined cache doesn't know or care whether the information that it 
stores represents code or data, so it does not have to base its decision on 
whether the requests are coming from the prefetcher or the execution unit. 

Split caches lack the ability to dynamically reallocate space to store more code 
or more data, and they run the risk of the toll-booth problem. If you live in a 
city with toll roads, you may have noticed that lines form when there are 
dedicated lanes, say for trucks only, or for exact change only, while other 
lanes, such as for "receipts given," will be empty. That means that some lanes 
have too much capacity (they are empty) and others lack capacity (they are 
backed up). The same can happen with dedicated caches. If all the toll lanes 
provided all the same services, then the lines would even out and overall 
throughput would increase. So why do they have dedicated lanes? To provide 
priority to certain classes of traffic. That's exactly what the dedicated caches 
do - they provide priority service to their specific entities in the microproces
sor. But combined caches typically provide the ability to store more code and 
data overall since every location in the cache may be used for either code or 
data. 

Cache Consistency (Coherency) 

Loss of cache consistency occurs when the copy of a location in cache no 
longer matches the contents of the information stored in main memory. Cache 

291 



ISA System Architecture 


consistency (also known as cache coherency) problems can result from either 
the cache memory being updated while the main memory location is not, or 
main memory being updated while the cache memory is not. In each of these 
instances, some action must be taken to ensure that the conflict is resolved. 

It is imperative that any microprocessor or bus master that is accessing main 
memory be guaranteed access to the latest copy of information that is, or 
should be, stored in main RAM. 

Causes of Cache Consistency Problems 

Loss of cache consistency occurs when the information stored in cache and the 
corresponding location in main memory do not match. Consistency problems 
occur under two conditions: 

• Cache memory is updated while main memory is not. 
• Main memory is updated while cache memory is not. 

In the situations above, either cache memory or main memory contains stale 
data. In the first case, stale data is caused by a cache write hit within the cache 
memory. In the second case, a bus master wrote to main memory. Stale data 
in the cache must be updated before the microprocessor accesses the cache. 
Stale data in main RAM must be updated before another bus master accesses 
that location in main RAM. Note that this does not necessarily mean that the 
cache and main RAM must always be exact copies of one another. It does 
mean that none of the microprocessors or bus masters should ever be allowed 
to access stale data. To detect a coherency problem, the cache controller must 
monitor (snoop) the system bus to detect memory read and write operations 
to locations contained in cache memory. 

Consistency problems are handled differently depending on the cache's write 
policy. 

Write Pol icy 

When a cache write hit occurs, the cache memory is updated. Cache memory 
then contains the latest information and main memory contains outdated in
formation. The location in main memory is said to have "stale" information 
and the cache location is said to be "dirty," or modified, since it no longer is 
an exact duplicate of its corresponding location in main memory. To correct 

292 



Chapter 14: Cache Memory Concepts 


this cache consistency problem, the corresponding main memory location 
must be updated to reflect the change made in cache. If main memory is not 
updated, another bus master could receive stale data when it reads from a 
memory location that has not been updated. Three write policies commonly 
used to prevent this type of consistency problem are: 

• write-through 
• buffered write-through 
• write-back 

These three write policies are covered in the following sections. 

Write-Through Cache Designs 

Many look-through cache controllers pass each write operation on to main 
memory. This ensures that main memory always contains valid data. This is 
called a write-through policy. This implementation is very simple and effec
tive, but results in poor performance since each write operation must access 
slow main memory. 

Buffered Write-Through Designs 

A variation of the write-through policy is the buffered or posted write
through operation. The buffered write-through cache has the advantage of 
providing zero-wait-state write operations for both hits and misses. When a 
write occurs, a buffered look-through cache tricks its associated processor into 
thinking the information was written in zero wait states, but the write to 
memory has not taken place yet. The look-through cache controller stores the 
entire write operation in a buffer so that it can complete the memory write to 
main memory later. 

If there are two back-to-back memory write bus cycles, the cache controller in
serts wait states into the second bus cycle until the first memory write has ac
tually been completed. The second bus cycle is then posted and the CPU's 
READY# line is asserted. Since memory writes typically occur as single occur
rences, a large percentage of memory writes are completed at zero wait states. 

In a buffered write-through cache, another bus master is not permitted use of 
the buses until the write-through is completed, thereby ensuring that the bus 
master receives the latest information from main memory. 

293 



ISA System Architecture 


The write-through operations described above require use of the system bus. 
As a result, when the write-through to memory is taking place, bus masters 
are prevented from accessing main memory. Note, however, that the cache 
consistency problem only occurs when a bus master reads from a location in 
main memory that has not yet been updated by the cache controller. The fre
quency of this type of occurrence is very small. In fact, the memory location 
will likely be updated numerous times by the CPU before another bus master 
reads that particular location. As a result, write-through designs, as well as 
buffered-write-through designs, update main memory each time a memory 
write is performed, though the need for such action may not be required im
mediately. 

In summary, cache coherency problems can occur when the cache memory is 
updated on a write hit, but the corresponding location in main memory is not 
updated. Problems would occur if another bus master read from a location in 
main memory that contains stale data. The write-through policy prevents this 
potential consistency problem by automatically passing each write operation 
on to main memory, thereby ensuring that main memory always has the latest 
data. 

Write-Back Cache Designs 

Write-back designs improve overall system performance by updating memory 
only when it is necessary, thereby keeping the system bus free for use by other 
processors and bus masters. Main memory is updated (written to) only when 
another bus master accesses a main memory location that contains stale data 
or when a cache location that contains modified information is about to be 
overwritten to make room for a new cache line. 

Cache memory locations are marked as modified in the cache directory when 
they are updated and the update is not propagated through to memory. When 
another master is reading from main memory, the cache subsystem must 
monitor, or snoop, the system bus to check for reads or writes to main mem
ory locations that have modified data in cache memory. 

Write-back cache designs are more complicated to implement because they 
must make decisions on when to update main memory. 

294 



Chapter 14: Cache Memory Concepts 


Bus Master/Cache Interaction 

When another device in the system requires the use of the buses, it must be
come bus master. In a system that doesn't incorporate a cache controllet, the 
device requesting bus mastership asserts HOLD to seize the buses from the 
microprocessor. In a system incorporating a look-through cache, however, the 
requesting device must force the cache controller, rather than the microproc
essor, to relinquish control of the system Quses. To do this, the requester as
serts the cache controller's HOLD input to request control of the buses. In 
response, the controller disconnects from the system bus and asserts HLDA 
(Hold Acknowledge) to grant the system bus to the requester. The new bus 
master can then use the system bus to perform one or more bus cycles to 
transfer data. 

Since a bus tnaster can read from and write to main metnory, cache consis
tency problems can occur under two circumstances: 

• 	 Writes to main memory-When bus masters write to main memory they 
update locations that may also be cached by the cache controller. In these 
instances, main memory is updated and the data in cache memory be
come~ stale. The cache controller must monitor writes to main memory to 
detect potential coherency problems. 

• 	 Reads from main memory (with write-back cache)-When bus masters 
read from main memory in write-back cache implementations, they may 
read from a location that contains stale data. That is, the location is in 
cache and has been updated in cache but not in main memory. If the bus 
master is allowed to read the data from main memory, stale data would 
be received. To detect this potential coherency problem, write-back caches 
must also monitor reads from main memory. 

The following section discusses the process of monitoring the buses to detect 
potential cache consistency problems. 

Bus Snooping/Snarfing 

Bus snooping is the method used by cache subsystems to monitor main mem
ory accesses made by another bus master. The cache controller monitors 
(snoops) the system bus when another bus master is performing a bus cycle to 
main memory. If the location being accessed in main memory is also con
tained in the cache memory, it is termed a cache snoop hit. In such cases, 

295 



ISA System Architecture 


cache memory or main memory may contain stale data. Two conditions arise 
that create the need to snoop the buses: 

1. 	 A bus master writes to a location in main memory. Assume that the cache 
controller has relinqUished control to the DMA controller so that it may 
transfer a block of data from a disk controller into main memory. It is 
quite possible that the DMA controller will alter the contents of main 
memory locations that have already been copied into the cache. This 
means that the cache and main memory would no longer be coherent. In 
other words, the information in the cache will not accurately reflect the ac
tual information in main memory. This is a potentially dangerous situa
tion because the microprocessor may now fetch stale information from the 
cache and make bad decisions based on it. 

Cache subsystems handle this situation differently depending on how 
they are designed and depending on their write policies. 

a) 	 Write-through policy caches may invalidate the line in cache. The 
next time that particular location is accessed by the cache's local 
microprocessor, it results in a cache miss, forcing the cache sub
system to get the information from main memory where the valid 
data resides. 

b) 	 Write-back policy caches cannot simply invalidate the line since 
modifications that may have been made by the microprocessor 
would be lost. Typically, the cache line is wider than the data bus, 
so the bus master is not updating the entire cache line. Since the 
cache cannot remember which bytes in the line are modified, it 
must push back the entire line to memory. Write-back policy 
caches must force the bus master to abort the bus cycle to prevent 
access to the stale data in main RAM. The cache then pushes back 
the modified line to memory and invalidates its copy of the line. 
The bus master then retries the bus cycle again and writes its 
changes into main RAM. When the microprocessor tries to access 
that location in the future, the cache has a miss and reads the lat
est information from main memory. 

c) 	 Either write-through or write-back policy caches may snarf the 
data that the bus master is writing to memory. When the cache 
subsystem snoops the bus during another bus master's write op
eration and detects a snoop hit, it captures the data from the sys
tem bus while its being written to main memory by the bus 
master. In this way, both main memory and cache memory get 

296 



Chapter 14: Cache Memory Concepts 

updated at the same time, thus eliminating the potential consis
tency problem. 

2. 	 A bus master reads from a location in main memory. Only cache subsys
tems that use a write-back policy monitor the system buses for memory 
reads. In this case, the cache controller snoops memory reads by another 
bus master to determine if the location being read from is a location that 
has been updated in cache, but not in main memory (i.e. the cached loca
tion is modified). If so, this is a snoop hit on a modified line and the cache 
subsystem must force the bus master accessing the location to suspend its 
bus cycle (backoff) until the cache subsystem has updated main memory. 
Once the main memory location has been updated by the cache subsys
tem, the bus master is allowed to complete its access to main memory. 

Alternatively, when a snoop read hit is detected, the cache controller 
could cause the access to main memory to be aborted and supply the valid 
data directly to the bus master performing the read. 

Coherency may be maintained in a variety of ways. The primary method is 
based on bus watching, or snooping, as described above, but there are at least 
two other, less commonly used (but perfectly viable), alternatives. 

Coherency via Cache Flushing 

All of the information in a write-through policy cache is an exact copy of the 
information currently in main RAM. Information would be permanently dam
aged or lost if the write-through cache's contents were flushed (invalidated), 
because the information is also resident in main RAM. Therefore, one way to 
ensure that a write-through policy cache always gets the latest and greatest in
formation that a bus master wrote to main RAM is to flush the cache when
ever a bus master issues HOLD request to the cache. When the 
microprocessor subsequently tries to access any new information, the cache 
has a miss and gets the information from main RAM. Admittedly, this is a 
rather draconian method of maintaining coherency, but it works, and it's 
simple. 

In fact, flushing is an economical method of maintaining coherency in systems 
where the cache rarely has to give up the busses to another bus master. A 
good example is a laptop system. It's very rare for a bus master (other than 
the refresh logic) to seize the busses away from the cache in a laptop. The 
cache doesn't need to maintain coherency with the RAM refresh logic, so the 

297 



ISA System Architecture 


cache does not need to be flushed when the refresh logic asserts HOLD. In 
general, the only other bus master in the laptop is the DMA controller, and it 
is rarely used. So, the expense of bus snooping logic can be saved by merely 
flushing the write-through policy cache on those rare times that the DMA con
troller becomes the bus master. 

It would be a major mistake to invalidate the contents of a write-back policy 
cache in this manner since the write-back policy cache may contain informa
tion that does not appear in main RAM. The information would be lost. 

Software-Enforced Coherency 

Most of the descriptions of how to maintain cache coherency are based on 
forcing the cache controller hardware to automatically enforce coherency. 
Hardware-enforced coherency isn't always necessary. If the operating system 
software can guarantee that no two microprocessors or bus masters ~ill ever 
access the same memory locations, then there's no need for the cache control
ler to worry about another bus master's memory accesses. 

Ultimately, the operating system software has control over the microprocessor 
and over every bus master in the system. The operating system's device driv
ers give commands to the bus masters, telling them which memory locations 
to access. The operating system can therefore issue commands that prevent 
bus masters from accessing (sharing) memory locations whose contents are 
currently contained in the microprocessor's cache. . 

Software-enforced coherency can provide better throughput than hardware
enforced coherency when transferring large blocks of data between main 
memory and peripherals by avoiding the time-consuming backoff's and push
backs that are often used for hardware-enforced coherency. The pushbacks 
are avoided because the cache does not contain any of the locations that the 
bus master is accessing. 

Of course, if software-enforced coherency is used, the operating system has to 
be smart enough to manage the cache itself. The caches used in the 486 and 
Pentium processors are designed to provide hardware-enforced coherency, 
software-enforced coherency, or both. 

298 



Chapter 14: Cache Memory Concepts 


Cache Organization and Size 

Cache memory can be organized in various ways to improve the likelihood of 
cache hits. In other words, cache memory of the same size can provide differ
ent hit rates depending on the way it is organized. The following sections dis
cuss the common methods of organizing cache memory. 

FuIly-Associative Cache 

The fully-associative method of organization provides the optimum structure 
for ensuring cache hits, and for a given cache size it provides the highest per
formance of all other organizations. Fully-associative caches view memory as 
a single page or block regardless of its size. See figure 14-8. Any location in 
main memory can be copied to any location within the cache. This provides 
maximum flexibility in storing information from anywhere in memory. 

In order to keep track of any location in memory, the cache directory must 
store the entire address. Any given memory location requested might be 
found in anyone of the cache locations. Thus, each access to memory requires 
that the address of the requested information be compared to each entry in the 
entire cache directory to determine if the requested information is in cache 
memory. The time needed to check the address against the directory entries 
(called the look-up penalty) can be unacceptably long in fully-associative 
caches. Since the look-up penalty can be substantial, fully-associative caches 
are usually quite small (4KB or less) reducing the number of cache entries that 
have to be checked with each memory request. 

These types of smaller caches do not provide acceptable hit rates with most 
applications typically run on ISA machines. The challenge is to design a larger 
cache that provides higher hit rates without the associated look-up penalty. 
The concept of the direct-mapped cache provides this solution. 

299 



ISA System Architecture 


Read 6 
ReadS 
Read 4 

Address of Data 6 
Address of Data S 
Address of Data 4 Read 3 
Address of Data 3 Read 2 
Address of Data 2 Read 1 
Address of Data 1 

Cache Di rectory Cache Main Memory 

Figure 14-8. Fully-Associative Cache Organization 

300 



Chapter 14: Cache Memory Concepts 


Direct-Mapped Cache (One-Way Set-Associative) 

Direct-mapped caches require that only one directory entry be checked to de
termine whether the requested memory location is in cache. This means that 
cache hits and misses can be determined very quickly. Single look-ups are 
possible due to the way direct-mapped cache controllers organize cache and 
view memory. 

Figure 14-9 is a simplified diagram of the memory structure in a direct
mapped cache system. Notice that the cache is subdivided into units called 
sets and each set has its own directory entry. 

The cache controller views memory as logically divided into numerous pages 
each being the same size and having the same organization as the cache mem
ory. Every location in memory occupies a given set position within a page. 
When a memory location is read, it is placed in cache at the same set location 
that it occupies in main memory. In other words, information from a given set 
in main memory is mapped into the same set within the cache. For a direct
mapped cache, each set has a single directory entry, therefore, the information 
stored in a set must come from one page in memory. 

Direct-mapped cache structures allow the cache controller to identify the lo
cation of information in cache based on two criteria: 

1. 	 the set position that a location occupies in the cache (the set where the 
memory location comes from within a page) 

2. 	 the page number contained in the cache directory (the page number the 
location comes from in main memory) 

301 



------

ISA System Architecture 


____ -;..L_'" 
- - - -...-'" - - 
__ J ____ '" _ 

f------'--( 

~------- ----
I -----
r---------

~.------'-------, - - - - - - - 
.----_L---_-_-_---,- - - - - - - - - - - - - 
~------- ----------

Set n 

Page rn.

'" '" 
Set 6 

Set 5 page4 
'" Od 

Set 4 ~3 rJeri'
Set 3 

- - - - - - - - - - p;;g;-2 teri'Set 2 
- - - - - - - r--- c.y~Set 1 
- - - - - - - Page 1 '(1:;/

Set 0 
L-------;:;-pa-g-e--:!o rJ&l1Cache Memory 

Figure 14-9. Set-Associative Organization-Direct-Mapped 

Figure 14-10 is a simplified example of a direct-mapped cache organization 
and operation. This example illustrates how the cache would handle six read 
requests from locations not currently stored in cache. Each time the processor 
requests information from memory, the cache system compares the address to 
a directory entry. Each directory entry keeps track of which page in main 
memory information from each set comes from. Unlike the fully-associative 
cache, the processor need only compare the requested memory address with a 
single directory entry. The lower portion of the address identifies which set 
the location occupies in main memory, and thus identifies the directory entry 
that must be checked. The upper portion of the address is compared to the di
rectory entry to determine if the memory page requested matches the entry. If 
they match, the request is a cache hit and if not it is a cache miss. 

302 



- --

- - - -- - -

Chapter 14: Cache Memory Concepts 


Main 
Memory 

Setn 
SetS 

page Set? m
SetS 
Set 5 
Set 4 
Set 3 
Set 2 

~Set 5 
Set 4 page - 3 Set 3 
Set 2 - -
Set 1 

Set ° 
Setn ___ _ 
SetS 
Set? - page -
SetS - 2 
Set 5 - - 
Set4 - - - 
Set3 - - - 
Sfjt2 - - - 

- Set 1 DaiiiS - ReadS 
- SetO - "i5at85- Read 5 

r- Set n _ Qat!!.,4 _ Read 4 
SetS ___ _ 

Set? 
SetS page 
SetS- 1
Set4 _ -: -: : 
Set3 ___ _Cache Set2 ___ _

Directory Cache Set 1 
Set °1-___ 

Page 1 Setn Data 4 ~ Setn 

SetS SetS ~ : : : 
Set? Set? 

Set S r- page· -SetS 
f- 0 Set5 I- __ _ 

Set 4 Set 4 
I-'ageu Set 3 I-..:;:Do,:;:a.;:::ta..:;3H +-HI-- Set 3 ~ '[at~: Read 3 
Page 0 Set 2 I--;Do,:;:a:::=ta~2H+:HI-- Set 2 f- Data 2 Read 2 
Page 0 tr: Set 1 Data 1 Set 1 I- 'Q.a€1: Read 1 
Page 2 Set 0 

Set 5 

~D~a~m~5~~~1-__Se::tO~=='::~__ " 1 
The Tag must be updated to Data from read 1 must be over
Page 2 to reflect the location written since data from read S 

of the data from read S. occupies the same set number 

Figure 14-10. Direct-Mapped Cache Organization 

303 



ISA System Architecture 


Following is the sequence of events that occurs when each instruction is 
fetched from memory. Note that each of the following requests results in a 
cache miss and the information must be obtained from main memory. 

1. 	 The first request (read 1) is for information which resides in set 1 of page 
0, Since the information read from memory is from set 1 of a given page, 
the information is stored in the set 1 position in cache memory. The corre
sponding directory entry for set 1 is updated to indicate that the informa
tion in set 1 of the cache is from page O. 

2. 	 Similarly, read 2 is from a memory location that resides in set 2 of page 0 
in main memory. This information is placed into the cache in the set 2 po
sition and the corresponding directory entry is updated to indicate that 
the source page was O. 

3. 	 Next, read 3 is accessed from set 3 of page 0 and is placed in the cache in 
the set 3 position and the corresponding directory entry is updated to 
page o. 

4. 	 Read 4 jumps to a higher memory location that occupies set n (the last set 
within page 1. This information is stored in the set n position in cache and 
the directory for set n is updated to indicate page 1. 

5. 	 Read 5 comes from the first set (set 0) in page 2 and is placed in the set 0 
position of cache. The corresponding directory entry is updated to page 2. 

6. 	 The last request from memory (read 6) is from set 1 in page 2. However, 
set 1 in the cache is already occupied by information from set 1 of page O. 
Since no other set 1 position exists in the cache, the information currently 
in set 1 must be replaced. The new information from read 6 is placed in set 
position 1 and the directory entry is updated to page 2. 

With a direct-mapped cache, two memory sets cannot be kept in cache at the 
same time if the sets come from different pages in memory. As you can see, a 
direct-mapped cache provides only one way to store information read from a 
given set. 

Other cache organizations have more than one place to store information from 
a given set in cache. For example, the two-way set-associative cache provides 
two places, or ways, to store information that occupies the same set position 
in different memory pages. 

Two-Way Set-Associative Cache 

In a two-way set-associative organization, when the cache controller gets in
formation from main memory, it has a choice of two cache memory banks to 

304 



Chapter 14: Cache Memory Concepts 


store the data in. Cache banks are frequently referred to as ways. In other 
words, the controller must choose one of two ways to store the data in. Hence, 
the term two-way set-associative. 

Figure 14-11 shows the same example used in the direct-mapped discussion to 
show the effect that two-way cache organizations can have on performance. 
Assume that the six memory reads access the same exact locations in main 
memory as before and that the total cache memory size is the same as the di
rect-mapped example in figure 14-10. 

Notice that each cache way (A and B) has its own directory. Since there are 
two ways for information from a given set to be cached in, each memory re
quest must be compared to two directory entries to determine whether or not 
the information is currently stored in cache. 

When compared to the direct-mapped cache, the example two-way set
associative cache controller views memory as being organized in pages equal 
to one-half the size of the direct-mapped pages. The following steps illustrate 
the sequence of the six memory accesses. Note that the first three reads are 
identical to the direct-mapped example. 

1. 	 The first request (read 1) is for information which resides in set 1 of page 
O. Since the information read from memory is from set 1 of a page, the in
formation is stored in the set 1 position in cache way A. A subsequent 
section entitled "Least-Recently Used (LRU) Algorithm" describes how
way A was selected to store the set. The corresponding directory entry for 
set 1 is updated to indicate information in set 1 of the cache is from page 
O. 

2. 	 Similarly, read 2 is from a memory location that resides in set 2 of page 0 
in main memory. This information is placed into way A in the set 2 posi
tion and the corresponding directory entry is updated to indicate page O. 

3. 	 Next, read 3 is accessed from set 3 of page 0 and placed in way A in the 
set 3 position and the corresponding directory entry is updated to page O. 

4. 	 Read 4 is from set n of page 3 and is placed in the set n position in way A. 
5. 	 The location for Read 5 occupies set 0 of page 4. This information is stored 

in cache way A in the set 0 position. 
6. 	 Read 6 comes from set position 1 within page 4 and cannot be stored in 

way A because it is already occupied with data from read 1. Data from 
read 6 instead is placed in set position 1 of way B. 

305 



ISA System Architecture 


Main 
Memory 

Set n 

Set 3 
page Set 2 m -Set 1 

Set 0 
Setn 
Set 3 
Set 2 

Set 0 
Setn 
Set 3 
Set 2 page 
Set 1 6 

Set 0 
Set n 
Set 3 
Set 2 page 

5Set 1 

Set 0 
Set n 

pageSet 3 
4 

-
Set 2 
Set 1 'Qat'i6 _ Read 6 
Set 0 Data 5 Read 5 

~ Setn Qat!:!,.4 _ Read 4 
Set 3 

page Set 2 
3

Set 1 
Set 0 
Set n 

Cache 
Directories Cache Set 3 

pageSet 2 
2

Set 1 
Set 0 

Set 3 Set n 
Set 2 Set 3 B 	
Setn 

~+ - - 
pagePage 4 Set 1 	 Set 2 

1 
Set 0 	 Set 1 page 

Set 0 
Page 3 Set n Data 4 ; 

Set n "' t'age u Set 3 Data 3 Set 3 
~ 	 Read 3 

A 	 Page 0 Set 2 Data 2 
~ 

Set 2 Read 2 
Page 0 Set 1 Data 1 Set 1 Read 1 
Page 4 Set 0 Data 5 I~ Set 0 

Figure 14-11. Two- Way Set-Associative Cache Organization 

0 

306 



Chapter 14: Cache Memory Concepts 


As you can see a two-way memory structure is more flexible than direct
mapped. The two-way set-associative cache was able to cache all six of the 
memory requests without overwriting an entry, while the direct-mapped 
cache could not. Generally speaking the two-way set-associative cache results 
in a higher percentage of cache hits. 

Four-Way Set-Associative Cache 

The four-way set-associative cache memory organization is simply an exten
sion of the two-way structure. Cache memory is divided into four banks 
(ways) of equal size and main memory is viewed as divided into pages each 
equal in size to that of a way. The four-way structure provides even more 
flexibility than the two-way organization. 

The four-way set-associative cache requires four entries to be checked to make 
sure the information is not in cache. Each time the number of cache ways in
creases, the number of look-ups increase proportionally. A cache with multi
ple ways usually implements a comparator that compares the target page 
address to all of the selected tags simultaneously (e.g., a four-way set associa
tive cache compares the target page number to the four selected directory en
tries). Note that continuing to increase the number of ways would eventually 
lead to a fully-associative structure. 

The internal cache of the 486 microprocessor is four-way set-associative. See 
the MindShare Architecture Series publication entitled 80486 System Architec
ture from Addison-Wesley for details on the 486's internal cache. 

Least-Recently Used (LRU) Algorithm 

In two- or four-way caches, when all cache ways have valid information 
stored in a given set and new information needs to be stored in that set posi
tion, a decision must be made as to which information to replace. Most cache 
controllers use a least-recently used (LRU) algorithm to determine which 
cache entry to overwrite. The LRU logic keeps track of the cache locations 
within a set that have been least recently used. This is consistent with the 
principle of temporal locality, meaning that information that has not recently 
been used will not be likely to be used again soon. 

307 



ISA System Architecture 


Although the processor designer may implement an LRU algorithm that 
strictly keeps track of the least-recently used directory entry within the se
lected group, this can require a fairly substantial amount of logic. Rather, 
many designers choose to implement a pseudo-LRU algorithm that makes a 
''best attempt" at keeping track of the least-recently used directory element. 
As an example, the 486 processor uses a pseudo-LRU algorithm. 

Cache Line Size 

When a cache miss occurs, the cache subsystem must go to main memory to 
get the requested information. The cache subsystem can be designed to fetch 
more information than was actually requested. The amount of information 
fetched from memory by the cache controller is defined as a line by Intel. 
Other manufacturers use the terms block or sector to define the amount of in
formation the cache fetches in the event of a cache miss. Line size varies ac
cording to design, but typically ranges from 4 bytes to 32 bytes. The line is the 
smallest unit of information that a cache can map. This means that each time a 
cache miss occurs an entire line of information must be read from main mem
ory. This is called a cache line fill. 

For a given cache data RAM size, as the line size increases, the cache directory 
(tag RAM) size decreases. Since the cache directory is "overhead" and doesn't 
store data or code that the microprocessor can use, it makes sense to try to re
duce the amount of tag RAM that the cache uses. The cache directory contains 
the numbers of the pages in main memory that lines come from. For example, 
a 4KB direct-mapped cache needs to be able to address 1,048,576 4KB-Iong 
pages in main memory (assume the cache is designed to handle addresses 
anywhere in a 4GB range, 4GB / 4KB = 1M.) Each of the cache directory en
tries is thus 20 bits wide to select 1 of 1M pages. Each of the 4KB-Iong pages 
consists of lines. Assume that the line size is 4 bytes. In this case, there are 
1,024 sets in the cache (4KB cache data RAM / 4 bytes = 1,024 sets). Therefore, 
there must be 1,024 entries in the cache directory. Since each entry is 20 bits 
wide, the cache needs 1,024 x 20 bits or 2,560 bytes of SRAM for the directory. 
2.5KB is a lot of overhead for a 4KB cache. 

If the line size is increased to 16 bytes, the number of sets required drops to 
256 (4KB / 16 bytes = 256). The width of the cache directory entries stays the 
same (20 bits) since the cache is still addressing 1M of 4KB-Iong pages in main 
memory. So, the cache needs 256 x 20 bits or 640 bytes of SRAM for the direc
tory. That's 75% less. 

308 



Chapter 14: Cache Memory Concepts 

Along with saving space and money, larger line sizes can increase cache per
formance, because a larger amount of information is stored as a result of each 
miss. Since instructions are normally requested from sequential memory loca
tions (principle of spatial locality), a larger line size can result in a higher hit 
rate. The cache line fill operation tends to prefetch instructions that the micro
processor will require in the near future, placing them in the high-speed cache 
before the microprocessor needs them. 

Larger line size doesn't always mean better performance. There are limits to 
how large the line size can be before performance begins to suffer. A perform
ance tradeoff of larger line sizes is that line sizes larger than the data path to 
main memory require several memory accesses to complete each cache line 
fill. This takes time and increases the system bus utilization. To counter this 
problem some cache subsystems are designed to do burst transfers when per
forming cache line fills. One example of such a cache is the internal cache in 
the 486. 

Another performance tradeoff of larger line sizes is slack (wasted) space in the 
cache. If the line size is too large, then the cache may be storing many bytes 
that the microprocessor does not intend to access. Since the cache can only 
track complete lines, it must get all the bytes in a line, even if the microproces
sor only wants one of the bytes in that line. The rest of the SRAM in the line is 
used up storing unwanted bytes. Statistically, the optimal line size for each 
cache design is based on the typical operating system/application mix and 
data structure requirements that the system is targeted for. 

As discussed above, the larger the line size, the smaller the cache directory 
(but big line sizes can hurt performance). An approach that allows for small 
directories and good performance is the sectored cache. Intel defines a sector 
as a group of consecutively-addressed lines that share the same cache direc
tory entry. Other manufacturers define sector and line differently, but the sec
tored cache concept is the same. 

In a sectored cache, each sector consists of two or more lines. The lines must 
come from locations that are adjacent to one another in main memory because 
all of the lines in the sector have the same tag or page number in the cache di
rectory. Although the cache directory only has one page number for the lines 
in a sector, it does have an individual set of state bits for each line. That means 
that the line is still the smallest unit of data that the cache can track. 

309 



ISA System Architecture 


Cache Size 

The cache memory is relatively small compared to the main system memory. 
The size of the cache varies by design, but typically ranges from 4KB to 512KB 
and depends on whether the cache is a first- or second-level cache. The follow
ing are some general design considerations for first- and second-level cache 
subsystems. 

First-Level Cache Size 

To achieve the highest cache performance, information requested by the proc
essor must reside in the first-level cache a high percentage of the time. The 
chances that information is in cache is related to cache size and organization. 
In general, a larger cache will give a higher hit rate and thus higher perform
ance. 

The rule of larger caches giving higher performance must be tempered in light 
of two factors: cost and locality of reference. Since SRAM, used in cache de
signs, is extremely expensive, tradeoffs must be made between cost of addi
tional cache memory and increased performance. This tradeoff becomes 
particularly germane when considering the non-linear increase in performance 
as cache size increases. Refer to table 14-1. The information in this table is 
typical of results during design process simulations. Notice that additional 
cache memory provides only minimal increases in performance once cache 
size increases beyond 16KB. However, the optimum size of cache is highly 
dependent on how well the application fits the locality of reference model. 

Table 14-1. Cache Size vs. Hit Rate 
Size Hit Rate 

lKB 41% 
8KB 73% 
16KB 81% 
32KB 86% 
64KB 88% 
128KB 89% 

Second-Level Cache Size 

The principle advantage of the second-level cache is that it can supply a line of 
information to the level one cache when it incurs a cache miss. The perform

310 



Chapter 14: Cache Memory Concepts 

ance gains of second-level caches then relate to shortening the time needed for 
the first-level cache to perform a cache line fill. For example, if the first-level 
cache has a hit rate of 85%, then 15% of all accesses to memory result in cache 
misses. A certain percentage of the misses from the first-level cache will result 
in cache hits at the second-level cache. Assuming the secondary cache also has 
a hit rate of 85%, then 85% of the 15% missed by the first-level cache result in 
cache hits. Overall then, 97.75% of all requests to memory are supplied by 
cache. 

As is true for first-level caches, second-level caches enhance performance due 
to the locality of reference principles. Second-level caches must hold copies of 
information that the first-level cache misses. In other words, second-level 
caches hold information currently in the first-level cache along with informa
tion that was previously in the first-level cache (but was subsequently elimi
nated to make room for new information). By design then, second-level caches 
must be several times larger than the first-level cache so that information 
previously held in the first-level cache can be obtained from the second-level 
cache when it is needed again. 

It should be apparent that the optimum size of any cache depends on the na
ture of the programs that access memory for code and data. Some manufac
turers spend considerable time, money and effort to understand the nature of 
memory access in various operating environments so that the best cache can 
be designed and implemented. 

Cache Addressing 

Caches in x86-based systems are physically addressed. That means that the 
memory management unit (the segmentation unit and the paging unit) trans
lates the logical address into the physical address before the physical address 
is submitted to the cache for a look-up. 

Some other computer architectures submit the address to the cache before 
page translation is done. This speeds the access to the cache because it saves a 
step. Such caches are virtually-addressed instead of physically-addressed. 

1/0 Information Not Cached 

Cache controllers do not cache information read from I/O addresses. It does
n't make sense to do so. Consider the scenario wherein a cache controller 

311 



ISA System Architecture 


keeps a copy of the printer status that is returned in response to an I/O read 
from the printer status I/O port. If the microprocessor requests the printer 
status at some time in the future, the request would be honored from the 
cache, and the program would be given the status of the printer five minutes 
ago. In fact, the printer may have run out of paper two minutes ago. 

When the cache controller intercepts a processor-initiated I/O bus cycle, it 
immediately initiates the bus cycle on the system bus. When the I/O data is 
read from the I/O device, it is returned to the microprocessor and a copy is 
not kept in the cache. 

Non-Cacheable Memory 

Certain areas of memory space must be designated as non-cacheable address 
space. If the cache controller were to attempt to keep copies of information 
from these areas of memory space, it may end up with stale information that 
doesn't accurately reflect the actual contents of main memory. 

A network controller card with dual-ported RAM is a good example. The 
network controller card can receive information over the network and write it 
into this memory without using the bus. The system board microprocessor 
can also access the memory. If the cache controller on the system board were 
to cache information from this area of memory, it would be unable to detect 
memory alterations performed by the network controller using its on-card 
buses. The information in the cache would no longer be coherent with main 
memory. 

The system board must incorporate a memory address decoder that detects 
non-cacheable memory addresses and tells the cache controller not to keep a 
copy of information read from these memory locations. The requested infor
mation should be read from main memory and given to the microprocessor 
without making a copy in the cache. The 82385 cache controller has an input 
called NCA# (non-cacheable access) that is used to tell it when the microproc
essor is accessing a non-cacheable memory location. The system board de
signer can accomplish this in one of two ways: 

• 	 The designer may set aside one or more pre-defined memory address 
ranges as non-cacheable space. Any expansion cards with addressable 
dual-ported memory should then be configured so as to map their on
board RAM into this space. The system board would include a memory 

312 



Chapter 14: Cache Memory Concepts 

address decoder designed to detect accesses within these fixed memory 
address ranges and assert NCA# to the cache controller. 

• 	 The designer may include a programmable memory address decoder on 
the system board. Each time the machine is powered up, the programma
ble address decoder is automatically configured to recognize the memory 
address ranges used by expansion cards with non-cacheable memory on
board. 

Testing Memory 

When running main memory diagnostics, the cache controller can cause 
problems by intercepting memory reads and never letting them propagate out 
to main memory. The diagnostic would assume that data is being read from 
main memory when, in fact, it is being returned from the cache. 

In order to ensure that this problem doesn't occur, cache controllers typically 
include an input called FLUSH#. When asserted, it causes the cache controller 
to clear the valid bit in every directory entry to 0, thereby invalidating all 
cache entries. All of the valid bits remain cleared as long as the FLUSH# input 
is kept asserted. Typically, the FLUSH# line is asserted or deasserted by writ
ing the appropriate value to an I/O location that has been set aside for this 
purpose. The I/O location used and the data necessary to assert or deassert 
FLUSH# is system design-specific. 

When FLUSH# is asserted, every memory read initiated by the microproces
sor results in a memory read bus cycle, causing main memory to be accessed 
for every memory read. 

313 



Chapter 15: ROM Memory 


Chapter 15 
The Previous Chapter 

Prior chapters covered the subject of RAM memory and memory cache sub
systems. 

This Chapter 

This chapter covers the various types of ROM memory encountered in ISA 
systems. This includes PROM, MROM, EPROM, EEPROM and flash 
EEPROM. In addition, the subjects of ROM diagnostics, shadow RAM, dou
ble-mapping, and device ROMs are covered. 

The Next Chapter 

This chapter concludes Parts 1 and 2, which describe the background technol
ogy necessary to a complete understanding of any ISA machine. Part 3 follows 
this chapter and covers the ISA architecture. This includes ISA history, the 
ISA bus structure, ISA bus cycles, the interrupt subsystem, direct memory ac
cess (DMA), bus mastering, the real-time clock and configuration RAM, the 
keyboard/mouse interface, numeric coprocessors, and the ISA timers. 

ROM Memory - Theory of Operation 

Introduction 

ROM stands for read-only memory. ROM memory can only be read once it is 
installed in a system and it is non-volatile - it retains its stored information 
indefinitely after power is removed from the system. 

As illustrated in figure 15-1, the ROM memory chips used in ISA machines 
contain one byte of information per internal storage location. Each storage lo
cation consists of eight bit cells, each of which can store a 1 or a O. 

315 



---

ISA System Architecture 


~tloonmEWl 

~'on n-1 

Location 5 c--

Location 4 

Location 3 

Location 2 

Location 1 

Location 0 1 0 1 1 0 1 1 1 

L..-....L...--L._L..-....L...--L._L..-....L..._ 8 bit cells per location 

Figure 15-1. The Bit Cell 

The information stored in a ROM typically consists of both programs and data 
to be used by the programs. The programs and data are developed by a pro
grammer and are then assembled or compiled into machine language. Ma
chine language is the series of hex numbers that the microprocessor treats as 
instructions and data. 

The machine language representation of the programs and data is then loaded 
into a device called a ROM programmer. This is typically accomplished by 
transmitting the information to the ROM programmer using a serial or paral
lel communications link. 

The ROM is inserted into a socket on the ROM programmer and the informa
tion is written into it. Once placed in the target unit, such as an ISA system, 
the ROM may only be read from. 

The following sections discuss the types of ROM typically used in ISA ma
chines: 

• Fusible-Link PROM 

• Masked ROM, or MROM 
• EPROM 
• EEPROM 
• Flash EEPROM 

316 



Chapter 15: ROM Memory 

Fusible-Link PROM 

Figure 15-2 represents one storage location in fusible-link PROM 
(programmable read-only memory). Every bit cell contains a fuse, or fusible
link. In order to store the programs and data into the PROM's storage loca
tions, it must be inserted into the socket on the ROM programmer. When the 
programming process begins, a byte is written into each location by blowing, 
or vaporizing, the fuses in some bit cells, while leaving others intact. 

When the PROM is installed in an ISA system, the microprocessor may only 
read from it. When a PROM storage location is read from, the pattern of ones 
and zeros represented by the eight fuses is simultaneously output onto the 
data bus and sent back to the microprocessor. 

Because some of the fusible links are physically vaporized during the pro
gramming process, a PROM may not be re-programmed with new informa
tion after its initial programming. For this reason, if a systems manufacturer 
intends to update the information stored in the ROMs periodically, PROMs 
should not be used. 

tN\LJNN 

o 1 100 1 0 1 


Figure 15-2. The PROM Bit Cells 

Masked ROM (MROM) 

The masked ROM is a variation of the fusible-link PROM. If the systems 
manufacturer is absolutely certain that the information in the ROMs will never 
change, it may choose to have the ROM chip manufacturer pre-program the 
information into the ROMs for them. The systems manufacturer sends the 
memory chip manufacturer a copy of the information to be stored in the 
ROM. The memory chip manufacturer then produces a photographic mask 
that represents the opens and shorts that would be produced by blowing 
some fuses and leaving others intact. This mask is then used to etch thousands 
of pre-programmed ROMs that are then shipped to the systems manufacturer. 

317 



ISA System Architecture 


Eraseable Programmable Read-Only Memory 
(EPROM) 

If the systems manufacturer wants to reserve the option of re-programming 
the ROMs at some time in the future, EPROMs should be used instead of 
PROMs or Masked ROMs. 

EPROM stands for erasable programmable read-only memory. When received 
from the memory chip manufacturer, the EPROM is blank (contains no infor
mation). As with the PROM, information is written into it using a ROM pro
grammer. 

Figure 15-3 illustrates the heart of the EPROM bit cell. At the bit cell level, the 
EPROM basically consists of a transistor. A transistor is nothing more than a 
switch. With a certain voltage, or charge, on its gate, the transistor provides a 
path for current flow through its source and drain. In other words, the switch 
is closed, allowing current to flow. With a different charge on its gate, how
ever, the transistor ceases to conduct. 

The gate of the transistor is floating, surrounded by a thin layer of silicon di
oxide. Since silicon dioxide is an insulator (it doesn't conduct electricity), a 
charge placed on the floating gate doesn't have anywhere to go and tends to 
stay there. 

When the EPROM is placed in the ROM programmer and the programming 
process is initiated, a bit is written into a bit cell by either charging the floating 
gate or discharging it. The charge on the floating gate may be changed by ap
plying a large positive or negative voltage to either the control gate, source or 
drain. At the completion of the programming process, some of the bit cells 
have had charges placed on their floating gates and some have not. 

The EPROM is removed from the ROM programmer and placed in the sys
tem. When the microprocessor attempts to read from one of the EPROM's 
storage locations, some of the eight transistors that make up the storage loca
tion conduct, while others do not as a result of the charge (or lack of a charge) 
placed on their floating gates. It acts just like a series of eight switches, pro
ducing a group of eight bits of information. The eight bits of information are 
then driven out onto the data bus and sent back to the microprocessor. 

318 



Chapter 15: ROM Memory 


When the information in the EPROM must be altered, the EPROM is removed 
from the system and placed under a special ultraviolet light. An EPROM can 
be easily identified by the small, rectangular crystal window on its upper sur
face. The EPROM is left under the light for approximately twenty-one min
utes. During this period of time, every floating gate is bombarded with high 
energy ultraviolet light and a charge begins to build on every gate. Eventually, 
by the end of the twenty-one minute period, every floating gate has built up a 
charge sufficient to jump the thin layer of silicon dioxide and discharge. In this 
way, all of the data in the EPROM is cleared. The EPROM is then removed 
from the light source and may be re-programmed with new information. 

Source Drain 

\ /
.----0 

Floating 

Dioxide 

Control 

Figure 15-3. The EPROM Bit Cell 

Electrically Eraseable Programmable Read-Only 
Memory (EEPROM) 

In operation, EEPROM memory is very similar to EPROM. Each bit cell con
tains a transistor with a floating gate. There is no crystal window, however, so 
the EEPROM cannot be erased by ultraviolet light. Rather, the EEPROM is 
erased by placing a special programming voltage on its PROGRAM pin and 
addressing a specific location. The location is then erased and a new byte of 
information may be written into it. Each location to be altered must ad
dressed, erased and re-written. A properly designed PC allows the EEPROM's 
contents to be altered while it is still installed in the machine. 

319 



ISA System Architecture 


The drawback arises in erasing each location, as it takes a considerable 
amount of time. Typically, the erase/rewrite time is in the millisecond range. 
The EEPROM is best used in applications where only a few bytes will be al
tered at a time (such as for storage of configuration information). 

Flash EEPROM 

The flash EEPROM is a variation on the EEPROM. Rather than erasing and 
rewriting a location at a time, the flash EEPROM is flash erased - the entire 
contents of the flash EEPROM (or a large block of it) is erased simultaneously. 
New data may then be written into the flash EEPROM. The erasure/rewrite 
time is considerably longer than the EEPROM due to the large bulk of infor
mation to be updated. Due to this operational characteristic, the flash 
EEPROM is better suited to applications wherein large amounts of informa
tion are altered at a time, while the EEPROM is better suited to applications 
where only a few bytes are altered at a time. A typical application of flash 
EEPROM would be as a substitute for a floppy drive for storing program and 
data files. 

Flash EEPROMs cost approximately 75% less than an EEPROM of comparable 
bit density. As a result, EEPROM is considered to be too expensive for PC 
applications. As the bit density of flash EEPROMs has increased, they have 
become quite attractive to PC system designers. On the other hand, typical 
flash EEPROMs require both a 5Vdc and a 12Vdc power supply, while the 
typical EEPROM only requires a 5Vdc power supply. This means that flash 
EEPROM requires a more complex power supply, adding cost to the system. 
II and several other chip vendors are developing flash EEPROMs that only 
require a single 5Vdc power supply, thus removing this disadvantage. 

ROMls Interface to System 

Figure 15-4 illustrates the ROM interface to the system. It consists of the sig
nals described in table 15-1. 

320 



Chapter 15: ROM Memory 

Table 15-1. The ROM's Interface Si~nals 


Signal(s) Description 


CE# 	 Chip-Enable or Chip-Select. This signal is asserted by the ROM 
address decoder when it detects a memory address within the 
range of addresses assigned to the ROM. When CE# is asserted, 
the ROM uses its address inputs to select the target location to be 
read. 

Address Lines 	 Once CE# is detected, the ROM uses the address present on its 
address inputs to select the target location to be read. 

OE# 	 Output Enable. When OE# is asserted, the ROM outputs the byte 
of information from the target location onto the data bus lines to 
be sent back to the microprocessor. 

Data Lines 	 The data lines are used by the ROM to send the byte read from 
the target location back to the microprocessor. 

As an example, assume that the ROM in figure 15-4 is a 64KB ROM and the 
ROM's address decoder is designed to detect the memory address range from 
FOOOOh to FFFFFh. The ROM address decoder observes the upper address 
lines, A[19:16], to detect an Fh as the uppermost digit in the memory address. 
When an Fh is detected, the ROM address decoder chip-selects the ROM by 
asserting its CE# input. The ROM responds by using its address inputs, 
A[15:0], to select the exact location within the 64K locations of storage within 
the ROM. If the ROM's output enable (OE#) input is also asserted, the ROM 
reads the byte from the target location and drives it onto the data bus lines to 
be sent back to the microprocessor. 

Address Lines ~ Data BusJ 
ROM 

ROMCS# 
CE# 

MRDC# 
OE# 

Figure 15-4. The ROM's Interface to the System 

321 



ISA System Architecture 

System Board ROM Memory 

Many ISA system boards contain 128KB of ROM memory. This ROM contains 
the following: 

• 	 the power-on self-test, or POST. 
• 	 The BIOS routines for the standard I/O devices integrated onto the sys

tem board. 
• 	 The interrupt service routines for the standard I/O devices integrated 

onto the system board. 
• 	 The BASIC language interpreter that is executed if the boot program fails 

to find a valid operating system on either the floppy or hard drive (the 
BASIC language interpreter is only included in some ISA machines). 

• 	 The boot program used to read the operating system software, such as 
MS-DOS or OS/2, from the floppy or hard drive. 

Testing 

Checksumming is typically used to check ROMs for proper operation. When 
the programmer originally develops the programs and data to be written to 
the ROM, a simple utility program is used to add the contents of every ROM 
location together. As the utility program is running, it keeps the result of the 
additions (the running total) in an 8-bit register. An 8-bit register can't hold 
values larger than FFh or 255d, so an overflow occurs when the running total 
would exceed FFh. The utility program ignores the overflow. The following 
example illustrates the process: 

Byte 1: 1011 1001b 
Byte 2: + 1001 1110b 
Running Total: 0101 0111b 

The programmer always stores a value in the last location in the ROM that 
will force the result to zero. As an example, assume that adding every ROM 
location but the last resulted in DAh (1101 1010b). The programmer would 
store the following value in the last ROM location to cause the overall result to 
be zero: 

Running Total: 1101 1010b 
Last Byte: + 0010 0110b 
Resulting Checksum: 0000 OOOOb 

322 



Chapter 15: ROM Memory 

During the POST, the program reads the contents of every system board ROM 
location and adds them together. If the final result isn't zero, either the data in 
the ROM has changed, which it never should, or the system cannot properly 
read from the ROM. In either case, the ROM cannot be reliably read from and 
a ROM checksum error is generated. 

In some ISA systems, a slightly different method is used. The POST adds the 
contents of every ROM location together, accumulating a 16-bit running total. 
The correct value is stored in the last two locations of the ROM to force the 
running total to OOOOh when the last two bytes are added. If the final result 
isn't zero, a ROM checksum error is generated. 

Checksumming only tests the contents of the ROM once, during the POST. 
This is usually sufficient because ROM is quite reliable and it is unlikely that a 
cell will ever fail in the useful lifetime of the machine. A primary reason that 
the POST even bothers to test the ROM is because there may be address con
flicts in the system that make it impossible to reliably access the ROM. The 
conflicts occur because multiple cards may be decoding the same ROM ad
dresses. There's no clearinghouse that says which addresses a manufacturer 
should use for the device ROMs on ISA expansion cards. Those conflicts show 
up as data bus contention during the checksum calculation, resulting in a 
garbled running total. There's only one chance in 256 (0.4%) that the checksum 
will fail to catch the conflict. 

However, in systems where reliability is paramount, parity bits can be stored 
along with the data bytes in the ROM when the ROM is initially programmed. 
After that, every time any bytes are read from the ROM, a parity checker can 
check for failures in the ROM. If a failure occurs, it may not be the fault of the 
ROM. Instead, it may be noise or crosstalk on the system's data bus which 
garbles the data between the time it leaves the ROM and the time it reaches 
the bus master. This can occur in very high speed applications. For example, 
parity-protected ROM is often used to store the microcode (inside the micro
processor chip) that runs the microprocessor's execution unit. 

Note that the DRAM parity generator/checker is part of the DRAM controller 
and it normally only checks for parity when reading from RAM. Therefore, 
device ROMs on ISA expansion cards do not need parity bits. 

323 



ISA System Architecture 


Shadow RAM 

Many ISA systems based on the 80386DX or SX microprocessors copy the sys
tem board ROM contents into shadow RAM during the POST. This is done to 
compensate for the notoriously slow access time of ROMs. 

If an applications program depends heavily on the BIOS routines in ROM, the 
instructions that make up the BIOS routines must be fetched from system 
ROM frequently. Since ROM memory has a notoriously slow access time rela
tive to that of RAM memory, the instructions could be read more quickly and 
the BIOS routine therefore executed more quickly if the BIOS routines were 
located in RAM rather than ROM. In addition, the shadow RAM is a 32-bit 
device, while the ROM is typically implemented as a 16-bit device. Informa
tion stored in shadow RAM can therefore be accessed at double the rate of the 
ROM. 

Although there may be plenty of extra RAM in the system to hold a copy of 
the ROM's contents, the applications programs and system software that 
make use of the ROM's contents must know where the ROM is. Those pro
grams assume the ROM is at EOOOOh to FFFFFh. That means it would be a 
wasted effort to copy the ROM to RAM that had a different address after the 
copy was complete. There are several solutions to this problem and different 
systems use different solutions. 

Shadow RAM and ROM Occupying Different Address Spaces 

One solution is to use the 80386' s virtual page translation feature to translate 
the ROM's address range into RAM addresses. A system software program 
would first copy the ROM into RAM and then set up the page directory and 
page table with entries that point to the RAM that contains a copy of the 
ROM's contents. Subsequently, when a program submits a ROM address to 
the memory management unit (MMU), the paging unit inside the MMU 
translates the ROM address to the address of the RAM that contains the 
ROM's contents. Programs are unaware that page translation is occurring. The 
address that the program submits to the MMU is called the linear address. 
The MMU translates the linear address to the physical address. Page transla
tion is described in the chapter entitled "The 80386DX and SX Microproces
sors." 

Compared to the other solutions described below, page translation has the 
benefit that it does not require special address decoders or DRAM controllers. 

324 



Chapter 15: ROM Memory 


The limitations of this approach are that the microprocessor must be an 80386 
or higher (the 80286 does not have a paging unit), it must be running in pro
tected mode (page translation is not available in real mode) and it must be in 
virtual-8086 mode (to run code in ROM that was written for real mode). The 
following solutions do not have these limitations. 

Shadow RAM and ROM Occupy Same Address Space 

Two devices occupying the same address space is a unique situation. Any 
memory read within the ROM's assigned address range accesses the system 
ROM, while any memory write within the same range accesses the top 128KB 
of the RAM, known as the shadow RAM. 

After POST has verified that RAM is working correctly, the complete contents 
of the 128KB system ROM is copied to RAM memory. This is accomplished by 
performing a read from each location in the OOOEOOOOh to OOOFFFFFh address 
range followed immediately by a write to the same location. In this manner, 
the data is read from the ROM location and written to the RAM location with 
the same address. Reading and writing every address in the range places a 
complete copy of the system ROM in the shadow RAM. 

After the copy has been completed, the programmer uses an I/O control regis
ter to disable the ROM address decoder and make the shadow RAM read
only (as if it were ROM). Any subsequent calls to the BIOS or interrupt service 
routines now access the shadow RAM rather than the ROMs. The substan
tially faster RAM access time causes the BIOS routines to be executed more 
quickly from this point forward and can result in substantial speed increases 
when running applications programs that call the BIOS routines frequently. 

Double Mapping ROM and Shadow RAM Address Space 

This method of implementing shadow RAM designates an area at the very top 
of the microprocessor's address map (just below 16MB or 4GB) for the 
shadow RAM. After the ROM is copied into this RAM area, all addresses that 
are intended for ROM are redirected to the location in RAM where the ROM 
contents have been copied. 

After the POST has verified that RAM is working correctly, the complete con
tents of the 128KB system ROM is copied to shadow RAM. This is accom
plished on an 80286- or 80386SX-based system by performing a read from 
each location in the OOOEOOOOh to OOOFFFFFh address range followed immedi

325 



ISA System Architecture 


ately by a write to the new location in the OOFEOOOOh to OOFFFFFFh range. 
Similarly, a system based on the 80386DX or higher processor would do the 
writes to the new location in the FFFEOOOOh to FFFFFFFFh range. In this man
ner, the data is read from the ROM location and written to the shadow RAM 
location. Reading and writing every address in the ranges places a complete 
copy of the system ROM in the shadow RAM. 

After the copy has been completed, the programmer uses an I/O control regis
ter to modify the operation of the ROM address decoder so that the ROMs are 
never chip-selected again and all accesses within the ROM address range now 
accesses the shadow RAM instead. The shadow RAM is also write-protected 
so that it is read-only (as if it were ROM). Any subsequent calls to the BIOS 
routines now access the 32-bit shadow RAM rather than the ROMs. The sub
stantially faster RAM access time causes the BIOS routines to be executed 
more quickly from this point forward and results in substantial speed in
creases when running applications programs that call the BIOS routines fre
quently. 

Recovering Unused ROM Address Space 

Although IBM reserved ranges of addresses in the first megabyte of memory 
for use by ROMs (boot ROM, option ROM and device ROMs), those ranges of 
addresses are not always fully occupied. For example, 128KB of space is re
served for device ROMs, but many systems have only a couple of small (2KB 
or so) device ROMs in them. That leaves a lot of unused address space. Often 
it is possible to map RAM into the addresses that were reserved for ROM so 
that MS-DOS and other real-mode applications can access more than the 
640KB of RAM that IBM specified. 

To determine if an address is actually assigned to a ROM, a system software 
program will do a hot memory search, writing and reading values to and 
from memory. If a location can be altered, it is assumed to be RAM. If the lo
cation cannot be altered, it is assumed to be either vacant or ROM. If the loca
tion and its neighboring locations contain FFh (all ones), it is assumed to be an 
address that is vacant because the ISA data bus floats high (to ones) when no 
device is driving it. The vacant addresses can be reassigned to RAM. The as
sumptions that the memory search makes are not foolproof and the memory 
search can cause the system to crash if a memory-mapped I/O location is ac
cessed. If the system survives the memory search without crashing, RAM will 
be mapped to the vacant ROM addresses. 

326 



Chapter 15: ROM Memory 


Real mode programs that were written to run on an 8086 or 8088 microproces
sor only intend to produce addresses from OOOOOh to FFFFFh. In order for 
these programs to access more than 640KB of RAM, the RAM must have ad
dresses below 100000h OMB), from the program's perspective. 

Using page translation and virtual-8086 mode, the system software can pro.,. 
vide an exclusive 1MB linear address range for the real-mode program to use. 
The program believes it is accessing the first physical megabyte of RAM, but 
in fact the paging unit translates the linear address to a physical address that 
may be anywhere in the microprocessor's physical address range. 

If the system uses one of the other ROM shadowing techniques that is com
patible with the 80286 microprocessor and real mode, the unused ROM ad
dress space can still be recovered. The DRAM. add)"ess decoder is 
programmed to map a block (usually 16KB at a time) of RAM into the unused 
ROM addresses. The mapped RAM is then tested at these new addresses to 
ensure that the memory search was not fooled when it found the vacant loca
tions. 

These blocks of ROM addresses that are freed up so that real-mode applica
tions can access more RAM are called upper memory blocks (UMB). 

Along with accessing upper memory blocks, real mode applications that were 
written for the 80286 microprocessor can access almost 64KB of extended 
memory in the higH memory area (HMA). HMA addresses start at 1MB. See 
the section entitled"Accessing Extended Memory in Real Mode" in the chap
ter entitled "The 80286 Microprocessor" for information on accessing the 
HMA. 

32KB System Board ROM Configuration 

In figure 15-5, the ROMs are divided into two pairs, one of which responds to 
the address range from EOOOOh toEFFFFh and the other to the address range 
from FOOOOh to FFFFFh. Each of these pairs consists of two 32KB ROMs desig
nated as the upper or odd ROM and the lower or even ROM. 

The upper or odd ROM is called the upper ROM because it is connected to the 
upper data path, D[15:8j. It is also called the odd ROM because all of the odd
addressed ROM locations are within this ROM. This is evident because it is 
connected to the upper data path and the microprocessor always communi
cates with odd-addressed locations over the upper data path. 

327 



ISA System Architecture 


The lower or even ROM is called the lower ROM because it is connected to the 
lower data path, D[7:0]. It is also called the even ROM because all of the even
addressed ROM locations are within this ROM. This is evident because it is 
connected to the lower data path and the microprocessor always communi
cates with even-addressed locations over the lower data path. 

When the programmer loads data into the ROMs using the ROM program
mer, a utility program is first executed that divides the information in half. All 
of the information to be stored in even addresses is programmed into the 
lower or even ROM, while all information to be stored in odd-addressed loca
tions is programmed into the upper or odd ROM. 

Whenever an address in the range from EOOOOh to EFFFFh is detected by the 
system board ROM address decoder, the EXXXXCS# line (chip-select for 
EOOOOh to EFFFFh range) is asserted by the decoder. This selects the EXXXX 
ROM pair. The two ROMs then use the lower part of the address from the mi
croprocessor, A[15:1], to select one of 32K locations in each of the two ROMs. 
The system's bus control logic asserts the memory Read command line 
(MROC#) which is connected to the Output Enable pin (OE#) on both ROMs. 
Each of the ROMs outputs the byte from the addressed location onto the data 
bus when OE# and CE# are both asserted. The lower or even ROM outputs 
the byte from the even address onto the lower data path, 0[7:0], while the 
other ROM outputs the byte from the next sequential odd address onto the 
upper data path, 0[15:8]. Even though the FXXXX ROMs also see their OE# 
pins asserted, they will not interfere with the transaction because their CE# 
pins are deasserted. The FXXXX ROM pair responds to the address range 
from FOOOOh to FFFFFh. 

328 



Chapter 15: ROM Memory 


Figure 15-5. System Board ROM Configuration with 32KB ROMs 

64KB System Board ROM Configuration 

In figure 15-6, there are two 64KB ROMs that respond to the address range 
from EOOOOh to FFFFFh. They are designated as the upper or odd ROM and 
the lower or even ROM. This designation is explained in the previous section. 

Whenever an address in the range from EOOOOh to FFFFFh is detected by the 
system board ROM address decoder, the ROMCS# line (ROM chip-select) is 
asserted by the decoder. This selects the ROM pair. The two ROMs then use 
the lower part of the address from the microprocessor, A[16:1], to select one of 
64K locations in each of the two ROMs. The system's bus control logic asserts 
the memory read command line (MRDC#) which is connected to the output 
enable pin (OE#) on both ROMs. Each of the ROMs outputs the byte from the 
addressed location onto the data bus when OE# and CE# are both asserted. 
The lower or even ROM outputs the byte from the even address onto the 

329 



ISA System Architecture 


lower data path, D[7:0], while the other ROM outputs the byte from the next 
sequential odd address onto the upper data path, D[15:8]. 

015:08 J 
ROMCS# 

-,
07:00 J 

MRDC# 

Figure 15-6. System Board ROM Configuration with 64KB ROMs 

ROMs on ISA Cards (Device ROMs) 

As already pointed out, the system board ROM contains: 

• the POST for the standard devices. 
• the BIOS routines for the standard devices. 
• the interrupt service routines for the standard I/O devices. 

A card designed to be installed in an ISA slot also needs to be tested during 

POST and may require a BIOS routine and an interrupt service routine. The 

card designer can include a ROM on the ISA card and place its self-test pro

gram, BIOS routine and interrupt service routine in it. This is called a device 

ROM. 


ISA systems provide a way to automatically execute the ISA card's self-test 

during POST and to automatically update the interrupt table in RAM to point 

to the card's BIOS routine and interrupt service routine. 

During the POST, a process called ROM scan is performed. Starting at mem

ory address COOOOh and going through DFFFFh, the POST program scans for 

device ROMs. The process is simple: 


330 



Chapter 15: ROM Memory 


1. 	 The POST reads two bytes starting at memory location COOOOh. If the byte 
from COOOOh is 55h and the byte from C0001h is AAh, then the POST has 
found the signature of a device ROM on an ISA card. 

2. 	 POST reads the next byte from location C0002h. This location contains the 
length of the device ROM in increments of 512 bytes. As an example, a 
2KB device ROM would have a 04h in its third location (4 x 512 = 2048, or 
2KB). 

3. 	 Knowing the start address and the length of the device ROM, the POST 
then checksums it to ensure it can be read from properly. Checksumming 
is described in the section entitled "Testing." The result should be zero. If 
it isn't, a checksum error is displayed on the screen along with the seg
ment start address. As an example: 

CHECKSUM ERROR COOO:OOOO is interpreted as a device ROM checksum 
error for an ISA card whose device ROM starts at memory address 
COOO:OOOO (segment:offset format). 

4. 	 If the ROM checksum is OK, the POST program does a "call" to the fourth 
location in the device ROM, in this case, location C0003h. This is the start 
address of the initialization code, or program, in the ROM. A "call" is 
similar to a jump, except that by using a call, the system remembers where 
to return to when the device ROM program is finished. 

5. 	 The initialization code: 

• 	 Runs a self-test on the card. 
• 	 Writes the start address of its BIOS routine into the proper slot in 

the interrupt table. 
• 	 Writes the start address of its interrupt service routine into the 

proper slot in the interrupt table. 
• 	 Initializes any programmable I/O registers on the card to set it up 

for normal operation. 
• 	 Returns to the POST program. 

In this way, the device ROM is automatically detected and tested, and its 
BIOS and interrupt service routine pointers are installed in the interrupt table. 

The POST then adds 2K (0800h) to the start address, COOOOh, and checks for 
another ROM starting at C0800h. If another device ROM is detected, the proc
ess is repeated. This process is repeated at 2K address intervals up to location 
DFFFFh, the end of the ROM Scan address range. 

331 



ISA System Architecture 


When the ROM scan is completed, the POST has automatically detected, 
tested and executed the initialization programs for every installed ISA card 
that has a device ROM on it. 

332 



Part 3 

The Industry 

Standard 


Architecture 

Part 1, liThe System Kernel," covered the mechanism utilized by microproces
sors in the Intel X86 family when communicating with memory and I/O de
vices. This included the 80286 and 80386 microprocessors, as well as the 
kernel support logic necessary to interface these processors to 8-, 16-, and 32
bit devices. Part 2, "Memory Subsystems," provided detailed descriptions of 
RAM, ROM and cache memory. Together, the first two parts provide the 
background necessary to an understanding of the ISA architecture. 

Part 3, liThe Industry Standard Architecture," examines all ISA-specific as
pects of system design. It includes the following chapters: 

• Chapter 16: ISA Bus Structure 
• Chapter 17: Types of ISA Bus Cycles 
• Chapter 18: Interrupt Subsystem 
• Chapter 19: Direct Memory Access (DMA) 
• Chapter 20: ISA Bus Masters 
• Chapter 21: RTC and Configuration RAM 
• Chapter 22: Keyboard/Mouse Interface 
• Chapter 23: Numeric Coprocessors 
• Chapter 24: ISA Timers 



Chapter 16: ISA Bus Structure 


Chapter 16 
The Previous Chapter 

The previous chapter covered the various types of ROM memory encountered 
in ISA systems. This included PROM, MROM, EPROM, EEPROM and flash 
EEPROM. In addition, the subjects of ROM diagnostics, shaqow RAM, dou
ble-mapping, and device ROMs were covered. 

This Chapter 

This chapter provides a detailed description of the ISA bus. All signals on the 
expansion bus are fully defined, as well as the related system board logic. 

The Next Ghapter 

The next chapter, "Types of ISA Bus Cycles," provides a detailed description 
of bus cycles as they appear on the ISA expansion bus. 

Introduction 

The expansion bus in ISA machines is frequently referred to as the I/O bus. 
This is incorrect. Both memory and I/O cards are interfaced to the system 
through the expansion bus. Figures 16-1, 16-2 and 16-3 illustrate the 8- and 16
bit ISA expansion bus connectors. The following sections describe the capa
bilities provided by the ISA interface. The characteristics of the 8-bit ISA slots 
were defined in the original IBM Pc. The IBM PCIAT added additional func
tionality. The signals have been grouped by function and are described in the 
following sections .. 

335 



ISA System Architecture 


Mounting Bracket 

OVdc B01 A01 CHCHK# 
RESET B02 A02 SD7 
+5Vdc 

IRQ2/1RQ9
-5Vdc 
DRQ2

-12Vdc 

B03 
B04 
B05 
B06 
B07 

A03 
A04 
A05 
A06 
A07 

SD6 
SD5 
SD4 
SD3 
SD2 

NOWS# B08 A08 SD1 
+12Vdc 809 A09 SDO 

OVdc 810 A10 CHRDY 
SMWTC# 811 A11 AEN 
SMRDC# 812 A12 SA19 

IOWC# B13 A13 SA18 
IORC# B14 A14 SA17 
DAK3# B15 A15 SA16 
DRQ3

DAK1# 
B16 
B17 

A16 
A17 

SA15 
SA14 

DRQ1
REFRESH# 

818 
B19 

A18 
A19 

SA13 
SA12 

BCLK B20 A20 SA11 
IR07 821 A21 SA10 
IR06 B22 A22 SA9 
IR05 
IRQ4
IRQ3

DAK2# 

B23 
B24 
B25 
B26 

A23 
A24 
A25 
A26 

SA8 
SA7 
SA6 
SA5 

TC B27 A27 SA4 
BALE B28 A28 SA3 

+5Vdc B29 A29 SA2 
OSC 830 A30 SA1 
OVdc 831 A31 SAO 

Figure 16-1. The 8-bit Portion of the ISA Bus 

M16# 
1016# 
IRQ10
IRQ11
IRQ12
IRQ15
IRQ14 
DAKO# 
DRQO

DAK5# 
DRQ5

DAK6# 
DRQ6

DAK7# 
DRQ7
+5Vdc 

MASTER16# 
OVdc 

D01 
D02 
D03 
D04 
D05 
D06 
D07 
D08 
D09 
D10 
D11 
D12 
D13 
D14 
D15 
D16 
D17 
D18 

C01 
CO2 
C03 
C04 
C05 
C06 
C07 
C08 
C09 
C10 
C11 
C12 
C13 
C14 
C15 
C16 
C17 
C18 

SBHE# 
LA23 
LA22 
LA21 
LA20 
LA19 
LA18 
LA17 
MRDC# 
MWTC# 
SD8 
SD9 
SD10 
SD11 
SD12 
SD13 
SD14 
SD15 

Figure 16-2. The 16-bit Portion of the ISA Bus 

336 



/L 

Chapter 16: ISA Bus Structure 


8-bit section of ISA Connector 16-bit section of ISA Connector .. ... . 

HI 7/ 

/ 
~ ) ~J ~) ~) ,) ~J 1') ~ Ji') JI' ~ ) ~ J I' ) I' 

M16#", 

1016# 

SBHE# 

MRDC#", , 
MWTC#". 

,

LA23:LA17 

MASTER16( 

SD1S:SOS:: 

DROO, DRQS:DRQ7.. 

OAKO#, OAK5#:DAK7#' 

IRQ10:IRQ12, IRQ14:IRQ15 .. 
,

S07:S0o.. 


AEN"" 


IRQ3:IRQ7, IRQ9". 


TC'" 


ORQl :DRQa., 


DAK1#:DAK3#" 

SMRDC# 

SMWTC# 

IORC# 

IOWC# 

SA19:SAJl 

BALE 

RESDRV 

BCLK 

OSC 

CHRDY 
NOWS# 

REFRESH# 

CHCHK# 

Figure 16-3. The ISA Connector 

337 



ISA System Architecture 

Address Bus 

When the CPU initiates a bus cycle, it places the address on the address bus 
during address time (Ts).The address is visible to all installed ISA cards and 
to the logic on the system board. In other words, the current bus master can 
communicate with any memory or I/O slave in the system. Table 16-1 pro
vides a description of the signals involved in addressing devices on the ISA 
expansion bus. 

Table 16-1 The ISA Address-Related Si~na s 
Signal Function 

SA[19:0] System address bus. This is the microprocessor's latched address 
bus. The SA bus only latches the lower 20 bits of the address (A[19:0D 
being emitted by the microprocessor. The address for a bus cycle be
gins to appear on the SA bus at the rising (leading) edge of BALE and 
is latched at the trailing edge of BALE (buffered address latch en
able). 

LA[23:17] Latchable address bus. These signals are a buffered version of the 
upper bits on the microprocessor's address bus. During address 
pipelining, the address for the next bus cycle is present on this bus 
prior to the beginning of the actual bus cycle. When an ISA expansion 
board requires an early address decode, the LA bus should be de
coded rather than the SA bus. The address for a bus cycle does not 
begin to appear on the SA bus until the midpoint of the ISA's address 
time. Decoding the LA bus allows the expansion board address de
coder to start the address decode process early, ensuring that the ad
dressed device will be ready to complete the bus cycle earlier than if 
its chip-select had been decoded from the SA bus. Designers use this 
method to allow boards employing relatively slow memory devices 
to respond to the microprocessor with fewer wait states. 

SBHE# System bus high enable. Also see the section on the data bus steer
ing logic. The 80286 or 80386SX microprocessor asserts BHE# during 
an 8-bit transfer with an odd address and during a 16-bit transfer 
starting at an even address. When asserted, it signals that the upper 
half of the data bus, D[15:8], will be used to transfer a byte between 
the microprocessor and an odd address. 

338 



Chapter 16: ISA Bus Structure 

Data Bus 
During a bus cycle's data time (Tc), data is transferred over the data bus. The 
ISA data bus consists of two 8-bit data paths: SD[7:0] and SD[15:8]. Table 16-2 
describes these paths. 

Table 16-2 The [SA Data Bus Paths 
Signal Function 

SD[7:0] 	 System data bus, lower path. During transfers with 16-bit devices, 
the lower data path is used to transfer data between the current bus 
master and even-addressed locations. During transfers with 8-bit 
devices, the lower data path is used to transfer data between the cur
rent bus master and both even and odd-addressed locations. This 
data path is available on all 8- and 16-bit ISA expansion slots. 

SD[15:8] 	 System data bus, upper path. During transfers with 16-bit devices, 
the upper data path is used to transfer data between the current bus 
master and odd-addressed locations. During transfers with 8-bit de
vices, the upper data path is not used. This data path is available only 
on 16-bit ISA expansion slots. 

Bus Cycle Definition 
When the system board processor initiates a bus cycle, it places the bus cycle 
definition on its bus cycle definition lines during address time (Ts). The state 
of these lines must be decoded by the system board's bus control logic to de
termine the type of bus cycle in progress. The bus control logic then asserts 
the appropriate command line to indicate the bus cycle type to all ISA expan
sion cards. Table 16-3 defines the setting of the microprocessor's bus cycle 
definition lines for the various types of bus cycles. 

Table 16-3. Bus elide Definition Line Decodin~ 
Microprocessor's Bus 

Cycle Definition Signals ISACommand 
Mil0# SO# S1# Bus Cycle Type Lines Asserted 

0 0 0 Interrupt Acknowledge none 
0 0 1 I/O Write IOWC# 
0 1 0 I/O Read IORC# 
1 0 0 Halt or Shutdown none 
1 0 1 Memory Write MWTC# and SMWTC# 
1 1 0 Memory Read MRDC# and SMRDC# 

339 



ISA System Architecture 

The ISA command lines are described in table 16-4. 

Table 16-4. The ISA Command Lines 
Signal Function 

SMRDC# System memory read command. This signal is asserted by the system 
board logic during a memory read bus cycle that addresses a location 
in the lower 1MB memory address space (OOOOOOh to OFFFFFh). This 
signal is connected to the 8-bit portion of a118- and 16-bit ISA expan
sion connectors. 8-bit memory cards should use this command line as 
an enable to decode the memory address on the address bus. This 
prevents 8-bit memory cards from being selected when a memory 
address greater than 1MB is on the address bus. Also see MRDC#. 

SMWTC# System memory write command. This signal is asserted by the sys
tem board logic during a memory write bus cycle that addresses a 
location in the lower 1MB memory address space (OOOOOOh to 
OFFFFFh). This signal is connected to the 8-bit portion of all 8- and 16
bit ISA expansion connectors. 8-bit memory cards should use this 
command line as an enable when decoding the memory address on 
the address bus. This prevents 8-bit memory cards from being se
lected when a memory address greater than 1MB is on the address 
bus. Also see MWTC#. 

IOWC# liD write command. This signal is asserted by the system board logic 
during an I/O write bus cycle. 

IORC# liD read command. This signal is asserted by the system board logic 
during an I/O read bus cycle. 

MRDC# The memory read command line is asserted by the system board 
logic during a memory read bus cycle. 16-bit memory cards should 
use this signal as an enable when decoding the memory address on 
the address bus. This prevents 8-bit memory cards from being se
lected when a memory address greater than 1MB is on the address 
bus. Also see SMRDC#. 

MWTC# The memory write command line is asserted by the system board 
logic during a memory write bus cycle. 16-bit memory cards should 
use this signal as an enable when decoding the memory address on 
the address bus. This prevents 8-bit memory cards from being se
lected when a memory address greater than 1MB is on the address 
bus. Also see SMWTC#. 

340 



Chapter 16: ISA Bus Structure 

Bus Cycle Timing 

The timing for an ISA bus cycle is derived from BCLK. Table 16-5 describes 
the ISA bus signals related to bus cycle timing. 

Table 16-5 Bus Cycle Timin~ Si~na s 

Signal Function 


BCLK 	 Bus clock. The BCLK signal is derived from the input clock to the 
system board microprocessor. ISA bus is based on the version of the 
IBM PCI AT that was based on an 80286 microprocessor running at a 
speed of 8MHz (internal PCLK speed). The microprocessor's double
frequency clock input, CLK2, is divided by two to yield an 8MHz 
signal. In order to synchronize it to each bus cycle generated by the 
microprocessor, the BCLK generator on the system board monitors 
the SO# and Sl# outputs of the microprocessor. The falling edge of 
either of these signals marks the start of a bus cycle and is used to 
synchronize the 8MHz BCLK supplied to the ISA expansion cards. 
Since BCLK is re-synchronized at the leading edge of every bus cycle, 
it will appear to jitter when viewed with an oscilloscope. One cycle of 
BCLK defines the duration of address time or data time on the ISA 
bus. 
In later ISA machines, the BCLK speed is usually 8.33MHz. This 
dates from the introduction of the first 25MHz 80386 machines. The 
designers of these machines simply divided the 50MHz CLK2 by six 
to yield a BCLK speed of 8.33MHz. Some problems were anticipated 
due to the slightly faster BCLK and the resulting shorter duration of 
address time and data time on the ISA bus, but few actual problems 
were encountered. 

341 



ISA System Architecture 

Table 16-5. Bus Cycle Timing Signals, continued 
Signal 	 Function 

BALE 	 Buffered address latch enable. On the leading, or rising, edge of 
BALE, the microprocessor's address bus (A[19:0D is gated through 
the system board's Address Latch and through the bus control logic 
onto the SA bus (SA[19:0D. On the trailing edge of BALE, the address 
latch and the bus control logic hold the current address on the SA bus 
for the duration of the current bus cycle. 
The falling edge of BALE should be used to by 16-bit ISA memory 
boards to latch the result of the decoded LA bus address (LA[23:17]) 
and hold it for the duration of the current bus cycle. 
BALE is deasserted and reasserted (pulsed) for every bus cycle that 
the bus control logic runs. If address pipelining is enabled, A[19:0] is 
not gated through the address latch to SA[19:0] on the second and 
subsequent ISA cycles when the bus control logic is running multiple 
ISA bus cycles to satisfy one microprocessor bus cycle. 
BALE is asserted (high) constantly whenever the system's microproc
essor is not the current bus master. 

CHRDY 	 Channel ready. When an ISA expansion board requires more wait 
states than would normally be supplied. by the default ready timer on 
the system board, it should deassert CHRDY when its address de
coder recognizes an address and the appropriate command line 
(SMRDC#, SMWTC#, MRDC#, etc.). This prevents the default ready 
timer on the system board from timing out and issuing READY# to 
the microprocessor until CHRDY is asserted again by the currently-
addressed ISA device. As long as the currently-addressed ISA card 
holds CHRDY deasserted, the microprocessor's READY# input is 
kept deasserted, causing 'wait states to be inserted in the bus cycle. 
When the currently-addressed device is ready to end the bus cycle, it 
allows CHRDY to become asserted again (CHRDY has a pull-up re
sistor on the system board), enabling the default ready timer to assert 
t~e microprocessor's READY# input. When the microprocessor sam
ples its READY# input asserted at the end of the current data time, it 
ends the bus cycle. 

342 



Chapter 16: ISA Bus Structure 


Table 16-5. Bus Cycle Timing Signals, continued 

NOWS# No wait state. When an 8- or 16-bit ISA memory expansion board 
requires zero wait states rather than the number that would normally 
be supplied by the default ready timer on the system board, it should 
assert NOWS# when its address decoder recognizes an address and 
the appropriate command line (SMRDC#, SMWTC#, MRDC#, etc.). 
This causes the default ready timer to assert READY# immediately. 
This signals to the microprocessor that the device is ready to end the 
bus cycle. NOWS# can be used to shorten an access to an 8-bit card 
from the default of four wait states down to one wait state, or an ac
cess to a 16-bit memory card from one to zero wait states. Accesses to 
16-bit I/O cards may not be shortened from the default of one wait 
state, but may be lengthened using the CHRDY signal. 

Device Size 

When a 16-bit slave's address decoder detects an address within its assigned 
range, it not only should assert the device's chip-select line, but should also 
assert the appropriate 16-bit size line. Refer to table 16-6. An asserted level on 
either of the 16-bit size lines informs the current bus master that it is commu
nicating with a device that is connected to both data paths, SD[7:0] and 
SD[15:8]. 

If neither of these signals is asserted during a bus cycle, the bus master is 
communicating with an 8-bit device and all communications must take place 
over the lower data path, SD[7:0]. When necessary, the system board's data 
bus steering logic is automatically enabled by the bus control logic to route the 
data over the correct data path. 

The device size lines (M16# and 1016#) control these aspects of the bus control 
logic: 

1. ISA bus cycle timing, including: 
• whether the command lines are asserted early or are delayed, and 
• the number of default wait states 

2. Bus sizing, including: 
• data bus steering, and 
• the number of ISA bus cycles that must be run 

343 



ISA System Architecture 


ISA bus cycle timing is described in detail in the next chapter. Bus sizing is 
described in detail in the chapters entitled "The 80286 System Kernel: The 
Engine" and "The 80386 System Kernel." 

T bl 166 Th 16S· 

Signal Function 


a e - e S·lze l~naII"mes 

M16# 	 Memory size 16. This signal is generated by a 16-bit memory expan
sion card when it recognizes it is being addressed. M16# tells the data 
bus steering logic that the addressed memory device is capable of 
communicating over both data paths. When accessing an 8-bit mem
ory device, the M16# signal line remains deasserted, indicating to the 
data bus steering logic that the currently addressed device is an 8-bit 
memory device capable of communicating over the lower data path 
only. When asserted, M16# also pre-conditions the default ready 
timer on the system board to insert one wait state into the bus cycle 
unless NOWS# is asserted. If NOWS# is asserted, zero wait states are 
inserted in the bus cycle. 

1016# 	 1/0 size 16. This signal is generated by a 16-bit ISA I/O expansion 
board when it recognizes that it is being addressed. 1016# provides 
the same function for 16-bit I/O expansion devices as the M16# signal 
provides for 16-bit memory devices. 1016# also pre-conditions the 
default ready timer on the system board to insert one wait state into 
the bus cycle. 

Reset 

When the unit is first powered up, the RESDRV (reset drive) signal on the ISA 
bus remains asserted until the power supply voltages have stabilized. 
RESDRV is also asserted when power has dropped below an acceptable level. 
When asserted, RESDRV has two effects on the installed ISA cards: 

• 	 The cards are prevented from doing anything until the power has stabi
lized and RESDRV has become deasserted. 

• 	 Forces all of the installed ISA cards to a known, initialized state to ensure 
that they always begin operating exactly the same way every time the unit 
is powered up. 

344 



Chapter 16: ISA Bus Structure 


DMA 


Figure 16-4 illustrates the system board logic and ISA bus signals related to 
DMA. ISA systems employ two 8237 DMA controllers cascaded together to 
provide seven DMA channels for use by I/O cards. The signals associated 
with DMA operations are listed and defined in table 16-7. For a detailed de
scription of DMA, see the chapters entitled "Direct Memory Access (DMA)" 
and urSA Bus Masters." 

Table 16-7. The ISA DMA Si~nal Lines and Associated System Board Lo~ic 
Signal Function 

DRQ[3:0] DMA request for channels 0 through 3 and 5 through 7. DRQ4 isn't present on the 
DRQ[7:51 ISA expansion Bus because it's used by the Slave 8237 DMA controller to request 

the use of the buses from the master 8237. The other DMA request lines are used by 
I/O devices to request that a block data transfer between the I/O device and mem
ory be performed by the DMAC. DRQ[3:1] are connected to all 8- and 16-bit ISA 
expansion slots, while DRQ[7:5] and DRQO are only connected to the 16-bit ISA 
expansion slots. 

DAK#[3:0] DMA acknowledge for channels 0 through 3 and 5 through 7. DAK4# isn't present 
DAK#[7:5] on the ISA expansion bus because it's used by the master 8237 DMAC to inform the 

slave 8237 DMAC that it has been granted the use of the buses. When a DMA chan
nel has possession of the buses, it responds to a DMA request (DRQx) by asserting 
the corresponding DMA acknowledge line (DAKx#), along with either the I/O 
Read or I/O Write command line (lORC# or IOWC#). This combination of DAKx# 
and IORC# or IOWC# selects the I/ 0 device that initiated the request, allowing it to 
transfer a byte (for the slave DMAC) or a word (for the master DMAC) between 
itself and memory. 

TC Transfer complete. Asserted by the master or slave DMAC when the word or byte 
transfer count for a DMA channel has been exhausted. 

AEN Address enable. Asserted when one of the system board's DMACs (master or slave) 
has been granted the buses. When asserted, AEN prevents the I/O devices from 
responding to the I/O command lines. The DMAC has placed a memory address on 
the address bus (not an I/O address) but it has asserted one of the I/O command 
lines. 

MASTERl6# Asserted by a 16-bit ISA bus master expansion board when it has been granted the 
buses. On the system board, an asserted level on MASTERl6# causes the direction 
of the bus buffers to be reversed so the ISA bus master expansion card can drive 
addresses and bus cycle information onto the ISA bus and into the system board. 
The asserted level on MASTERI6# also causes the system board to deassert AEN, 
thereby allowing the I/O devices to respond to the ISA command lines. This en
ables the bus master card to address any device on the system board and any device 
located on the ISA bus. 

345 



ISA System Architecture 


TC 

TC 

Slave 

DMA 


Controller 


DRQ? 

DRQ6 

DRQ5 

DRQ4 

I I o r 
5 ~ 

Master 

DMA 


Controller 


HOLD s:: 
HLDA 0" 

o 
AEN "'0 o 

o 
CD 
CIJ 
CIJ o 
""'" 

Figure 16-4. The ISA DMA Signals and Associated System Board Logic 

346 



Chapter 16: ISA Bus Structure 


Interrupts 

Figure 16-5 illustrates the interrupt support logic on the system board and the 
interrupt-related signals on the ISA bus. Two Intel 8259 programmable inter
rupt controllers (PICs) are located on the system board. When a device on the 
ISA bus requires servicing by the system board microprocessor, it should as
sert its respective interrupt request (IRQ) line to inform the system board mi
croprocessor. A detailed description of interrupts is located in the chapter 
entitled "Interrupt Subsystem." Table 16-8 lists the ISA interrupt request lines 
and the 1/0 devices that normally use them. The assignments of system inter
rupt request lines that are not on the ISA connector are shown in table 16-9. 

r:able 16-8 ISA BIt equest L· sSlgnmenus n errupJtR me A . 

Interrupt Line Device usually assigned to 

IRQ3 Serial port 2 
IRQ4 Serial port 1 
IRQ5 Parallel port 2 
IRQ6 Floppy disk interface 
IRQ7 Parallel port 1 
IRQ9 none (named IRQ2 on PC and PC/XT) 
IRQ10 none 
IRQ11 none 
IRQ12 Mouse interface 
IRQ14 Hard disk interface 
IRQ15 none 

A .-
Interrupt Line Device assigned to 

IRQO System timer 
IRQ1 Keyboard interface 
IRQ2 Cascade interrupt from slave PIC 
IRQ8 Real time clock 
IRQ13 Numeric coprocessor 

r:able 16 9 Interrupt Request L·me sSlgnment, L"mes Notan ISABus 

347 



ISA System Architecture 

ISA slots 

System I-~=-++-H-++--+-+++-+-.....,
Timer 

Micro 
Key IRQ1 

board 
Interface 

Serial 
Port 

1 IR4 

IRS 

IR6 
Floppy IR7Disk 

Parallel 
Port 

IRQ7 

1 
IRO 

IR1 

Real 
Time IRQ8 

IR2 

IR3 
Clock 

IR4 

IRS 

IR6 

Mouse IR7 

Bus 
Cycle S1# 
Type 

DecoderIRQ1 
Slave 8259 

Programmable 
I nterrupt Controller 

Coprocessor 

Figure 16-5. The ISA Interrupt Signals and Associated System Board Logic 

348 



Chapter 16: ISA Bus Structure 


Error Reporting Signal 

The ISA expansion bus signal line associated with error reporting is described 
in table 16-10. Figure 16-6 illustrates the relationship between the ISA bus 
CHCHK# signal and the system board logic. 

- S''Iabie 16 10 The [SA Error Reportmf( If(na 
Signal Function 

CHCHK# Channel or liD check. This signal is asserted by an ISA expansion 
board to signal an error condition to the microprocessor. An NMI 
interrupt is issued to the microprocessor if NMI interrupts have 
been enabled (bit 7 of port 70h is a 0) and if recognition of channel 
check has been enabled (bit 3 of port 61h is a 0). 

Watchdog Timer Timeout# 

Parity Check# 

J-----i NMI 

Port 61h 

Bit 2 


Port 70h 

Bit 7 


Micro 
CHCHK# 

Channel Check 
Enable/Disable 

Gate 
Port 61h 

Bit 3 

Figure 16-6. The Channel Check Logic 

349 



ISA System Architecture 

Miscellaneous Signals 

The remaining signals on the ISA bus are listed and described in table 16-11. 

1611 M· II'Iable - ISCC aneous ISAS·l~na 5 

Signal Function 

REFRESH# This signal is asserted whenever the system board refresh logic is 
executing a DRAM refresh bus cycle. See discussion of DRAM re
fresh in the chapter entitled "RAM Memory: Theory of Operation." 

OSC Oscillator. This is a free-running 14.31818MHz clock that may be 
used by ISA expansion boards. OSC runs at a multiple of the color 
burst frequency and was used by video display adapter cards. Ad
ditional information about OSC is in the chapter entitled /lISA Tim
ers." 

350 



Chapter 17: Types of ISA Bus Cycles 


Chapter 17 
The Previous Chapter 

The previous chapter, "The ISA Bus Structure," provided a detailed descrip
tion of all of the signals on the ISA expansion bus and their associated system 
board support logic. 

This Chapter 

This chapter provides a detailed description of the types of transfers per
formed over the ISA expansion bus. 

The Next Chapter 

The next chapter, "Interrupt Subsystem," provides a detailed description of 
the interrupt subsystem found in all ISA machines. 

I ntrod uction 

The fastest bus cycle that can be run by an 80286 or higher microprocessor is a 
O-wait-state bus cycle, with a duration of two PCLK cycles. For the clock
multiplied 486 and Pentium processors, a O-wait-state bus cycle takes two 
ticks of the CLK input to the microprocessor. PCLK may be the same as or 
may be faster than CLK. The clock that is used to synchronize ISA bus trans
fers is called BCLK, or bus clock. The ISA bus is based on the 8MHz version of 
the 80286-based IBM PCIAT. In that machine, BCLK was a copy of PCLK, so 
BCLK ran at 8MHz. 

In later ISA machines, the BCLK speed is up to 8.33MHz. This dates from the 
introduction of the first 25MHz 80386 machines. The designers of these ma
chines simply divided the 50MHz CLK2 by six to yield a BCLK speed of 
8.33MHz. BCLK can run at any frequency up to 8.33MHz, with typical fre
quencies of 8MHz, 8.25MHz and 8.33MHz. A single tick, or cycle, of BCLK is 
therefore 120ns to 125ns in duration. A O-wait-state bus cycle on the ISA bus 
consists of two BCLK ticks, lasting 240ns to 250ns. 

351 



ISA System Architecture 

Note that for simplicity in the rest of this chapter, BCLK is assumed to run at 
8MHz. 

During a bus cycle, a maximum of two bytes may be transferred by using both 
data paths. At this rate, the machine can perform four million (1 second di
vided by 250ns per bus cycle) two-byte transfers per second. This yields a 
maximum transfer rate of 8MB / second. 

The ISA bus allows both 8-bit transfers, for compatibility with the 8-bit ex
pansion boards used in the original IBM PC, as well as 16-bit transfers. The 
following sections describe the basic types of ISA bus cycles. 

Transfers with 8-bit Devices 

The ISA bus cycle types used to communicate with 8-bit devices include: 

• 	 Standard 8-bit device ISA bus cycle - 4 wait states 
• 	 Shortened 8-bit device bus cycle -1, 2, or 3 wait states 
• 	 Stretched 8-bit device bus cycle - more than 4 wait states 

The steps below describe the sequence of events that take place during an 8
bit bus cycle using the default READY# timing and explains how the default 
timing can be either shortened or stretched. Figure 17-1 illustrates an example 
bus cycle. The step numbers in the text that follows corresponds to the num
bered reference points in figure 17-1. 

1. 	 The address being presented by the microprocessor begins to appear on 
the LA bus at the start of address time. This corresponds to the leading 
edge of Ts. If the system board is based on an 80286, 80386 or Pentium mi
croprocessor and address pipelining is enabled, the address may actually 
be present on the LA bus prior to the beginning of the bus cycle (as is the 
case in this example). 16-bit ISA memory expansion cards can use the 
portion of the address on the LA bus to perform an early address decode. 
8-bit ISA expansion cards do not have access to the LA bus and therefore 
cannot perform an early address decode. I/O cards only use the lower 16 
address bits and therefore cannot take advantage of address pipelining ei
ther. 

352 



• • • 
• • • 

Chapter 17: Types of ISA Bus Cycles 


125ns 125ns 125ns 125ns 125ns 125ns 125ns 125ns 
Tc Ts Tc Tc Tc Tc Tc Ts.1,. 	 .1,. 

1 	 1 

BCLK 

LA23:LA171 Xt2 
SBHE#, 


SA19:SAO 
 '(: 

1 

rP 
1 

1 

1~~ 11 	 I 
-~. ~ M16#, [ M16# 1016#1016# 1 

SMROC#, SMWTC#,I 
10RC#,IOWC# 

1 	

'PI 

NOWS# [ 

1CHRDY [ 
1 

Read Data ..0) .... ........... . ......... ...c!ll....

S015:Soo 

Write Data 

S015:SOO' 
 .....:..<f 	 ).. 

Figure 17-1. Standard Access to an 8-bit ISA Device 

2. 	 BALE is asserted halfway through address time, gating the address 
through the system board address latch and through the bus control logic 
onto the SA bus. 

3. 	 If this is a write bus cycle, the microprocessor's output data is gated onto 
the SD bus halfway through address time. It remains on the SD bus until 
half a BCLK cycle into the next bus cycle (halfway through address time 
of the next transfer). 

4. 	 The trailing edge of BALE (at the beginning of data time) causes the sys
tem board address latch and the bus control logic to latch the address be

353 



ISA System Architecture 


ing output by the CPU so it will remain static on the SA bus for the re
mainder of the bus cycle. Also at this time, the addressed device can 
safely complete the decoding process. 

5. 	 If this is a memory transaction (MjIO# from microprocessor is high), then 
at the end of address time, the M16# signal is sampled by the system 
board bus control logic. Since this is a transaction to an 8-bit device, M16# 
is sampled deasserted, and the bus control logic does not assert the com
mand line until halfway through the first data time. During a transfer with 
an 8-bit device, the assertion of the command line is delayed until the 
midpoint of data time to allow more time for address decode before 
command line assertion. (See the section entitled, "Transfers with 16-bit 
Devices" to see when the command lines are asserted early.) 

6. 	 The appropriate command line (SMRDC#, SMWTC#, 10RC# or 10WC#) is 
asserted halfway through data time. The command line remains asserted 
until the end of the bus cycle (end of last Tc). If this is a memory transac
tion, Ml6# is also sampled by the bus control logic halfway through the 
first data time. Since this is a transaction to an 8-bit device, M16# is sam
pled deasserted. The second sample point on M16# gives additional time 
for 16-bit memory devices that failed to assert M16# early enough for the 
first sample point. These devices either did not see LA[23:17] early enough 
to assert M16# by the first sample point, or they are waiting for BALE to 
be asserted before decoding LA[23:17]. 

7. 	 If this is an I/O transaction (MjIO# from microprocessor is low), then at 
the midpoint of the second data time (the first wait state), the 1016# signal 
is sampled by the system board bus control logic. Since this is a transac
tion to an 8-bit device, 1016# is sampled deasserted, indicating that the 
addressed expansion board is an 8-bit device. 

Halfway through the second data time and halfway through each subse
quent data time, the default ready timer on the system board samples the 
NOWS# and CHRDY lines. If both NOWS# and CHRDY are sampled as
serted, the CPU READY# line is asserted and the bus cycle ends on the 
next rising edge of BCLK (the end of the current data time). In this way, 
an ISA board can terminate a bus cycle earlier than the default number of 
BCLK cycles (wait states) by asserting NOWS#. On the other hand, if 
CHRDY is deasserted, the default ready timer ignores NOWS# and inserts 
wait states. (Note that the EISA specification warns that devices should 
not assert NOWS# while deasserting CHRDY, implying that some bus 
controllers may not ignore NOWS# when CHRDY is deasserted.) 

354 



Chapter 17: Types of ISA Bus Cycles 


A bus cycle addressing an 8-bit ISA device defaults to six BCLK cycles 
(four wait states) if the following two conditions are met: 

• 	 the bus cycle isn't terminated earlier by the assertion of NOWS# 
and 

• 	 CHRDY is asserted when sampled during the first half of the last 
data time of the default cycle (first half of the 5th data time). 

This means that the duration of an ISA bus cycle accessing an 8-bit device 
defaults to four wait states unless shortened by NOWS# (to 3, 4, or 5 
BCLK cycles) or lengthened by CHRDY. The default bus cycle ends at the 
trailing edge of the fifth data time. 

8. 	 During a read bus cycle, the microprocessor reads the data on the data 
bus at the end of the last BCLK (Tc) of the bus cycle and the bus cycle is 
then terminated by deasserting the command line (SMRDC#, MRDC#, 
IORC#). When a write bus cycle terminates, the SMWTC# or IOWC# 
command line is deasserted but write data remains on the SD bus until 
halfway through address time of the next bus cycle. This accommodates 
the hold time of the device being written to and doesn't disturb the device 
being addressed in the next bus cycle because the command line for that 
bus cycle hasn't been asserted yet. 

Transfers with 16-bit Devices 

The ISA bus cycle types used to communicate with 16-bit devices include: 

• 	 Standard 16-bit device ISA bus cycle (Memory & I/O) -1 wait state 
• 	 Shortened 16-bit device ISA bus cycle (Memory only) - 0 wait state 
• 	 Stretched 16-bit device ISA bus cycle - more than 1 wait state 

Standard 16-bit Memory Device ISA Bus Cycle 

Figure 17-2 illustrates the timing of a bus cycle on the ISA bus when the mi
croprocessor is communicating with a one-wait-state 16-bit memory device. 
The timing diagram and the following numbered steps illustrate the sequence 
of events that occur during a default ISA 16-bit memory access. Each of the 
numbered steps corresponds to the numbered reference points in figure 17-2. 

1. 	 If the system board is based on an 80286, 80386 or Pentium microproces
sor and address pipelining is enabled, the address is present on the LA 
bus prior to the beginning of the bus cycle. This allows the addressed 

355 



ISA System Architecture 


memory device to start decoding the address early which may speed up 
access. 

2. 	 BALE is asserted halfway through address time. Some 16-bit memory 
devices wait until the rising edge of BALE before decoding the LA lines to 
determine if the address is for them. Also when BALE becomes asserted, 
the lower portion of the address from the processor is transferred through 
the system board's address latch and through the bus control logic onto 
the SA bus. 

3. 	 The addressed memory board asserts M16# as a result of decoding the LA 
lines, indicating to the system board's bus control logic that it is capable of 
handling a 16-bit transfer without data bus steering being performed by 
the steering logic on the system board. 

4. 	 If this is a write bus cycle, the microprocessor's output data is gated onto 
the SD bus halfway through address time and remains on the SD bus until 
half a BCLK cycle into the next bus cycle (half-way through address time 
of the next bus cycle). 

5. At the end of address time, the trailing edge of BALE causes two events to 
take place: 

a) 16-bit ISA memory devices latch the LA lines (or the chip select) 
so the addressed device will not be deselected when the LA lines 
are pipelined before the end of the current bus cycle. 

b) 	 The address latch on the system board and the bus control logic 
latch the lower twenty bits of the address, SA[19:0], so they re
main static on the SA bus for the remainder of the bus cycle. The 
addressed device can safely complete decoding the SA address on 
the bus on the falling edge of BALE. 

356 



Chapter 17: Types of ISA Bus Cycles 


125ns 1 125ns 125ns 125ns I 125ns 
Tc .1l1li( Ts Tc Tc .1 

BCLK 

__~~1~__~~8~__~_ 
LA23:LA17 r T 

--+--' 

MRDC#, MwrC# 

1 
M16# . r 

NOW8# [ 

• ICHRDY [ 
1 

Read Data 

8D15:8DO 
 .. ~ .... ;. dr· 

Write Data 

8D15:8DO 


: : ~'----T--------T----""'--
Figure 17-2. Standard Access to a 16-bit ISA Memory Device 

357 



ISA System Architecture 


6. 	 The system board's bus control logic samples M16# at the end of address 
time to determine if the addressed device can take advantage of the 
MRDC# or MWTC# command lines being asserted immediately. 16-bit 
memory devices see the pipelined address long before 8-bit and I/O de
vices see the address on SA[19:0]. 16-bit memory devices can therefore as
sert M16# very early in the bus cycle. The appropriate command line 
(MRDC# or MWTC#) is asserted at the leading edge of data time if M16# 
was sampled asserted. This command line remains asserted until the end 
of the bus cycle (end of last Tc).If M16# is sampled deasserted, the com
mand line (MRDC# or MWTC#) is asserted halfway through data time. 

7. 	 The system board's bus control logic samples M16# a second time at the 
midpoint of the first data time to determine if data bus steering is neces
sary. Since this is an access to a 16-bit device, no steering is necessary. The 
second sample point on M16# gives additional time for 16-bit memory 
devices that failed to assert M16# early enough for the first sample point. 
These devices either did not see LA[23:17] early enough to assert Ml6# by 
the first sample point, or they are waiting for BALE to be asserted before 
decoding LA[23:17]. Also at the midpoint of the first data time, the default 
ready timer on the system board samples the NOWS# and CHRDY lines. 
If NOWS# and CHRDY are sampled asserted, the microprocessor's 
READY# line is asserted and the bus cycle terminates at the end of the 
first data time. In this way, a 16-bit ISA memory board can complete a bus 
cycle in two BCLK cycles. On the other hand, if CHRDY is deasserted, the 
default ready timer ignores NOWS# and inserts wait states. (Note that the 
EISA specification warns that devices should not assert NOWS# while 
deasserting CHRDY, implying that some bus controllers may not ignore 
NOWS# when CHRDY is deasserted.) 

8. 	 During address pipelining, the microprocessor is free to output the ad
dress for the next bus cycle during the current bus cycle. Only the upper 
portion of the pipelined address appears at this time on the LA bus be
cause these bits are buffered but not latched from the microprocessor's 
address bus. The remainder of the address will not appear on the SA bus 
until the midpoint of address time in the next bus cycle. 

9. 	 CHRDY is sampled by the default ready timer during the second data 
time to determine if the device will be ready to complete the bus cycle at 
the end of this BCLK cycle. If the device cannot complete the bus cycle by 
the end of this BCLK cycle, it should deassert the CHRDY line. If CHRDY 
were sampled deasserted by the default ready timer, it would respond by 
extending the bus cycle by adding another data time. CHRDY is then 
checked at the beginning of each additional data time until the device re
leases CHRDY to indicate that the bus cycle can be completed. 

358 



Chapter 17: Types of ISA Bus Cycles 


10. 	 An ISA 16-bit memory bus cycle defaults to three BCLK cycles (one wait 
state) if the bus cycle isn't terminated earlier by the assertion of NOWS# 
and if CHRDY stays asserted throughout the bus cycle. This means that 
the length of an ISA bus cycle when accessing a 16-bit memory card de
faults to one wait state unless shortened by NOWS# or lengthened by 
CHRDY. READY# is then asserted to the microprocessor, telling it to read 
the data from the data bus. The bus control logic then deasserts the com
mand line (MRDC#, MWTC#, SMRDC#, SMWTC#). When a memory 
write bus cycle terminates, the MWTC# command line is deasserted, but 
the data remains on the SD bus for the first half of address time in the next 
bus cycle. This provides hold time for the device being written to and 
doesn't affect the device being addressed in the next bus cycle because the 
command line hasn't been asserted yet. 

Standard 16-bit 1/0 Device ISA Bus Cycle 

Figure 17-3 illustrates the timing of a bus cycle on the ISA bus when the mi
croprocessor is communicating with a 16-bit I/O device. The timing diagram 
and the following numbered steps illustrate the sequence of events that occur 
during a default ISA 16-bit I/O access. Each of the numbered steps corre
sponds to the numbered reference points in figure 17-3. 

1. 	 If the system board is based on an 80286, 80386 or Pentium microproces
sor and address pipelining is enabled, the address is present on the LA 
bus prior to the beginning of the bus cycle. The LA bus has no impact on 
I/O bus cycles since the LA bus will always be zeros during I/O opera
tions. 

2. 	 BALE is asserted halfway through address time, gating the address 
through the system board's address latch and through the bus control 
logic onto the SA bus. 

3. 	 If this is a write bus cycle, the microprocessor's output data is gated onto 
the SD bus halfway through address time and remains on the SD bus until 
half a BCLK cycle into the next bus cycle (half-way through address time 
of the next bus cycle). 

4. 	 At the start of data time, the trailing edge of BALE causes the address 
latch on the system board and the bus control logic to latch the lower 
twenty bits of the address, SA[19:0], so it remains static on the SA bus for 
the remainder of the bus cycle. The addressed device can safely complete 
decoding the SA address on the falling edge of BALE. 

359 



ISA System Architecture 


125ns 125ns 125ns 125ns I 
Te Ts Te Te • 

BCLK 

~~p p~--~-
LA23:LA17 

~~~i~'AO ) ..........:__---.-:_-IX : : 

BALE n :cP cr.,...4___-=--__---io_......

10RC#,
10WC# ~-----,I 'PL...-:~---1r-
1016#

NOW8# [

CHROY [

~
Read Data
8015:800· Uf··

Figure 17-3. Standard Access to 16-bit I/O device

360

Chapter 17: Types of ISA Bus Cycles

5. 	 The appropriate command line (IORC# or 10WC#) is also asserted at the
midpoint of data time. This command line remains asserted until the end
of the bus cycle (end of last Tc).

6. 	 At the midpoint of the first data time, the default ready timer on the sys
tem board ignores the NOWS# and CHRDY lines since an I/O device is
being accessed. The only devices that can have zero-wait-state ISA bus
cycles are 16-bit memory devices.

7. 	 During address pipelining, the microprocessor is free to output the ad
dress for the next bus cycle during the current bus cycle. Only the upper
portion of the pipelined address appears at this time on the LA bus be
cause these bits are buffered but not latched from the microprocessor's
address bus. The remainder of the address will not appear on the SA bus
until the midpoint of address time in the next bus cycle.

8. 	 1016# is sampled at the midpoint of the second data time to determine if
the I/O device is an 8- or 16-bit device. If sampled asserted, no data bus
steering will be performed and the bus cycle is terminated on the next
rising edge of BCLK, which is the end of the second data time. The bus
cycle will not be terminated if the CHRDY line is sampled deasserted.

9. 	 CHRDY is sampled by the default ready timer during the second data
time to determine if the device is ready to complete the bus cycle. If the
device cannot complete the bus cycle by the end of the second BCLK cy
cle, it should have deasserted the CHRDY line. If CHRDY were sampled
deasserted by the default ready timer, it would respond by extending the
bus cycle by one data time. CHRDY is then checked during each addi
tional data time until the device releases CHRDY to indicate that the bus
cycle can be completed.

10. 	 An ISA 16-bit I/O bus cycle defaults to three BCLK cycles (one wait state)
if CHRDY stays asserted throughout the bus cycle. The bus cycle cannot
be terminated earlier by the assertion of NOWS#. This means that the
length of an ISA bus cycle when accessing a 16-bit I/O card defaults to
one wait state unless lengthened by CHRDY. READY# is then asserted to
the microprocessor, telling it to read the data from the data bus and the
bus control logic deasserts the command line. When an I/O write bus cy
cle terminates, the 10WC# command line is deasserted, but the data re
mains on the SD bus for the first half of address time in the next bus cycle.
This accommodates the hold time of the device being written to and
doesn't disturb the device being addressed in the next bus cycle because
the command line for that bus cycle hasn't been asserted yet.

361

ISA System Architecture

O-Wait State Access to 16-bit Memory Device

Figure 17-4 illustrates the timing of a bus cycle on the ISA bus when the CPU
is communicating with a zero-wait-state 16-bit memory device. Note that only
16-bit memory devices can complete bus cycles at zero wait states. The timing
diagram and the following numbered steps illustrate the sequence of events
during this bus cycle. Each of the numbered steps corresponds to the num
bered reference points in figure 17-4.

1. 	 In this example, address pipelining is enabled and the LA address is pres
ent on the ISA bus prior to the beginning of the bus cycle. This allows the
addressed device to start decoding the address early. In some cases, this
allows a device to operate at 0 wait states.

2. 	 BALE is asserted halfway through address time. When BALE becomes as
serted, the lower portion of the address from the processor is transferred
through the system board's address latch and through the bus control
logic onto the SA bus.

3. 	 The addressed memory board asserts M16# as a result of decoding the LA
lines, indicating to the system board's bus control logic that it is capable of
handling a 16-bit transfer without data bus steering being performed by
the steering logic on the system board.

4. 	 If this is a write bus cycle, the microprocessor's output data is gated onto
the SO bus halfway through address time and remains on the SO bus until
half a BCLK cycle into the next bus cycle (half-way through address time
of the next bus cycle).

5. 	 At the end of address time, the trailing edge of BALE causes two events to
take place:
a) 16-bit ISA memory devices latch the LA lines (or latch the chip select)

so the addressed device will not be deselected when the LA lines are
pipelined before the end of the current bus cycle.

b) 	 the address latch on the system board and the bus control logic latch
the lower twenty bits of the address, SA[19:0], so they remain static on
the SA bus for the remainder of the bus cycle. The addressed device
can safely complete decoding the SA address on the bus on the falling
edge of BALE.

362

Chapter 17: Types of ISA Bus Cycles

125ns 1 125ns 125ns 1 125ns
Tc Ts Tc Ts.11 ...

BCLK

__~0)1~~~~~__~
LA23:LA17 r

----1---'

MRDC#

M~~ __~______~

M16#

NOW8#

CHRDY [
G)1 1

Read Data - L8D15:0 -0)- --- 01
Write Data

8D15:0 :cr"----'----_c
Figure 17-4. Zero-Wait-State Access to a 16-bit ISA Memory Device

363

ISA System Architecture

6. 	 The system board's bus control logic samples M16# at the end of address
time to determine if the addressed device can take advantage of the
MRDC# or MWTC# command lines being asserted immediately. M16# is
sampled asserted and the appropriate command line (MRDC# or
MWTC#) is asserted at the leading edge of data time. This command line
remains asserted until the end of the bus cycle (end of Tc).

7. 	 The system board's bus control logic samples M16# a second time at the
midpoint of the first data time to determine if data bus steering is neces
sary. Since this is an access to a 16-bit device, no steering is necessary. The
second sample point on M16# gives additional time for 16-bit memory
devices that failed to assert M16# early enough for the first sample point.
These devices either did not see LA[23:17] early enough to assert M16# by
the first sample point, or they are waiting for BALE to be asserted before
decoding LA[23:17]. Since the M16# line is asserted, the default ready
timer samples the NOWS# and CHRDY lines to see if the bus cycle can
end in zero ISA wait states. In this example, M16#, NOWS# and CHRDY
are sampled asserted, forcing the default ready timer to assert the micro
processor's READY# line before the end of the current data time. In this
way, faster ISA memory boards can complete a bus cycle in two rather
than three BCLK cycles. (Note that the EISA Specification warns that de
vices should not assert NOWS# while deasserting CHRDY, implying that
some bus controllers may not ignore NOWS# when CHRDY is deas
serted.)

8. 	 Since the LA lines have already done their job, (the addressed device has
already decoded the LA lines and latched the chip select), the microproc
essor is free to output the address for the next bus cycle.

9. 	 During a read, the microprocessor latches the contents of the data bus,
and the bus control logic deasserts the command line (SMRDC#,
SMWTC#, MRDC#, MWTC#) thereby ending the bus cycle. During a
write, the command line is deasserted, but the data remains on the SD bus
for the first half of address time in the next bus cycle. This accommodates
the hold time of the device being written to and doesn't disturb the device
being addressed in the next bus cycle because the command line for that
bus cycle hasn't been asserted yet.

364

Chapter 18: The Interrupt Subsystem

Chapter 18
The Previous Chapter

The two chapters prior to this one described the ISA expansion bus and the
bus cycle types that are used to transfer data over it.

This Chapter

This chapter provides a detailed discussion of the interrupt subsystem found
in every ISA machine. This includes in-depth hardware and software descrip
tions of its operation and programming.

The Next Chapter

The next chapter, "Direct Memory Access (DMA)" provides a detailed de
scription of the DMA subsystem found in all ISA machines.

What Is an Interrupt?

At various times, an I/O device within a PC system may require help, or
service, from the microprocessor. The I/O device uses a signal line known as
an interrupt request line to request the microprocessor's help:

The exact type of servicing a device requires is defined by the type of device
and its current condition. For example, a parallel port connected to a printer
may generate an interrupt request to ask the microprocessor for the next char
acter to be sent to the printer. In this case, the microprocessor would respond
by performing an 110 write bus cycle to send the next character to the parallel
port.

A second example would be the interrupt request generated by a hard disk
controller to tell the microprocessor that a data transfer to or from memory
has been completed. If this were a disk read operation, for example, the mi
croprocessor would respond to the interrupt request by using the data that
has been transferred from the disk controller into memory.

365

ISA System Architecture

As a third and final example, the keyboard interface generates an interrupt
request to inform the microprocessor that a key has been pressed. The micro
processor should respond by performing an I/O read from the keyboard in
terface to get the keyboard character.

In each of these cases, the microprocessor responds to an iriterrupt request by
executing a special program known as an interrupt service routine, or ISR. The
interrupt service routine's task is to service the request. Different types of in
terrupt requests require different types of servicing on the part of the micro
processor. This means that there must be a separate interrupt service routine
for each type of interrupt request that can be generated by the various hard
ware devices found in an ISA system.

An interrupt causes the microprocessor to temporarily suspend execution of
the current program and forces it to jump to another program, the ISR. At the
conclusion of the ISR, the microprocessor must then return to the original
program flow at the point it was interrupted.

Microprocessor Response to Interrupt Request

This section provides a detailed explanation of how an Intel x86 microproces
sor services an interrupt request. Figure 18-1 flowcharts the series of actions
that must take place.

The Intel x86 microprocessors have one interrupt request input that is used to
detect service requests from 1/0 devices. The interrupt request lines from the
various I/O devices are not connected directly to the microprocessor's single
interrupt request input, but rather to a device known as an interrupt control
ler. The actual device used in PC-compatible machines is the Intel 8259 pro
grammable interrupt controller, or PIC. Up to eight interrupt request lines can
be tied to one 8259 interrupt controller.

366

C

Chapter 18: The Interrupt Subsystem

Interrupt ~
Detected ,.-/

Generate two

Interrupt Acknowledge

Bus cycles to request

Interrupt Table entry

number

Read entry number

from lower data

path

Index into Interrupt

Table; read table

entry to be used as

new CS:IP value

Push Flag, CS

and IP registers

onto Stack and

disable interrupt

recognition

,
Move new CS

and IP values

into their registers

and Jump to the

Interrupt Service

Routine

I

Execute Interrupt
Service Routine

Write EOI command

to Interrupt

Controller to turn

off request

Execute I RET

instruction to

pop original

CS:IP and Flag

contents off Stack

~ntinue interrupt~
"-..::..: program ,.-/

Figure 18-1. Flowchart of Interrupt Servicing

367

ISA System Architecture

Figure 18-2 illustrates the 8259 PIC. At any given moment in time, one or more
of the PIC's interrupt request inputs may be asserted. The PIC uses a priority
scheme to determine which of the pending interrupt requests is the most im
portant. It then passes that interrupt request along to the microprocessor by
asserting the microprocessor's interrupt request, or INTR, input.

.. IRO

.. , IR1

, IR2

request lines
from 1/0
devices

..

.. ,

,

IR3

IR4

IR5
INTR ..

, IRS

.. IR7

Intel 8259
Programmable

Interrupt
Controller

Figure 18-2. The Intel 8259 Programmable Interrupt Controller (PIC)

The INTR input to the microprocessor is referred to as the maskable interrupt
request line. While executing a series of instructions, the programmer has the
ability to turn off recognition of external interrupt requests by executing a
CLI, or clear interrupt enable, instruction. The programmer is then ensured
that subsequent instructions will not be interrupted. As soon as the critical
series of instructions has been executed, the programmer re-enables recogni
tion of external interrupt requests by executing an STI, or set interrupt enable,
instruction. Any interrupt request pending on the INTR line will now be rec
ognized by the microprocessor. The programmer should take care, however,
to ensure that interrupt recognition isn't disabled for an appreciable amount of
time. To do so could possibly cause problems.

As an example, the serial port may be generating an interrupt request because
it has a character to be placed in memory. If the microprocessor doesn't read
the character from it on a timely basis, it may be written over by the next

368

Chapter 18: The Interrupt Subsystem

character received over the communications line. This is referred to as a data
overrun condition.

Interrupt Acknowledge Bus Cycles

The microprocessor's immediate response to an interrupt request is to find out
what device initiated the request. The microprocessor performs this inquiry
by executing two, back-to-back interrupt acknowledge bus cycles. Logic ex
ternal to the microprocessor converts the bus cycles into two pulses on the
PIC's interrupt acknowledge (INTA) input. When the PIC senses these two in
terrupt acknowledges, it recognizes that the microprocessor is requesting the
ID of the highest-priority interrupting device.

The microprocessor must determine the highest-priority requesting device so
it can jump to the proper interrupt service routine. As with any other pro
gram, each of the interrupt service routines, or ISRs, reside in memory. In or
der to execute an ISR, the microprocessor must know the start memory
address of each one of the ISRs. Intel sets aside the first 1,024 memory loca
tions, from OOOOOh through 003FFh, as the default locations for the interrupt
table. On the 80286 and higher microprocessors, the LIDT (Load interrupt de
scriptor table) instruction can be used to change the start address and the size
of the interrupt table. LIDT may be executed in either real or protected mode,
but if the interrupt table is relocated in real mode, then programs that initial
ize the interrupt table (such as those in expansion ROMs) may initialize the
wrong locations in memory. The interrupt table may be located anywhere in
memory in either real or protected mode. This discussion focuses on real
mode operation and assumes that the interrupt table starts at address OOOOOh.
Refer to figure 18-3. See the section entitled, "Protected Mode Interrupts" for
differences between real mode and protected mode interrupts.

369

ISA System Architecture

003FFh

003FEh Entry 255 (FFh)

1-----4

003FDh
1-----1

003FCh
1-----1 ----

003FBh

OOOOCh
1-----4

OOOOBh

OOOOAh Entry 2

00009h

00008h

00007h H

00006h Entry 1
1-----4

00005h

00004h

00003h

00002h Entry 0

OOOOlh

000 0 Oh_..I.~'__

Figure 18-3. The Interrupt Table (in Real Mode)

370

Chapter 18: The Interrupt Subsystem

The interrupt table is subdivided into 256 individual entries, each containing 4
bytes of information (256 divided into 1024 equals 4 locations per entry). The
system ROMs that are shipped with ISA systems contain (among other
things):

• 	 The Power-On Self-Test, or POST.
• 	 The interrupt service routines (ISRs) for the standard I/O devices that are

shipped with the system.
• 	 The BIOS routines for the standard I/O devices that are shipped with the

system (discussed later).

In other words, the programmers who write the system ROM code
(instructions) determine the start memory address of each of the interrupt
service routines for the standard I/O devices that are shipped with the sys
tem. During the execution of the POST, the programmer copies the start
memory address of each of these interrupt service routines into the proper en
try in the interrupt table. At the completion of the POST, the interrupt table
entries associated with each of the standard I/O devices have been filled with
the start memory address of their respective interrupt service routines located
in ROM memory.

When the microprocessor generates the two interrupt acknowledge bus cycles
to request the ID of the interrupting device from the PIC, the PIC responds as
follows:

• 	 If the interrupt request line is high during the first acknowledge bus cycle
(which it normally is), then the PIC resets the highest-priority bit that is
currently set in the interrupt request register, or IRR, and sets the respec
tive bit in the in-service register. If the interrupt request line is low, a
phantom interrupt has occurred. These are described later.

• 	 The second acknowledge causes the PIC to place an 8-bit number on the
lower data path, D[7:0j. This number is commonly referred to by the fol
lowing names: interrupt type code; interrupt ID; interrupt vector; inter
rupt table entry number. It is formed by adding the three-bit binary value
of the highest-priority bit set in the in-service register to the base address
stored in register ICW2 (covered later in this chapter).

Note: Although interrupt vector is the most commonly used term, interrupt
table entry number is used in this chapter because it is the most correct of the
four. Also note that many documents use the same abbreviation "ISR" to
stand for two different items: interrupt service routine and in-service register.

371

ISA System Architecture

For clarity in this chapter, the abbreviation ISR always refers to interrupt
service routine.

At the end of the second interrupt acknowledge bus cycle, the microprocessor
reads the interrupt table entry number from the lower data path. The entry
number must then be converted into the actual start memory address of the
respective entry in the interrupt table. Since each entry in the interrupt table
consists of four locations, the microprocessor indexes into the interrupt table
by multiplying the entry number from the PIC by the number four. This will
produce the actual start memory address of the desired table entry. This entry
contains the start memory address of the target interrupt service routine in the
form of a new CS and IP value.

The microprocessor then automatically performs one or two memory read bus
cycles (the 80386DX, 80486 and Pentium processors perform one bus cycle,
while the 80286 and the 80386SX must perform two) to read the four bytes of
information from the interrupt table entry. These four bytes of information are
temporarily stored inside the processor.

As an example, the keyboard interface uses the IRQ1 input to the master inter
rupt controller to generate an interrupt request when a key is pressed. the in
terrupt table entry number assigned to this input is 09h. This means that entry
nine in the interrupt table contains the four byte start address of the keyboard
interrupt service routine in memory.

The microprocessor calculates the actual start memory address of entry nine
in the interrupt table by multiplying the interrupt table entry number, 09h in
this case, by a factor of four. Nine times four equals 36 in decimal, or 24h, so
the start memory address of entry nine in the interrupt table is 00024h.

The start address of the keyboard interrupt service routine is contained in
memory addresses 00024h through 00027h. The microprocessor then:

1. Reads the contents of locations 00024h and 0002Sh.
2. Reads the contents of locations 00026h and 00027h.

The microprocessor will use these stored values later to fetch the first instruc
tion of the interrupt service routine for the keyboard. First, the microprocessor
must save its current place in the program that was interrupted.

372

Chapter 18: The Interrupt Subsystem

Saving Pointer to Interrupted Program

The microprocessor is engaged in fetching, or reading, instructions from
memory until the interrupt request is recognized. The only purpose of the mi
croprocessor's code segment (CS) and instruction pointer (IP) registers is to
point to the location in memory where the next instruction should be fetched
from. The microprocessor had just completed the execution of an instruction
and was about to fetch the next instruction from memory when the interrupt
request was sensed. The CS and IP registers now point to where the micro
processor would have fetched its next instruction from had it not been inter
rupted. If the microprocessor is to resume execution successfully where it left
off after servicing the request, it must save the contents of these two registers.
In other words, the microprocessor must save a bookmark.

OFFFFFh

FFFEhSP
SS 5000h

--+ 05FFFEh Bottom of Stack

~ 050000h Top of Stack

OOOOOOh

Figure 18-4. The Stack

373

ISA System Architecture

The microprocessor's immediate response to an interrupt request is to run two
interrupt acknowledge bus cycles to obtain the interrupt table entry number.
The microprocessor then reads the new CS and IP values from the entry and
saves them. Before these new CS and IP values are actually placed in their re
spective registers, the contents of the current CS and IP registers must be
saved in stack memory. Refer to figure 18-4.

Assume that the stack is currently empty (contains no data). In the figure, the
stack segment register, SS, contains 5000h, indicating that the stack segment
starts at memory location 50000h. The stack pointer register, SP, contains
FFFEh. In response to an interrupt request, the microprocessor automatically
performs three push operations. Note that the programmer does not need to
write code to cause these automatic push operations to occur.

Before jumping to the interrupt service routine, the microprocessor must first
save its place in the current program flow by performing the following opera
tions:

1. 	 The microprocessor first pushes the contents of the flag register onto the
stack. To do this, the microprocessor decrements SP by 2 (FFFEh - 2 =
FFFCh), and then performs a 16-bit memory write to the address specified
by SS:SP (5000:FFFCh). Figure 18-5 illustrates the stack's contents after the
contents of the flag register has been pushed into stack locations 5FFFCh
and 5FFFDh.

374

Chapter 18: The Interrupt Subsystem

SP
II FFFCh I

unused

unused
MSB of

Flag Register

LSB of , Flag Register ""
empty

empty

empty

empty

empty

empty

empty

empty

empty

empty

empty

empty

empty

5FFFFh
5FFFEh

5FFFDh

5FFFCh

5FFFBh

5FFFAh

5FFF9h

5FFF8h

5FFF7h

5FFF6h

5FFF5h

5FFF4h

5FFF3h

5FFF2h

5FFFlh

5FFFOh

5FFEFh

Bottom of Stack

Figure 1S-S. Stack After Flag Register Push Operation

2. 	 The microprocessor then pushes the contents of the CS register onto the
stack. To do this, the microprocessor decrements SP by 2, and then per
forms a 16-bit memory write to the address specified by SS:SP
(SOOO:FFFAh). Figure 18-6 illustrates the stack's contents after the contents
of the CS register has been pushed into stack locations SFFFAh and
SFFFBh.

375

ISA System Architecture

SP 	 unused

II FFFAh I 	 unused
MSB of

Flag Register

LSB of
Flag Register

MSB of
CS Register

LSB of ,'" CS Register

empty

empty

empty

empty

empty

empty

empty

empty

empty

empty

empty

5FFFFh Bottom of Stack
SFFFEh

SFFFDh

SFFFCh

SFFFBh

SFFFAh

SFFF9h

SFFF8h

SFFF7h

SFFF6h

SFFFSh

SFFF4h

SFFF3h

SFFF2h

SFFFlh

SFFFOh

SFFEFh

Figure 18-6. Stack After CS Register Push Operation

3. 	 The microprocessor then pushes the contents of the IP register onto the
stack. To do this, the microprocessor decrements SP by 2, and then per
forms a 16-bit memory write to the address specified by SS:SP
(5000:FFFSh). Figure lS-7 illustrates the stack's contents after the contents
of the IP register has been pushed into stack locations 5FFFSh and 5FFF9h.

376

Chapter 18: The Interrupt Subsystem

SP unused 5FFFFh Bottom of Stack
FFF8h unused 5FFFEhI I

MSB of
Flag Register 5FFFDh

LSB of
Flag Register 5FFFCh

MSB of
CS Register 5FFFBh

LSB of
CS Register 5FFFAh

MSB of
IP Register 5FFF9h .. LSB of , IP Register 5FFF8h

empty 5FFF7h

empty 5FFF6h
empty 5FFF5h
empty 5FFF4h
empty 5FFF3h
empty 5FFF2h
empty 5FFFlh
empty 5FFFOh
empty 5FFEFh

Figure 18-7. Stack After IP Register Push Operation

The microprocessor saves the contents of the Flag register because it is quite
possible that the instruction that will be executed when normal program exe
cution resumes will check the Flag bits to determine the result of the instruc
tion executed just prior to the interruption.

Summarizing, the microprocessor's immediate response to an interrupt re
quest is to get the starting address of the interrupt service routine (ISR) from
the interrupt table. The starting address in the form of new CS and IP values
are stored inside the microprocessor. Next the microprocessor pushes the con
tents of the Flag, CS and IP registers into stack memory. This is done so the
microprocessor can resume its original program flow after the interrupt re
quest servicing has been completed.

377

ISA System Architecture

Clearing the Interrupt Enable Flag

Once the Flag, CS and IP registers have been saved to the stack, the micro
processor clears the interrupt enable flag to prevent another interrupt request
from interrupting the interrupt service routine (ISR) currently running. If the
programmer of an ISR chooses to permit another interrupt request to inter
rupt his interrupt service routine (called nesting of interrupts), the program
mer must enable interrupts by writing an STI instruction. At the conclusion of
an interrupt service routine, the contents of the Flag register are popped off
the stack, restoring the original value of the interrupt enable flag.

Jumping to the ISR

The CS and IP values that were read from the interrupt table and stored in the
un-named registers are moved into the CS and IP registers. The microproces
sor then uses the contents of the CS and IP registers to determine the memory
location to read the next instruction from. Since these two registers have just
been loaded from the interrupt table entry, they now point to the first instruc
tion of the appropriate interrupt service routine. In this way, the microproces
sor begins to fetch and execute the instructions that make up the interrupt
service routine. The interrupt table entry number assignments are detailed
later in this chapter.

Does the microprocessor "jump to" the ISR or does it "call" the ISR? At this
point in the sequence of events, the microprocessor is simply reloading CS
and IP, which is exactly the same as a jump, or more specifically, a far jump.
By previously saving the old CS and IP on the stack before jumping to the ISR,
the microprocessor is doing some of the same things that it would do when
executing a CALL instruction, but there are two significant differences. When
executing a CALL instruction, the microprocessor does not save the Flag reg
ister and the new CS and IP come from the CALL instruction instead of from
the interrupt table. As a result, it may be misleading to say that the micro
processor "calls" an interrupt service routine.

In the interrupt service routine, the programmer must first save the contents
of any registers that will be altered within the service routine. This is accom
plished by performing a series of one or more PUSH instructions to save the
register contents on the stack. The programmer then performs the actions nec
essary to service the request that was issued by the I/O device. As an exam
ple, if this were the keyboard interrupt service routine, the programmer

378

Chapter 18: The Interrupt Subsystem

causes the microprocessor to perform an I/O read from the keyboard data
port at I/O address 0060h to get the keyboard scan code (the character
pressed on the keyboard).

After servicing the request, but before the end of the interrupt service routine,
the programmer must write a non-specific EOI (End-of-Interrupt) command
to the interrupt controller. This forces the interrupt controller to reset the
highest-priority bit that is currently set in its in-service register. The interrupt
controller uses the in-service register to maintain a fixed priority scheme so
that higher-priority interrupt service routines are never interrupted by lower
priority I/O devices. The interrupt controller will assert a new interrupt re
quest output (INTR) only when the interrupt request (IR pin) has a higher pri
ority than the highest-priority bit that is set in the in-service register. By
issuing the EOI command, the programmer is letting the interrupt controller
know that the currently-highest-priority interrupt service routine has finished
servicing the I/O device and that a lower-priority interrupt may now be
passed on to the microprocessor.

At the end of the interrupt service routine, the programmer must perform a
series of one or more POP instructions to restore the original contents of any
registers PUSHed onto the stack at the start of the service routine.

Resuming the Interrupted Program

Each interrupt service routine must end with an IRET (interrupt Return) in
struction. When the microprocessor executes the IRET instruction, it auto
matically performs three pop operations to read the original IP, CS and Flag
register contents from the stack.

1. 	 Refer to figure IS-S. The microprocessor first pops the old contents of the
IP register off the stack. To do this, the microprocessor performs a 16-bit
read from the memory locations specified by SS:SP (5000:FFFSh), and then
increments SP by 2. The two bytes that were read are placed in the IP reg
ister.

379

I

ISA System Architecture

SP
I FFF8h

unused

unused
MSB of

Flag Register

LSB of
Flag Register

MSB of

CS Register

LSB of
CS Register

MSB of

IP Register
... LSB of, IP Register

empty

empty

empty

empty

empty

empty

empty

empty

empty

5FFFFh Bottom of Stack
5FFFEh

5FFFDh

5FFFCh

5FFFBh

5FFFAh

5FFF9h

5FFF8h

5FFF7h

5FFF6h

5FFF5h

5FFF4h

5FFF3h

5FFF2h

5FFFlh

5FFFOh

5FFEFh

Figure 1S-S. Stack Before Pop Operation to Read IP Register

2. 	 Refer to figure 18-9. Next, the microprocessor pops the old contents of the
CS register off the stack. To do this, the microprocessor performs a 16-bit
read from the memory locations specified by SS:SP (SOOO:FFFAh), and
then increments SP by 2. The two bytes that were read are placed in the
CS register.

380

Chapter 18: The Interrupt Subsystem

SP 	 unused 5FFFFh Bottom of Stack
II FFFAh I 	 unused 5FFFEh

MSB of
Flag Register 5FFFDh

LSa of
Flag Register 5FFFCh

MSB of
CS Regiilter 5FFFBh

LSB of , "" CS Fiegister 5FFFAh

empty 5FFF9h

empty 5FFF8h

empty 5FFF7h

empty 5FFF6h
empty 5FFF5h
empty 5FFF4h
empty 5FFF3h
empty 5FFF2h
empty 5FFFlh

empty 5FFFOh
empty 5FFEFh

Figure 18-9. Stack Before Pop Operation to Read CS Register

3. 	 Refer to figure 18-10. Next, the microprocessor pops the old contents of
the Flag register off the stack. To do this, the microprocessor performs a
16-bit read from the memory locations specified by SS:SP (5000:FFFCh),
and then increments SP by 2. The two bytes that were read are placed in
the Flag register. The stack is now empty again.

381

ISA System Architecture

SP unused 5FFFFh Bottom of Stack
II FFFCh I unused SFFFEh

MSB of
Flag Register SFFFDh

LSB of
,'" Flag Register SFFFCh

empty SFFFBh
empty SFFFAh

empty SFFF9h

empty SFFF8h

empty SFFF7h
empty SFFF6h
empty SFFFSh
empty SFFF4h
empty SFFF3h
empty SFFF2h
empty SFFFlh
empty SFFFOh
empty SFFEFh

Figure 18-10. Stack Before Pop Operation to Read Flag Register

At this point, the CS, IP and Flag registers have been reloaded with the values
that were present when the interrupt occurred. Specifically, the Flag register
has been restored to reflect the status of the last instruction that was executed
prior to the interrupt. Note that restoring the flag value also causes interrupts
to be enabled once again. Finally, the microprocessor uses the restored con
tents of the CS and IP registers to fetch the next instruction from memory. In
this way, the microprocessor has automatically returned to its original pro
gram flow after completing the interrupt service routine.

382

Chapter 18: The Interrupt Subsystem

When One 8259 Interrupt Controller Isn't Enough

The PC and PC/XT only had one 8259 Programmable interrupt controller.
This imposed a limit of eight interrupt request lines available for usage by I/O
devices. In order to provide an expanded number of usable I/O interrupt re
quest lines, the designers of the PCIAT added a second 8259 interrupt con
troller.

Refer to figure 18-11. As shown in the illustration, the two interrupt controller
chips are in a master I slave configuration. The 8259 PIC connected directly to
the microprocessor is the master interrupt controller, while the additional PIC
is designated as a slave interrupt controller. The interrupt request output of
the slave interrupt controller is connected to one of the interrupt request in
puts of the master interrupt controller (IR2). This is referred to as cascading
one interrupt controller through another.

In the original PC and PC/XT, the master interrupt controller's IR2 input pin
is tied to the system's IRQ2 line on the PC's 8-bit connector. But in ISA ma
chines, the slave interrupt controller's IRI input pin is tied to the 8-bit connec
tor pin that used to be IRQ2 in the Pc. In ISA systems (at least in most of the
various and competing ISA specifications), the pin is named IRQ9. Beware
that IRQ2 and IRQ9 are the same pin. More information is in the section enti
tled, "IRQ2 Redirect."

Each of these highly programmable PIC chips contains a series of registers. By
programming (writing values to) these registers during the POST, the pro
grammer can specify the operational characteristics of each of the chips.

During the POST, a special 8-bit register in the master interrupt controller is
programmed with a value indicating that the interrupt request Level Two
(IR2) input of the master interrUpt controller is connected to the slave inter
rupt controller rather than an I/O device. All of the other interrupt request
inputs of the master interrupt controller are designated as I/O interrupt re
quest inputs to be handled in the fashion described earlier.

The slave interrupt controller contains a register known as the slave ID regis
ter. During the POST, this register is programmed with the value 02h. This is
its slave 10 number and corresponds to the input on the master it is connected
to.

383

ISA System Architecture

In addition, during the POST, both of the interrupt controllers are pro
grammed to use a fixed priority scheme. This means that, on each of the inter
rupt controllers, the interrupt request Level 0 (IRO) input has the highest
priority, while the interrupt request Level 7 (IR7) input has the lowest priority.
If all of the interrupt request lines were to be asserted at the same time, the in
terrupt request Level 0 input would be serviced first, followed by the others in
decreasing order of priority.

Up until now, the terms interrupt request levels 0 through 7 have been used to
identify the individual interrupt request inputs to the interrupt controller
chip. The actual signal lines connected to the these inputs are designated as
shown in figure 18-11. The signal names given to these lines are IRQO
(interrupt request Level 0) through IRQI5. IRO through IR7 are chip pin
names. IRQO through IRQ15 are ISA system signal names.

384

Chapter 18: The Interrupt Subsystem

ISA slots

Parallel

Port

1

.--H+~H" 	IRO

IR1

1R2
Real

IRQ8Time L...-......~ IR3

Clock

F~-H""---1~ IR4

r+-+-----1~ IRS

1.....~_+lIR6

Mouse L.........;.:..:.::.:~+lIR7

Bus

Cycle

Type

Decoder

Slave 8259

Programmable

Interrupt Controller

Coprocessor

Figure 18-11. Cascaded Interrupt Controllers

385

ISA System Architecture

IRQO through IRQ7 are connected to the master interrupt controller, while
IRQS through IRQ15 are connected to the slave interrupt controller. Note that
IRQ2 and IRQ9 are on the same ISA bus pin so there is not a unique IRQ2 in
terrupt pin in an ISA machine. More information is in the section entitled,
"IRQ2 Redirect." With the exception of IRQ2, each of the interrupt request
lines is available to be connected to the interrupt request output of an I/O
device.

The fact that both controllers are programmed for fixed priority yields the
following overall priority. IRQO is the highest-priority, followed immediately
by IRQ1. Since IRZ on the master interrupt controller is the interrupt request
output of the slave interrupt controller, the slave's eight inputs, IRQS through
IRQI5, come next in the priority sequence. Finally, IRQ3 through IRQ7 are the
lowest five in the priority sequence.

Refer to figure IS-II. Some of the interrupt request lines are dedicated to spe
cia I I/O devices that reside on the system board.

• 	 IRQO is connected to the output of Timer 0, frequently called the System
Timer. This timer and other timers are discussed in detail in the chapter
entitled "ISA Timers."

• 	 IRQl is connected to the keyboard interrupt request line coming from the
Keyboard Interface. The keyboard interface is described in the chapter en
titled "Keyboard/Mouse Interface."

• 	 IRQS is connected to the Alarm output of the Real Time Clock and Con
figuration RAM chip. This subject is covered in more detail in the chapter
entitled "RTC and Configuration RAM."

• 	 IRQ13 is connected to the ERROR# output of the Numeric Coprocessor.
This is described in the chapter entitled "Numeric Coprocessors."

The remainder of the interrupt request lines are attached to the ISA connec
tors and are available for use by ISA cards. Although available for general use,
the following ISA interrupt request lines are typically used by the indicated
devices.

• 	 IRQ3 is used as the interrupt request line for serial port 2. It is connected
to allS- and 16-bit ISA expansion slots.

• 	 IRQ4 is used by the interrupt request output of serial port 1. It is con
nected to allS- and 16-bit ISA expansion slots.

• 	 IRQ5 is used by parallel port 2. It is connected to all S- and 16-bit ISA ex
pansion slots.

386

Chapter 18: The Interrupt Subsystem

• 	 IRQ6 is used by the Floppy Disk Controller on the system board. It is con
nected to all 8- and 16-bit ISA expansion slots.

• 	 IRQ7, is typically used by parallel port 1. It is connected to all 8- and 16-bit
ISA expansion slots.

• 	 IRQ9 is available for use by ISA cards. It is connected to all 8- and 16-bit
ISA expansion slots. In some systems, the pin is named IRQ2. See the dis
cussion under the heading, "IRQ2 Redirect."

• 	 IRQlO is available for use by ISA cards. It is connected to all 16-bit ISA
expansion slots.

• 	 IRQll is available for use by ISA cards. It is connected to all 16-bit ISA
expansion slots.

• 	 IRQ12 is available for use by ISA cards, but is typically used by the mouse
interface. It is connected to all16-bit ISA expansion slots.

• 	 IRQ14 is available for use by ISA cards. It is typically used by Hard Disk
Controllers. It is connected to all 16-bit ISA expansion slots.

• 	 IRQ15 is available for use by ISA cards. It is connected to all 16-bit ISA
expansion slots.

Servicing Requests to Slave Interrupt Controller

When the slave interrupt controller detects an interrupt request on one or
more of its inputs, it generates an interrupt request to the master interrupt
controller. If no higher priority interrupts are currently being serviced, the
master interrupt controller senses its IR2 input asserted and generates an in
terrupt request to the microprocessor on the INTR line. If higher-priority in
terrupts are being serviced (system timer or keyboard interrupts), then the
master interrupt controller waits for the higher-priority interrupts to finish be
fore interrupting the microprocessor. This enforces the fixed priority scheme.

The microprocessor requests the interrupt type by generating two back-to
back interrupt acknowledge bus cycles. When the master interrupt controller
detects the double interrupt acknowledge, it interprets this as the microproc
essor's request for the interrupt type. If IR2, the output of the slave interrupt
controller, is the highest-priority request pending on the master's inputs, the
master commands the slave to supply the interrupt type to the microproces
sor.

To do this, the master interrupt controller drives the slave ID, a 2 (GlOb), onto
the three-bit cascade bus. The slave interrupt controller compares the slave ID
present on the cascade bus to its slave ID (written into its slave ID register

387

ISA System Architecture

during the POST) and responds by placing the proper interrupt table entry
number onto the lower data path, D[7:0].

At the end of the second interrupt acknowledge bus cycle, the microprocessor
reads the interrupt table entry number from the lower data path. It multiplies
the entry number by four to produce the start memory address of the entry in
the interrupt table, and reads the four bytes of information from the entry. Af
ter saving the current CS, IP and Flag register on the stack, the microprocessor
places the four bytes from the interrupt table in the CS and IP registers.

The microprocessor then uses the contents of the CS and IP registers to iden
tify the memory location to read the next instruction from. This is the address
of the first instruction in the target interrupt service routine. At the end of the
interrupt service routine, the programmer must issue two non-specific EOI
(End-of-Interrupt) commands:

• One to the master interrupt controller to reset bit 2 in its in-service regis
ter. Note that bit 2 was the highest-priority bit that was set before the EOI
command was issued, due to the fixed priority scheme. Therefore, the
non-specific EOI command works correctly.

• One to the slave to reset the highest-priority bit that is currently set in its
in-service register.

Interrupt Table Entry Assignments

During the POST, the two interrupt controllers are each programmed with the
interrupt table entry numbers for each of their interrupt request inputs. Table
18-1 defines the entry number assignments.

388

Chapter 18: The Interrupt Subsystem

Table 18-1 Standard 1SA 1 nterrUpit ~able en ry number Assignments
Assigned Interrupt

IRQ Line entry number

0 08h
1 09h
3 OBh
4 OCh
5 OOh
6 OEh
7 OFh
8 70h

9 (or 2) 71h
10 72h
11 73h
12 74h
13 75h
14 76h
15 77h

IRQ2 Redirect

The original IBM PC, PC/XT and compatibles have IRQ2 available on the 8-bit
expansion slots and that pin is connected to IR2 of the master interrupt con
troller. An expansion device installed in the PC or PC/XT may use IRQ2 to
request service. The software device driver that controls the expansion device
will initialize entry OAh in the interrupt table during POST or when the device
driver is loaded from disk and executed so that entry OAh points to the start
address of the ISR in the device driver. Afterwards, when the expansion de
vice issues an IRQ2 interrupt in the PC or PC/XT, the master interrupt con
troller gives interrupt entry number OAh (IR2 plus base of 8 = 10d = Ah) to the
microprocessor. The microprocessor reads the CS and IP from entry OAh in
the interrupt table and runs the ISR for the expansion device.

In an ISA machine, IRQ2 is IRQ9 and it is connected to IR1 of the slave inter
rupt controller. When the old expansion device generates what it thinks is
IRQ2, the slave interrupt controller reports entry number 71h OR1 plus base of
70h = 71h) to the microprocessor. The microprocessor reads the CS and IP
from entry number 71h in the interrupt table, but it does not run the expan

389

ISA System Architecture

sion device's ISR because entry number 71h was not initialized by the expan
sion device's driver. This is a problem.

The solution is to redirect IRQ9 interrupts (entry 71h) to what used to be IRQ2
(entry OAh). During POST or during initialization of the operating system,
entry 71h in the interrupt table is initialized to point to the IRQ2 redirect rou
tine in the boot ROM or in the operating system. The IRQ2 redirect routine
uses the software interrupt instruction, INT OA, to cause the microprocessor
to run the ISR pointed to by entry OAh in the interrupt table, thus causing the
microprocessor to run the expansion device's ISK The INT instruction is de
scribed in the section entitled, "The Software Interrupt Instruction."

Recall that each interrupt service routine (lSR) must perform an End Of Inter
rupt (EOI) command to clear its bit in the in-service register. ISRs using IRQ
lines that connect to the master interrupt controller must perform a single EOI
command, whereas, ISRs using IRQ lines that connect to the slave interrupt
controller must perform two EOI commands (one for the master and one for
the slave). ISRs designed for IRQ2 expect it to be connected to the master in
terrupt controller (as it was in the PC and PCjXT) and therefore perform a
single EOI command; however, since the IRQ2 line connects to the slave inter
rupt controller (IRQ9), two EOls are needed. The following code sample
shows how a typical IRQ2 Redirect routine transfers control from IRQ9 to
IRQ2 and handles the second EOI command:

PUSH AX ;save contents of AX register
MOV AL,20 ;move 20h into AL register
OUT AO,AL ;write 20h to slave interrupt

icontroller(EOI command)
POP AX irestore AX
INT OA iuse software interrupt to

iredirect interrupt to interrupt
itable entry OAh (oldIRQ2)

IRET iinterrupt return from IRQ9

Note that the redirect code must perform the EOI for the slave interrupt con
troller since the ISR for IRQ2 performs only the master controller EO!.

390

Chapter 18: The Interrupt Subsystem

Shareable Interrupts in ISA Machines

When expansion devices (add-in cards) that use interrupts are installed in an
ISA system, they typically use one of the available interrupt request lines that
is not used by the standard 1/0 devices (such as the printer port or the floppy
controller). In some environments however, the demand for IRQ lines exceeds
the number of available lines. In such cases, the temptation is great to share a
single interrupt line between two devices.

The conditions required to share interrupts in an ISA environment include the
following:

• 	 The devices should generate interrupts by driving the IRQ line low and
then not driving it, allowing the pull-up resistor to generate the rising
edge (as opposed to driving the IRQ line high).

• 	 Initialization of expansion devices must be done properly to ensure the
starting addresses for the interrupt service routines of shared devices are
linked.

• 	 Expansion devices must implement an interrupt pending status bit.
• 	 Interrupt service routines must check the interrupt pending bit for their

devices and pass control to the next ISR in the chain.
• 	 If astandard device is sharing the interrupt, then either the standard de

vice must also meet all these requirements, or the interrupts must be
guaranteed to never occur simultaneously.

These requirements are described in the next sections.

Generating the Interrupt Request

On ISA systems, the 8259 interrupt controllers are programmed to recognize a
positive-going edge as a valid interrupt request on an input~ There are a cou
ple of ways to generate these low-to-high transitions. The ISA IRQ lines are
pulled high by resistors on the system board. When an ISA expansion device
must generate an interrupt request, the card may drive the line low and then
stop driving the line (set its driver to a high-impedance state so it is neither
driving high nor low), thus allowing the line to float high again due to the
pull-up resistor. Alternatively, the expansion card can be designed to actively
drive the IRQ line low and then actively drive it high. In either case, the low
to-high transition is registered as an interrupt request by the 8259 interrupt
controller on the system board.

391

ISA System Architecture

The 8259 specification requires that the 8259's IR input must remain high until
after the leading edge of the first interrupt acknowledge bus cycle in order for
the interrupt request to be valid. To meet this requirement, the expansion de
vice must either stop driving the IRQ line and allow the pull-up resistor to
keep the line high or the expansion device must actively drive the IRQ line
high at least until the interrupt service routine has begun servicing the device.

If there is only one expansion device using a particular IRQ line, the interrupt
is not being shared. When more than one expansion device is connected to the
same IRQ line, that line is being shared.

For non-shared IRQ lines, only one expansion device is driving the IRQ line,
so it doesn't matter whether the expansion device drives the IRQ line low,
drives it high or doesn't drive it at all after the first interrupt acknowledge bus
cycle. Contention will not occur on a non-shared IRQ line. In order to share
the IRQ line, however, the expansion device should use the first method that
was described above for generating the interrupt. That is, it should drive the
line low, then stop driving it, allowing the pull-up resistor to cause the low-to
high transition. This can be accomplished with an open-collector or open
drain driver. With open-collector or open-drain drivers, the line is never ac
tively driven high, so it is safe for one driver to drive the line low while the
other drivers are not driving, and it is safe for several drivers to drive the
same line low at the same time.

Each of the expansion devices that are sharing the IRQ line would have to
generate interrupts this way. Interestingly enough, there is no requirement for
manufacturers to use this technique, so interrupts are often not shareable.

Interrupt Table Initialization - Add-in Devices

Standard I/O devices that use interrupts normally have interrupt service rou
tines that reside in the manufacturer's system ROM. When an expansion card
using an interrupt is installed in an ISA system, the interrupt service routine
(ISR) must be provided by the manufacturer. The ISR may be contained either
in a ROM located on the card or on a diskette shipped with the card. In each
case, the starting address of the ISR must be placed in the interrupt table entry
assigned to the IRQ line used.

Assuming the IRQ line to be shared is already in use by a standard device, the
starting address of the standard device will already occupy the entry. The ex
pansion device then will overwrite the starting address of the standard device

392

Chapter 18: The Interrupt Subsystem

when it initializes. However, during initialization of the expansion card, the
contents of the interrupt entry to be used (which currently contains the start
ing address of the standard device's ISR) must be saved before overwriting
the entry with its own ISR address. In this way, a link is created between the
ISR address of the expansion device (which occupies the entry after initializa
tion) and the ISR address of the standard device (which has been saved).

Designers of expansion cards who use ROM to store their ISR typically im
plement I/O locations on their cards to store the contents of the interrupt table
entry they are about to overwrite. Designers who implement their ISR via in
stallable device drivers typically leave space in the header of their ISR for
saving the current value of the interrupt table entry.

Shared Interrupt Procedure

When two devices share an single interrupt request line, the device installed
last will have its starting address in the interrupt table entry corresponding to
the IRQ in use. Regardless of which device issued the interrupt request, the
ISR of the device last installed will be executed first. In the previous example,
this means that even though the standard device requests servicing, the ex
pansion device's ISR occupies the interrupt table entry and its ISR will be exe
cuted.

The expansion device's ISR must first check the interrupt pending bit to de
termine if its device needs to be serviced. If so, the expansion device is serv
iced in normal fashion. If the interrupt pending bit indicates that no interrupt
is pending for its device, the ISR will pass control to the ISR belonging to the
standard device by using the value it previously saved. The standard device
then would be serviced as usual.

If both of the devices generate interrupts simultaneously (or at least before the
microprocessor runs the interrupt acknowledge bus cycle), then only one in
terrupt request will be registered in the 8259. Since the expansion device gen
erated an interrupt, the interrupt pending bit that is on the expansion device
would be set. The expansion device's ISR is run first since its CS and IP are in
the interrupt table. The expansion device's ISR detects that the expansion de
vice's interrupt pending bit is set, so it services the expansion device and re
turns to the interrupted program. Note that the standard device's interrupt
never gets serviced.

393

ISA System Architecture

There are two solutions to this problem. If the standard device has an inter
rupt pending bit, then the expansion device's ISR can do a software interrupt
(INT) to run the standard device's ISR. Since the standard device's interrupt
pending bit is set, the standard device's ISR will service the standard device
correctly. The expansion device's ISR must be written to always do the soft
ware interrupt, regardless of whether the expansion device generated an in
terrupt. In fact, in order to share an interrupt request line among two or more
expansion devices, the expansion device's ISR must always do the software
interrupt to link back to the other ISR's in the list.

If the standard device lacks an interrupt pending bit or if the standard de
vice's ISR fails to test that bit, then it could be a mistake for the standard de
vice's ISR to service the device if no interrupt had occurred.

The other solution is to guarantee that the two devices never generate inter
rupts simultaneously. (Easier said than done. There are many potholes in the
road to sharing interrupts in ISA.)

Phantom Interrupts

On ISA systems, the 8259 interrupt controllers are programmed to recognize a
positive-going edge as a valid interrupt request on an input. A transitory
noise spike on an interrupt request line could be registered as a valid interrupt
request in the 8259's interrupt request register (IRR). What happens next de
pends on how the expansion card is designed to drive the IRQ line. The meth
ods for driving the IRQ line are described in the section above entitled,
"Shareable Interrupts in ISA Machines./I

After an interrupt is serviced (indeed, any time after the first interrupt ac
knowledge), it doesn't matter whether the expansion device drives the IRQ
line low, drives it high or doesn't drive it at all, so long as no low-to-high
transitions occur (unless, of course, the expansion device was requesting more
service). This is true because the 8259 is programmed to latch low-to-high
transitions only.

If the expansion device uses the shareable method of generating interrupts
and a transitory noise spike occurs on the IRQ line, then the IRQ line will be
high when the first interrupt acknowledge bus cycle occurs. In response to the
interrupt acknowledge bus cycle, the 8259 will clear the bit in its IRR and will
set the corresponding bit in its in-service register. The 8259 will then give the
entry number of the expansion device to the microprocessor during the sec

394

Chapter 18: The Interrupt Subsystem

ond interrupt acknowledge bus cycle. The microprocessor will then run the in
terrupt service routine for the expansion device. This is a problem because the
expansion device did not request service. Some expansion devices will cease
to function correctly if they are serviced prematurely. The solution to this
problem is for the expansion device to internally have an interrupt request
pending bit which it sets along with generating any interrupt. The ISR should
first check this bit before actually servicing the expansion device. If the inter
rupt were caused by a noise spike, the interrupt pending bit on the expansion
card would not be set and the ISR would exit without servicing the expansion
device.

If the expansion device uses a non-shareable method to generate the interrupt,
then the expansion device either continues to drive the IRQ line high or it
drives the line low after the interrupt is serviced instead of ceasing to drive
the line. If the expansion device drives the IRQ line high after an interrupt has
been serviced, then a noise spike on the IRQ line will have to be handled the
same way that it was for the shareable technique (that is, the ISR should check
the interrupt pending bit).

Things are more interesting when the expansion device drives the IRQ line
low after an interrupt has been serviced. In this case, if a noise spike is regis
tered by the 8259, the IRQ line is low when the first interrupt acknowledge
bus cycle occurs. The 8259 requires that its IR input be high at least until the
first interrupt acknowledge in order for the interrupt to be valid. In this case,
the IR input is low, so the 8259 knows that a ghost or phantom interrupt has
occurred.

When the second interrupt acknowledge bus cycle occurs, the 8259 must re
port an entry number to the microprocessor, but no valid interrupts have oc
curred. Intel designed the 8259 to automatically return the entry number for
its number seven input in this case. On the master 8259, this will be OFh, the
entry number for IRQ7. On the slave, it will be 77h, the entry number for
IRQ15. The microprocessor will therefore run either the IRQ7 or the IRQ15 in
terrupt service routine.

As stated earlier, some expansion devices will cease to operate correctly if
they are serviced when they did not request service. In these two ISRs, there
fore, the programmer must perform a check to see if the IRQ7 or the IRQ15
was real. This is accomplished by reading the contents of the respective 8259's
in-service register and checking to see if bit seven is really set. If it is, then the
request is real and the programmer should execute the remainder of the inter

395

ISA System Architecture

rupt service routine to service the request. If, on the other hand, the bit is
clear, it was a phantom or ghost interrupt and the programmer should just re
turn to the interrupted program flow without servicing the expansion device.

Programming the 8259

Introduction

This section is intended as an introduction to programming the 8259 interrupt
controller. For a more detailed description, refer to the appropriate Intel man
ual.

Programming the Registers

All of the 8259 registers are accessed through two 1/0 locations. The master
8259's registers are accessed through I/O ports 20h and 21h, while the slave's
are accessed through AOh and Alh. The 8259 accepts two types of commands:
initialization command words, or ICWs; and operation command words, or
OCWs.

Before the 8259 can be used to prioritize interrupt requests, it must be initial
ized to a known state. This is accomplished by writing a series of bytes to the
ICWs and OCWs. The contents of these initialization bytes define the basic
operational characteristics of the 8259. Tables 18-2 and 18-3 illustrate the se
quence of ICWs and OCWs written to the 8259s during the ISA POST initiali
zation. The ICW registers must be accessed in a predefined sequence. The
programmer begins the sequence by writing to ICWI. This is accomplished by
writing the desired data to port 20h or AOh (master or slave 8259) with data
bit 4 set to a 1. The 8259 then expects three subsequent writes to port 21h or
Alh with the values for ICW2 through ICW4. After all of the ICW registers
have been loaded, any subsequent data written to port 21h or Alh is loaded
into OCWl, the interrupt mask register.

396

Chapter 18: The Interrupt Subsystem

Table 18-2. Initialization Sequence for the Master Interrupt Controller
Data Written

to Master

1) 15h written
to I/O
port20h

2) 08h written
to I/O
port 21h

3) 04h written
to I/O
port 21h

4) 01h written
to I/O
port 21h

5) FBh written
to I/O
port 21h

Description

An I/O write to port 20h with bit 4 = 1 accesses ICW1. Bit 0 set to 1
instructs the 8259 to expect ICW4. Bit 1 set to 0 indicates that one
or more slaves are cascaded through the master's IRQ inputs. Bit 2
has no effect when the 8259s are programmed for 8086/8088 op
eration. Bit 3 set to 0 places the 8259 in edge-triggered mode. The
remainder of the bits have no meaning when the 8259s are pro
grammed for 8086/8088 operation.
First access to port 21h after ICWI is written accesses ICW2. Upper
five bits of the data written to port 21h are the upper five bits of the
master's interrupt 10. The lower three bits of the interrupt 10 rep
resents the level of interrupt currently being serviced. This means
that the master 8259's eight inputs have interrupt ID's ranging from
08h through OFh.
After writing ICW2, the next write to port 21h accesses ICW3. The
data written to this register indicates which of the master's IRQ
inputs are connected to slave 8259s. Since bit 2 is set to 1 and the
remaining bits are 0, IRQ2 is connected to a slave while the remain
inK inJ>uts are connected to 1/0 devices.
After writing ICW3, the next write to port 21h accesses ICW4. The
data written to this register indicates the following:

bit 0 = 1: The system is based on an 8086/8088, not an 8080/8085.
This means that the 8259 must send an interrupt 10 to the
processor in response to interrupt acknowledge, not a call
instruction.

bit 1 = 0: The programmer must write a non-specific End-of
Interrupt, or EOI, command to the 8259 to reset the high
est-priority bit that was set in the in-service register at the
end of each interrupt service routine.

bits 3:2 =OOb - non-buffered mode. Has no effect.

bit 4 = 0 - special fully-nested mode off.

bits 7:5 =OOOb - not used.

After the four lCW registers have been loaded, any subsequent

write to port 21h accesses OCWl, the interrupt mask register(IMR).

Writing a FBh to this register disables all interrupt request inputs

other than IRQ2 (requests from the slave 8259).

397

ISA System Architecture

Table 18-3. Initialization Sequence for the Slave Interrupt Controller"

Data Wntten
to Slave Description

1) ISh written See description of write to master's port 20h.
to I/O
port AOh

2) 70h written First access to port Alh after ICWI is written accesses ICW2. Up-
to I/O. per five bits of the data written to port Alh are the upper five bits
port Alh of the interrupt ID. The lower three bits of the interrupt ID repre

sents the level of interrupt currently being serviced. This means
that the slave 8259's eight inputs have interrupt ID's ranging from
70h through 77h.

3) 02h written After writing ICW2, the next write to port Alh ~ccesses ICW3. The
to I/O data written to this register loads the slave's ID into ICW3. Since
portAlh the slave is connected to IRQ2 on the master, it's slave ID is two.

4) 01h written After writing ICW3, the next write to port Alh accesses ICW4. The
to I/O data written to this register indicates the following:
portAlh

bit 0 = 1: The system is based on an 8086/8088, not an 8080/8085.
This means that the 8259 must send an interrupt tD to the
processor in response to interrupt acknowledge, not a call
instruction.

bit 1 = 0: The programmer must write a non-specific End-of-
Interrupt, or EOI, command to the 8259 to reset the high
est-priority bit that was set in the in-service register at the
end of each interrupt seryiceroutine.

bits 3:2 = OOb non-buffered mode. Has no effect.
bit 4 =0 special fully-nested mode off.
bits 7:5 =OOOb not us.ed.

5) FFh written After the four leW registers have been loaded, any subsequent
to I/O writes to port Alh access OCWl, the interrupt mask register.
port Alh Writing a FFh to this register disables all of the slave's interrupt

request inputs.

After the interrupt controllers have been initialized, any subsequent read from
or write to I/O port 21h or Alh accesses the interrupt mask register, OCWl,
in either the master or slave interrupt controller, respectively.

In an interrupt service routine, the programmer must issue a non-specific
End-of-Interrupt, or EOI, command to the interrupt controller to clear the
highest-priority bit that was set in the in-service register. This is accomplished

398

Chapter 18: The Interrupt Subsystem

by writing 20h to port 20h or AOh, OCW2. In an interrupt service routine for a
request originating on the slave, a non-specific EOI command must be issued
to both the slave and the master to clear the respective bits in both of their in
service registers.

The programmer writes to OCW3 under two circumstances:

• 	 To set or reset the special mask mode. For further information, refer to the
Intel hardware reference manual.

• 	 To identify a register to be read on a subsequent read.

To read from the in-service register or the interrupt request register (IRR), the
programmer first writes either 03h (in-service register) or 02h (IRR) to OCW3
at port 20h or AOh. The next time port 20h is read from, the contents of the
identified register is placed on the data bus. There is no need to write to
OCW3 every time a read is to be performed from the IRR or in-service register
(as long as the same register is to be read from again). After initialization, the
8259 will return the status of the IRR when port 20h or AOh is read from.

Non-Maskable Interrupt Requests (NMI)

In addition to the maskable interrupt request input, INTR, Intel x86 micro
processors have an additional interrupt request input known as the NMI in
put. Unlike the maskable interrupt request input, the non-maskable interrupt
request input, or NMI, can not be masked out by the programmer. In other
words, if the NMI input is asserted, the microprocessor must immediately
service that interrupt request. The NMI line is typically used to report serious
or fatal hardware failures to the microprocessor.

A classic example would be a memory parity error. When the microprocessor
senses an asserted signal on the NMI input, it responds by first pushing the
Flag, CS qnd IP registers onto the stack.

Rather than request the interrupt table entry number from the interrupt con
troller, however, the microprocessor automatically accesses entry two in the
interrupt table. This entry is dedicated to the NMI interrupt. During the
POST, the programmer writes the start address of tl}e NMI interrupt service
routine located in ROM memory into entry two of the interrupt table.

After saving the three registers on the stack, the microprocessor then jumps to
the NMI interrupt service routine by loading CS and IP from entry two. In the

399

ISA System Architecture

NMI interrupt service routine, the programmer reads the contents of the fol
lowing 1/0 ports to determine the cause of the NMI:

• system control port B at I/O address 0061h.
• system control port A at I/O address 0092h.

The error is then reported on the screen.

Tables 18-4 and 18-5 define the bit assignment of these two ports and identify
the bits related to NMI with an asterisk. The bit assignments shown are fairly
standard, but they are different on some systems. The NMI interrupt service
routine that examines these bits is normally in the system's boot ROM. Since
the boot ROM is written specifically for a particular style of system board, the
ROM will know what the bit assignments are. The meaning of the bits in sys
tem control port B at I/O address 0061h are different for a read versus a write.
For more information, see the UISA I/O Addresses" section in the Appendix.

~abl - . 'ys tem C tIPort B tIlO Address 0061h (Re 18 4 5 on ro a ead)
Bit Function

7* System Board RAM Parity Check
6* Channel Check
5 Timer 2 (~eaker Timer) Output
4 Refresh Request
3 Channel Check Enabled
2 Parity Check Enabled
1 Speaker Data Enable
0 Timer 2 Gate to speaker

T bl 18 5 5 - t Con ro ort A a ress 0092ha e . ,ys em tIP tIlO Add
Bit Function

7 Fixed Disk Activity LED
6 Fixed Disk Activi!)r LED
5 Reserved
4* Watchdog Timer Status
3 Securi~Lock Latch
2 Reserved
1 Alternate Gate A20
0 Alternate Hot Reset

400

Chapter 18: The Interrupt Subsystem

As illustrated in the preceding tables and in figure 18-12, there are three pos
sible causes for an NMI:

• 	 System board RAM parity check. The chapter entitled "RAM Memory:
Theory of Operation," contains a detailed description of the system board
RAM parity check logic.

• 	 Channel check. The chapter entitled "ISA Bus Structure," provides a de
tailed description of the channel check logic.

• 	 Watchdog timer status. The chapter entitled "ISA Timers," provides a de
tailed description of the watchdog timer.

The programmer can selectively enable or disable the ability of external logic
to generate an NMI. This is accomplished by writing the desired value to I/O
port 0070h. A 1 written to bit 7 disables the NMI logic's ability to generate an
NMI, while a 0 enables it. For additional information, see the chapter entitled
"ISA Bus Structure," under the heading "Error Reporting Signal."

Watchdog Timer Timeout#
NMI

Parity Check# Enable/Disable Gate

J--_--I NMI

Port 61h

Bit 2

Port 70h

Bit 7

Micro
CHCHK#

Channel Check

Enable/Disable

Gate

Port 61h

Bit 3

Figure 18-12. Causes of a NMI

401

ISA System Architecture

Software Interrupts

There are two types of software conditions that can cause an interrupt to an
Intel x86 microprocessor:

• Exception interrupts.
• Software interrupts generated by the INT (interrupt) instruction.

Both types of software conditions are discussed in the following paragraphs.

Software Exceptions

Generally speaking, an exception interrupt results when the microprocessor
attempts to execute an instruction and incurs an error while during so. A
classic example would be an attempt to divide a number by zero. When an In
tel x86 microprocessor attempts execute of an instruction that would cause a
divide-by-zero condition, the microprocessor immediately generates a divide
by-zero exception interrupt. Entry 0 in the interrupt table is dedicated to this
condition and points to the start address of the divide-by-zero interrupt serv
ice routine supplied by the programmer.

Various other types of illegal software conditions can cause exception inter
rupts as well. When Intel introduced the 8086, Intel reserved thirty two entries
in the lower-most part of the interrupt table to point to the interrupt service
routines for various software error conditions. Table 18-6 defines the condi
tions and their respective entries in the interrupt table for an 80386 microproc
essor. Due to the hardware orientation of this book, a detailed description of
each of these conditions is not included. This information may be found in the
Intel programmer's reference manuals.

Notice that in table 18-6 exception interrupts use entry numbers 8 through 10h
which coincide with entry numbers used by hardware devices. To eliminate
possible conflicts, the exception handlers (ISRs) share the table entries with the
hardware devices just as two hardware devices share the same entry.

402

Chapter 18: The Interrupt Subsystem

e 18- E sSl~nmentTabl 6. Interrupt 'table ntrv A'
entry number Assigned To

0 Divide-By-Zero Exception
1 Single Step, or Trap, Interrupt
2 NMI
3 Breakpoint
4 Interrupt on Overflow
5 BOUND Range Exceeded Exception
6 Invalid Opcode Exception
7 Processor Extension Not Available Exception
8 Double Exception Detected
9 Processor Extension Segment Overrun Exception

Ah Invalid Task State Segment
Bh Segment Not Present
Ch Stack Segment Overrun or Not Present Exception
Dh General Protection Exception
Eh Page Fault
Fh Reserved by Intel
lOh Coprocessor Error

llh to IFh Reserved by Intel

Software Interrupt Instruction

The interrupt instruction allows the program to simulate a hardware interrupt
request. This instruction take the following format:

INT 13

When the microprocessor executes the example instruction shown above, it
reacts very much as it would to a hardware interrupt request received on the
maskable interrupt request line, INTR.

It first saves the contents of the Flag, CS and IP registers on the stack. At this
time, CS and IP point to the instruction immediately after the INT instruction.
Since the interrupt was not actually caused by a hardware interrupt request
on the INTR line, the microprocessor doesn't perform two interrupt acknowl
edge bus cycles to request the interrupt table entry number from the 8259 in
terrupt controller. Instead, the interrupt table entry number is supplied by the
hexadecimal number to the right of the INT instruction.

403

ISA System Architecture

In the example above, the programmer has designated entry number 13h (a
decimal 19). The microprocessor multiplies this number by four (13h x 4 =
4Ch) to yield the start memory address of entry 13h in the interrupt table.

Just as it would for a hardware request, the microprocessor then reads the
four bytes of information starting at this memory address and places them
into the CS and IP registers. The CS and IP registers now point to the start ad
dress of the INT 13h interrupt service routine in memory. The microprocessor
begins to fetch and execute the instructions that make up this routine. As de
fined by IBM, entry 13h in the interrupt table always points to the disk BIOS
routine. At the conclusion of the routine, execution of the IRET (interrupt Re
turn) instruction pops the original CS and IP off the stack, causing the micro
processor to resume executing the original program at the instruction
immediately after the INT instruction.

The true value of the INT instruction lies in the fact that a programmer can
call (jump to) a routine (e.g., a BIOS routine) without knowing where it actu
ally resides in memory. All the programmer needs to know is the entry num
ber that contains its start address.

When Microsoft first carne out with the disk operating system (DOS) for the
IBM PC, it was identified as version 1.0. An operating system such as
MS-DOS is really nothing more than a collection of useful routines that the
programmer can call (jump to) to perform various commonly used functions.
The MS-DOS routines allow the programmer to control the various devices in
the system without having an intimate knowledge of the operations required
to control them.

One direction that Microsoft could have taken would have been to publish a
list of the start memory addresses of the various routines that make up
MS-DOS. A programmer could then jump to the start memory address of the
appropriate routine to accomplish a particular task. This method would have
caused tremendous compatibility problems.

Consider this. Not too long after version 1.0 of MS-DOS was released, IBM
released version 1.1. This was followed rather closely by various other ver
sions leading up to the version currently on the market. Now consider the fact
that as the various versions of MS-DOS were issued, the size, functionality,
and placement of the various routines that make up MS-DOS were altered.
This means that the list of start memory addresses for the various routines
specified in version 1.0 is no longer valid for any of the other versions. In fact,

404

Chapter 18: The Interrupt Subsystem

it would require a separate list of start memory addresses for the routines in
each and every version of MS-DOS on the market.

If the designers of an applications program had accessed the MS-DOS routines
by jumping to the start memory addresses of the various routines embedded
in version of 1.0 of MS-DOS, that version of the applications program would
only run correctly with version 1.0 of MS-DOS. They would have had to issue
a separate version of the applications program for every version of MS-DOS.

It would also mean that the end-user would have to know the version of
MS-DOS that they are running in order to buy the correct version of the appli
cation program they want to run. The end-user could never upgrade MS-DOS
without relegating virtually all of his or her application's programs to the
scrap heap. This obviously would have been an untenable solution to the
problem.

As MS-DOS is loaded into memory when the machine is powered up, the
MS-DOS load procedure includes the automatic placement of the start mem
ory addresses for the various MS-DOS routines into pre-defined entries in the
interrupt table. IBM guaranteed applications program developers that the
pointers to the various MS-DOS routines would always reside in the same en
tries in the interrupt table, irrespective of the MS-DOS version. This means
that an application program developer doesn't need to know the actual start
memory address of a MS-DOS routine that he or she wants to use. To call the
routine, all the programmer has to do is specify the correct entry number in an
interrupt instruction. The Microsoft and IBM technical reference guides con
tain information detailing the routines called by each interrupt entry,

MS-DOS routines aren't the only ones that can be called using the interrupt in
struction. The BIOS (basic input/output system) routines are a collection of
useful routines written by the PC manufacturer and embedded in the system
ROMs. There is one routine for each standard I/O device shipped with the
system. Some examples would be the keyboard, floppy disk, and hard disk
BIOS routines.

Rather than expect each application's programmer to understand the proper
sequence of I/O writes and reads required in order to control and sense the
status of various I/O devices, the PC manufacturer supplies the BIOS rou
tines. All the applications programmer has to know is how to call the appro
priate routine to access the target I/O device. During the POST, the start
memory address of each of the ~IOS routines is stored in predefined entries in

405

ISA System Architecture

the interrupt table. The PC manufacturer supplies a list of the interrupt entries
assigned to each BIOS routine. This list is typically available in the technical
reference guide for the PC system.

Protected Mode Interrupts

The discussions thus far in this chapter have assumed that the microprocessor
is in real mode. Due to the hardware orientation of this book, a detailed dis
cussion of protected mode is not included, but some of the basic similarities
and differences between real mode and protected mode interrupts are de
scribed here.

In protected mode, the interrupt table is more properly named the interrupt
descriptor table, or IDT, because it contains 8-byte interrupt descriptors. The
IDT can be located anywhere in memory. The location (base address) and size
(limit) of the IDT is specified by the interrupt descriptor table register, IDTR,
which is the same register that specifies the location of the interrupt table in
real mode.

The 8259 interrupt controllers handle interrupt requests the same way in pro
tected mode as they did in real mode. They report interrupt table entry num
bers to the microprocessor on the second interrupt acknowledge bus cycle.

When the microprocessor receives an entry number from the 8259, the micro
processor multiplies the entry number by 8 if it is in protected mode (It mul
tiplies by 4 if it is in real mode.). It then adds the result to the IDT base
address from the IDTR. The final result is the address of the interrupt descrip
tor in memory. The microprocessor multiplies the entry number by 8 because
the interrupt descriptors are each 8 bytes long.

The microprocessor then runs memory read bus cycles to the calculated ad
dress to read in all eight bytes of the interrupt descriptor. The interrupt de
scriptor includes a new CS register value, a new IP register value and other
bytes which control how protected mode will handle the interrupt. For an
80386 or higher microprocessor, the interrupt descriptor may contain a new
EIP instead of just IP.

Similarly to real mode, the microprocessor pushes the old Flags, CS and IP
registers onto the stack before putting the new CS and IP values that it read in
from the interrupt descriptor into its CS and IP registers. Depending on the

406

Chapter 18: The Interrupt Subsystem

setting of the control bytes in the interrupt descriptor, the microprocessor may
also push the old SS and SP registers before pushing the CS and IP registers.

Whenever a segment register is reloaded in protected mode, the microproces
sor automatically reads a descriptor from either the global descriptor table
(GOT) or the local descriptor table (LOT). There are several types of interrupt
descriptors, so to just get the basic idea across, let's use a segment descriptor.
Segment descriptors are described in the chapter entitled "The 80286 Micro
processor" in the section entitled "Segment Register Usage in Protected
Mode."

Since the interrupt caused the microprocessor to reload its CS segment regis
ter with the value from the interrupt descriptor, the microprocessor now
reads the segment descriptor that the CS register points to, from the GDT or
the LDT. The segment descriptor defines the base address and the limit of the
new code segment. The microprocessor adds the new code segment base ad
dress to the new IP (that it already read from the interrupt descriptor) and
forms the address of the first instruction of the interrupt service routine (ISR).
The microprocessor is then fetches the first instruction of the ISR.

Since the microprocessor is in protected mode, the ISR must either be written
for protected mode, or the microprocessor must be placed in virtual-8086
mode or back in real mode before running a real mode ISR.

407

Chapter 19: Direct Memory Access (DMA)

Chapter 19
The Previous Chapter

Definitions of the ISA bus signal lines and functions were introduced along
with details about ISA bus cycles. Details of the implementation and operation
of interrupts within the ISA environment were provided.

This Chapter

Transfers between memory and I/O devices can be handled either by the mi
croprocessor or by the direct memory access (DMA) controller. DMA allows
the processor to continue to execute instructions from its prefetch queue or
cache while transfers are being made between I/O and memory. This chapter
explains the process, logic and timing of the ISA DMA subsystem.

The Next Chapter

ISA bus mastering is explained, including its relationship to DMA and its ca
pabilities and limitations in the ISA structure.

DMA Concept

When using direct memory access (DMA) to transfer a block of information
between an I/O device and memory, the microprocessor must still initiate the
block data transfer between the I/O device and memory, but the actual data
transfer and its termination are handled solely by the DMA controller
(DMAC). This frees up the microprocessor to continue with other productive
activities while the data transfer is taking place. Once a DMA block data
transfer has been initiated, the DMA controller and the I/O device do not dis
turb the microprocessor again until the entire block of data has been trans
ferred. The DMAC used in ISA machines performs a "fly-by" transfer; that is,
it is able to transfer data between memory and an I/O device (read and write)
in a single DMA cycle without latching the data internally, a job that would
normally require two separate bus cycles (a read followed by a write) by the
microprocessor.

409

ISA System Architecture

Upon completion of the overall data transfer, the I/O device interrupts the
microprocessor to indicate completion. In response, the microprocessor tem
porarily suspends its current task and performs an I/O read from the I/O
device to check the completion status of the transfer. If the I/O device indi
cates no errors were encountered, the microprocessor may continue process
ing.

DMA Example

The DMAC used in ISA machines is the Intel 8237, providing four separate
DMA channels. Two 8237s are used in a master/slave configuration, provid
ing a total of seven DMA channels. Each DMA channel is used by a separate
I/O device to handle block data transfers with memory.

Four distinct steps must occur to initiate and complete a DMA transfer.

• 	 Set up the DMA channel for the transfer.
• 	 Command the I/O device to initiate the block data transfer.
• 	 Grant the system buses to the DMA controller so it can run the bus cycle.
• 	 Notify the microprocessor that the transfer is complete.

Each DMA channel within the DMA controller has its own set of I/O registers
that the programmer uses to set up the data transfer. The set of I/O registers
associated with each DMA channel allows the programmer to specify:

• 	 The Transfer Count (number of DMA bus cycles to run).
• 	 The start memory address (start address in memory where data will be

read from or written to).
• 	 The direction of transfer with reference to memory (type of transfer).

After the DMA channel has been set up by the programmer, the I/O device
must be programmed to initiate the overall block data transfer. As an exam
ple, the programmer would issue the proper series of I/O write commands to
a floppy disk controller to initiate a disk read operation.

Having set up the respective DMA channel and issued the proper commands
to the I/O device (in this case, the floppy disk controller and DMA channel
two), the microprocessor can then go on to another task. The entire data trans
fer and its termination will be handled by the I/O device and its respective

410

Chapter 19: Direct Memory Access (DMA)

DMA channel. The following paragraphs describe an example data transfer
between system memory and a floppy disk controller.

When performing a floppy disk transfer, the programmer may only perform
data transfers in multiples of the sector size. When running MS-DOS, a sedor
on a floppy disk contains 512 bytes of information. This would be the smallest
data transfer possible when transferring information between a disk drive and
memory.

Refer to figure 19-1 for a block diagram of the components involved.

DMA
HOLD

~___-I Controller HLDA

Micro
processor

Interrupt INTR

Controller
IR06

Figure 19-1. Example Disk/DMA Hardware System

411

ISA System Architecture

1. 	 The programmer issues a series of I/O writes to DMA channel two's reg
isters to set up the start memory address, transfer count and the direction
of the transfer with reference to memory. In the disk read example, as
sume that the start memory address is 1000h, the transfer count is 512
bytes (one sector) and that this is a write transfer (with reference to mem
ory).

2. 	 The floppy controller must be programmed with the disk read command,
the cylinder number, the head (or surface) number, the start sector num
ber and the number of sectors to be read. In this example, we will assume
a one sector (512 bytes) read from cylinder three, head one, sector five.

3. 	 Upon receiving the parameters and the disk read command, the disk con
troller initiates a seek operation to position the read/write head mecha
nism over cylinder three. It must then wait for the disk to spin until the
start of sector five is detected under the read head on surface one. As the
disk is a mechanical device, this will take some time.

4. 	 In the example of a read operation from a floppy disk controller, some
time will elapse before the disk controller has read the first byte from disk.

5. 	 When the first byte has been transferred from the disk to the disk control
ler, the floppy disk controller must then request that its associated DMA
channel transfer the data. The floppy disk controller asserts DMA request
line two (DRQ2) that goes to the DMAC.

6. 	 The DMAC responds by asserting its HRQ hold request output to seize
the buses (address, data, and control buses) from the microprocessor.
Since the refresh logic must also be able to seize the buses, the refresh
logic also has a hold request output. These two hold request lines go to a
tiny first-come-first-served arbiter which in turn drives the microproces
sor's HOLD request input.

7. 	 Depending on the X86 microprocessor that is being used, the microproc
essor will either complete the current bus cycle, complete the current in
struction, or perform all the writes in its posted write buffer. Then the
microprocessor will tri-state all of its bus output drivers, thereby floating
the buses. The microprocessor also asserts HLDA to tell the requesting
device (the DMAC in this case) that it is now the bus master. Logic on the
system board asserts the ISA bus AEN signal when it sees HLDA as
serted. Note that the ISA bus AEN signal is not the same as the DMAC
AENpin.

8. 	 The DMAC then responds to DRQ2 from the disk controller by asserting
DMA Acknowledge (DAK2#) and the I/O read command line (IORC#).
These two lines go to the disk controller via the ISA bus.

9. 	 The disk controller deasserts DRQ2 and begins the access to the data reg
ister to place data onto the data bus.

412

Chapter 19: Direct Memory Access (DMA)

10. The DMAC asserts the memory write command line (MWTC#) and places
the address from channel two's start address register onto the address
bus. Normally, the command lines indicate whether the address bus car
ries a memory or I/O address. At this point, however, two command lines
(I0RC# and MRDC#) are asserted. The asserted ISA bus AEN signal pre
vents all I/O devices, except for the one that is connected to DAK2#, from
responding during this bus cycle.

11. The data on the data bus is written into memory at the address currently
on the address bus.

12. 	 The DMAC then increments channel two's memory address register by
one to point to the address in the RAM where it will store the next byte it
receives from the disk controller.

13. 	 The DMAC also decrements the byte transfer count. If the transfer count
is not exhausted, the data transfer is not complete and the DMAC waits
for another DMA Request (DRQ2) from the floppy drive controller, indi
cating that it has another byte to transfer (step eight).

14. When the transfer count is exhausted, the data transfer is complete. The
DMAC will then deassert the hold request line (HRQ) to tell the micro
processor that it no longer needs the buses. The microprocessor will re
attach itself to the buses (exit the tri-state condition) and deassert the Hold
Acknowledge line (HLDA) to tell the DMAC it has resumed control of the
buses. The microprocessor is now bus master again. Logic on the system
board deasserts the ISA bus AEN signal so that I/O devices can resume
decoding their addresses.

15. 	The DMAC also generates Eor (end-of-process). This supplies the signal
TC (terminal count reached) to the disk controller. The disk controller will
then generate a device-specific interrupt request to the 8259 interrupt con
troller which in turn generates INTR (interrupt request) to the microproc
essor to inform it that the transfer operation is complete.

This was an example of a DMA channel operating in block transfer mode.
Block transfer mode is best suited for I/O devices that can store or retrieve all
of the requested data in memory that is on the I/O device before requesting a
DMA transfer. Single transfer mode is preferable for devices such as the
floppy disk controller which can hold only one or two bytes of data in their
buffers. Demand transfer mode is preferable for I/O devices, such as later
versions of the floppy disk controller, which have FIFO (first-in-first-out) buff
ers. All three modes are explained later in this chapter.

In the rest of this chapter, for the sake of simplicity, the tiny first-come-first
serve "arbiter" that routes the hold requests from the DMAC and the refresh

413

ISA System Architecture

logic to the microprocessor is not shown in the figures. Also, the descriptions
assume that the DMAC's HRQ output is tied directly to the microprocessor's
HOLD input.

DMA Controller (DMAC)

Each 8237 DMA controller has four DMA channels. In the original IBM PC, a
single 8237 controller was used, limiting the number of channels to four. The
IBM PC/AT added another DMAC, increasing·the total number of channels
available to seven (one channel is used to cascade the controllers together).
Refer to figure 19-2.

DMA Transfer Types

Each of the seven DMA channels may be programmed to perform one of three
types of transfers. This selection defines the method used to transfer a byte or
word during one DMA bus cycle. The three types are:

• 	 Read transfer. When the read transfer type is selected for a DMA channel,
the DMAC will read data from memory and write it to the I/O device as
sociated with the DMA channel.

• 	 Write transfer. When the write transfer type is selected for a DMA chan
nel, the DMAC will read data from the I/O device associated with the
DMA channel and write to the memory.

• 	 Verify transfer. The verify transfer type causes the DMAC channel to exe
cute DMA transfer bus cycles, including generation of memory addresses,
but neither the read nor the write command liness is asserted. It was used
by DMA channel zero to implement DRAM refresh in the original IBM PC
andPC/XT.

DMA Transfer Modes

In the preceding example, the DMAC controlled the buses while the entire
block of data was transferred from the disk controller to memory. This is
called block transfer mode. An 8237 DMAC channel however, may be pro
grammed to operate in one of four modes. The mode selected defines the
DMAC treatment of the overall information transfer. The four modes are:

414

Chapter 19: Direct Memory Access (DMA)

• 	 Single Transfer Mode
• 	 Block Transfer Mode
• 	 Demand Transfer Mode
• 	 Cascade Mode

Single Transfer Mode

Single transfer mode is the one most commonly used because it allows the
DMAC to timeshare the buses with the microprocessor. The DMAC gives up
the buses after each byte (or word) is transferred so the microprocessor can
have access to the buses on a regular basis. This is imperative, especially in
situations where relatively large amounts of data will be transferred, because,
otherwise, the microprocessor and the refresh logic get locked out for too
long.

When a DMA channel is programmed to operate in single transfer mode, it
operates as follows:

1. 	 The URQ(n) is received from the requesting I/O device (e.g., the floppy
disk controller) when it is ready to transfer data.

2. 	 The DMAC asserts HOLD to request the use of the buses from the micro
processor.

3. 	 The microprocessor asserts HLDA, granting the buses to the DMAC.
Logic on the system board asserts the ISA bus AEN signal, disabling the
1/0 address decoders.

4. 	 The DMAC issues DAK(n)# to the requesting I/O device in conjunction
with either IORC# or IOWC#. The I/O device deasserts its DRQ(n) be
cause the DMAC is servicing its data transfer request.

5. 	 The DMAC executes a DMA bus cycle to move the byte (or word) be
tween the I/O device and memory by driving the memory address and
appropriate memory command line as described earlier.

6. 	 The word/byte transfer count is decremented and the memory address is
incremented.

7. 	 After the byte has been transferred, DAK(n)# is deasserted.
8. 	 The HOLD line is deasserted to surrender the buses back to the micro

processor. ISA bus AEN signal is deasserted also. HOLD is reasserted to
request the use of the buses again when the I/O device has another byte
or word to transfer. Upon receipt of HLDA from the CPU, the next bus
cycle will occur. This process continues until the transfer is completed.

9. 	 When the transfer count is exhausted, TC is generated to signal the end of
the transfer and the 1/0 device interrupts the CPU.

415

ISA System Architecture

Block Transfer Mode

Block transfer mode can be used when the DMAC needs to transfer a block of
data, but the designer and programmer must keep in mind that if the DMAC
retains ownership of the buses for too long, the DRAM refresh interval may be
exceeded and there may also be harmful effects from locking the microproces
sor out for too long. An example of operation under block transfer mode was
already covered under the heading, 1/A DMA Example./I

Demand Transfer Mode

When demand mode is used, the DMAC runs DMA bus cycles back-to-back
as long as the I/O device keeps it DRQ(n) line asserted, meaning it can con
tinue to supply data. If the I/O device falls behind the DMAC's ability to
transfer data, the DMA transfer is temporarily suspended. This is done when
the I/O device deasserts its DRQ(n) line. When the I/O device is ready to re
sume demand transfers, it again asserts its DRQ(n) line.

As an example, if a streaming tape drive uses DMA to transfer information, it
could transfer information on a continuing basis until it reached the end of a
track. While the tape drive mechanism reverses the direction of the tape, data
flow would be interrupted and the transfer would temporarily be suspended.

When a DMA channel is programmed to operate in demand transfer mode, it
operates as follows:

1. 	 The DRQ(n) is received from the requesting I/O device (e.g., the stream
ing tape controller).

2. 	 The DMAC asserts HOLD to request the use of the buses from the micro
processor.

3. 	 The microprocessor asserts HLDA, granting the buses to the DMAC. ISA
bus AEN signal is asserted.

4. 	 The DMAC asserts DAK(n)# and either the IORC# or IOWC# to the re
questing I/O device. Note that the I/O device keeps DRQ(n) asserted.

5. 	 As described earlier, the DMAC executes a DMA bus cycle to move a byte
(or word) between the I/O device and memory.

6. 	 After the transfer, the word/byte transfer count is decremented and the
memory address is incremented.

7. 	 The DMAC continues to execute transfer cycles until the I/O device deas
serts DRQ(n) indicating its inability to continue delivering data. The
DMAC deasserts HOLD to give the buses back to the microprocessor and

416

Chapter 19: Direct Memory Access (DMA)

the DMAC deasserts DAK(n)#. Logic on the system board deasserts ISA
bus AEN signal. The I/O device can re-initiate the demand transfer by re
asserting DRQ(n). Each time the I/O device deasserts DRQ(n) the buses
will be released to the microprocessor.

8. 	 Transfer continues in this fashion until the transfer count has been ex
hausted.

Cascade Mode

When a DMA channel is programmed to operate in cascade mode, this means
that it is connected to another DMAC or to an ISA bus master, rather than an
I/O device. See the discussion of ISA bus mastering in this chapter.

Refer to figure 19-2. To get more than four DMA channels, two DMACs are
cascaded together. This is accomplished by designating one of the 8237s as the
master and the other as the slave. The HRQ (hold request) output of the slave
is tied to the DRQO input of the master (channel 4) and the master's DAKO#
output is tied to the slave's HLDA (hold acknowledge) input. In this way, the
slave uses the master to obtain control of the buses.

During POST, channel zero of the master DMAC must be programmed for
cascade mode. When the slave requires the use of the buses, it asserts its Hold
Request output. The master DMAC detects the request for the buses and as
serts its HRQ output to seize the buses from the microprocessor. When the
microprocessor surrenders the buses and asserts HLDA, the master DMAC
asserts its DAKO# output to grant the buses to the slave DMAC. The master's
DAKO# output is connected to the slave's HLDA input. It should be noted that
the signals interconnecting the master and slave are commonly referred to as
DRQ4 and DAK4#, even though they are connected to channel zero on the
master DMAC.

DMAC Priority Logic

The 8237 DMAC offers two types of software-selectable priority schemes:

• 	 Fixed priority. The channels are fixed in priority order based upon the de
scending value of their number. Channel 0 has the highest priority and
channel 3 has the lowest priority. After the recognition of any channel for
service, the other channels are prevented from interfering with that serv
ice until it is completed.

417

ISA System Architecture

• 	 Rotating priority. The last channel to get service becomes the lowest pri
ority channel with the priority of the others rotating accordingly. This
prevents anyone channel from monopolizing the system.

Both DMACs in an ISA system are default-programmed by the POST for fixed
priority. As a result, the highest priority channel on both the slave and the
master is channel zero, followed by channels one through three. This results in
master channel zero having the highest priority. Since master channel zero is
really connected to the slave DMAC, this means that the slave's four DMA
channels have the highest priority, with channel zero as highest and channel
three as the lowest. Immediately following slave channel three, master chan
nel one, also known as channel five, is the next highest, followed by channels
six and seven (master channels two and three).

418

Chapter 19: Direct Memory Access (DMA)

TC

HOLD s:
HLDA n'

DRQ6 Master .,
DMA 0

AEN "C

DRQ5 Controller a
(')
(1)
en enDRQ4 0.,

J: J:
r0 r

TC 0 ~

DRQ3

Slave

DMA

Controller

Figure 19-2. Cascaded DMA Controllers

419

ISA System Architecture

DMA Bus Cycle

The 8237 is built around a state machine with seven possible states, each one
DMA clock period wide. When a DMAC is bus master, it uses its own clock
when executing bus cycles. This clock is referred to as the DMA clock and is
1/2 the BCLK frequency. Depending on the unit and the selected processor
speed, this will yield a DMA clock of either 3MHz (6MHz PCIAT), or 4MHz
(8MHz I5A-compatible machine) to 4.165MHz (8.33MHz I5A-compatible ma
chine).

Table 19-1 lists the clock period for three possible BCLK speed settings:

T,able 19-1 DMA Clock F requenc~
BCLK Speed Setting DMA Clock Frequency DMA Clock Period I

!6MHz 3MHz 333.3ns
8MHz 4MHz 250ns I

8.33MHz 4.166MHz 240ns I

Prior to receiving a DMA Request, the DMAC is in the idle state, 5i. When a
DRQ is sensed, the DMAC enters a state where it asserts HOLD (hold re
quest) to the microprocessor and awaits the HLDA (hold acknowledge). This
state is called 50 (5 zero). The DMAC remains in the 50 state until HLDA is
sensed asserted.

The DMAC can then proceed with the DMA transfer. 51, 52, 53 and 54 are the
states used to execute a transfer (of a byte or word) between the requesting
I/O device and system memory. In addition, when accessing a device that is
slow to respond, a DMA transfer cycle can be stretched by deasserting the
DMAC's READY input until the device is ready to complete the transfer. This
will cause the DMAC to insert wait states, 5w, in the bus cycle until READY is
asserted again.

Table 19-2 describes the actions that take place during states 51 through 54.
5ee figure 19-3 for the actual timing of a single transfer.

420

51

Chapter 19: Direct Memory Access (DMA)

State

52

53

54

-Table 19 2 DMAC States
Actions Taken

During single transfer mode, 51 is used to output the middle byte of the
memory address, A[15:8] during each transfer. The middle byte of the
memory address is output onto data bus pins 0[7:0]. The OMAC also
pulses its address strobe (A05TB) output during 51 and on the falling
edge of A05TB the new middle byte of the address to be latched into the
external OMA address latch. Address lines A[15:8] receive the middle
portion of the address during 52.

During block and demand transfers, the middle byte of the memory ad
dress only changes once every 256th transfer. For this reason, when in
these modes the OMAC only enters the 51 state every 256th transfer to
update the middle byte of the address.
During 52, the lower byte (A[7:0]) of the memory address is output di
rectly onto the address bus, A[7:0]. The OMAC's AEN output is asserted
causing the external OMA address latch to output the middle portion of
the address and to act as an enable for the OMA page register addressing.
Note that OMAC's AEN pin is not the I5A bus AEN signal. In addition,
OAKn# is asserted to tell the I/O device that the transfer is in progress.
53 will only occur in a bus cycle if compressed timing hasn't been selected
for this OMA channel. 5ee text below for a discussion of compressed tim
ing. During 53, the MRDC# or the IORC# line is asserted. If the OMA
channel is programmed for extended writes, the MWTC# or IOWC# line is
also asserted during 53.
If the DMA channel was not programmed for extended write, the MWTC#
or IOWC# is asserted at the start of 54. If extended write had been se
lected, the write command line was already asserted at the start of 53. The
actual read/write takes place at the trailing edge of 54 when both the read
and write command lines are deasserted by the DMAC. This completes
the transfer of a byte or word between memory and the requesting I/O
device.

When compressed timing is selected, 53 is eliminated from the OMA transfer
cycle. The only real purpose of 53 is to allow the read command line to be as
serted for twice the duration it is when compressed timing is used. Not all
memory and I/O devices will tolerate this abbreviated read command line, so
it must be used cautiously.

421

-- --

ISA System Architecture

When extended write is selected, it causes the write command line to be
asserted during 53 rather than 54, effectively doubling the duration of the
write command line's asserted period.

It should be obvious that extended write and compressed timing are mutually
exclusive because 53 is essential for extended write and is eliminated when
compressed timing is selected.

SI SO SO 81 S2 sa S4 SI SI

DCLK

ORQ(n) ~
t)

I
HRQ

IHLDA i I
~_L..I$

,D7:DO (A15:A81

ADSTB ,
:$ Adchaa: V8IIdA7:AO < >

AEN ., I I
:t)

DAK(n)#
,

READ#
,

WRITE# I

Figure 19-3. Single Transfer Mode Timing

422

Chapter 19: Direct Memory Access (DMA)

Byte or Word Transfers

ISA systems can perform byte transfers via slave channels zero through three
and word transfers via master channels five through seven. The DMACs were
designed to handle byte transfers, but the master DMAC is connected to the
address bus in a way that allows 16-bit transfers.

The address outputs of the master DMAC and its associated address latch and
page registers are connected to SA[23:1]. SAO is not connected to it This
means that the programmer must program the master DMA memory address
registers with the correct startaddress for a word transfer. For example, to ac
cess location lOOOh in memory, the master DMAC's memory address register
would need to be programmed to 0800h. Whenever the master DMAC be
comes bus master, logic external to the DMAC asserts SBHE# and forces SAO
to a 0 (even address) to indicate a word transfer. Note that DMA channels five
through seven can only perform 16-bit transfers because SAO is always set to
zero and SBHE# is always asserted when the master DMAC outputs a mem
ory address. The slave DMAC and its associated memory address and page
registers, on the other hand, are connected to SA[23:0] and can therefore gen
erate both even and odd addresses one at a time. This gives DMA channels
zero through three the ability to perform byte-oriented transfers.

DMAC Addressing Capability

Each DMA channel can address any memory location within the 16MB range
from OOOOOOh to FFFFFFh. This is accomplished by using the DMAC's 16-bit
Memory address registers associated with each DMA channel in conjunction
with an 8-bit external DMA page register. This pair of registers associated
with each channel provides the 24-bit memory address capability.

The starting address in memory where data is to be written to or read from
must be programmed into the DMAC and the channel's respective page regis
ter prior to beginning the DMA transfer. The lower sixteen bits of the address
are written into the channel's 16-bit memory address register inside the
DMAC using two successive write operations over its 8-bit data path. Table
19-3 identifies the I/O location associated with each channel's memory ad
dress register. The most significant byte of the address must be written to the
DMA channel's respective page register. Table 19-3 also gives the page regis
ter locations.

423

-- -- --
7

ISA System Architecture

'I bl 193 DMACM dPa e - emory Address an a~e Re~lsters-. I/O LocatlOns
Slave DMAC Channel Master DMAC Channel

0 1 2 3 4 5 6

Memory Address OOh 02h 04h 06h COh C4h C8h CCh
Register 1/0

Address
Page Register 1/0 87h 83h 81h 82h none 8Bh 89h 8Ah

Address

Since the DMAC has only eight address pins, it must output the lower sixteen
bits of the address using both A[7:0] and D[7:0]. The lower byte of the mem
ory address is output onto A[7:0], while the middle byte of the memory ad
dress is output onto D[7:0].

Refer to figure 19-4. The slave DMAC first places the middle byte of the ad
dress (bits 15:8) on data bus lines D[7:0]. Once the data has stabilized, it is
latched into the external address latch by the address strobe signal, ADSTB.
The slave DMAC outputs the lower byte of the memory address onto A[7:0]
and asserts AEN, enabling both the address latch and the channel's DMA
page register to transfer their contents to address lines A[15:8] and A[23:16]
respectively. (Note that the DMAC's AEN pin is not the same as the ISA bus
AEN signal.) The appropriate DMA page register is selected by the DAKn#
line associated with the channel in use.

Refer to figure 19-5. The master DMAC first places the middle byte of the ad
dress (bits 16:9) on data bus lines D[7:0]. Once the data has stabilized, it is
latched into the external address latch by the address strobe signal, ADSTB.
The master DMAC outputs the lower byte of the memory address (bits 8:1)
onto A[7:0] and asserts AEN, enabling both the address latch and the chan
nel's DMA page register to transfer their contents to address lines A[16:9] and
A[23:17] respectively. Note that the DMAC's AEN pin is not the same as the
ISA bus AEN signal. The appropriate DMA page register is selected by the
DAKn# line associated with the channel in use.

424

Chapter 19: Direct Memory Access (DMA)

Slave ADSTB

DMAC
Address

Latch

AEN

DMA
Page

Register

Figure 19-4. The Slave DMAC Memory Address Logic

425

ISA System Architecture

Master ADSTB

DMAC
Address

Latch

AEN

DMA

Page

Register

Figure 19-5. The Master DMAC Memory Address Logic

426

Chapter 19: Direct Memory Access (DMA)

Addressing ISA Memory

Refer to figure 19-6. The DMA controller (DMAC) resides on the X-bus, and
must be capable of addressing memory that resides on the ISA bus. To do this
the address must be passed from the X-bus to the SA bus. Normally, when the
main CPU is running bus cycles the buffer passes the address from the SA bus
on to the X-bus to address the I/O devices that reside on the X-bus; however,
when the DMAC is the bus master, addresses produced by the DMAC must
go in the opposite direction. During DMA transfers, the DMAC's AEN output
goes to the X-bus address buffer to change the direction of the address.

Buffer

s: o·
a
"0 a
(")
CD
C/J

~ ...,

Figure 19-6. Master DMAC Addressing 16-bit ISA Memory

427

ISA System Architecture

Addressing Local Bus Memory
ISA systems based on 80386 or higher microprocessors typically have main
system memory on the processor's local bus. This design allows the processor
to access memory at the full speed and data path width of the microprocessor.
However, this design also creates the need to perform address translation and
data bus steering in order for the DMAC to access 32-bit memory. Refer to
figure 19-7.

32-bit
System Memory

•
._el~~___ 0

~--~ ~
ox »

C/)
c
0en
~
(I)

3

Bus
I~E=:a Control ~-~
L.:: Logic

Figure 19-7. DMA (16-bit channel) Addressing 32-bit System Memory

428

Chapter 19: Direct Memory Access (DMA)

Refer to figure 19-8. Notice also that the address buffers in addition to the X
bus buffer must be reversed so that the address can be passed from the X-bus
bus back toward main memory. This reversal of the buffer occurs whenever
the main CPU gives up control of the buses (asserts the HLDA signal). The
HLDA signal causes the buffers to change direction.

32-bit

System Memory

s: Address
o·.., Latch
0 Enable

"0
..,
0
()
CD en Bufferen
0.., Enable

HLDA

Address

Translation l~imUi.!~1iJ

Logic 1"/11

Addr
Latchlm~~

Figure 19-8. 16-bit Access to 32-bit Memory with DMA

429

ISA System Architecture

The system address used by the DMACs consists only of SA[16:0]. Note that
SA[16:2] pass through the buffer back to system memory, while SAO, SAl and
SBHE# must be converted to BE#[3:0] by the bus controller. The LA lines pass
through a bi-directional buffer whose direction is controlled by HLDA. When
the CPU has control of the buses, the buffer passes the address from the CPU
to the I5A bus. When the CPU gives up ownership of the b1:1ses, the direction
is reversed to pass the address from the ISA bus back toward the CPU and
system memory.

Address Translation

Since the DMA subsystem resides on the X-bus (a subset of the ISA bus) it has
access only to the ISA bus and cannot supply the 32-bit address needed by the
32-bit memory. Therefore, the bus controller must be designed to translate the
8- or l6-bit address from the DMA subsystem (SA[16:0], LA[23:l7] and
SBHE#) to the 32-bit address (A[3l:2] and BE#[3:0]) required by memory.

Address lines SAO, SAl and SBHE#, normally outputs from the bus controller
when the CPU is running bus cycles, are inputs when DMA or bus masters
other than the CPU are running bus cycles. When the HLDA signal from the
CPU becomes asserted, the bus controller begins translating the ISA type ad
dresses to 32-bit memory addresses.

Data Bus Steering

The bus controller in ISA machines with 32-bit memory subsystems must also
perform data bus steering to ensure proper operation with DMA. The MRDC#
arid MWTC# lines are used by the DMA subsystem to indicate the type of bus
cycle being run. These command lines, along with SAO, SAl and SBHE#, and
the M:32#size line are used by the bus controller to ensure information trans
ferred between the DMA subsystem and the 32-bit memory subsystem is
transferred over the correct path(s). In essence, the data bus steering required
by DMA is the exact inverse of the data bus steering required when an 80386
or higher microprocessor communicates with an 8- or l6-bit device. In this in
stance, the DMA controller is either an 8- or l6-bit device communicating with
32-bit memory, necessitating the steering.

430

Chapter 19: Direct Memory Access (DMA)

DMA Transfer Rate

Table 19-4 illustrates the transfer speeds possible at the three clock speeds un
der the following conditions:

• Compressed timing turned off
• Compressed timing turned on

The table assumes that the transfer is no more than 256 DMA bus cycles in
length. This was done for simplicity's sake. Once for every 256 bus cycles, the
DMAC must insert an 51 state in the bus cycle to update the middle byte of
the memory address (A[16:9] for master DMAC or A[15:8] for slave DMAC),
which must be latched into the external DMA address latch. This adds one
DMA clock period to the length of every 256th bus cycle. In short, table 19-4
gives rates based on DMA bus cycles consisting of states 52, 53 and 54 (3
DMA clock cycles with compressed timing off) and states 52 and 54 (2 DMA
clock cycles with compressed timing on). Using the master DMAC, the maxi
mum DMA transfer rate in an ISA system is 4.166MB/sec (16 bits times
2.083M bus cycles per second).

Table 19-4. [SA DMA Transfer Rates
Compressed Off Compressed On

DMA Clock 3MHz 4MHz 4.166MHz 3MHz 4MHz 4.166MHz
Frequency

Transfers per 1M/s 1.33M/s 1.39M/s 1.5M/s 2M/s 2.083M/s
5econd

DMAC Initialization During POST

During P05T, both the slave and master DMA controllers are initialized for
I5A operation. Recall that the DMA controllers are programmed during P05T
to operate in single mode, using fixed priority, normal timing, and are cas
caded together via master channel zero. Two registers are programmed to
provide these I5A operational characteristics:

• DMAC control register
• DMAC mode register

431

ISA System Architecture

The programming sequence typically used is shown in table 19-5. For a com
plete definition of each bit see the I/O address map in the appendix.

Table 19-5. Initialization of DMACs

110
Register Addr.

Control 08h

Mode OBh

Mode OBh

Mode OBh

SlaveDMAC

Functions Controlled

Normal timing, fixed
priority, DMAC en
abled, no memory-to
memory transfers
Channel a - single
transfer mode
Channell - single
transfer mode
Channel 2 - single
transfer mode

1/0
Addr.

DOh

D6h

D6h

D6h

MasterDMAC

Functions Controlled

Normal timing, fixed
priority, DMAC en
abled, no memory-to
memory transfers
Channel 4 - cascade
mode
ChannelS - single
transfer mode
Channel 6 - single
transfer mode

Mode OBh Channel 3 - single D6h Channel 7 - single
transfer mode transfer mode

432

Chapter 20: ISA Bus Masters

Chapter 20
The Previous Chapter

The previous chapter explains the process, logic and timing of the ISA DMA
subsystem.

This Chapter

This chapter covers ISA bus mastering. The previous chapter on DMA pro
vides a foundation for understanding ISA bus masters, since bus masters
must use the DMA subsystem to gain control of the system buses.

The Next Chapter

The next chapter explains the ISA implementation of the real time clock and
configuration memory.

ISA Bus Master Capability

The microprocessor on the system board is the bus master most of the time in
ISA systems. It is also possible for a card inserted into an ISA expansion slot
to become bus master, but there is a major drawback. When a card becomes
bus master in a ISA system, it can remain bus master as long as it keeps the
microprocessor's HOLD line asserted. There are no safety mechanisms built
into a PCIAT or compatible to prevent a bus master card from monopolizing
the use of the buses to the exclusion of the microprocessor on the system
board, the RAM refresh logic and potential bus master cards inserted into
other expansion slots.

Refer to figure 20-1. In order to gain ownership of the buses, the requesting
device must be interfaced to the system board via DMA channel 5, 6 or 7.
These are the channels connected to the master 8237 DMAC on the system
board. Prior to requesting the use of the buses, the respective channel of the
master DMAC must be programmed for cascaded operation (to indicate that a
slave DMAC is attached to that channel). In this case the ISA bus master will

433

ISA System Architecture

be attached to the cascade channel rather than a slave DMAC. When the DMA
acknowledge is sent to the bus master it has been granted control of the buses
and will maintain ownership until the DMA request is released.

TC

DRQ? HOLD s:
HLDA 0"

DRQ6 Master """'
DMA 0

AEN "0
"""'

DRQ5 Controller 0
(")
CD
en
en

DRQ4 0
"""'

TC

Slave

DMA

Controller

Figure 20-1. DMA and Bus Mastering

434

Chapter 20: ISA Bus Masters

When the ISA expansion board wishes to request the use of the buses, the
following sequence of actions takes place:

1. 	 The requesting device asserts its respective DRQ line.
2. 	 The Master 8237 DMAC asserts HOLD (hold request) to the microproces

sor to request the use of the buses.
3. 	 When the microprocessor's bus unit completes the current bus cycle, the

microprocessor floats the buses and asserts HLDA (hold acknowledge) to
inform the master DMAC that it is now the bus master.

4. 	 Upon sensing the HLDA, the master DMAC asserts the DAK line (DMA
acknowledge) associated with the DRQ line from the requesting bus mas
ter card.

5. 	 The requesting ISA expansion board is now the bus master and can run
bus cycles to communicate with other system devices.

6. 	 The ISA bus master card must assert the MASTER16# signal if it wishes to
access I/O devices. When the CPU asserts the HLDA signal, the AEN sig
nal is asserted, disabling all I/O address decoders. This prevents I/O de
vices from mistaking the memory address as theirs during DMA transfers
(see the chapter entitled "Direct Memory Access (DMA)" for details). As
serting MASTER16# causes the AEN signal to become deasserted, thereby
enabling all I/O address decoders.

7. 	 When the expansion device has completed its use of the buses, it must
deassert its DRQ line.

8. 	 Upon sensing that DRQ is deasserted, the master DMAC on the system
board will deassert DAK and HOLD.

9. 	 The microprocessor will deassert HLDA and re-attach itself to the buses.

ISA Bus Masters in 80386DX and Higher Systems

ISA systems based on 80386DX and higher microprocessors typically have
main system memory on the processor's local bus. This design allows the
processor to access memory at the full speed and data path width of the mi
croprocessor. However, this design also creates the need to perform address
translation and data bus steering in order for the ISA bus master to access 32
bit memory. Refer to figure 20-2.

435

ISA System Architecture

32-bit

System Memory

Bus
MASTER16#111~~ Control ~,;.;,.;..;;,+_ Logic

Figure 20-2. ISA Bus Master Addressing 32-bit System Memory

Refer to figure 20-3. Notice also that the address buffers must be reversed so
that the address can be passed from the ISA bus back toward main memory.
This reversal of the buffer occurs whenever the main CPU gives up control of
the buses (asserts the HLDA signal). The HLDA signal causes the buffers to
change direction. ISA bus masters generate addresses using the following ISA
address lines:

436

Chapter 20: ISA Bus Masters

• SA[16:0]
• SBHE#
• LA[23:17]

32-bit
System Memory

Address
Translationl~~;:;;;;:;;::;:;;::;iii"I

Logic

Figure 20-3. Addressing 32-bit Memory with ISA Bus Masters

437

ISA System Architecture

The system address used by ISA bus masters consists only of SA[16:0]. Recall
that SAD, SAl and SBHE# are converted to BE#[3:0] by the bus controller.
Only SA[16:2] pass through the buffer back to system memory.

The LA lines pass through a bi-directional buffer whose direction is controlled
by HLDA. When the CPU has control of the buses, the buffer passes the ad
dress from the CPU to the ISA bus. When the CPU gives up ownership of the
buses, the direction is reversed to pass the address from the ISA bus back to
ward the CPU and system memory.

Address Translation

Since ISA bus master reside on the ISA bus they have access only to the ISA
bus and cannot supply the 32-bit address needed by the 32-bit memory. The
bus controller must be designed to translate the l6-bit address from the bus
master (SA[16:0], LA[23:l7] and SBHE#) to the 32-bit address (A[31:2] and
BE#[3:0]) required by memory.
Address lines SAD, SAl and SBHE#, normally outputs from the bus controller
when the CPU is running bus cycles, are inputs when a bus master other than
the CPU is running bus cycles. When the HLDA signal from the CPU becomes
asserted, the bus controller begins translating the ISA type addresses to 32-bit
memory addresses.

Data Bus Steering

The bus controller in ISA machines with 32-bit memory subsystems must also
perform data bus steering to ensure proper operation with ISA bus masters.
The MRDC# and MWTC# lines are used by ISA bus masters to indicate the
type of bus cycle being performed. These command lines, the status of ad
dress lines SAD, SAl and SBHE#, and the M32# size line are used by the bus
controller to ensure that information transferred between the bus master and
32-bit memory subsystem is transferred over the correct path(s). In essence,
the data bus steering required by ISA bus masters is the exact inverse of the
data bus steering required when a 80386DX or higher microprocessor com
municates with a l6-bit device. In this instance, the bus master is a l6-bit de
vice communicating with 32-bit memory.

438

Chapter 20: ISA Bus Masters

Bus Masters and DRAM Refresh

Since DRAM refresh is usually handled by the refresh logic on the system
board, DRAM will start to lose information if it is not refreshed within the re
fresh interval specified by the DRAM chip manufacturer. The system board
refresh logic refreshes one row every fifteen microseconds. The refresh logic
requires the use of the buses to accomplish this task. It should be noted that an
ISA bus master that controls the buses for any period of time should be pre
pared to handle DRAM refresh. The bus master should either give up owner
ship of the buses a least every 15 microseconds or should request that a
refresh cycle be run every 15 microseconds.

ISA bus masters can trigger the refresh logic to run a refresh bus cycle by as
serting the REFRESH# signal. The refresh logic normally asserts the RE
FRESH# signal when running a bus cycle to inform DRAM address decoders
that a refresh cycle is in progress; however, the REFRESH# signal also acts as
an input to the refresh logic to provide ISA bus masters with a means to trig
ger a refresh bus cycle. Note that ISA bus masters do not give up ownership
of the buses during the refresh cycle, but must wait until the refresh cycle
completes before continuing use of the buses. The steps involved in triggering
a refresh cycle via bus mastering is as follows:

1. 	 REFRESH# is asserted by the bus master. The bus master will not use the
buses again until the refresh cycle has been completed.

2. 	 The refresh logic sees the REFRESH# signal become asserted and starts a
refresh bus cycle.

3. 	 The refresh logic outputs the lower portion of the address to identify a
row of memory to be refreshed, along with the MRDC# line.

4. 	 The ISA bus master watches for the MRDC# line to become deasserted
indicating that the refresh cycle has ended.

5. 	 The bus master continues to run bus cycles.

439

Chapter 21: RTC and Configuration RAM

Chapter 21
The Previous Chapter

The previous chapter provided a detailed description of system support re
quired for ISA bus masters to function in various ISA machines.

This Chapter

This chapter describes the operation and usage of the real-time clock and con
figuration RAM found in all ISA machines.

The Next Chapter

The next chapter, "Keyboard/Mouse Interface," describes the interface be
tween the keyboard and mouse and the system.

Introduction

Most ISA machines contain either a Motorola MC146818 real-time clock and
configuration RAM chip or a Dallas Semiconductor equivalent. These chips
consist of two functional areas:

1. 	 64 locations of CMOS low power RAM memory that retains stored
information after power-down via a battery backup. In the case of the Mo
torola version, the battery is external, whereas the Dallas Semiconductor
chip has the battery built in. This means that the Dallas Semiconductor
chip must be replaced approximately every ten years.

2. 	 The real-time clock function automatically keeps track of the date and
time.

An external, 32.768KHz crystal oscillator supplies the RTC chip's timebase.
The first ten RAM locations are used by the real-time clock function to keep
track of the date (day and month) and time. The next four locations are used
to control the real-time clock function. The remaining fifty locations are used
to store system configuration information and the century portion of the date.

441

ISA System Architecture

Accessing the RAM Locations

Via a two-step process, RAM locations inside the chip are accessed using 1/0
operations.

1. 	 The programmer first identifies which of the 64 RAM locations is to be ac
cessed by writing the RAM address to I/O port 70h, the chip's address
port. The address must be in the range from OOh to 3Fh. Caution should be
exercised when writing the address to port 70h because port 70h has a
second function - bit 7 controls the enabling or disabling of NMI inter
rupts to the microprocessor (0 =enable NMI).

2. 	 Next, the programmer either reads the contents of the previously identi
fied CMOS RAM location from the chip's data port, I/O port 71h, or
writes the desired data byte to the data port.

As an example, the proper sequence to read the contents of CMOS RAM loca
tion five would be:

1. 	 Write the RAM address, OS, to the address port at I/O port 70h.
2. 	 Read RAM location 5's contents by performing an I/O read from the data

port, 1/0 port 71h.

Caution must be exercised to always follow a write to the address port with
either a read from or a write to the data port. Failure to do so may result in
unreliable operation of the real-time clock.

Address Decoder and RTe's Hardware Interface

Figure 21-1 provides a basic view of the RTC chip's interface to the system.
The RTC's address decoder is designed to generate one of three possible chip
selects to the RTC chip:

• 	 AOSWR. Address write is generated whenever the address decoder de
tects an I/O write to port 70h, the RTC's address port. When ADSWR
goes high, the RTC chip accepts the data from the lower data path, D[7:0],
and latches it into its address port. This identifies the CMOS RAM loca
tion to be communicated with during a subsequent read from or write to
the data port (I/O port 71h).

• 	 OATARO#. Data read is generated whenever the address decoder detects
an I/O read from port 71h, the RTC's data port. When DATARD# goes

442

Chapter 21: RTC and Configuration RAM

low, the RTC chip reads the data from the CMOS RAM location identified
by the address currently in its address port. The data is placed onto the
lower data path, D[7:0], to be read by the microprocessor.

• 	 DATAWR#. Data write is generated whenever the address decoder de
tects an I/O write to port 71h, the RTC's data port. When DATAWR# goes
low, the RTC chip accepts the data from the lower data path, D[7:0], and
stores it into the CMOS RAM location identified by its address port.

32.76BKHz

11
07:00,

DATARD#
DATAWR#

ADSWR

Real
('I Time

Clock

~

IROBAlarm

Figure 21-1. The RTC/Configuration RAM Chip

Real-Time Clock Function
The first ten RAM locations are used by the real-time clock function and are
defined in table 21-1.

e 1T' ock B t~able 21-1 Th Rea - lme Cl jYles
Address

0
1
2
3
4
5
6
7
8
9

Function

Seconds
Seconds Alarm
Minutes
Minutes Alarm
Hours
Hours Alarm
Day of Week
Date of Month
Month
Year

443

ISA System Architecture

Locations 1, 3 and 5 can be used to specify an alarm event to occur once per
day (IRQ8 will be generated).

Locations Ah through Dh are referred to as status registers A through D and
are used to control the operational characteristics of the real-time clock func
tion. Tables 21-2 through 21-5 define the function of the bits in the four real
time clock status registers.

a e - a us e:;;lS erT, bi 21 2 RTC Sf t R . t A
Bit(s) Description

7 Update in progress. When set to 1, indicates that the chip is updating the
time and date.

6:4 22-Stage divider. Indicate timebase in use. Always set to 010b to indicate
a 32.768KHz timebase.

3:0 Rate selection bits. Allow selection of an output frequency. Set to OllOb,
selects a 1.024KHz square-wave output frequency and a 976.562 microsec
ond Periodic Interrupt rate.

T,abie 21 -3 RTC Status Re:;;ls. ter B
Bit(s) 	 Description

7 	 Set bit. When 0, this bit allows the date/time to be updated normally at
the rate of once per second. When set to a 1, updates are disallowed and
the programmer may change the date and time without interference from
updates.

6 Periodic interrupt enable. When set to 1, allows IRQ8 to occur at the
1.024KHz rate ~ecified in status register A. This bit is normally O.

5 Alarm interrupt enable. When set to 1, this bit allows an IRQ8 to be gen
erated at the selected alarm date/ time. This bit is normally O.

4 	 Update-ended interrupt enable. When set to 1, the chip will generate an
IRQ8 each time a date/time update is completed in the device's RAM.
This bit is normally O.

3 Square-wave enabled. When set to 1, this bit enables the generation of the

output frequency selected in status register A. This bit is normally O.

2 Date mode. This bit defines whether the date and time will be represented

in Binary or BCD formats. A 1 selects binary mode. This bit is normally O.

1 24-hour mode. This bit defines whether the hours byte is presented in 24

or 12 hour format. A 1 selects 24-hour mode. This bit is normally 1.

0 Daylight-savings enabled. A 1 enables daylight-savings time mode. This

bit is normally O.

444

Chapter 21: RTC and Configuration RAM

'Iable - a us R . t C21 4 RTC St t egIs er
Bit(s) 	 Description

7 	 Interrupt request flag. This bit is set to a 1 when the chip has generated
an interrupt on IRQ8. Bits 4, 5 and 6 of this register may then be checked
to ascertain the cause of the interrupt.

6 Periodic interrupt flag. Set to 1 when an periodic interrupt is generated.
5 Alarm interrupt flag. Set to 1 when an alarm interrupt is generated.
4 Update-ended interrupt flag. Set to 1 when an update-ended interrupt is

generated.
3:0 Not Used.

'Iable 21 -5 RTC Sfatus RegIs. ter D

Bit(s) Description

7 	 RAM valid. When set to 0, indicates that the battery is dead or discon
nected and RAM data has therefore been lost.

6:0 Not Used.

Using BIOS to Control Real-Time Clock

The recommended method for controlling the real-time clock chip is through
BIOS function calls. INT lAh can be used to call the time-of-day BIOS routine.
A complete description of this BIOS routine's usage can be found in either of
the following publications:

• 	 The IBM PS/2 and Personal Computer BIOS Interface Technical Reference pub
lished by IBM.

• 	 System BIOS for IBM PC's, Compatibles, and EISA Computers by Phoenix
Technologies Ltd., published by Addison-Wesley.

445

ISA System Architecture

Configuration RAM Usage

Table 21-6 defines the ISA-standard usage of the fifty configuration RAM lo
cations in the MC146818 chip.

Table 21-6. Confi~uration RAM Usa~e
Location (Hex) Description of Use

I OE Diagnostic Status Byte
OF Reset Code Byte
10 Diskette Drive Type Byte
11 I Reserved

I 12 Fixed Disk Drive Type Byte
13 Reserved
14 Equipment Installed Byte

15 to 16 Low and High Base Memory Bytes
17 to 18 Low and High Extended Memory Bytes
19 to 2C Reserved

2D Additional Flags
2E to 2F Checksum Value

I 30 to 31 Memory above 1MB
32 Century part of time and date function
33 System information

34 to 3F I Reserved

Table 21-7 identifies the valid values that may be stored in the reset code byte
at CMOS RAM location OFh. Whenever the microprocessor is reset, it begins
executing the POST again. At the beginning of the POST, the program reads
the reset code byte from CMOS RAM to determine the course of action to be
taken.

446

Chapter 21: RTC and Configuration RAM

Value

OOh

04h
OSh

09h

OAh

Table 21-7 The Reset Code Byte
Meaning

Normal Power-Up reset or Control-Alternate-Delete reset, depending on
the value of the reset flag word in memory at location 0040:0072. When
the reset flag contains the value I234h, the POST memory test is skipped.
POST is skipped. Causes DOS to be loaded from disk.
POST is skipped and memory preserved. The 80286 microprocessor can
not be switched from protected mode into real mode without resetting the
processor. This presents problems when the programmer wishes to tem
porarily switch to protected mode to access extended memory and then
switch back into real mode to continue execution. When a program must
temporarily leave real mode and enter protected mode, the programmer
first stores a four byte memory address (pointer) into memory location
0040:0067. This pointer specifies the address at which real mode execution
will resume. Having done this, the program may switch the processor into
protected mode and access extended memory. Upon completing the pro
tected mode function, the programmer must place the value OSh or OAh
into the reset code byte in CMOS RAM and then reset the 80286 micro
processor. When reset goes away, the processor is in real mode and begins
executing the POST. The POST code checks for a OSh or a OAh in the reset
code byte, and, if present, jumps to the memory address specified in
memory starting at location 0040:0067 to resume execution at the point
where it left off in real mode. In addition, if the reset code byte value is
OSh, an EOI command is issued to the interrupt controller.
Block-move return. This value is placed in the reset code byte by a BIOS
call to INT ISh to move a block of information between conventional and
extended memory. In order to accomplish this move, the processor must
switch into protected mode. On an 80286-based system, the INT ISh rou
tine sets the reset code byte to 09h prior to resetting the processor to re
turn to real mode after the block move. When reset, the processor starts
executing the POST, checks the reset code byte value, and then performs
an interrupt return, or IRET, instruction to return to the original program
after completion of the call to the INT ISh BIOS routine.
Jump to reset vector 0040:0067 without issuing EOI. See the explanation
for reset code byte = OSh.

It should be noted that systems based on the 80386 and higher microproces
sors can switch from protected mode to real mode without resetting the proc
essor (by turning off the PE bit in the MSW register).

447

Chapter 22: Keyboard/Mouse Interface

Chapter 22
The Previous Chapter

The methods of communication over the ISA bus have been covered, includ
ing read and write operations, interrupt driven communication with I/O de
vices, DMA communication between memory and I/O, and bus mastering.

This Chapter

The interface for the keyboard controller is implemented using an Intel 8042
series microcontroller known as a universal peripheral interface. This device
also serves other miscellaneous system functions. This chapter discusses the
8042 implementation of the combination keyboard/mouse interface and the
standard ISA functions handled by this interface.

The Next Chapter

The next chapter explains the interface between the microprocessor and nu
meric coprocessor. The Intel 80287, 80387 and the Weitek coprocessors are
covered.

Keyboard/Mouse Interface

Every ISA system includes a keyboard interface on the system board and
some systems implement a combined keyboard/mouse interface. Both im
plementations consist of an Intel 8042 microcomputer with its own RAM,
ROM and I/O. The 8042 is a self-contained computer system that the system
board microprocessor communicates with using two I/O registers.

The 8042 communicates with the keyboard and the mouse using two inde
pendent serial interfaces. The keyboard and the mouse both receive their
power from the system board.

The 8042 microprocessor has additional input and output pins that can be
used for other functions. Four of the output functions are ISA specific: IRQl

449

ISA System Architecture

(the keyboard interrupt request), IRQ12 (the mouse interrupt request), Hot
Reset and A20 Gate. These signals are covered in detail later in this chapter.
Other input and output functions may also be found in ISA systems but are
manufacturer specific.

Keyboard

The key switches are laid out in rows and columns within the keyboard. An
other 8042 (or a dedicated part such as an 8052) controller resides in the key
board and is constantly scanning the key matrix to see if a key has been
pressed. When a key is pressed, the 8042 creates an 8-bit scan code that repre
sents the key pressed. This code is commonly referred to as the "make" code.
The scan code is then converted to a serial bit stream and sent to the key
board/mouse interface on the system board. When the key is released, an
other scan code is generated and is called the ''break'' code.

Once an entire 8-bit scan code has been received, the keyboard/mouse inter
face generates an IRQl interrupt request to alert the microprocessor. The mi
croprocessor jumps to the keyboard interrupt service routine and an II0 read
from data port 60h is performed to read the scan code from the 8042 on the
system board. IRQ1 remains asserted until the scan code is read and is then
automatically deasserted.

Mouse

Like the keyboard, the mouse generates an 8-bit code that is handled in the
same manner by the keyboard/mouse interface. When the mouse code is re
ceived by the interface, it generates an IRQ12 to alert the microprocessor that
a byte is ready to be transferred.

8042 Local 1/0 Ports

Refer to figure 22-1. The keyboard controller's input and output ports have
additional lines that can be used for other functions besides the keyboard and
mouse interface. Many older ISA systems use the local input ports to read sys
tem configuration information from switches or jumpers. These inputs are de
fined in various ways and are manufacturer dependent. However, the
keyboard controller output signals HOT RESET and A20 GATE are ISA spe
cific and virtually all manufacturers implement these outputs in order to re
main compatible. Figure 22-1 shows the standard uses of the local ports.

450

Chapter 22: Keyboard/Mouse Interface

Hot Reset

IRQ18042
Keyboard IRQ12

Controller

Fuse
+5Vdc ~----1

Ground

Keyboard
K ..v1hn<1lrt'1 Data

Mouse

Figure 22-1. The Keyboard Controller

Hot Reset

The 80286 microprocessor must be reset to change the processor from pro
tected back to real mode. Hot Reset causes the "CPU only" reset needed to
change the microprocessor from protected to real mode. Writing a FEh to I/O
port 64h, the keyboard command port, causes the HOT RESET line to be
pulsed. Refer to the chapter entitled "The 80286 Microprocessor" for addi
tional information on changing from protected back to real mode.

A20 Gate

Depending on the schematic, A20 GATE may be called A20MASK#, PASS
A20, FORCE A20, etc., all of which apply to the same function and signaL
When deasserted, A20 GATE inhibits the generation of address line A20 dur

451

ISA System Architecture

ing real mode operation, making the 80286 and higher microprocessors com
patible with the segment wrap-around that occurs on 8086 and 8088 micro
processors. Note that the polarity of the signal affects its meaning. Whereas
A20 GATE would be asserted to pass A20 from the microprocessor to mem
ory, A20MASK# would be deasserted to do the same thing.

Local Port Definition
The 8042 microcontroller has three local ports that are used in most configu
rations as shown in figure 22-2. These ports include:

• 	 An 8-bit input port used for keyboard data, mouse data and miscellane
ous inputs.

• 	 An 8-bit output port used for keyboard data, mouse data, Hot Reset, A20
Gate and miscellaneous outputs.

• 	 A 2-bit test port used to read the keyboard and mouse clock signals.

r Keyboard/Mouse 0
(")

Controller ~

0
c:
-0
S.
"J
::l.

Command Port

Data Port

r
0
(")

~
S"
"0
S.
"J
::l.

Test Inputs
0 1

;;::~ 0'< c:CT
0 CD '" ~

Q
Q "

0
a.
0 " " "

Hot Reset

A20Gate

Mouse Data

Mouse Clock

IRQl

IRQ12

Keyboard Clock

Keyboard Data

Keyboard Data

Mouse Data

not used

not used

not used

not used

not used

not used

Figure 22-2. Sample 8042 Configuration

452

Chapter 22: Keyboard/Mouse Interface

Note that these definitions are typical of the keyboard/mouse interface. Use of
these ports vary depending on the specific implementation. Tables 22-1
through 22-3 provide sample bit assignments for the 8042's local I/O ports.

Table 22-1. Sample Keyboard/Mouse Interface-Local Input Port
Bit Description

7:2 	 Not used.
1 Mouse Data input line.
a Keyboard Data input line.

Table 22-2. Sample Keyboard/Mouse Interface-Local Output Port
Bit Description

7 Keyboard Data output line
6 Keyboard Clock output line
5 IRQ12
4 IRQ1
3 Mouse Clock output line
2 Mouse Data output line
1 Gate Address Bit 20
a Reset microprocessor (Generates Hot Reset)

Table 22-3. Kelfboard/Mouse Interface-Test Port
Test Port Description

a Keyboard Clock input
1 Mouse Clock input

System Interface

The microprocessor uses two 1/0 registers to communicate with the 8042
keyboard/ mouse interface:

• Command/Status Port 64h
• Data In/Out Port 60h

453

ISA System Architecture

Command/Status Port

To command the keyboard/mouse interface (the 8042) to perform a task, the
microprocessor uses an I/O write to send the command to the 8042. The 8042
microcomputer's ROM program then interprets the command and jumps to
the appropriate subroutine (series of instructions) to accomplish the requested
task.

The microprocessor issues commands to the keyboard/mouse command port
at I/O address 0064h. Table 22-4 provides a list of typical commands that can
be sent to the 8042 keyboard/mouse interface's command port. The precise
commands used by a particular system can vary depending on the features
built into the system. For example, not all systems support the password fea
ture that is found in the list. In short, the commands listed in table 22-4 will
not necessarily match the commands found in all ISA systems. Some systems
will not support all of the commands found in this list, while others may in
clude additional commands.

Note that the command port allows the microprocessor to indirectly read
from and write to the keyboard/mouse interface's local ports. For example, to
read the contents of the local input port requires that a COh be first written to
the command port (64h). This command causes the values at the local input
port to be sent to the data port (60h) where they can then be read by the mi
croprocessor.

This command port can also be read to obtain status information from the
keyboard/mouse interface.

454

Chapter 22: Keyboard/Mouse Interface

Table 22-4. 8042 Sample Keyboard/Mouse Interface Command List
enid
(hex) ,. Description

20 to Bits S through 0 of this command designate one of 64 possible 8042 internal
3F RAM locations to be read. As an example, 23h causes internal RAM loca

tion 03h to be read. Its contents are placed in the data port at I/O address
0060h so the microprocessor can read it.

60 to Bits S through 0 of this command designate one of 64 possible 8042 internal
7F RAM locations to be written. The next byte written to the data port at I/O

address 0060h is written to the designated internal RAM location. As an
example, 63h causes internal RAM location 03h to be written. The next byte
written to the data port at I/O address 0060h is written to the designated
location.

A4 Test password installed. This command checks for a password installed in
the 8042's internal RAM. FAh is placed in the data poit at I/O address
0060h if the password is installed. A Flhindicates it isn't installed.

AS Load password. Initiates tHe password load procedure. The 8042 then ac
cepts input from the data port at I/O address 0060h until a riuli (OOh) is
received.

A6 Enable password feature.
A7 Disable mouse Interface.
A8 Enable mouse Interface.
A9 Mouse interface test. Tests the mouse clock and data lines. Result is placed

in the 8042's data port at I/O address 0060h.
AA Self-test. Runs an 8042 self-test. 55h placed in the data port at I/O address

0060h if no errors are detected.
AB Keyboard interface test. Tests the keyboard clock and data lines. Result is

placed in the 8042's data port at I/O address 0060h.
AD Disable keyboard interface.
AE Enable keyboard interface.
CO Read input port. Allows the programmer to read the contents of the 8042's

local input I/O port. The result is placed in the data port at I/O address
0060h.

Cl Poll input port low. Bits 3:0 of the 8042's local input I/O port are read and
placed in bits 7:4 of the status register at I/O address 0064h.

C2 Poll input port high. Bits 7:4 of the 8042's local input I/O port are read and
placed in bits 7:4 of the status register at I/O address 0064h.

DO Read output port. Causes the 8042 to read the current state of its local out
put I/O port and place the result in the data port at I/O address 0060h.

455

ISA System Architecture

Table 22-4. 8042 Sample Keyboard/Mouse Interface Command List, continued

Cmd
(hex) Description

Dl 	 Write output port. The next byte written to the data port at I/O address
0060h is written to the 8042's local output I/O port.

D2 	 Write keyboard output buffer. The next byte written to the data port at I/O
address 0060h causes a keyboard Interrupt on IRQl (if the keyboard Inter
face is enabled). The byte is supplied as the keyboard scan code when the
data port is read.

03 	 Write mouse output buffer. The next byte written to the data port at I/O
address 0060h causes a mouse Interrupt on IRQ12 (if the mouse Interface is
enabled). The byte supplies the mouse scan code when the data port is
read.

04 	 Write to mouse. The next byte written to the data port at I/O address
0060h is transmitted to the mouse.

EO 	 Read test inputs. Causes the 8042 to read the current state of the keyboard
and mouse dock lines. The results are stored in bits 0 and 1, respectively,
of the data port at I/O address 0060h.

FO to I/O port are pulsed low for approximately 6 microseconds. Bits 3:0 of this
FF command indicate which bits are to be pulsed. 0 indicates the respective

bit should be pulsed, while 1 indicates the respective bit shouldn't be al
tered.

Data Port

The keyboard/mouse data port at I/O address 0060h is used to:

• Read the scan code sent from the keyboard or mouse.
• Send datalcommands to the keyboard.

Scan codes from the keyboard and mouse go directly to the output buffer
(port 60h) where they can be read from the microprocessor. The local output
port and test port also can be read at port 60h. By writing the proper com
mand to port 64h, the contents of the local ports are sent to port 60h where
they also can be read by the microprocessor.

Through port 64h, the keyboard Interface can also be commanded to write the
contents of port 60h to the local ports. In this way, the Hot Reset and Gate A20
commands can be issued to the system.

456

Chapter 22: Keyboard/Mouse Interface

Most keyboards have LED indicators for scroll lock, num lock, caps lock, etc.,
that can be turned on and off by issuing commands to the keyboard.

BIOS Routine

The recommended method for controlling the keyboard/mouse interface is
through BIOS function calls. INT 09h and INT 16h can be used to call the key
board/mouse BIOS routine.

457

Chapter 23: Numeric Coprocessor

Chapter 23
The Previous Chapter

The previous chapter provided a detailed description of the keyboard and
mouse interfaces to the system.

This Chapter

This chapter provides a description of the numeric coprocessors commonly
found in ISA systems. This includes both Intel and Weitek coprocessors.

The Next Chapter

The next chapter describes the timers found in all ISA systems.

Introduction

When Intel was designing the 8086 and 8088 microprocessors, they had a de
cision to make - should the 8086 and 8088 be given the ability to perform
floating-point mathematics? Floating-point numbers are numbers with deci
mal places. If this ability were included within the microprocessor itself, it
would substantially increase the price of the microprocessor. Marketing in
formation indicated that most users didn't need this capability, so it was not
included in the final processor design. The microprocessor can perform inte
ger, or whole number, calculations, but not floating-point.

Rather than completely eliminate the floating-point capability, however, they
included hooks on the microprocessor that would enable users to include a
companion floating-point processor in designs that required this capability.
The companion processor, or coprocessor, was the 8087 numeric coprocessor.
It is also referred to as a processor extension because it extends the micro
processor's instruction set. When the 80286 and 80386 microprocessors were
introduced, the same philosophy was adhered to - the 80286 can be coupled
with the 80287 and the 80386 with either the 80287 or the 80387 numeric
coprocessor.

459

ISA System Architecture

The microprocessor treats the numeric coprocessor as an I/O device. When
the microprocessor fetches an instruction from memory and senses that it is
an instruction for the coprocessor, it automatically performs a series of one or
more I/O writes to forward the instruction to the coprocessor, which then
executes the instruction. The 1/0 address range from 00F8h through OOFFh are
assigned to the coprocessor.

Setup

At the beginning of the POST, the programmer checks the configuration RAM
to see if a numeric coprocessor is installed. Bits 1 and 2 of the microproces
sor's machine status word (MSW) register are then set according to table 23-1.

- h MSWR .T.able 231 The Numerzc·coprocessor cantra1B'Its In t e e~lster

Bit 2 (EM) Bit 1 (MP) Description

0 0 Coprocessor is installed. Microprocessor forwards
all floating point instructions to coprocessor. Mi
croprocessor does not check to see if the it has
switched tasks when executing floating point in
structions. Microprocessor operates as an 8086 or
8088, single-tasking.

0 1 Coprocessor is installed. Microprocessor forwards
all floating point instructions to coprocessor. Mi
croprocessor checks to see if it has switched tasks
when executing floating point instructions. Used for
multi-tasking.

1 0 Coprocessor not installed. Emulate coprocessor.
1 1 Invalid.

Note: In the 80386 and higher microprocessors, the MSW register is found in
the lower half of CRO (control register 0).

With Numeric Coprocessor Installed

Refer to figure 23-1. The microprocessor is aware of the I/O addresses of the
coprocessor's two ports. The coprocessor's opcode, or instruction, register re
sides at port 00F8h in an 80286-based system, 8000F8h in an 80386SX-based
system, and 800000F8h in an 80386DX-based system. The coprocessor's data
register resides at port OOFCh in an 80286-based system, 8000FCh in an
80386SX-based system, and 800000FCh in an 80386DX-based system. When

460

Chapter 23: Numeric Coprocessor

the coprocessor is installed and the MP bit is set to one, the following actions
take place when the microprocessor fetches a coprocessor instruction from
memory:

1. 	 If the execution of the coprocessor instruction requires a memory read or
a memory write operation, the microprocessor saves the memory address,
the length of the data and notes whether a memory read or write is re
quired.

2. 	 If the coprocessor's BUSY# output is deasserted, indicating that it is avail
able to accept the next instruction, the microprocessor performs one or
more I/O writes to the coprocessor's instruction register at I/O port 00F8h
(800000F8h for the 80386DX or 8000F8h for the 80386SX) in order to for
ward the instruction to the coprocessor. The 80286 and 80386SX micro
processors have a 16-bit data bus, allowing one or two bytes to be
transferred to the coprocessor in a single bus cycle. The 80386DX micro
processor, on the other hand, has a 32'-bit data bus, allowing from one to
four bytes to be transferred to the coprocessor in a single bus cycle. Simple
instructions that are only one or two bytes in length can be transferred in a
single I/O write bus cycle, while more complex instructions consisting of
three or more bytes may require additionalI/O write bus cycles.

3. 	 When the coprocessor begins execution of the instruction, it asserts its
BUSY# output, thereby signaling that it cannot accept another instruction
from the microprocessor until the currently executing instruction is com
pleted. The microprocessor will not attempt to forward another instruc
tion to the coprocessor until BUSY# is deasserted.

4. 	 If execution of the instruction requires that a memory read or memory
write bus cycle take place, the coprocessor asserts PEREQ (processor ex
tension request) to request that the microprocessor run the memory read
or write bus cycle.

5. 	 This step only applies to the 80286. The 80386 microprocessor does not
have a PEACK# output. The 80286 microprocessor responds with
PEACK# (processor extension acknowledge) to inform the coprocessor
that the transfer request has been acknowledged.

461

ISA System Architecture

PEACK#

IR2 INTR
Master
8259

-+--1 Interrupt
- Controller

80286 80287
Micro Numeric

processor Coprocessor

Slave
8259

ERROR#

Figure 23-1. The 80287 Numeric Coprocessor

6. 	 If the requested transfer is a memory write, the microprocessor performs
two (or more) bus cycles to transfer the data into memory. During the first
bus cycle, the microprocessor performs an I/O read from the coproces
sor's data register at I/O address OOFCh (800000FCh for the 80386DX or
8000FCh for the 80386SX) to get the data. The processor then performs a
memory write bus cycle to write the data into the target memory loca
tions.

..
If the requested transfer is a memory read, the microprocessor performs
two (or more) bus cycles to transfer the data from memory to the coproc
essor. During the first bus cycle, the microprocessor performs a memory
read from the target memory locations to get the data. The processor then
performs an 1/0 write to 1/0 address OOFCh (800000FCh for the 80386DX
or 8000FCh for the 80386SX) to pass the data to the coprocessor's data
register.

462

Chapter 23: Numeric Coprocessor

7. 	 If the coprocessor incurs an error while executing the instruction, its ER
ROR# and BUSY# outputs are asserted. This generates an IRQl3 to the
microprocessor and prevents the microprocessor from forwarding an
other coprocessor instruction. In the IRQl3 interrupt service routine, the
programmer reads the coprocessor's status register to ascertain t~e cause
of the error. Any coprocessor error m.ay be reset by writing OOh ~o I/O
address OOFOh. This causes the coprocessor's RESET input to be ilS!!erted,
clearing any error conditions.

8. 	 When the coprocessor completes execution of the instruction, it deasserts
its BUSY# output to inform the microprocessor that it is ready to accept
another coprocessor instruction.

Numeric Coprocessor Reset

In systems incorporating the 80287 numeric coprocessor, an output to I/O
port Flh is necessary to reset the 80287 and return it to real mode 9peration
after execution of a FSETPM (floating-point set processor mode) instruction.
Writing any data to this port causes the 80287's reset line to be asserted mo
mentarily. The 80387 numeric coprocessor doesn't require a reset when
changing processor modes. .

Writing a OOh to I/O port FOh causes the numeric coprocessor to clear its
BUSY# and ERROR# outputs.

Table 23-2 provides a description of the Intel coprocessor signals involved in
communication with the microprocessor.

463

ISA System Architecture

- . t" S'~abie 232 InetICoprocessorIFrocessor Communtca IOn lj?na s
Signal Coprocessor
Name Type
PEREQ 287/387

PEACK# 287

BUSY# 287/387

ERROR# 287/387

D[31:0] 287/387

W/R# 387

ADS# 387

READY# 387

READYO# 387

STEN 387

NPSl# 287/387

Description
Processor extension request. Asserted by the coprocessor when a
transfer to or from memory is required. In response, the microproces
sor performs two or more bus cycles to transfer the data between
memory and the coprocessor.
Processor extension acknowledge. Asserted by the 80286 coprocessor
in response to PEREQ.
Asserted by the coprocessor when it begins executing an instruction.
The processor may not send another instruction to the coprocessor
while this signal is asserted.
Generated by the coprocessor when an error condition is encoun
tered while executing an instruction. In an ISA machine, ERROR# is
connected to the IRQ13 line.
Data bus is used to transfer instructions or data to the coprocessor
from the processor. Also used to transfer data or status from the
coprocessor to the processor. The 80286 and 80386SX processors and
the 80287 and 80387SX coprocessors have a 16-bit data bus, while the
80386DX processor and the 80387DX coprocessor have a 32-bit data
bus.
This is the 80386 processor's write or read output. During an access
to the coprocessor, W /R# indicates whether a write or read opera
tion is in progress.

This is the 80386 processor's address status output.
When asserted at the start of a bus cycle, indicates to
the coprocessor that it should examine its chip-select
inputs to determine if the processor is addressing the
coprocessor.
This is the same signal that is connected to the micro
processor's READY# input. It indicates when a bus
cycle is being completed by the processor.
This is the coprocessor's ready output to the processor. It indicates to
the processor when the coprocessor is ready to end a bus cycle initi
ated by the microprocessor.
Status Enable. This pin serves as a chip-select to the coprocessor.
When sensed asserted, the coprocessor examines its CMD and NPSn
inputs to determine which of its internal registers is currently being
addressed.
Numeric Processor Select 1. When asserted (low), indicates that an
I/O operation is in progress. Should be connected to the microproc
essor's M/IO# output. In conjunction with NPS2, the CMD input(s)
and STEN (in the case of an 80387), it is used as a chip-select for the
coprocessor .

464

Chapter 23: Numeric Coprocessor

Table 23-2 Intel Coprocessor/Processor Communication Signals, continued

Signal Coprocessor

Name Type Description

NPS2 287/387 	 Numeric Processor Select 2. In conjunction with NPSI#, the CMD

input(s) and STEN (in the case of an 80387), it is used as a chip-select
for the coprocessor. In a system incorporating the 80287, NPS2 is
usually just tied high. In an 80386SX/80387SX system, it is tied to
A23, while in an 80386DX/80387DX system, it is tied to A31.

CMDOor 287 (CMDO) 	 Used to select the target I/O register in the coprocessor. In an 80386
CMDO# 387 (CMDO#) 	 based system, the processor's A2 output is connected to CMDO# on

the 80387. A2 goes high when the coprocessor's data register is ad
dressed, and low when its instruction register is addressed. In an
80286-based system, CMDO and CMDI are used to select the target
I/O register in the coprocessor. CMDO is connected to the processor's
Al output.

NPRD# 287 	 Numeric Processor Read. Connected to the bus control logic's IORC#
line. Indicates to the coprocessor when an I/O read bus cycle is in
progress.

NPWR# 287 	 Numeric Processor Write. Connected to the bus control logic's
IOWC# line. Indicates to the coprocessor when an I/O write bus
cycle is in progress.

CMDI 287 	 In an 80286-based system, CMDO and CMDI are used to select the
target I/O register in the coprocessor. CMDI is connected to the
processor's A2 ou~ut.

Detailed information about coprocessor programming may be found in the
following Intel manuals:

• 	 iAPX 286 Hardware Reference Manual
• 	 iAPX 286 Programmer's Reference Manual including the iAPX 286 Numeric

Supplement
• 	 80386 Hardware Reference Manual

Without Numeric Coprocessor Installed (Emulation)

When a system running Lotus 1-2-3 recalculates a spreadsheet, the decimal
portion of the numbers are calculated correctly, even if the coprocessor isn't
installed. Since the microprocessor can only perform integer mathematics, this
doesn't seem possible. In this case, the floating-point calculations are per
formed by special routines known as floating-point emulation routines. These
routines are supplied as part of the applications program (such as Lotus
1-2-3).

465

ISA System Architecture

Using the standard instruction set, floating-point calculations can be per
formed through laborious manipulation of floating-point numbers stored in
memory. This process is much less efficient than the floating-point instruction
capability embedded within the coprocessor. Where the coprocessor can di
rectly execute a single floating-point instruction with its hardware, an emula
tion routine would have to execute hundreds of instructions to accomplish the
same end. When running applications programs that are floating-point inten
sive, the performance improvement provided by the coprocessor can be quite
dramatic. Improvements of from 100% to 500% aren't uncommon.

Floating-point emulation requires the following:

• 	 Inclusion of a set of emulation routines in the applications program (such
as 1-2-3).

• 	 In the MSW register, the EM bit must be set to 1 and the MP bit set to O.

This section describes the actions taken when a coprocessor isn't installed and
the EM bit is set to 1 in the MSW register.

1. 	 The microprocessor fetches a coprocessor instruction from memory. When
the microprocessor decodes the instruction and senses that it belongs to
the coprocessor, it checks the MP bit in the MSW register to see if a
coprocessor is installed. If it isn't (MP = 0), it checks the EM bit to see if
the coprocessor instruction is to be emulated. In this case, it is (EM = 1).

2. 	 The microprocessor internally generates an exception 7 interrupt request.
As with any interrupt, the microprocessor responds by pushing the con
tents of the CS, IP and Flag registers into stack memory. The stored CS
and IP values point to the coprocessor instruction that caused the excep
tion.

3. 	 The microprocessor jumps to the exception 7 interrupt service routine.
This is the emulation program supplied as part of the applications pro
gram. In the routine, the programmer reads the coprocessor instruction
using the memory address stored in the stack and determines the type of
instruction (such as a floating-point divide). The programmer then jumps
to the routine (in the package of emulation routines) that emulates that
particular type of instruction.

4. 	 Upon conclusion of the instruction emulation, the programmer alters the
IP value stored on the stack to point to the instruction immediately follow
ing the coprocessor instruction that caused the exception.

5. 	 The programmer executes an IRET (interrupt return) instruction. The mi
croprocessor responds by reloading the CS, IP and Flag registers from the

466

Chapter 23: Numeric Coprocessor

stack and resuming normal operation - in other words, the microproces
sor fetches the next instruction from the memory location pointed to by
CS and IP. This is the instruction after the coprocessor instruction that
caused the exception.

Weitek Numeric Coprocessor

Introduction

ISA systems may incorporate either an Intel or a Weitek coprocessor, or both.
The Weitek coprocessor does not reside in the same address space as the Intel
coprocessor, so addressing conflicts will not arise if both are implemented.
Rather than using I/O addresses as does the Intel coprocessor, the Weitek
device is memory-mapped. It responds to memory addresses COOOOOOOh
through CIFFFFFFh.

Systems Incorporating Just the Weitek

General

In a system using the Weitek coprocessor to perform floating-point calcula
tions, two possible scenarios may coexist:

• 	 By re-compiling a program that uses Intel coprocessor-specific instruc
tions, the Weitek can handle the execution of all Intel coprocessor-specific
instructions, or alternatively a driver routine can be installed to automati
cally handle the instructions.

• 	 Applications programs can incorporate Weitek-specific instructions as in
line code within the applications itself.

The second case is clear-cut, but the first one merits some explanation.

Weitek Handling of Intel Coprocessor Instructions

Most developers that use the Weitek coprocessor embed move instructions
into their floating-point code to pass the instruction directly to the Weitek
Coprocessor. Alternatively, a Weitek driver routine could perform a memory
write to pass the instruction and any data operands to the Weitek coprocessor.

467

ISA System Architecture

In order for a driver to direct all instances of Intel coprocessor-specific in
structions to the Weitek, the EM bit in the MSW register should be set to a
one. An Intel-specific floating-point instruction fetched from memory then
causes the processor to experience an exception 7 interrupt. As a result, the
processor jumps to the exception 7 handler routine. This is the Weitek driver
routine.

As illustrated in table 23-3, the memory address that is written to identifies
both the coprocessor's internal register as well as the instruction type. In ad
dition, up to four bytes of data are simultaneously written to the Weitek over
the four data paths. Upon receipt of the instruction, the coprocessor asserts
READY#, permitting the processor to end the bus cycle. Having passed the in
struction to the coprocessor, the Weitek driver routine modifies the return
address pointer on the stack to point to the instruction after the one that
caused the exception. It then executes an interrupt return, or IRET, instruction
to return to the original program flow.

Table 23-3. Weitek Interpretation cfthe Memo1]L Address
Address Bits Identify

A[31:16] The register within the Weitek coprocessor.
A[15:1O] Instruction ~code, or !YEe.
A[9:7] Source 1 register in the Weitek.
A[6:2] Source 2 or destination r~ster in the Weitek.
BE#[2:0] Additional information regarding the source 1 register in

the Weitek.

Systems Incorporating Both Coprocessor Types

In a system incorporating both coprocessor types, the Intel coprocessor han
dles execution of all Intel coprocessor-specific instructions, while the Weitek
handles execution of all Weitek-specific code embedded within applications
programs. In the MSW register, EM is set to zero and MP is set to one to indi
cate the presence of an Intel coprocessor.

468

Chapter 24: ISA Timers

Chapter 24
The Previous Chapter

The previous chapter provided a description of the numeric coprocessor inter
face and floating-point emulation.

This Chapter

This chapter describes the system timers incorporated in all ISA-compatible
machines.

ISA Oscillator, OSC

ISA systems include a free-running 14.31818MHz clock named OSC that may
be used by ISA add-in boards. OSC runs at four times the television color
burst frequency and may be used by video display adapter cards or any other
device needing a free-running clock.

The 14.31818MHz OSC oscillator signal is divided by 12 by logic on the sys
tem board to provide the 1.19318MHz signal that drives timer 0, timer 1 and
timer 2. The OSC signal was divided by 3 by the 8284 clock chip in the original
PC to provide the 4.77MHz clock that drove the 8088 microprocessor.

System Timer (Timer 0)

The system timer, timer 0, is a programmable frequency source. The pro
grammer specifies a divisor to be divided into the input clock to yield the de
sired output frequency. During the POST, the divisor FFFFh, or a decimal
65535, is programmed into timer 0 at I/O address 0040h. Based on the
1.19318MHz input clock, the output frequency of timer 0 after POST is
18.21Hz.

Refer to figure 24-1. Timer O's output is connected to the IRQO latch. When
timer O's output becomes asserted, the latch is set, sending IRQO to the master

469

ISA System Architecture

8259 interrupt controller. In the IRQO interrupt service routine, the program
mer can reset (deassert) IRQO by setting bit 7 of system control port B at I/O
address 0061h to a one.

At a frequency of 18.21Hz, IRQO is generated every 54.9ms, causing the IRQ
interrupt service routine to be executed once every 54.9ms.

In the original IBM PC and XT, this interrupt service routine was used to
maintain the date and time in RAM memory. In the IBM PCIAT, a real-time
clock chip was added to perform this function,but timer 0 is still available for
use as a general purpose timer by programmers.

There's a funny story about this timer. In 1989, a number of indw~try publica
tions reported the astounding news that a designer in Taiwan had altered a
PCIAT so that it could perform at the positively astounding rate of 100 MIPS
(million instructions per second). A number of benchmark (performance veri
fication) programs had been run on the system to verify his claims. Quite a
few people in the industry were reeled in; hook, line and sinker. All this guy
had done was re-program timer a to interrupt at a different rate. Since the
benchmark programs used this interrupt as their timebase, it altered the re
sults. Red faces all around.

System Control Port B, Bit 7

Reset

IROO1.19318MH~ 18.21HzClock Output ,.
Input

IROO
Timer 0 Latch

Figure 24-1. The System Timer, Timer 0

470

Chapter 24: ISA Timers

Refresh Timer (Timer 1)

The refresh timer, or timer 1, is a programmable frequency source. The same
1.19318MHz signal (used by timer 0) provides the refresh timer's clock input.
The programmer specifies a divisor to be divided into the input clock to yield
the desired output frequency. During the POST, a divisor of 0012h, or a deci
mal 18, is written to the refresh timer at I/O address 0041h. The input clock
frequency of 1.19318MHz is therefore divided by 18 to yield an output fre
quency of 66287.77Hz, or a pulse every 15.09 microseconds.

This is the refresh request signal that triggers the DRAM refresh logic to be
come bus master once every 15.09 microseconds so it can refresh another row
in DRAM memory throughout the system. For more information on DRAM
refresh, refer to the chapter entitled "RAM Memory: Theory of Operation."

In 1988, a number of industry publications published a brief but dangerous
article that addressed the issue of the refresh timer. It was revealed that this
demon timer "steals" the buses from your computer once every 15 microsec
onds to refresh DRAM memory. A small program was provided that would
re-program this timer so it couldn't ask for the buses quite so frequently,
thereby giving more bus time to your computer.

This was an extremely dangerous factor to be messing around with. It's en
tirely possible that users who implemented this change would start to experi
ence mysterious RAM parity errors from time to time and lose all data they
currently had in RAM because the unit locked up after outputting the mes
sage.

Speaker Timer (Timer 2)

Timer 2, the speaker timer, resides at I/O address 0042h and, as with timer 0,
is a programmable frequency source derived from the 1.19318MHz timebase.

The programmer specifies a divisor to be divided into the input clock to yield
the desired output frequency. The divisor is written to timer 2 at I/O address
0042h. Figure 24-2 illustrates the speaker timer and its associated logic.

In order for timer 2 to actually use the input clock, bit 0 of system control port
B at I/O address 0061h must be a 1. The timer then divides the timebase by
the programmer-specified divisor, yielding an output frequency that is ap

471

ISA System Architecture

plied to one input of a two input AND gate. If the AND gate's other input is a
1 (from bit 1 of system control port B at I/O address 0061h), the timer 2 out
put is gated through the AND gate and applied to the speaker driver chip,
where it is amplified and applied to the speaker.

The output frequency of timer 2 is applications-specific - it can be pro
grammed to make happy or sad sounds, depending on the occasion.

Timer
2

Speaker
Driver1.19318Mhz

S stem Port B Bit 0

S stem Port B, Bit 1

Figure 24-2. The Speaker Timer and Associated Logic

Watchdog Timer

The watchdog timer is used to detect ill-behaved programs. If a multitasking
operating system, such as OS/2, were to give control to a program that dis
ables interrupt recognition for an extended period of time, problems could re
sult. The various devices generating interrupt requests to obtain
microprocessor servicing could experience problems due to the resulting de
lay in servicing.

One of the interrupt requests that wouldn't be serviced is the system timer in
terrupt, IRQO. The system timer, or timer 0, requires servicing every 54.9ms.
The watchdog timer is designed to detect a cessation of IRQO servicing.

Many systems do not have watchdog timers. For those that do have timers,
the address and function of the timers varies from system to system. The fol
lOwing discussion applies to the IBM PS/2.

472

Chapter 24: ISA Timers

Figure 24-3 illustrates the watchdog timer and its associated logic. The watch
dog timer at I/O address 0044h is programmed with a count (a number). The
output of timer 0 is connected to the IRQO latch and to the clock input of the
watchdog timer. When timer 0 generates a pulse, it sets the IRQO latch and
generates IRQO to the interrupt controller. When IRQO becomes asserted, it
enables the watchdog timer. Starting with the next timer 0 output pulse, the
watchdog timer begins to count down once for each pulse received on its
clock input.

In the IRQO interrupt service routine, the programmer should set bit 7 of sys
tem control port B to a 1 to reset the IRQO latch, thereby deasserting IRQO.
When IRQO is deasserted, it disables the watchdog timer so it can't count
down any more. The programmer should also reload the start count into the
watchdog timer. (Note that the meaning of the bits in system control port B at
I/O address 0061h are different for an I/O read versus an I/O write.)

If interrupt recognition has been disabled for an extended period of time by an
ill-behaved program, IRQO will not be reset. The watchdog timer will there
fore continue to count down towards zero because of the repeated timer 0
output pulses. If the count is exhausted, the watchdog timer's output is as
serted, thereby asserting NMI to the microprocessor.

In the NMI interrupt service routine, the programmer can check bit 4 of sys
tem control port A at I/O address 0092h to see if the watchdog timer was the
source of the NMI. Bit 4 will be set to 1 if the watchdog timer generated the
NMI. Writing a new count to the watchdog timer will deassert NMI.

473

ISA System Architecture

System Port B, Bit 7

la.21Hz Reset IROO

1.19318MHz IROO
Latch

Timer
0

1..+ Enable

NMI
Clock
Input

Watchdog
Timer

Figure 24-3. The Watchdog Timer and Associated Logic

Slowdown Timer

When faster microprocessors were introduced, several problems began to oc
cur with programs that were timing sensitive. For example, some games ran
too fast for reasonable user interaction and some copy protection schemes
failed to operate properly at the faster processor speeds.

The slowdown timer is implemented in systems using microprocessors run
ning at speeds of 16MHz and faster, to provide a method for artificially
slowing them down. The term artificial is used because the microprocessors
are not slowed at all, rather the refresh hold time is extended, causing the mi
croprocessor to remain in the hold state longer than normal. Since the proces
sor is unable to fetch and execute programs it appears to slow down.

Figure 24-4 illustrates the logic associated with the slowdown timer. The
slowdown timer is triggered by the refresh request signal that goes to the re
fresh logic. When the refresh timer generates refresh request, two things oc
cur:

474

Chapter 24: ISA Timers

• 	 The refresh logic generates HOLD to seize the buses from the microproc
essor. This HOLD causes the OR gate to generate HOLD to the micro
processor. The microprocessor is forced off the buses.

• 	 The slowdown timer is triggered. When triggered, its output goes high for
a pre-determined amount of time. The high on this output causes the OR
gate to output a high.

The refresh logic only keeps its HOLD output asserted long enough to run one
refresh bus cycle. It then deasserts its HOLD output to release the buses back
to the processor so it can continue to fetch and execute instructions. The slow
down timer, however, may not have timed out yet and its HOLD output may
still be high. This would delay the release of the buses back to the processor.
The programmer defines the duration of the slowdown timer's output pulse
by writing a count into its register at I/O address 0046h. The PC vendor's
MODE command is usually used to program this timer.

HLDA from Microprocessor

Refresh

Request

Refresh Refresh

Timer Logic

HOLD

HOLD to
Microprocesso

~ Trigger I

Slowdown
Timer

Figure 24-4. The Slowdown Timer

475

Appendix A

I/O Bit

Assignment

IS
A

 1
/0

 A
D

D
R

E
S

S
E

S

Y
O

 P
o

rt

R
fW

N

o
te

B

it
7

B

it
 6

B

it
 5

B

it
 4

B

it
3

I

B
it

2

I
B

it
 1

I

B
it

O

O
O

O
O

h
R

/W

S
la

ve
 D

M
A

 C
ha

nn
el

 0

lo
w

er
 1

6
bi

ts
 o

f
m

em
or

y
ad

dr
es

s
w

ri
tt

en
 a

s
2

su
cc

es
si

ve
 b

yt
es

M

em
or

y
A

dd
re

ss
 R

eg
is

te
r

O
O

O
lh

R

/W

S
la

ve
 D

M
A

 C
ha

nn
el

 0

lo
w

er
 1

6
bi

ts
 o

f
tr

an
sf

er
 c

o
u

n
t

w
ri

tt
en

 a
s

2
su

cc
es

si
ve

 b
yt

es

T
ra

ns
fe

r
C

ou
nt

 R
eg

is
te

r

0O
O

2h

R
/W

S

la
ve

 D
M

A
 C

h
an

n
el

l
10

0v
er

 1
6

bi
ts

 o
f

m
em

or
y

ad
dr

es
s

w
ri

tt
en

 a
s

2
su

cc
es

si
ve

 b
yt

E
's

M
em

or
y

A
dd

re
ss

 R
eg

is
te

r

0O
O

3h

R
/W

S

la
ve

 D
M

A
 C

h
an

n
el

l
lo

w
er

 1
6

bi
ts

 o
f

tr
an

sf
er

 c
o

u
n

t
w

ri
tt

en
 a

s
2

su
cc

es
si

ve
 b

yt
E

's
T

ra
ns

fe
r

C
ou

nt
 R

eg
is

te
r

0O
O

4h

R
/W

S

la
ve

 D
M

A
 C

ha
nn

el
 2

lo

w
er

 1
6

bi
ts

 o
f

m
em

or
y

ad
dr

es
s

w
ri

tt
en

 a
s

2
su

cc
es

si
ve

 b
yt

es

M
em

or
y

A
dd

re
ss

 R
eg

is
te

r

O
O

O
Sh

R

/W

S
la

ve
 D

M
A

 C
ha

nn
el

 2

lo
w

er
 1

6
bi

ts
 o

f
tr

an
sf

er
 c

o
u

n
t

w
ri

tt
en

 a
s

2
su

cc
es

si
ve

 b
yt

es

T
ra

ns
fe

r
C

ou
nt

 R
eg

is
te

r

0O
O

6h

R
/W

S

la
ve

 D
M

A
 C

ha
nn

el
 3

lo

w
er

 1
6

bi
ts

 o
f

m
em

o
ry

 a
d

d
re

ss
 w

ri
tt

en
 a

s
2

su
cc

es
si

ve
 b

yt
es

M

em
or

y
A

dd
re

ss
 R

eg
is

te
r

0O
O

7h

R
/W

S

la
ve

 D
M

A
 C

ha
nn

el
 3

lo

w
er

 1
6

bi
ts

 o
f

tr
an

sf
er

 c
ou

nt
 w

ri
tt

en
 a

s
2

su
cc

es
si

ve
 b

yt
es

T

ra
ns

fe
r

C
ou

nt
 R

eg
is

te
r

0O
O

8h

R

S
la

ve
 D

M
A

 S
ta

tu
s

R
eg

is
te

r
1
~
 C

ha
nn

el
 3

1
~
 C

ha
nn

el
 2

1
~
 C

h
an

n
el

l
1
~
 C

ha
nn

el
 0

1
~
 C

ha
nn

el
 3

1
~
 C

ha
nn

el
 2

1
~
 C

h
an

n
el

l
1
~
 C

h
an

n
el

 0

(C
ha

nn
el

s
0

to
 3

)
re

qu
es

t
re

qu
es

t
re

qu
es

t
re

qu
es

t
T

er
m

in
al

T

er
m

in
al

T

er
m

in
al

T

er
m

in
al

C

o
u

n
t

C
o

u
n

t
C

o
u

n
t

C
o

u
n

t

0O
O

8h

W

S
la

ve
 D

M
A

 C
on

tr
ol

 R
eg

is
te

r
O
~
 D

A
K

n
O
~
 D

R
Q

n
o
~
 l

at
e

w
ri

te

o~
 f

ix
ed

0:

::
n

o
rm

al

o~
 C

on
tr

ol
le

r
o~

 c
h

0
ad

d
r

O
::

:m
em

-t
o

(C
ha

nn
el

s
0

to
 3

)
se

ns
e

as
se

rt
ed

se

ns
e

as
se

rt
ed

se

le
ct

io
n

pr
io

ri
ty

ti

m
in

g
en

ab
le

d
ho

ld
 d

is
ab

le
d

m
em

 d
is

ab
le

d
lo

w

hi

1
~
 e

xt
en

de
d

1
~
 r

ot
at

in
g

I
=

co

m
p

re
ss

ed

1
~
 C

on
tr

ol
le

r
1
~
 c

h
0

ad
d

r
1

::
:m

em
-t

o
1
~
 D

A
K

n
1
~
 D

R
Q

n
w

ri
te

 s
el

ec
ti

on

pr
io

ri
ty

ti

m
in

g

di
sa

bl
ed

ho

ld
 e

na
bl

ed

m
em

 e
n

ab
le

d

se
n

se
 a

ss
er

te
d

se

ns
e

as
se

rt
ed

hi

lo

w

0O
O

9h

W

S
of

tw
ar

e
D

R
Q

n
R

eq
ue

st

n
o

t
u

se
d

o
~
 R

es
et

OO

b
~
 s

el
ec

t
C

ha
nn

el
 0

 m
as

k
 b

it

re
qu

es
t b

it

O
lb

 ~
 s

el
ec

t
C

h
an

n
el

l
m

as
k

 b
it

1
~
 S

et
 r

eq
ue

st

lO
b
~
 s

el
ec

t
C

ha
nn

el
 2

 m
as

k
 b

it

bi
t

ll
b

 ~
 s

el
ec

t
C

ha
nn

el
 3

 m
as

k
 b

it

O
O

O
A

h
W

S

la
ve

 D
M

A
 M

as
k

R
eg

is
te

r
re

se
rv

ed

o~
 c

le
ar

 m
as

k

OO
b
~
 s

el
ec

t
C

ha
nn

el
 0

(C

ha
nn

el
s

0
to

 3
)

bi
t

O
lb

 ~
 s

el
ec

t C
h

an
n

el
l

1
~
 s

et
 m

as
k

 b
it

lO

b
~
 s

el
ec

t
C

ha
nn

el
 2

ll

b
 ~
 s

el
ec

t C
ha

nn
el

 3

O
O

O
Bh

W

S

la
ve

 D
M

A
 M

od
e

R
eg

is
te

r
OO

b
~
 d

em
an

d
 t

ra
ns

fe
r

m
o

d
e

o~
 A

dd
re

ss

0
=

 A
ut

o
in

it

O
O

b
=

 v
er

if
y

tr
an

sf
er

OO

b
~
 s

el
ec

t C
ha

nn
el

 0

(C
ha

nn
el

s
0

to
 3

)
O

lb
 ~
 s

in
gl

e
tr

an
sf

er
 m

o
d

e
in

cr
em

en
t

di
sa

bl
ed

O

lb
 =

 w
ri

te
 t

ra
ns

fe
r

O
lb

 ~
 s

el
ec

t C
h

an
n

el
l

lO
b
~
 b

lo
ck

 t
ra

ns
fe

r
m

o
d

e
1
~
 A

dd
re

ss

I
=

 A
ut

o
in

it

lO
b
~
 r

ea
d

tr
an

sf
er

1O

b
~
 s

el
ec

t C
ha

nn
el

 2

lI
b

 ~
 c

as
ca

de
 m

o
d

e
d

ec
re

m
en

t
en

ab
le

d
ll

b
 ~
 r

es
en

'e
d

lI

b
 ~
 s

el
ec

t
C

ha
nn

el
 3

11
0

P
or

t
R

JW

N
o

te

B
it

 7

I
B

it
 6

B

it
S

I

B
it

 4

B
it

 3

B
it

 2

I
B

it
 1

I

B
it

O
·

O
O

O
C

h
W

S

la
ve

 D
M

A
 C

le
ar

 B
yt

e
P

oi
nt

er

W
ri

ti
ng

 to
·t

hi
s

ad
d

re
ss

 c
au

se
s

th
e

D
M

A
C

 t
o

re
se

t t
he

 p
o

in
te

r
th

at
 k

ee
p

s
tr

ac
k

of
 1

6-
bi

t d
at

a
tr

an
sf

er
s

to
 a

n
d

 f
ro

m
 t

he
 D

M
A

C
 f

or
 h

il
lo

.b
y

te

se
qu

en
ci

ng
.

O
O

O
nh

W

S

la
ve

 D
M

A
 M

as
te

r
C

le
ar

W

ri
ti

ng
 to

 th
is

 a
dd

re
ss

 r
es

et
s

th
e

D
M

A
C

 t
o

th
e

sa
m

e
st

at
e

as
 a

 h
ar

d
w

ar
e

re
se

t.

O
O

O
Eh

W

S

la
ve

 D
M

A
 R

es
et

 M
as

k
W

ri
ti

ng
 t

o
th

is
 a

dd
re

ss
 r

es
et

s
th

e
m

as
k

re
gi

st
er

 t
h

u
s

ac
ti

va
ti

ng
 th

e
fo

ur
 D

M
A

 c
ha

nn
el

s.

R
eg

is
te

r

O
O

O
Fh

W

S

la
ve

 D
M

A
 G

en
er

al
 M

as
k

n

o
t u

se
d

0

=
 r

es
et

 c
h

3
0

=
 r

es
et

 c
h

2

0
:

re
se

t
ch

 1

0
:

re
se

t
ch

 0

R
eg

is
te

r
m

as
k

 b
it

m

as
k

 b
it

m

as
k

 b
it

m

as
k

 b
it

l:

s
e
tc

h
3

I
:
 s

et
 c

h
2

I:
s
e
tc

h
l

l:
s
e
tc

h
O

m

as
k

 b
it

m

as
k

 b
it

m

as
k

 b
it

m

as
k

 b
it

0
0

2
0

h

R

M
as

te
r

82
59

 I
n

te
rr

u
p

t R
eq

ue
st

0

:
IR

7
no

t
0

:
IR

6
n

o
t

0
:

IR
5

n
o

t
0

:
IR

4
n

o
t

0
:

IR
3

no
t

0
:

IR
2

n
o

t
0

=
 I

R
I

n
o

t
0

:
IR

O
 n

o
t

R
eg

is
te

r
as

se
rt

ed

as
se

rt
ed

as

se
rt

ed

as
se

rt
ed

as

se
rt

ed

as
se

rt
ed

as

se
rt

ed

as
se

rt
ed

I
:
 IR

7
I
:
 IR

6
1

=
 IR

5
1

=
 I

R
4

1
:I

R
3

I
:
 IR

2
1

=
 I

R
I

I
:
 IR

O

as
se

rt
ed

as

se
rt

ed

as
se

rt
ed

as

se
rt

ed

as
se

rt
ed

as

se
rt

ed

as
se

rt
ed

as

se
rt

ed

0
0

2
0

h

R

M
as

te
r·

 8
25

9
In

-S
er

vi
ce

0

=
 I

R
7

n
o

t
0

:
IR

6
n

o
t

0
:

IR
S

n
o

t
0

=
 I

R
4

n
o

t
0

-
IR

3
n

o
t

0
:

IR
2

n
o

t
0

:
IR

I
no

t
0

:
IR

O
 n

o
t

R
eg

is
te

r
cu

rr
en

tl
y

be
in

g
cu

rr
en

tl
y

be
in

g
cu

rr
en

tl
y

be
in

g
cu

rr
en

tl
y

be
in

g
cu

rr
en

tl
y

be
in

g
cu

rr
en

tl
y

be
in

g
cu

rr
en

tl
y

be
in

g
cu

rr
en

tl
y

be
in

g
se

rv
ic

ed

se
rv

ic
ed

se

rv
ic

ed

se
rv

ic
ed

se

rv
ic

ed

se
rv

ic
ed

se

rv
ic

ed

se
rv

ic
ed

1

:
IR

7
b

ei
n

g

1
=

 I
R

6
be

in
g

1
=

 IR
5

be
in

g
1

:
IR

4
be

in
g

l
:
 IR

3
be

in
g

1
=

 I
R

2
b

ei
n

g

1
:

IR
lb

ei
n

g

1
:

IR
O

 b
ei

ng

se
rv

ic
ed

se

rv
ic

ed

se
rv

ic
ed

se

rv
ic

ed

se
rv

ic
ed

se

rv
ic

ed

se
rv

ic
ed

se

rv
ic

ed

0
0

2
0

h

W

M
as

te
r

82
59

 I
C

W
]

m
u

st
:

OO
Ob

 (
on

ly
 u

se
d

in
 8

08
0/

80
85

)
m

u
st

:
1

0
-

ed
ge

1

=
in

te
rr

u
p

t
0

:
ca

sc
ad

e
I
:
 I

C
W

4
is

se

ns
it

iv
e

m
o

d
e

ve
ct

or
s

ar
e

m
o

d
e

n
ee

d
ed

se

p
ar

at
ed

 b
y

 4

lo
ca

ti
on

s

0
0

2
0

h

W

M
as

te
r

82
59

 O
C

W
2

O
O

O
b:

 r
ot

at
e

in
 A

u
to

 E
O

I
M

o
d

e
(c

le
ar

)
re

se
rv

ed

In
te

rr
u

p
t

re
qu

es
t t

o
w

hi
ch

 t
he

 c
o

m
m

an
d

 a
pp

li
es

:
00

1
b

:
no

n-
sp

ec
if

ic
 E

O
 I

O
O

O
h:

 I
R

O

O
lO

b
=

 n
o

 o
pe

ra
ti

on

00
11

:\
:

IR
I

O
ll

b
 =

 s
pe

ci
fi

c
E

O
I

0
1

O
b

:
IR

2
IO

O
b

=
 r

ot
at

e
in

 A
u

to
 E

O
!

M
o

d
e

(s
et

)
01

1b
 =

 I
R

3
1

0
Ib

 =
 r

ot
at

e
on

 n
on

-s
pe

ci
fi

c
E

O
I

co
m

m
an

d

1
0

0
b

:
IR

4
11

0b
 :

se
t p

ri
or

it
y

co
m

m
an

d

1
0

1
b

:
IR

5
l1

1b
 =

 r
ot

at
e

on
 s

pe
ci

fi
c

E
O

I
co

m
m

an
d

11

0b
 =

 I
R

6
l1

1
b

:
IR

7

0
0

2
0

h

W

M
as

te
r

82
59

 O
C

W
3

re
se

rv
ed

OO

b
-

n
ap

re

se
rv

ed

0
=

 n
o

t
po

ll

O
O

b:
 n

ap

O
lb

 =
 n

ap

co
m

m
an

d

O
lb

 =
 n

ap

lO
b

=
 r

es
et

 s
pe

ci
al

 m
as

k

I
=

 p
ol

l
lO

b
=

 re
ad

 I
nt

er
ru

pt
 R

eq
ue

st

11
b

=
 s

et
 s

pe
ci

al
 m

as
k

co
m

m
an

d

R
eg

is
te

r
on

 n
ex

t
re

ad
 1

m
 p

o
rt

 2
0h

ll

b
:

re
ad

 I
n-

S
er

vi
ce

 R
eg

is
te

r
on

ne

xt
 re

ad
 f

m
 p

o
rt

 2
0h

0
0

2
1

h

W

M
as

te
r

82
59

 I
C

W
2

u
p

p
er

 5
 b

it
s

o
fI

n
te

rr
u

p
t

V
ec

to
r

(m
as

te
r

-
O

O
O

O
lb

, s
la

ve
 -

O
ll

lO
b

)
al

w
ay

s
=

OO
Ob

OO
O 1

0
0

2
1

h

W

M
as

te
r

82
59

 I
C

W
3

o
=

I/
O

 d
ev

ic
e

o
-

II
0

de
vi

ce

o
-I

/O
 d

ev
ic

e
o

-I
/O

 d
ev

ic
e

o
-I

/O
 d

ev
ic

e
I

-
sl

av
e

0
-

I/
O

 d
ev

ic
e
J0

=
 I

/O
 d

ev
ic

e
at

ta
ch

ed
 to

at

ta
ch

ed
 t

o
at

ta
ch

ed
 t

o
at

ta
ch

ed
 to

at

ta
ch

ed
 to

at

ta
ch

ed
 t

o
at

ta
ch

ed
 t

o
at

ta
ch

ed
 t

o
IR

Q
7

IR
Q

6
IR

Q
5

IR
Q

4
IR

Q
3

IR
Q

2
IR

Q
l

IR
Q

O

-

11
0

P
or

t
R

IW

N
ot

e
B

it
7

B

it
 6

I

B
it

 5

B
it

 4

B
it

 3

I
B

it
 2

B

it
 1

B

it
 0

0

0
2

1
h

W

M

as
te

r
82

59
 I

C
W

4
re

se
rv

ed
 (

sh
ou

ld
 b

e
OO

Ob
OO

O)

o~
 f

ul
ly

-n
es

te
d

OO
bO

O
~
 n

on
-b

uf
fe

re
d

m
od

e
O

=
n

o
rm

.
E

O
I

o~
 8

08
0/

80
85

m

o
d

e
of

f
O

lb
O

I
~
 n

on
-b

uf
fe

re
d

m
od

e
I
~
 a

u
to

 E
O

I
m

o
d

e
I
~
 f

ul
ly

-n
es

te
d

lO
bl

O
 ~
 b

uf
fe

re
d

m
o

d
e/

sl
av

e
I
~
 8

08
6

m
o

d
e

m
od

e
o

n

ll
b

ll
 ~
 b

uf
fe

re
d

m
o

d
e/

m
as

te
r

0
0

2
1

h

R
/W

M

as
te

r
82

59
 I

nt
er

ru
pt

 M
as

k
o~

 e
na

bl
e

IR
7

o~
 e

na
bl

e
IR

6
o~

 e
na

bl
e

IR
S

o~
 e

na
bl

e
IR

4
o~

 e
na

bl
e

IR
3

o~
 e

na
bl

e
IR

2
o~

 e
na

bl
e

IR
I

o~
 e

na
bl

e
IR

O

R
eg

is
te

r
(O

C
W

I)

1
~
 m

as
kI

R
7

1
=

 m
as

k
IR

6
I
~
 m

as
k

 IR
S

I
=

 m
as

k
IR

4
1

=
 m

as
k

 IR
3

I
~
 m

as
kI

R
2

1
~
 m

as
k

IR
I

1
=

 m
as

kl
R

O

0
0

4
0

h

R
/W

P

IT
 #

1
/S

ys
te

m
 T

im
er

 0

re
ad

 o
r

w
ri

te
 c

ou
n

te
r

0

0
0

4
1

h

R
/W

PI

T
 #

1/
R

ef
re

sh
 T

im
er

re

ad
 o

r w
ri

te
 c

ou
nt

er
 I

(N
ot

e:
 T

hi
s

ti
m

er
 s

ho
ul

d
no

t b
e

ch
an

ge
d)

0
0

4
2

h

R
/W

PI

T
 #

 1
/S

pe
ak

er
 T

im
er

re

ad
 o

r
w

ri
te

 c
ou

n
te

r
2

0
0

4
3

h

W

PI
T

 #
1

/M
o

d
e

C
on

tr
ol

 R
eg

is
te

r
OO

b
=

 s
el

ec
t c

ou
nt

er
 0

OO

b
=

 c
ou

nt
er

 la
tc

h
co

m
m

an
d

OO

Ob
 =

 m
o

d
e

0
(i

nt
er

ru
pt

 o
n

 te
rm

in
al

 c
ou

nt
)

o~
 1

6-
bi

t
O

lb
 =

 s
el

ec
t c

ou
nt

er
 1

al

b
 =

 r
ea

d
/w

ri
te

 c
ou

nt
er

 b
it

s
7:

0
O

O
lb

 =
 m

od
e

I
(h

ar
dw

ar
e

re
tr

ig
ge

ra
bl

e
on

e-
sh

ot
)

bi
na

ry
 c

ou
n

te
r

lO
b
~
 s

el
ec

t c
ou

nt
er

 2

la
b

 ~
 r

ea
d

/w
ri

te
 c

ou
nt

er
 b

it
s

15
:8

01

0
o

r
II

0
b

 ~
 m

o
d

e
2

(r
at

e
ge

ne
ra

to
r)

I=

B
C

D

ll
b

 =
 r

ea
d

w
ri

te
 c

ou
nt

er
 b

it
s

7:
0

a
ll

 o
r
Il

lb
 =

 m
o

d
e

3
(s

qu
ar

e
w

av
e

ge
ne

ra
to

r)

cO
W

lt
er

fi

rs
t

fo
ll

ow
ed

 b
y

 1
5:

8
(s

ys
te

m
 t

im
er

 a
n

d
 s

pe
ak

er
 ti

m
er

 m
od

e)

10
0b

 =
m

od
e

4
(s

of
tw

ar
e

re
tr

ig
ge

ra
bl

e
st

ro
be

)
1

0
ib

 =
 m

o
d

e
5

(h
ar

dw
ar

e
re

tr
ig

ge
ra

bl
e

st
ro

be
)

0
0

4
8

h

R
/W

PI

T
 #

2
/W

at
ch

d
o

g
 T

im
er

co

un
te

r
0

0
0

4
9

h

R
/W

PI

T
 #

2
/N

o
t u

se
d

co
u

n
te

r
1

0
0

4
A

h

R
/W

PI

T
 #

2
/S

lo
w

d
o

w
n

 T
im

er

co
u

n
te

r
2

0
0

4
B

h

W

PI
T

 #
2

IM
od

e
C

on
tr

ol
 R

eg
is

te
r

OO
b

=
 s

el
ec

t c
ou

nt
er

 0

OO
b

=
 c

ou
nt

er
 la

tc
h

co
m

m
an

d
OO

Ob
 ~
 m

od
e

0
(i

nt
er

ru
pt

 o
n

 te
rm

in
al

 c
ou

nt
)

0
=

 1
6-

bi
t

O
lb

 =
 s

el
ec

t
co

un
te

r
I

al
b

 ~
 r

ea
d

/w
ri

te
 c

ou
nt

er
 b

it
s

7:
0

O
O

lb
 =

 m
od

e
I

(h
ar

dw
ar

e
re

tr
ig

ge
ra

bl
e

on
e-

sh
ot

)
bi

na
ry

 c
ou

nt
er

lO

b
=

 s
el

ec
t c

ou
nt

er
 2

la

b
 =

 r
ea

d
/w

ri
te

 c
ou

nt
er

 b
it

s
15

:8

O
lO

b
=

 m
od

e
2

(r
at

e
ge

ne
ra

to
r)

I=

B
C

D

lI
b

 =
 r

ea
d

w
ri

te
 c

ou
nt

er
 b

it
s

7:
0

O
ll

b
 =

 m
od

e
3

(s
qu

ar
e

w
av

e
ge

ne
ra

to
r)

co

u
n

te
r

fi
rs

t
fo

ll
ow

ed
 b

y
 1

5:
8

10
0b

 =
 m

od
e

4
(s

of
tw

ar
e

re
tr

ig
ge

ra
bl

e
st

ro
be

)
10

1b
 =

 m
o

d
e

5
(h

ar
dw

ar
e

re
tr

ig
ge

ra
bl

e
st

ro
be

)

0
0

6
0

h

R
/W

K

ey
bo

ar
d/

M
ou

se
 I

nt
er

fa
ce

Se

e
M

an
uf

ac
tu

re
r'

s
T

ec
hn

ic
al

 R
ef

er
en

ce
 G

ui
de

D

at
a

P
or

t

0
0

6
1

h

R

S
ys

te
m

 C
on

tr
ol

 P
or

t B
/N

M
I

I
-

P
ar

it
y

E
rr

or

1
-

C
ha

nn
el

1

-
T

im
er

 2

T
og

gl
es

 f
or

0

-
C

ha
nn

el

a
-

W
at

ch
do

g
I

=
 s

pe
ak

er

1
=

T
im

er
 2

S

ta
tu

s
C

he
ck

(s

pe
ak

er
)

ea
ch

 r
ef

re
sh

C

he
ck

 e
na

bl
ed

ti

m
er

 e
na

bl
ed

da

ta
 e

na
bl

ed

sp
ea

ke
r

ga
 te

o

u
tp

u
t i

s
hi

gh

en
ab

le
d

0
0

6
1

h

W

S
ys

te
m

 C
on

tr
ol

 P
or

t B

re
se

rv
ed

1

=
 C

le
ar

a

=
 E

na
bl

e
1
~
 E

na
bl

e
1

=
 E

na
bl

e
C

ha
nn

el
 C

he
ck

W

at
ch

do
g

sp
ea

ke
r

d
at

a
T

im
er

 2

ti
m

er

sp
ea

ke
r

ga
te

~
h

R

K
ey

bo
ar

d/
M

ou
se

 I
nt

er
fa

ce

I
=

 P
ar

it
y

E
rr

or

1
=

 G
en

er
al

1

=
 M

ou
se

0

=
 K

ey
bo

ar
d

0
=

 K
ey

bo
ar

d
S

ys
te

m
 f

la
g

bi
t

1
=

 K
ey

bo
ar

d
1

=
 K

ey
bo

ar
d

S
ta

tu
s

P
or

t
ti

m
eo

ut

o
u

tp
u

t b
uf

fe
r

pa
ss

w
or

d
da

ta
 p

o
rt

In

te
rf

ac
e

in
p

u
t

In
te

rf
ac

e
fu

ll
pr

ot
ec

te
d

ac
ce

ss
ed

bu

ff
er

 fu
ll

o

u
tp

u
t

bu
ff

er

1
=

 K
ey

bo
ar

d
fu

ll

co
m

m
an

d
po

rt

ac
ce

ss
ed

-

-

-

11
0

P
or

t
R

IW

0
0

6
4

h

W

0
0

7
0

h

W

0
0

7
1

h

R
/W

0
0

8
1

h

R
/W

0
0

8
2

h

R
/W

0
0

8
3

h

R
/W

0
0

8
7

h

R
/W

0
0

8
9

h

R
/W

0
0

8
A

h

R
/W

0
0

8
B

h

R
/W

0
0

8
F

h

R
/W

0
0

9
2

h

R
/W

O
O

A
O

h
R

/W

O
O

A
lh

R

/W

O
O

C
O

h
R

/W

O
O

C
2

h

R
/W

O
O

C
4

h

R
/W

O
O

C
6

h

R
/W

O
O

C
8

h

R
/W

O
O

C
A

h
R

/W

O
O

C
C

h

R
/W

O
O

C
E

h

R
/W

"

N
o

te

K
ey

b
o

ar
d

/M
o

u
se

 I
nt

er
fa

ce

C
o

m
m

an
d

 P
o

rt

R
T

C
/C

on
fi

g.
 R

A
M

 A
d

d
re

ss

P
or

t

R
T

C
/C

on
fi

g.
 R

A
M

 D
at

a
P

o
rt

C
ha

nn
el

 2
 D

M
A

 P
ag

e
R

eg
is

te
r

C
ha

nn
el

 3
 D

M
A

 P
ag

e
R

eg
is

te
r

C
h

an
n

el
l

D
M

A
 P

ag
e

R
eg

is
te

r

C
ha

nn
el

 0
 D

M
A

 P
ag

e
R

eg
is

te
r

C
ha

nn
el

 6
 D

M
A

 P
ag

e
R

eg
is

te
r

C
ha

nn
el

 7
 D

M
A

 P
ag

e
R

eg
is

te
r

C
h

an
n

el
S

 D
M

A
 P

ag
e

R
eg

is
te

r

D
M

A
 R

ef
re

sh
 P

ag
e

R
eg

is
te

r

S
ys

te
m

 C
on

tr
ol

 P
o

rt
 A

(P

S
/2

 C
om

pa
ti

bi
li

ty
 P

or
t)

S
la

ve
 8

2S
9

In
te

rr
u

p
t

C
on

tr
ol

le
r

S
la

ve
 8

25
9

In
te

rr
u

p
t

C
on

tr
ol

le
r

M
as

te
r

D
M

A
 C

h
an

n
el

 4

M
em

or
y

A
d

d
re

ss
 R

eg
is

te
r

M
as

te
r

D
M

A
 C

h
an

n
el

 4

T
ra

ns
fe

r
C

o
u

n
t

R
eg

is
te

r

M
as

te
r

D
M

A
 C

h
an

n
el

S

M
em

or
y

A
d

d
re

ss
 R

eg
is

te
r

M
as

te
r

D
M

A
 C

h
an

n
el

 S

T
ra

ns
fe

r
C

o
u

n
t R

eg
is

te
r

M
as

te
r

D
M

A
 C

h
an

n
el

 6

M
em

or
y

A
d

d
re

ss
 R

eg
is

te
r

M
as

te
r

D
M

A
 C

h
an

n
el

 6

T
ra

ns
fe

r
C

o
u

n
t

R
eg

is
te

r

M
as

te
r

D
M

A
 C

ha
nn

el
 7

M

em
or

y
A

d
d

re
ss

 R
eg

is
te

r

M
as

te
r

D
M

A
 C

h
an

n
el

 7

T
ra

ns
fe

r
C

o
u

n
t

R
eg

is
te

r

B
it

7

I
B

it
 6

B

it
 5

S

ee
 M

an
uf

ac
tu

re
r'

s
T

ec
hn

ic
al

 R
ef

er
en

ce
 G

u
id

e
I

B
it

 4

I
B

it
 3

I

B
it

 2

I
B

it
 1

I

B
it

 0

o -
en

ab
le

 N
M

I
C

on
fi

gu
ra

ti
on

 R
A

M
 a

d
d

re
ss

D
at

a
to

 b
e

re
ad

 o
r

w
ri

tt
en

U
p

p
er

 8
 b

it
s

of
 m

em
o

ry
 a

d
d

re
ss

 (
A

23
:A

16
)

U
p

p
er

 8
 b

it
s

of
 m

em
o

ry
 a

d
d

re
ss

 (
A

23
:A

16
)

U
p

p
er

 8
 b

it
s

of
 m

em
o

ry
 a

d
d

re
ss

 (
A

23
:A

16
)

U
p

p
er

 8
 b

it
s

o
f

m
em

o
ry

 a
d

d
re

ss
 (

A
23

:A
16

)

U
p

p
er

 8
 b

it
s

o
f

m
em

o
ry

 a
d

d
re

ss
 (

A
23

:A
17

)

U
p

p
er

 8
 b

it
s

o
f

m
em

o
ry

 a
d

d
re

ss
 (

A
23

:A
17

)

U
p

p
er

 8
 b

it
s

of
 m

em
o

ry
 a

d
d

re
ss

 (
A

23
:A

17
)

M
u

st
 b

e
O

O
h

in
 s

o
m

e
sy

st
em

s
fo

r
p

ro
p

er
 o

p
er

at
io

n

1
-

F
ir

st
 f

ix
ed

1

-
S

ec
on

d
re

se
rv

ed

1
-

W
at

ch
d

o
g

d

is
k

 L
E

D
 o

n

fi
xe

d
d

is
k

 L
E

D

T
im

er
 ti

m
eo

u
t

(w
ri

te
 o

n
ly

 b
it

)
o

n
 (

w
ri

te
 o

n
ly

(r

ea
d-

on
ly

 b
it

)
bi

t)

S
ee

 b
it

 d
ef

in
it

io
n

fo
r

P
or

t 0
02

0h

S
ee

 b
it

 d
ef

in
it

io
n

fo
r

P
or

t 0
02

1h

lo
w

er
 1

6
b

it
s

o
f

m
em

o
ry

 a
d

d
re

ss
 w

ri
tt

en
 a

s
2

su
cc

es
si

ve
 b

yt
es

1
-

S
ec

ur
it

y
lo

ck

(p
as

sw
or

d)

en
g

ag
ed

re
se

rv
ed

1

-
se

t
A

lt
er

n
at

e
G

at
e

A
20

 a
ss

er
te

d

1
=

se
t

A
lt

er
na

te
 H

o
t

R
es

et
 A

ss
er

te
d

lo
w

er
 1

6
b

it
s

o
f

tr
an

sf
er

 c
o

u
n

t
w

ri
tt

en
 a

s
2

su
cc

es
si

ve
 b

yt
es

lo
w

er
 1

6
b

it
s

o
f

m
em

o
ry

 a
d

d
re

ss
 w

ri
tt

en
 a

s
2

su
cc

es
si

ve
 b

yt
es

lo
w

er
 1

6
bi

ts
 o

f
tr

an
sf

er
 c

o
u

n
t w

ri
tt

en
 a

s
2

su
cc

es
si

ve
 b

yt
es

lo
w

er
 1

6
b

it
s

o
f

m
em

o
ry

 a
d

d
re

ss
 w

ri
tt

en
 a

s
2

su
cc

es
si

ve
 b

yt
es

lo
w

er
 1

6
b

it
s

of
 tr

an
sf

er
 c

o
u

n
t

w
ri

tt
en

 a
s

2
su

cc
es

si
ve

 b
yt

es

lo
w

er
 1

6
bi

ts
 o

f
m

em
o

ry
 a

d
d

re
ss

 w
ri

tt
en

 a
s

2
su

cc
es

si
ve

 b
yt

es

lo
w

er
 1

6
b

it
s

of
 tr

an
sf

er
 c

o
u

n
t w

ri
tt

en
 a

s
2

su
cc

es
si

ve
 b

yt
es

I/
O

 P
or

t
R

IW

N
o

te

B
it

 7

B
it

 6

B
it

 5

B
it

 4

B
it

 3

B
it

 2

B
it

 1

B
it

 0

O
O

D
O

h
R

M

as
te

r
D

M
A

 S
ta

tu
s

R
eg

is
te

r
1

=
 C

ha
nn

el
 7

1

=
 C

ha
nn

el
 6

1

=
 C

h
an

n
el

S

1
=

 C
h

an
n

el
 4

1

=
 C

ha
nn

el
 7

1

=
 C

ha
nn

el
 6

1

=
 C

h
an

n
el

S

1
=

 C
ha

nn
el

 4

(C
ha

nn
el

s
4

to
 7

)
re

qu
es

t
re

qu
es

t
re

qu
es

t
re

qu
es

t
T

er
m

in
al

T

er
m

in
al

T

er
m

in
al

T

er
m

in
al

C

o
u

n
t

C
o

u
n

t
C

o
u

n
t

C
o

u
n

t

O
O

D
O

h
W

M

as
te

r
D

M
A

 C
on

tr
ol

 R
eg

is
te

r
0

=
 D

A
K

n
O

=
D

R
Q

n

o=
 l

at
e

w
ri

te

0
=

 f
ix

ed

O
=

n
o

rm
al

o=

 C
on

tr
ol

le
r

0
=

 c
h

0
ad

d
r

0
=

 m
em

-t
o

(C
ha

nn
el

s
4

to
 7

)
se

ns
e

as
se

rt
ed

se

ns
e

as
se

rt
ed

se

le
ct

io
n

pr
io

ri
ty

ti

m
in

g
en

ab
le

d
ho

ld
 d

is
ab

le
d

m
em

 d
is

ab
le

d
lo

w

h
i

1
=

 e
xt

en
de

d
1

=
 r

ot
at

in
g

1
;;;;

co
m

pr
es

se
d

I
=

 C
on

tr
ol

le
r

1
=

 c
h

0
ad

d
r

1
=

 m
em

-t
o

1
=

 D
A

K
n

1
=

D
R

Q
n

w

ri
te

 s
el

ec
ti

on

pr
io

ri
ty

ti

m
in

g
di

sa
bl

ed

ho
ld

 e
na

bl
ed

m

em
 e

na
bl

ed

se
ns

e
as

se
rt

ed

se
ns

e
as

se
rt

ed

h
i

lo
w

O
O

D
2h

W

S

of
tw

ar
e

D
R

Q
n

R
eq

ue
st

re

se
rv

ed

0
=

 R
es

et

OO
b

=
 s

el
ec

t C
ha

nn
el

 4
 m

as
k

bi
t

re
qu

es
t b

it

01
b

=
 s

el
ec

t C
h

an
n

el
S

 m
as

k
bi

t
1

=
 S

et
 r

eq
ue

st

lO
b

=
 s

el
ec

t C
ha

nn
el

 6
 m

as
k

bi
t

b
it

II

b
=

 s
el

ec
t C

ha
nn

el
 7

 m
as

k
bi

t

O
O

D
4h

W

M

as
te

r
D

M
A

 M
as

k
R

eg
is

te
r

re
se

rv
ed

o=

 c
le

ar
 m

as
k

OO

b
=

 s
el

ec
t C

ha
nn

el
 4

(C

ha
nn

el
s

4
to

 7
)

bi
t

01
b

=
 s

el
ec

t C
h

an
n

el
S

1

=
 s

et
 m

as
k

 b
it

lO

b
=

 s
el

ec
t C

ha
nn

el
 6

11

b
=

 s
el

ec
t C

ha
nn

el
 7

O
O

D
6h

W

M

as
te

r
D

M
A

 M
od

e
R

eg
is

te
r

OO
b

=
 d

em
an

d
 t

ra
ns

fe
r

m
o

d
e

0
=

 A
dd

re
ss

0

=
 A

ut
o

in
it

OO

b
=

 v
er

if
y

tr
an

sf
er

O

O
b

=
 s

el
ec

t C
ha

nn
el

 4

(C
ha

nn
el

s
4

to
 7

)
O

lb
 =

 S
in

gl
e

tr
an

sf
er

 m
o

d
e

in
cr

em
en

t
di

sa
bl

ed

01
b

=
 w

ri
te

 tr
an

sf
er

01

b
=

 s
el

ec
t C

ha
nn

el
 S

lO

b
=

 b
lo

ck
 t

ra
ns

fe
r

m
o

d
e

I
=

 A
dd

re
ss

I

=
 A

ut
o

in
it

lO

b
=

 r
ea

d
 t

ra
ns

fe
r

lO
b

=
 s

el
ec

t C
ha

nn
el

 6

11
b

=
 c

as
ca

de
 m

o
d

e
d

ec
re

m
en

t
en

ab
le

d
li

b
 =

 r
es

er
ve

d
lI

b
 =

 s
el

ec
t C

ha
nn

el
 7

O
O

D
8h

W

M

as
te

r
D

M
A

 C
le

ar
 B

yt
e

W
ri

ti
ng

 to
 t

hi
s

ad
dr

es
s

ca
us

es
 t

he
 D

M
A

C
 t

o
re

se
t

th
e

p
o

in
te

r
th

at
 k

ee
ps

 tr
ac

k
o

f
16

-b
it

 d
at

a
tr

an
sf

er
s

to
 a

n
d

 f
ro

m
 t

he
 D

M
A

C
 f

or
 h

ig
h

/l
o

w
 b

yt
e

P
oi

nt
er

se

qu
en

ci
ng

.

O
O

D
A

h
W

M

as
te

r
D

M
A

 M
as

te
r

C
le

ar

W
ri

ti
ng

 to
 t

hi
s

ad
dr

es
s

re
se

ts
 t

he
 D

M
A

C
 t

o
th

e
sa

m
e

st
at

e
as

 a
 h

ar
d

w
ar

e
re

se
t.

O
O

D
C

h
W

M

as
te

r
D

M
A

 R
es

et
 M

as
k

W
ri

ti
ng

 to
 t

hi
s

ad
dr

es
s

re
se

ts
 t

he
 m

as
k

re
gi

st
er

 t
hu

s
ac

ti
va

ti
ng

 t
he

 f
ou

r
D

M
A

 c
ha

nn
el

s.

R
eg

is
te

r

O
O

D
Eh

W

M

as
te

r
D

M
A

 G
en

er
al

 M
as

k
n

o
t

us
ed

0

=
 r

es
et

 c
h

7
0

=
 r

es
et

 c
h

6
0

=
 r

es
et

 c
h

S
0

=
 r

es
et

 c
h

4
R

eg
is

te
r

m
as

k
 b

it

m
as

k
 b

it

m
as

k
 b

it

m
as

k
bi

t
1

=
 s

et
 c

h
7

1
=

 s
e
tc

h
6

l=

se
tc

h
S

l=

se
tc

h
4

m

as
k

 b
it

m

as
k

 b
it

m

as
k

 b
it

m

as
k

bi
t

O
O

F
lh

W

N

um
er

ic
 C

op
ro

ce
ss

or
 R

es
et

A

ll
 b

it
s

=
 0

O
O

FS

R
/W

80

28
7

N
um

er
ic

 C
op

ro
ce

ss
or

S

ee
 M

an
uf

ac
tu

re
r

T
ec

hn
ic

al
 R

ef
er

en
ce

 G
u

id
e

to

P
or

ts

O
O

FF
h

I

0
2

7
8

h

R
/W

P

ar
al

le
l P

or
t 3

 D
at

a
P

or
t

D
at

a
re

ad
 f

ro
m

 o
r

w
ri

tt
en

 to
 t

he
 d

at
a

p
o

rt

i
0

2
7

9
h

R

P

ar
al

le
l

P
or

t 3
 S

ta
tu

s
P

or
t

0
=

 P
ri

nt
er

0

=
 P

ri
nt

er

I
=

 O
u

t o
f

p
ap

er

1:
:;

P
ri

nt
er

0

=
 p

ri
nt

er

0
=

 P
ri

nt
er

re

se
rv

ed

B
us

y
A

ck
no

w
le

dg
e

S
el

ec
te

d
er

ro
r

in
te

rr
u

p
t

re
qu

es
t

p
en

d
in

g

I/
O

 P
or

t
R

/W

N
o

te

B
it

 7

I
B

it
6

B

it
 5

B

it
 4

B

it
 3

B

it
2

B

it
 1

B

it
 0

0

2
7

A
h

R

/W

P
ar

al
le

l P
o

rt
 3

 C
o

m
m

an
d

 P
o

rt

re
se

rv
ed

0

-
O

u
tp

u
t

p
o

rt

1
-

en
ab

le

1
-

se
le

ct

o
-

in
it

ia
li

ze

1
=

 a
u

to
 l

in
e

1
=

 P
ri

n
te

r
(d

ef
au

lt
)

In
te

rr
u

p
t

p
ri

n
te

r
p

ri
n

te
r

fe
ed

S

tr
ob

e
as

se
rt

ed

1
=

 I
n

p
u

t
p

o
rt

R

eq
ue

st

(e
xt

en
de

d
m

od
e)

0
2

F
8

h

W

(w
he

n
'[

)L
A

B
 b

it
 -

0)
 S

er
ia

l
B

yt
e

to
 t

ra
ns

m
it

P

or
t 2

 T
ra

ns
m

it
 H

o
ld

in
g

R

eg
is

te
r

0
2

F
8

h

R

(w
he

n
D

L
A

B
 b

it
 =

 0
)

S
er

ia
l

R
ec

ei
ve

 c
h

ar
ac

te
r

P
or

t 2
 R

ec
ei

ve
 B

uf
fe

r
R

eg
is

te
r

0
2

F
8

h

R
/W

(w

he
n

D
L

A
B

 b
it

 =
 1

)
L

SB
 o

f
LS

B
 o

f
b

au
d

 r
at

e
di

vi
so

r
S

er
ia

l P
o

rt
 2

 D
iv

is
or

 L
at

ch

0
2

F
9

h

R
/W

(w

he
n

D
L

A
B

 b
it

 -
1)

 M
SB

 o
f

M
SB

 o
f

b
au

d
 r

at
e

di
vi

so
r

S
er

ia
l

P
o

rt
 2

 D
iv

is
or

 L
at

ch

0
2

F
9

h

R
/W

(w

he
n

D
L

A
B

 b
it

0)

 S
er

ia
l

re
se

rv
ed

1

-
en

ab
le

1

-
en

ab
le

1

=
 e

na
bl

e
1

=
 e

n
ab

le

P
or

t
2

In
te

rr
u

p
t E

na
bl

e
M

o
d

em
 S

ta
tu

s
re

ce
iv

er
 l

in
e

tr
an

sm
it

re

ce
iv

e
da

ta

R
eg

is
te

r
in

te
rr

u
p

t
st

at
u

s
in

te
rr

u
p

t
h

o
ld

in
g

av

ai
la

bl
e

re
gi

st
er

 e
m

p
ty

in

te
rr

up
t.

 I
n

in
te

rr
u

p
t

F
IF

O
 m

o
d

e
al

so
 e

na
bl

es

ti
m

e-
ou

t
in

te
rr

u
p

t

02
F

A
h

R

S
er

ia
l P

or
t

2
In

te
rr

u
p

t
ID

lI

b

F
IF

O
 f

ea
tu

re
 p

re
se

nt

re
se

rv
ed

OO

Ob

M
o

d
em

 S
ta

tu
s

In
te

rr
u

p
t

o=
 I

n
te

rr
u

p
t

R
eg

is
te

r
lO

b
=

 F
IF

O
 fe

a
tu

re
 n

o
t p

re
se

n
t

00
1b

 =
 t

ra
ns

m
it

 H
o

ld
in

g
 R

eg
is

te
r

E
m

p
ty

 i
n

te
rr

u
p

t
P

en
d

in
g

01

0b
 =

 r
ec

ei
ve

 D
at

a
A

va
il

ab
le

 i
n

te
rr

u
p

t
O

U
b

 =
 r

ec
ei

ve
 L

in
e

S
ta

tu
s

in
te

rr
u

p
t

11
0b

 =
 F

IF
O

 t
im

eo
u

t
in

te
rr

u
p

t

02
F

A
h

W

S
er

ia
l P

or
t

2
F

IF
O

 C
on

tr
ol

R

ec
ei

ve
r F

IF
O

 R
eg

is
te

r
T

ri
gg

er

re
se

rv
ed

1

=
 t

ra
ns

m
it

1

=
 R

ec
ei

ve
 F

IF
O

0

=
 c

le
ar

s
R

eg
is

te
r

O
O

b
=

 1
 b

yt
e

F
IF

O
 R

eg
is

te
r

R
eg

is
te

r
cl

ea
re

d;

R
ec

ei
ve

 a
n

d

O
lb

 =
 4

 b
yt

es

cl
ea

re
d

;
co

u
n

te
r

b
it

 is
 s

el
f-

T
ra

ns
m

it
 F

IF
O

lO

b
=

 8
 b

yt
es

cl

ea
re

d
b

it
 is

cl

ea
ri

ng

R
eg

is
te

rs
 a

n
d

U

b
 =

 1
4

by
te

s
se

lf
-c

le
ar

in
g

en
te

rs

C
h

ar
ac

le
r

M
o

d
e

1
=

R

ec
ei

ve
 a

n
d

T

ra
ns

m
it

 F
IF

O
s

en
ab

le
d

Y
O

 P
or

t
R

IW

N
ot

e
B

it
 7

B

it
 6

B

it
 5

B

it
 4

B

it
3

B

il
2

B

it
t

I
B

it
 0

0

2
F

B
h

R

/W

S
er

ia
l P

or
t 2

 L
in

e
C

on
tr

ol

D
L

A
B

 (
D

iv
is

or

I
-

Se
t B

re
ak

S

ti
ck

 P
ar

it
y

I
~
 E

ve
n

P
ar

it
y

I
~
 P

ar
it

y
N

u
m

b
er

 o
f

OO
b
~
 C

ha
ra

ct
er

 le
ng

th
 is

 5
 b

it
s

R
eg

is
te

r
L

at
ch

 A
cc

es
s

B
it)

en

ab
le

d
en

ab
le

en

ab
le

S

to
p

B
its

O

lb
 ~
 C

ha
ra

ct
er

 le
ng

th
 is

 6
 b

it
s

0
;

R
ec

ei
ve

0

;
1

st
op

 b
it

lO

b
;

C
ha

ra
ct

er
 le

ng
th

 is
 7

 b
it

s
B

uf
fe

r;
 T

ra
ns

m
it

I
~
 1

.5
 s

to
p

bi
ts

ll

b
 ;

C
ha

ra
ct

er
 l

en
gt

h
is

 8
 b

it
s

H
ol

di
ng

;
w

it
h

 c
h

ar

In
te

rr
up

t E
na

bl
e

le
ng

th
 o

f 5
 b

it
s

R
eg

is
te

r
ac

ce
ss

1
~
 2

 s
to

p
b

it

en
ab

le
d

w
it

h
 c

ha
r

I
;
 D

iv
is

or

le
ng

th
 o

f 6
/7

/8

L
at

ch
 a

cc
es

s
bi

ts

en
ab

le
d

0
2

F
C

h

R
/W

Se

ri
al

 P
or

t 2
 M

od
em

 C
on

tr
ol

re

se
rv

ed

1
-l

o
o

p
b

ac
k

1

;
en

ab
le

 O
U

T
2

I
-

fo
rc

e
o

u
n

1

-
se

t R
eq

ue
st

-
1

-
se

t D
at

a
R

eg
is

te
r

m
od

e
in

te
rr

up
t

o
u

tp
u

t a
ss

er
te

d
to

-S
en

d
{R

T
S)

T

en
ni

na
l

as
se

rt
ed

R

ea
dy

 (
D

T
R

)
as

se
rt

ed

0
2

F
D

h

R

S
er

ia
l P

or
t 2

 L
in

e
S

ta
tu

s
re

se
rv

ed

1
;

T
ra

ns
m

it

I
~
 T

ra
ns

m
it

1

;
B

re
ak

1

;
F

ra
m

in
g

1
~
 P

ar
it

y
er

ro
r

1
~
 O

ve
rr

un
.

1
;

D
at

a
R

ea
dy

R

eg
is

te
r

S
hi

ft
 a

n
d

H

ol
di

ng
 R

eg
is

te
r

in
te

rr
u

p
t

er
ro

r
er

ro
r

H
ol

di
ng

em

p
ty

R

eg
is

te
rs

em

pt
y

0
2

F
E

h

R

S
er

ia
l P

or
t 2

 M
od

em
 S

ta
tu

s
1

;
D

at
a

C
ar

ri
er

1

;
R

in
g

1
;

D
at

a
Se

t
1
~
 C

le
ar

-t
o

1
;

ch
an

ge

I
;
 tr

ai
li

ng

1
;

ch
an

ge

1
;

ch
an

ge

R
eg

is
te

r
D

et
ec

t
(D

C
D

)
In

di
C

at
or

 (R
!)

R

ea
dy

 (D
SR

)
S

en
d

(C
T

S)

de
te

ct
ed

 o
n

ed
ge

 o
fR

!
de

te
ct

ed
 o

n

de
te

ct
ed

 o
n

as

se
rt

ed

as
se

rt
ed

as

se
rt

ed

as
se

rt
ed

D

C
D

li
n

e
si

gn
al

 d
et

ec
te

d
D

S
R

li
ne

C

T
S

li
n

e

0
2

F
F

h

R
/W

S

er
ia

l P
or

t 2
 S

cr
at

ch
 R

eg
is

te
r

ca
n

 b
e

us
ed

 b
y

 th
e

m
ic

ro
pr

oc
es

so
r

to
 h

ol
d

a
by

te
.

It
's

 n
o

t
us

ed
 b

y
 t

he
 S

er
ia

l P
or

t.

0
3

7
8

h

R
/W

P

ar
al

le
l P

or
t 2

 D
at

a
P

or
t·

se

e
ad

dr
es

s
02

78
h

0
3

7
9

h

R

P
ar

al
le

l P
or

t 2
 S

ta
tu

s
P

or
t

se
e

ad
dr

es
s

02
79

h

0
3

7
A

h

R
/W

P

ar
al

le
l P

or
t 2

 C
o

m
m

an
d

 P
or

t
se

e
ad

dr
es

s
02

7A
h

0
3

B
4

h

R
/W

V

G
A

 C
R

T
 C

on
tr

ol
le

r
A

dd
re

ss

se
e

T
ec

hn
ic

al
 R

ef
er

en
ce

 G
ui

de

R
eg

is
te

r
(m

on
o)

I

0
3

B
S

h

R
/W

V

G
A

 C
R

T
 C

on
tr

ol
le

r
D

at
a

se
e

T
ec

hn
ic

al
 R

ef
er

en
ce

 G
ui

de

R
eg

is
te

r
(m

on
o)

I

0
3

B
A

h

R

V
G

A
 I

n
p

u
t S

ta
tu

s
R

eg
is

te
r

I
se

e
T

ec
hn

ic
al

 R
ef

er
en

ce
 G

ui
de

I

0
3

B
A

h

W

V
G

A
 F

ea
tu

re
 C

on
tr

ol
 R

eg
is

te
r

se
e

T
ec

hn
ic

al
 R

ef
er

en
ce

 G
ui

de

(m
on

o)

I

0
3

B
C

h

R
/W

P

ar
al

le
l P

or
t I

 D
at

a
P

or
t

se
e

ad
dr

es
s

02
78

h

0
3

B
D

h

R

P
ar

al
le

l
P

or
t

1
S

ta
tu

s
P

or
t

se
e

ad
dr

es
s

02
79

h

0
3

B
E

h

R
/W

P

ar
al

le
l P

or
t I

 C
o

m
m

an
d

 P
o

rt

se
e

ad
dr

es
s

02
7 A

h

0
3

C
O

h

R
/W

V

G
A

 A
tt

ri
bu

te
 C

on
tr

ol
le

r
se

e
T

ec
hn

ic
al

 R
ef

er
en

ce
 G

ui
de

A

dd
re

ss
 R

eg
is

te
r

Y
O

 P
or

t
R

IW

N
ot

e
0

3
C

O
h

W

V

G
A

 A
tt

ri
bu

te
 C

on
tr

ol
le

r
D

at
a

R
eg

is
te

r
(w

ri
te

 a
dd

re
ss

)

0
3

C
lh

R

V

G
A

 A
tt

ri
bu

te
 C

on
tr

ol
le

r D
at

a
R

eg
is

te
r

(r
ea

d
ad

dr
es

s)

0
3

C
2

h

W

V
G

A
 M

is
ce

ll
an

eo
us

 O
u

tp
u

t
R

eg
is

te
r

0
3

C
2

h

R

V
G

A
 I

np
ut

 S
ta

tu
s

R
eg

is
te

r
0

0
3

C
3

h

R
/W

V

G
A

 S
ub

sy
st

em
 E

na
bl

e
R

eg
is

te
r

0
3

C
4

h

R
/W

V

G
A

 S
eq

ue
nc

er
 A

dd
re

ss

R
eg

is
te

r

0
3

C
5

h

R
/W

ot

he
r

V
G

A
 S

eq
ue

nc
er

 d
at

a
re

gi
st

er

0
3

C
6

h

R
/W

V

id
eo

 D
A

C
 P

ix
el

 M
as

k

O
:5

C
7h

W

V

id
eo

 D
A

C
 P

al
et

te

A
dd

re
ss

/R
ea

d
M

od
e

0
3

C
7

h

R

V
id

eo
 D

A
C

 S
ta

te
 R

eg
is

te
r

0
3

C
8

h

R
/W

V

id
eo

 D
A

C
 P

al
et

te

A
dd

re
ss

/W
ri

te
 M

od
e

0
3

C
9

h

R
/W

V

id
eo

 D
A

C
 P

al
et

te
 D

at
a

R
eg

is
te

r.

0
3

C
A

h

R

V
G

A
 F

ea
tu

re
 C

on
tr

ol
 R

eg
is

te
r

0
3

C
C

h

R

V
G

A
 M

is
ce

ll
an

eo
us

 O
ut

pu
t

R
eg

is
te

r

0
3

C
E

h

R
/W

V

G
A

 G
ra

ph
ic

s
C

on
tr

ol
le

r
A

dd
re

ss
 R

eg
is

te
r

0
3

C
F

h

R
/W

V

G
A

 G
ra

ph
ic

s
C

on
tr

ol
le

r
A

dd
re

ss
 R

eg
is

te
r

0
3

D
4

h

R
/W

V

G
A

 C
R

T
 C

on
tr

ol
le

r
A

dd
re

ss

R
eg

is
te

r
(c

ol
or

)

0
3

D
5

h

R
/W

V

G
A

 C
R

T
 C

on
tr

ol
le

r
D

at
a

R
eg

is
te

r
(c

ol
or

)

0
3

D
A

h

R

V
G

A
 C

ol
or

 I
np

ut
 S

ta
tu

s
R

eg
is

te
r

0
3

D
A

h

W

V
G

A
 C

ol
or

 F
ea

tu
re

 C
on

tr
ol

R

eg
is

te
r

-

B
it

 7

I
B

it
 6

I

B
it

S

l
B

it
 4

I

B
it

 3

I
B

it
 2

B

il
l

B
it

 0
I

I
se

e
T

ec
hn

ic
al

 R
ef

er
€n

ce
 G

ui
de

se
e

T
ec

hn
ic

al
 R

ef
er

en
ce

 G
ui

de

se
e

T
ec

hn
ic

al
 R

ef
er

en
ce

 G
ui

de

se
e

T
ec

hn
ic

al
 R

ef
er

en
ce

 G
ui

de

se
e

T
ec

hn
ic

al
 R

ef
er

.e
nc

e
G

u
id

e

se
e

T
ec

hn
ic

al
 R

ef
er

en
ce

 G
ui

de

se
e

T
ec

hn
ic

al
 R

ef
er

en
ce

 G
u

id
e

se
e

T
ec

hn
ic

al
 R

ef
er

en
ce

 G
ui

de

se
e

T
ec

hn
ic

al
 R

ef
er

en
ce

 G
ui

de

se
e

T
ec

hn
ic

al
 R

ef
er

en
ce

 G
ui

de

se
e

T
ec

h
n

ic
al

 R
ef

er
en

ce
 G

u
id

e

se
e

T
ec

hn
ic

al
 R

ef
er

en
ce

 G
ui

de

se
e

T
ec

hn
ic

al
 R

ef
er

en
ce

 G
ui

de

se
e

T
ec

hn
ic

al
 R

ef
er

en
ce

 G
u

id
e

se
e

T
ec

hn
ic

al
 R

ef
er

en
ce

 G
ui

de

se
e

T
ec

hn
ic

al
 R

ef
er

en
ce

 G
ui

de

se
e

T
ec

h
n

ic
al

 R
ef

er
en

ce
 G

u
id

e

se
e

T
ec

hn
ic

al
 R

ef
er

en
ce

 G
ui

de

se
e

T
ec

hn
ic

al
 R

ef
er

en
ce

 G
u

id
e

se
e

T
ec

hn
ic

al
 R

ef
er

en
ce

 G
ui

de

-

Y
O

 P
or

t
R

IW

N
o

te

B
it

 7

B
it

6

B
it

 5

B
it

 4

B
it

3

B
it

 2

B
il

l
B

it
a

03
F

O
h

R

F
lo

pp
y

S
ta

tu
s

R
eg

is
te

r
A

I

=
 I

n
te

rr
u

p
t

[)
=

 S
ec

on
d

I
=

 S
te

p
si

gn
al

0

=
 T

ra
ck

 0

0
=

 H
ea

d
 0

0

=
 I

nd
ex

0

=
 W

ri
te

st

at
e

of

P
en

d
in

g

d
ri

v
e

in
st

al
le

d
as

se
rt

ed

se
ns

or
 a

ss
er

te
d

se
le

ct
ed

se

ns
or

 a
ss

er
te

d
P

ro
te

ct
 s

en
so

r
D

ir
ec

ti
on

 S
el

ec
t

1
~
 H

ea
d

 1

as
se

rt
ed

si

gn
al

se

le
ct

ed

0
3

F
lh

R

F

lo
pp

y
S

ta
tu

s
R

eg
is

te
r

B

re
se

rv
ed

0

=
 D

ri
ve

 0

I
=

 W
ri

te
D

at
a

1
=

 R
ea

d
D

at
a

I
=

 W
ri

te

I
=

 M
o

to
r

I
O

n

1
=

 M
ot

or
 0

 O
n

S

el
ec

t s
ig

na
l

si
gn

al
 a

ss
er

te
d

si
gn

al
 a

ss
er

te
d

E
na

bl
e

si
gn

al

si
gn

al
 a

ss
er

te
d

si
gn

al
 a

ss
er

te
d

as
se

rt
ed

as

se
rt

ed

I
=

 D
ri

ve
 I

S

el
ec

t s
ig

na
l

as
se

rt
ed

0

3
F

2
h

W

F

lo
pp

y
D

ig
it

al
 O

u
tp

u
t

R
eg

is
te

r
re

se
rv

ed

I
=

 s
et

 M
o

to
r

I
I

=
 s

et
 M

ot
or

 0

0
=

 e
na

bl
e

0
::

:
re

se
t

re
se

rv
ed

o=

 s
et

 D
ri

ve
 0

(D

aR
)

O
n

 s
ig

na
l

O
n

 s
ig

na
l

in
te

rr
up

ts

F
lo

pp
y

D
is

k
S

el
ec

t s
ig

na
l

as
se

rt
ed

as

se
rt

ed

C
on

tr
ol

le
r

as
se

rt
ed

I

=
 s

et
 D

ri
ve

 I

S
el

ec
t s

ig
na

l
as

se
rt

ed

0
3

F
4

h

R

F
lo

pp
y

D
is

k
C

on
tr

ol
le

r
(F

D
e)

I

=
F

D
C

 D
at

a
o;

;:;; t
ra

ns
fe

r
is

1

=
n

o
n

-D
M

A

I
=

F
D

C
b

u
sy

re

se
rv

ed

I
=

 d
ri

v
e

I
is

 i
n

1

:::
d

ri
v

e
0

is
 i

n

S
ta

tu
s

R
eg

is
te

r
R

eg
is

te
r

is

fr
om

m

o
d

e
S

ee
k

m
o

d
e

S
ee

k
m

o
d

e
re

ad
y

m

ic
ro

pr
oc

es
so

r
to

 F
D

C

0
3

F
5

h

R
/W

F

lo
pp

y
D

is
k

C
on

tr
ol

le
r

D
at

a
se

e
T

ec
hn

ic
al

 R
ef

er
en

ce
 G

ui
de

R

eg
is

te
r

0
3

F
7

h

R

F
lo

pp
y

D
ig

it
al

 I
n

p
u

t
R

eg
is

te
r

1
:::

D
is

ke
tt

e
ha

s
be

en
 c

ha
ng

ed
 s

in
ce

 l
as

t
ac

ce
ss

o

=
 H

ig
h

 D
en

si
ty

se

le
ct

ed

I
=

 L
o

w
 D

en
si

ty

se
le

ct
ed

0

3
F

7
h

W

F

lo
pp

y
C

on
fi

gu
ra

ti
on

 C
on

tr
ol

re

se
rv

ed

OO
b

=
 5

00
kb

s
m

o
d

e
(h

ig
h

de
ns

it
y)

R

eg
is

te
r

O
lb

 =
 r

es
er

ve
d

lO
b

=
 2

50
kb

s
(l

ow
 d

en
si

ty
)

11
b

=
 r

es
er

ve
d

0
3

F
8

h

W

S
er

ia
l P

or
t I

 T
ra

ns
m

it
 H

ol
di

ng

se
e

ad
d

re
ss

 0
2F

8h

R
eg

is
te

r
0

3
F

8
h

R

S

er
ia

l P
or

t 1
 R

ec
ei

ve
 B

uf
fe

r
se

e
ad

d
re

ss
 0

2F
8h

R

eg
is

te
r

0
3

F
8

h

R
/W

LS

B
 o

f
Se

ri
al

 P
or

t
1

D
iv

is
or

se

e
ad

d
re

ss
 0

2F
8h

L

at
ch

0
3

F
9

h

R
/W

M

SB
 o

f
S

er
ia

l P
or

t
1

D
iv

is
or

se

e
ad

dr
es

s
02

F
9h

L

at
ch

0

3
F

9
h

R

/W

S
er

ia
l

P
or

t
1

In
te

rr
up

t
E

na
bl

e
se

e
ad

dr
es

s
02

F
9h

R

eg
is

te
r

03
F

A
h

R

S
er

ia
l

P
or

t
1

In
te

rr
up

t I
D

se

e
ad

dr
es

s
02

F
A

h
R

eg
is

te
r

11
0

P
or

t
R

/W

03
F

A
h

W

03
F

B
h

R
jW

03
F

C
h

R
jW

03
F

D
h

R

0
3

F
E

h

R

0
3

F
F

h

R
jW

0
6

8
0

h

W

3
2

2
0

3

2
2

7
h

3

2
2

8

3
2

2
F

h

4
2

2
0

4

2
2

7
h

4

2
2

8

4
2

2
F

h

5
2

2
0

5

2
2

7
h

5

2
2

8

5
2

2
F

h

80
00

F8

R
jW

to

80
00

FF
h

80
00

00
F8

R

jW

to

80
00

00
FF

N
ot

e
Se

ri
al

 P
or

t 1
 F

IF
O

 C
on

tr
ol

R

eg
is

te
r

Se
ri

al
 P

or
t 1

 L
in

e
C

on
tr

ol

R
eg

is
te

r
Se

ri
al

 P
or

t 1
 M

od
em

 C
on

tr
ol

R

eg
is

te
r

Se
ri

al
 P

or
t 1

 L
in

e
S

ta
tu

s
R

eg
is

te
r

Se
ri

al
 P

or
t 1

 M
od

em
 S

ta
tu

s
R

eg
is

te
r

Se
ri

al
 P

or
t 1

 S
cr

at
ch

 R
eg

is
te

r
M

an
uf

ac
tu

ri
ng

 C
he

ck
po

in
t

P
or

t
Se

ri
al

 P
or

t 3

Se
ri

al
 P

or
t 4

Se
ri

al
 P

or
t 5

Se
ri

al
 P

o
rt

 6

Se
ri

al
 P

or
t 7

Se
ri

al
 P

or
t 8

80
38

7S
X

 N
um

er
ic

 C
op

ro
ce

ss
or

P

or
ts

80
38

7D
X

 N
um

er
ic

C

op
ro

ce
ss

or
 P

or
ts

B
it

 7

I
B

it
 6

I

B
it

 5

I
B

it
 4

I

B
it

 3

I
B

it
 2

I

B
il

l
I

B
it

 0

se
e

ad
dr

es
s

02
FA

h

se
e

ad
dr

es
s

02
FB

h

se
e

ad
dr

es
s

02
FC

h

se
e

ad
dr

es
s

02
F

D
h

se
e

ad
dr

es
s

02
FE

h

se
e

ad
dr

es
s

02
FF

h
C

he
ck

po
in

t c
ha

ra
ct

er

se
e

02
F8

-0
2F

Fh

se
e

02
F8

-0
2F

Fh

se
e

02
F8

-0
2F

Fh

se
e

02
F8

-0
2F

Fh

se
e

02
F8

-0
2F

Fh

se
e

02
F8

-0
2F

Fh

S
ee

 M
an

uf
ac

tu
re

r
T

ec
hn

ic
al

 R
ef

er
en

ce
 G

ui
de

Se
e

M
an

uf
ac

tu
re

r
T

ec
hn

ic
al

 R
ef

er
en

ce
 G

ui
de

Appendix B

Glossary

Glossary

access time - The time span between a device being addressed and when it delivers or
accepts valid data.

active - see asserted
address bus - The group of signal lines that carry an address from a bus master.
address decoder - Every device that can be read from or written to has an associated

piece of logic called an address decoder. The address decoder selects its asso
ciated device when an address within its defined range is detected.

address latch - A device connected to the microprocessor's local address bus. This
device drives the address to all devices throughout the system and latches
(holds) the address for the duration of the bus cycle. Once latched, the Ad
dress Latch outputs the address to the system on the system address (SA) bus,
SA19:SAl.

address pipelining - A process in which the microprocessor places the address for the
next cycle on its local address bus during the current bus cycle. This can re
duce access time to system memory if designed to take advantage of address
pipelining.

address translation - The process of converting one type of address to another. For
example: translating the address from an ISA bus master (SA16:SAO,
LA23:LA17 and SBHE#) to a 32-bit memory address (A31:A2 and BE3#:BEO#)
required by 32-bit memory.

AEN - An ISA bus signal or a pin on the 8237 DMA controllers. Note that the same
name is used for two differently-acting signals. When the CPU asserts the
HLDA signal, the ISA bus AEN signal is asserted, disabling all I/O address
decoders to prevent I/O devices from mistaking the address as theirs during
DMA transfers. When the DMA controller sees its HLDA input asserted, it as
serts its AEN pin to enable the outputs of its address latch and page register.

ALE - The Address Latch Enable signal that controls the operation of the Address
Latch.

arbiter - An arbiter is a device that evaluates the pending requests for access to the
bus and grants the bus to a bus master based on a system-specific algorithm.

asserted - A signal is asserted when it is at its logic true state. A signal such as HOLD
is asserted when it is high (positive logic). A signal such as MRDC# is asserted
when it is low (negative logic). A signal such as W /R# is always asserted since
both its high and low states represent true logic states. The opposite of as
serted is deasserted. The term "asserted" is used in this book instead of
"active" because "active" is ambiguous. The term "active" can mean either
that a high impedance buffer's output is on (driven), or that a signal is at a
logic true state. For example, a tri-state buffer may be actively driving
CHRDY low (false), in which case the signal is active (by one of the ambigu
ous definitions) but inactive (by the other definition). In this case, CHRDY is
deasserted.

491

ISA System Architecture

BALE - An ISA bus signal that is used by expansion devices to notify them that a valid
address is on the ISA bus. BALE is a buffered version of ALE on 8088- and
80286-based PC's, but it is asserted at different times than ALE on 80386 and
higher PC's.

BCLK - An ISA bus signal (bus clock) that provides the timing reference for all bus
transactions.

big-endian byte-ordering - A bus master using big-endian byte-ordering stores the
MSB from the specified source register into the start memory address and the
less-significant bytes from the register into the ascending memory locations
immediately following the start address.

BIOS - Basic Input/Output System routines usually contained in system ROM and
device ROMs that provide a low level interface to devices.

bit cell - A one bit storage location in a typical DRAM consisting mainly of a capaci
tor.

block - Same as cache line in X86 processors. The cache stores information in its cache
in blocks of a fixed length. The cache block length is processor design
dependent. As an example, an 80486 cache block is 16 bytes long.

block transfer mode - A DMA transfer mode in which an entire block of data is trans
ferred prior to the DMA Controller giving up ownership of the buses.

bridge - The device that provides the interface between two independent buses. An
example is the Bus Control Logic and associated transceivers between the
80386 host processor's bus and the ISA bus.

buffered write-through - A variation of the write-through policy where a look
through cache controller stores an entire write operation in a buffer so that it
can complete the memory write to main memory later.

bus concurrency - Separate transfers occurring simultaneously on two or more sepa
rate buses. An example would be an ISA bus master transferring data to or
from another ISA device while the host processor is transferring data to or
from system memory. Bus concurrency allows a processor to gain access to
memory from its memory cache, while another bus master accesses main
memory over the system bus at the same time.

bus control logic - The logic that assists the microprocessor in running bus cycles over
the ISA bus.

bus master, ISA - An ISA card that can gain ownership of the ISA buses and run bus
cycles.

bus snooping - Bus snooping is the method used by cache subsystems to monitor
main memory accesses made by another bus master.

byte enables - 80386 and higher X86 processor address bus signals that indicate which
data paths will be used during a transfer. The byte enables indicate which
bytes within an addressed doubleword are being accessed.

492

Glossary

cache - A relatively small amount of high-speed static RAM (SRAM) that is used to
keep copies of information recently read from system DRAM memory. The
cache controller maintains a directory that tracks the information currently
resident within the cache. If the host processor should request any of the in
formation currently resident in the cache, it will be returned to the processor
quickly (due to the fast access time of the SRAM).

cache coherency - If the information resident in a cache accurately reflects the infor
mation in DRAM memory, the cache is said tb be coherent or consistent.

cache consistency - see cache coherency
cache controller - A cache memory controller manages cache memory which stores

copies of frequently accessed information read from DRAM memory.
cache directory - Memory inside of a cache controller that keeps track of information

stored in cache memory. Sometimes called the tag RAM.
cache FLUSH# - A cache controller input that causes the cache controller to clear the

valid bit in every directory entry to 0, thereby invalidating all cache entries.
cache line - A line is the smallest unit of data that a cache can keep track of.
cache line fill - When a processor's internal cache, or its external second level cache

has a miss on a read attempt by the processor, it will read a fixed amount
(referred to as a line) of information from the external cache or system DRAM
memory and record it in the cache. This is referred to as a cache line fill. The
size of a line of information is cache controller design dependent.

cache memory - Cache memory is a relatively small amount of high cost, fast access
SRAM designed to improve access to system memory.

cache page - The size of the cache data RAM in direct-mapped caches and the size of
each way in a set-associative cache. The cache views main memory as divided
into pages that are the same size as the cache pages.

cache read hit - The process in which the cache memory controller sees the micro
processor initiate a memory read bus cycle, checks to determine if it has a
copy of the requested information in cache memory, and if a copy is present,
immediately reads the information from the cache and sends it back to the mi
croprocessor at zero wait-states.

cache read miss - The process in which the cache memory controller sees the micro
processor initiate a memory read bus cycle, checks to determine if it has a
copy of the requested information in cache memory, and find no copy is pres
ent. The cache memory controller then passes the read bus cycle on to slow
main memory.

CAS# - A memory enable called Column Address Strobe used to latch the column
portion of the address inside a DRAM chip.

493

ISA System Architecture

CAS before RAS refresh - Some DRAMs incorporate their own row counters to be
used for DRAM refresh. The external DRAM refresh logic has only to assert
the DRAM's CAS line and then assert its RAS line. The DRAM will automati
cally increment its internal row counter and refresh (recharge) the next row of
storage.

CBR refresh - see CAS before RAS refresh
channel check - This signal is asserted by an ISA expansion board to signal a cata

strophic error condition to the microprocessor.
channel ready - By using the CHRDY signal (Channel Ready) on the ISA bus, design

ers can override the default timer and stretch out the bus cycle by the required
number of wait states to match the access time of the device.

CHCHK# - see channel check
CHRDY - see channel ready
CMOS RAM - see configuration RAM
coherency - see cache coherency
concurrent bus operation - see bus concurrency
configuration RAM - A small amount of low power battery-backed memory used to

store configuration information used during the boot-up process.
consistency - see cache coherency
control bus - A group of signal lines used by the microprocessor to control a variety of

miscellaneous functions.
cycle time - The amount of time needed between accesses to DRAM memory, consist

ing of access time plus precharge delay.
DAKn# - A group of signals on the ISA bus (named DACKn# or DAKn#) used to no

tify DMA I/O devices that a DMA cycle is about to be performed to transfer
data for them.

data bus - The group of signal lines used to transfer data between devices.
data bus contention - An address decoding problem that arises if the address decod

ers for two devices are both designed to detect the same address range. In
such cases both devices would deliver data to the data bus simultaneously
during a read operation, causing contention.

data bus steering logic - Logic used to match transfers between devices with different
sized data busses. Consists of transceivers connected between the data paths.

deasserted - A signal is deasserted when it is at its logic false state. See asserted.
debug registers - Six programmer-accessible debug registers provide on-chip support

for debugging and are present in the 80386. Debug registers DRO through DR3
specify the four linear breakpoint addresses. The Breakpoint Control Register,
DR7, is used to set the breakpoints, define them as data or code breakpoints,
and whether to break on an attempted read or write. The Breakpoint Status
Register, DR6, reflects the current state of the breakpoints.

494

Glossary

demand transfer mode - The transfer mode where the DMAC runs DMA bus cycles
back-to-back as long as the I/O device can continue to supply data.

device ROM - ROM on an ISA expansion device. Also known as expansion ROM.
This ROM typically contains the initialization code and possibly the BIOS and
interrupt service routines for its associated device. Device ROMs should re
side in memory address space between COOOOh and DFFFFh.

direct-mapped cache - A cache organization in which only one directory entry needs
to be checked to determine whether the requested memory location is in the
cache. A direct-mapped cache is the same size as a (cache) page in memory.
When a line of information is fetched from a position within a page of DRAM
memory, it is stored in the same relative position within the cache. If the proc
essor should subsequently request a line of information from the same relative
position within a different page of memory, the cache controller will fetch the
new line from memory and must overwrite the line currently in the cache.

dirty line - A write-back policy cache controller has cached a line of information from
memory. The processor subsequently performs a memory write to a location
within the cache line. There is a hit on the cache and the cache line is updated
with the new information, but the cache controller will not perform a memory
write bus cycle to update the line in memory. The line in the cache no longer
reflects the line in memory and now has the latest information. The cache line
is said to be "dirty" and the memory line is "stale." Dirty is another way of
saying "modified."

dirty bit - A bit in a write-back cache directory that when set, indicates that the cache
controller should ensure that the line is written back to memory to maintain
coherency between cache and main memory. Also, a bit in the page table en
tries of 80386 and higher microprocessors used to maintain coherency be
tween disk and main memory when page translation is enabled.

DMA acknowledge - see DAKn#
DMA channels - ISA has seven DMA channels. Each channel consists of a pair of ISA

signal lines (DRQn and DAKn#) used by ISA DMA devices and the DMA con
troller to establish communication channels between the I/O device and
memory.

DMA clock - The clock used by the DMA Controller to control its data transfer tim
ing. DMA clock also called DCLK is typically one-half the speed of BCLK.

DMA controller - DMAC. The devices used to perform the DMA transfers in an ISA
system. Two 8237 DMA controllers are cascaded together to provide support
for seven DMA channels.

DMA page register - Each DMA channel has an external Page Register used to pro
vide additional address capability. The slave DMAC and its associated DMA
address latch produce the least-significant 16 bits of the address. The DMA
page register provides the most-significant 8 bits of the address.

495

ISA System Architecture

DMA request - The signal (DRQn) used by a DMA device to request the DMAC to
move data for it.

DMAC - see DMA controller
fly-by transfer - The name given to ISA DMA bus cycles due to their ability to send

information between an I/O device and memory in a single bus cycle.
DRAM - see dynamic RAM memory
DRAM bank - An organization of main system memory that supplies information to

fill all data paths.
DRAM controller - The DRAM controller converts memory read or write bus cycles

on the host bus to the proper sequence of actions on the memory bus to access
the target DRAM location.

DRAM parity - A reliability measure used to notify the system that information read
from memory is not the same as the information initially written.

DRQO:DRQ3 - DMA request lines used by 8-bit ISA DMA devices to request that data
be transferred.

DRQ5:DRQ7 - DMA request lines used by 16-bit ISA DMA devices to request that
data be transferred.

dynamic RAM memory - Dynamic Random Access Memory. This type of RAM is
commonly used as main system memory due to its low cost, high density, low
power consumption and relatively good performance.

end-of-interrupt command - see EOI command
EOI command - End-of-interrupt command issued to the interrupt controller to notify

it that the interrupt has been serviced. The 8259 responds by clearing a bit in
its in-service register (ISR). If the Eor command is non-specific, the 8259 clears
the highest-priority bit that is currently set in its rSR.

EOP (Ell-d-of-Process) - The name of the pin on the DMACs which is routed to rSA TC
signal, terminal count.

EPROM - Erasable Programmable Read Only Memory. A type of ROM that can be
erased when exposed to ultraviolet light and reused. Commonly used in PCs
as the System or Boot ROM.

exception interrupts - A type of internally generated interrupt that generally results
when the microprocessor attempts to execute an instruction and incurs an er
ror while doing so.

exclusive access - A series of accesses to a target by one bus master while other mas
ters are prevented from accessing the device. Also known as exclusive owner
ship.

exclusive state - One of the states in the MESI protocol. A cache line is said to be ex
clusively owned by a cache if it is in the exclusive state. This indicates two
things: no other cache has a copy of the line; and the cache line is an exact
copy of main memory. Having a copy of a cache line in the exclusive state

496

Glossary

does not mean that no other cache may obtain a copy from memory. It just
means that, at this instant in time, no other cache has a copy of it.

expansion ROM - see device ROM
first-level cache - see L1 cache
flag register - A status and control register inside the microprocessor that performs a

variety of functions. Generally used to check the status of the previously exe
cuted instruction.

floating-point processor - Also known as the numeric coprocessor used to process
floating-point math operations.

FLUSH# - A input to cache memory controllers to cause all entries in the cache direc
tory to be ignored. The effect is that the cache memory is disabled because all
requests made to cache will be cache misses.

four-way set-associative cache - A cache organization that provides four cache mem
ory banks (ways) in which information can be stored.

fully-associative cache - A cache organization that allows information from anywhere
in memory to be stored in any location within cache memory.

ghost interrupt - see phantom interrupt
halt - A type of microprocessor bus cycle initiated by instructions that cause the mi

croprocessor to stop.
hidden refresh - If a DRAM controller uses the memory bus to perform DRAM re

fresh when the system is currently accessing a device other than DRAM
memory, this is referred to as hidden refresh. Refreshing DRAM in this fash
ion doesn't impact system performance.

hillo byte copier - The transceiver that connects SD15:SD8 to SD7:SDO. Part of the
data bus steering logic.

hit - Refers to a hit on the cache. The processor or a bus master initiates a memory
read or write and the cache controller has a copy of the target line in its cache.

HLDA - Hold acknowledge. A microprocessor output that notifies the requesting bus
master that the microprocessor has given up ownership of the buses.

HOLD - Hold request. A microprocessor input that is used by bus masters to gain
ownership of the buses.

1/0 ports - 1/0 address locations
1/0 Size 16 - see 1016#
IN instruction - An 1/0 read instruction
in-line code fetch - Sequential fetching of instructions from memory by the instruc

tion prefetcher.
in-service register - A register in the 8259 interrupt controller which tracks which in

terrupt service routines are currently running. Also known as ISR (one of two
meanings). The respective bit in the ISR is set when a valid interrupt is ac
knowledged by the microprocessor. The highest-priority bit that is currently

497

ISA System Architecture

set in the ISR is cleared when the 8259 receives a non-specific end-of-interrupt
command.

inactive - Either means that a high impedance buffer is off or that a signal is at its logic
false state. See asserted.

INT instruction - see interrupt instruction
INTA - see interrupt acknowledge
interleaved memory - A DRAM memory architecture in which multiple memory

banks are structured such that each can supply the maximum amount of data
the processor can request in one access. In other words, the width of each
DRAM bank matches the width of the processor's data bus. As an example,
the 80386's data bus is four bytes (one doubleword) wide. Two-way inter
leaved memory is structured so that each successive doubleword is in the op
posite bank of memory. During a cache line fill operation, the processor reads
a doubleword from one bank, the second doubleword from the opposite bank,
the third from the original bank and the fourth from the other bank. When a
DRAM bank is accessed for a read, the DRAM cells are discharged during the
read and need to charge back up before the bank can be successfully accessed
again. If an interleaved memory architecture is used, the charge up (referred
to as the precharge delay) of each DRAM bank is hidden behind the proces
sor's access to the opposite bank. This results in better performance.

interrupt acknowledge - The host X86 processor responds to an interrupt request on
its INTR input by generating two, back-to-back interrupt acknowledge bus
cycles. The Bus Control Logic translates the two cycles into pulses on the
INTA# pin which goes to the 8259 interrupt controllers. In response to the
second interrupt acknowledge pulse, the interrupt controller sends the inter
rupt entry number corresponding to the highest priority device generating the
request back to the processor.

interrupt cascade bus - A three signal bus used to notify the slave interrupt controller
that this interrupt acknowledge cycles belong to it.

interrupt controller - Intel 8259 Programmable Interrupt controller (PIC) used in ISA
systems.

interrupt instruction - An instruction that calls an interrupt service routine referenced
by an interrupt table entry number.

interrupt request lines - ISA signal lines named IRQ. The ISA bus has eleven IRQ
lines available and are used by devices to request servicing by programs de
signed for them, called interrupt service routines.

interrupt service routine - A program written to service hardware devices that gener
ate interrupts. Each interrupting device typically has its own unique interrupt
service routine.

interrupt table - A data structure in the low range of memory (real mode) that con
tains pointers to the start address of interrupt service routines.

498

Glossary

interrupt type code - The code sent by the interrupt controller to the microprocessor
to identify which entry in the interrupt controller to call.

interrupt vector - Another name for an interrupt table entry which points to the start
ing address of an interrupt service routine.

INTR - Microprocessor Interrupt Request. The microprocessor's input that notifies it
that an interrupt-driven device needs servicing.

invalid state - One of the states in the MESI protocol. State of a cache line that does
not currently contain a valid copy of a line from main memory.

1016# - An ISA signal used to indicate to the system board when a 16-bit I/O device is
being addressed.

IORC# -I/O Read Command. The lSA signal that specifies that an I/O read bus cycle
is being run.

10WC# -I/O Write Command. The lSA signal that specifies that a I/O write bus cycle
is being run.

IRET instruction - Interrupt Return instruction. The last instruction in an interrupt
service routine that tells the microprocessor that the interrupt service routine
has completed and it is time to return to normal program flow.

ISA address bus - The buses used to transfer the address over the lSA bus. SA19:SAO,
LA23:LA17 and SBHE#.

ISR - see interrupt service routine and in-service register
jump instruction - An instruction that causes the microprocessor to change the ad

dress location from which the processor in performing in-line code fetching.
The new location is specified in the jump instruction.

kerchunk - Sound the microprocessor makes when it latches data from the data bus.
keyboard command port - The I/O location (64h) that commands are sent to for the

keyboard.
keyboard data port - The I/O location (60h) that data is transferred to and from for

the keyboard.
keyboard IRQ - The keyboard's interrupt request line, IRQl.
keyboard scan code - The code sent from the keyboard to the keyboard controller that

represents keystrokes that have been entered.
keyboard interface - Usually an 8042 series microcontroller used as an interface be

tween the system and keyboard.
L1 cache - Also known as level-one cache or first-level cache. The first layer of cache

memory that the microprocessor's prefetcher and/or execution unit is con
nected to. The internal cache of the 80486 or the external cache that connects
directly to an 80386 microprocessor are examples of first-level caches.

L2 cache - Also known as level-two cache or second-level cache. A secondary cache
that is several times larger than the L1 cache. Used primarily in systems that
have a small L1 cache, such as the 8KB internal cache in the 80486.

499

ISA System Architecture

LA bus - see latchable address bus
latchable address bus - Pipelined address bus consisting of LA23:LA17 on the ISA

bus that connects to 16-bit memory devices.
level-one cache - see Ll cache
level-two cache - see L2 cache
line - see cache line
linear address - The 32-bit address produced by the X86 processor's segmentation

unit. The address submitted to the paging unit if page translation is enabled,
or submitted to the bus unit if page translation is disabled. The linear address
is the same as the physical address on an 80286 since it lacks a paging unit.

little-endian byte-ordering - A bus master using little-endian byte-ordering stores the
LSB from the specified source register into the start memory address and the
more-significant bytes from the register into the ascending memory locations
immediately following the start address.

local data bus - Used typically to reference the processor's data bus.
logical address - The 16- or 32-bit address submitted by the X86 processor's execution

unit to the segmentation unit. The offset portion of SEGMENT:OFFSET ad
dresses.

look-aside cache - A cache memory design in which the cache controller sets in paral
lel with main system memory. When memory is addressed both the cache
controller and system memory are addressed. Compare Look-through Cache.

look-through cache - A cache memory design in which memory request go first to the
cache controller which looks through its cache memory to determine if this
request is a hit or miss. If the information is not in cache then the bus cycle is
broadcast on to main memory.

LRU algorithm - Least Recently Used Algorithm. Used in cache memory designs to
determine which cache entry is to be overwritten by newer data. Conforms to
the principle of temporal locality.

M/IO# - Memory or I/O. The signal output from the microprocessor that informs ex
ternallogic whether the address on the bus is for memory or I/O devices.

Ml6# - Memory size 16 line. This ISA signal is asserted by 16-bit memory devices to
inform the system they are being addressed.

machine status word - A control and Status register inside the microprocessor to con
trol a variety of functions including the processor's mode of operation (real or
protected).

MASTER16# - An ISA signal asserted by ISA bus masters to enable access to I/O de
vices. The ISA AEN signal prevents I/O devices from responding to the
memory addresses which are on the address bus during DMA transfers.
MASTER16# overrides AEN and allows I/O address decoders to resume de
coding the I/O addresses which ISA bus masters can generate.

memory-based semaphore - see semaphore

500

Glossary

memory-mapped I/O port - An I/O register that responds to memory rather than I/O
accesses.

ME51 protocol - A protocol for maintaining cache coherency. At a given instant in
time, each line in a write-back policy cache may be one of the following states:
modified (M), exclusive (E), shared, (5), or invalid (n. Each of these states is
defined in this glossary.

miss - Refers to a miss on the cache. The processor or a bus master initiates a memory
read or write and the cache controller does not have a copy of the target line
in its cache.

modified state - One of the states in the ME5I protocol. When a cache line is in the
modified state, it has been modified by the processor since it was copied from
memory.

MOV instruction - An assembly instruction used to transfer information to and from
memory.

MRDC# - Memory Read Command. The ISA signal that specifies that a memory read
bus cycle is in process.

M5W register - see machine status word
MWTC# - Memory Write Command. The ISA signal that specifies that a memory

write.
NCA# - Non-Cacheable Address. Specifies which address locations should not be

cached in main memory.
NMI - Non-Maskable Interrupt. Typically used to report serious system problems.
non-cacheable memory - Memory whose contents can be altered by a local processor

without using the bus should be designated as non-cacheable. A cache some
where else in the system would have no visibility to the change and could end
up with stale data and not realize that it no longer accurately reflects the con
tents of memory.

no wait state - The fastest bus cycle that a microprocessor can run consisting of two
complete cycles of the processor clock.

NOW5# - No Wait State. An ISA signal that permits designers to end the bus cycle
earlier than the default timing. Asserting NOWS# before the default timing
expires causes the bus cycle to be shortened.

numeric coprocessor - A processor that handles floating point instructions.
OUT instruction - An I/O write instruction.
page - The most over-worked term in the computer industry. It is used to represent at

least four independent, unrelated items: virtual memory page, page mode
DRAM, cache page and DMA page register, each of which is defined in this
glossary.

page granular segment - Also known as a large grain segment. A memory segment
for which the segment descriptor has the G bit set to 1, indicating that the size
of the segment is limited to multiples of 4KB, from 4KB to 4GB. As opposed to

501

ISA System Architecture

byte granular segments (small grain segments) for which the size is multiples
of one byte, from 1 byte to 1MB. 4KB is also the size of the virtual memory
pages, thus the reference to "page." This has no relationship to cache pages,
page mode DRAM or DMA page registers.

page mode DRAM - A variation of DRAM that provides improved performance
when accesses occur along the same row (sequentially). All accesses occurring
on the same row can be done in approximately half the time because the RAS
timing can be eliminated, since the row does not change.

page register - The upper portion of the start memory address for a DMA transfer is
written to the respective DMA channel's page register. The contents of this
register are then driven onto the upper part of the address bus during a DMA
transfer.

parity - see DRAM parity
phantom interrupt - An erroneous interrupt triggered at the input of the interrupt

controller, usually caused by a noise spike.
physical address - The address output onto the address bus by the processor, as con

trasted to logical, linear or virtual addresses which may not be equal to the
physical address.

PIC - see interrupt controller
policy of inclusion - When a processor is connected (via its local bus) to a look

through L2 cache, all information that is read into the L 1 cache has to pass
through the L2 cache. The L2 cache therefore may have a complete copy of the
information that is contained in the L1 cache at a given instant in time. If the
L2 cache always maintains a copy of information that is in the L1 cache, then it
is enforcing the policy of inclusion. The L2 cache can then act as a snoop filter
for the L1 cache. Whenever another bus master is accessing main memory, the
L2 cache snoops the address to determine if it has a copy of the cache line. If it
doesn't, then it needn't force the L1 cache to snoop the access. The L2 cache
only has to alert the L1 cache about another bus master's memory access when
it has a hit on the L2 cache.

POST - see power-on self-test
posted-write capability - The ability of a device to "memorize" or post a write trans

action and signal immediate completion to the bus master. As long as there is
room in the posted-write buffer, the bus master can complete writes with no
wait states. After posting the write and signaling completion to the bus mas
ter, the device will then perform the actual memory write.

power-on restart address - The first address that the microprocessor places on the
address bus after being powered up.

power-on self-test - POST. The instructions performed when the system is first turned
on. Usually refers to the entire power-up sequence until the operating system
is loaded.

502

Glossary

POWERGOOD - The signal that is asserted by the power supply after all voltages
have stabilized. When POWERGOOD is asserted, RESET is deasserted to the
microprocessor and the microprocessor begins to run.

principles of locality - Principles used to explain the nature of code and data access
from memory, which provides cache memory systems their performance
gains.

PROM - Programmable Read Only Memory
RAS# - Row Address Strobe. Used to latch the row portion of the address into DRAM

chips.
RAS/CAS delay - The time interval required by DRAM between the start of RAS# and

CAS# signals.
real mode - The microprocessor mode of operation when it is first powered up. Real

mode is the mode of operation that is available with the 8086 and 8088 micro
processors.1t is designed for single tasking and has address capability of 1MB

real-time clock chip - The battery-backed device used to keep track of the date, time
and configuration information.

refresh - The process of keeping dynamic memory from loosing information from the
bit cell due to capacitor discharge. All DRAM throughout the system is re
freshed approximately every fifteen microseconds.

refresh logic - The logic that runs refresh bus cycles. The refresh logic is a bus master
capable of gaining ownership of the buses on a regular basis.

refresh request - The output of the refresh timer used to trigger the refresh logic.
refresh timer - The timer used to trigger the refresh logic to run bus cycles every 15

microseconds.
ROM scan - The process of scanning device ROMs during the power-up sequence to

identify and initialize expansion devices.
RTC chip - see real-time clock chip
SA bus - see system address bus
SBHE# - System Bus High Enable. An ISA address signal that is asserted when an

odd-addressed location is accessed.
SCRAM - Static Column RAM. A variety of DRAM that works on the same principles

as page mode RAM. The difference between page mode and static column
RAM lies only in the way SCRAM recognized that a new column address has
been presented to it.

second-level cache - see L2 cache
segment wrap-around - The method used to generate addresses in real mode in an

8086 or 8088 make it possible to form an address that goes beyond 1 MB inter
nally. However, since these processors have only 20 physical address lines,
addresses formed above 1MB effectively wrap around to the very bottom of
the address space, to address zero.

503

http:processors.1t

ISA System Architecture

semaphore - A special memory operand used by a task to determine if a resource
shared with other processors or other tasks running on the same processor is
currently available for access.

shadow RAM - RAM memory that has a copy of the contents of ROM. Information
from ROM is copied into faster main memory during the power-up sequence
to improve performance.

shared state - One of the states in the MESI protocol. Indicates that copies of the cache
line may exist in other caches in the system and none of the caches with copies
of the line have altered their copy since reading it from main memory.

shutdown - A microprocessor bus cycle type that is run when the processor encoun
ters errors that it cannot handle. Similar to the halt bus cycle the processor
stops after a shutdown cycle.

single transfer mode - The DMA transfer mode where the DMAC releases control of
the buses after transferring each byte of data.

slowdown timer - An ISA timer used to slow the average execution time of fast proc
essors, so that code appears to run at the same speed as it does on an 8MHz
80286 processor.

SMRDC# - The ISA signal that specifies that a memory read bus cycle is in process to
a location within the first 1MB of address space.

SMWTC# - The ISA signal that specifies thata memory write bus cycle is in process to
a location within the first 1MB of address space.

snarfing - A cache memory implementation where cache memory is updated along
with main memory when the cache detects a snoop hit during a bus master
write to main memory.

snoop hit - A match between an entry in the cache directory and the address being
driven on the address bus by a bus master other than the microprocessor. In
dicates that the bus master is accessing a main memory location that is also in
the cache.

snooping - A technique used by cache memory controllers to monitor the system
buses to detect an access to main memory that might cause a cache consis
tency problem.

spatial locality - One of the principles of locality that explain the nature of how code
typically resides in main memory. Spatial locality suggests that information to
be read from memory nest is likely to be adjacent or reside in a memory loca
tion that is close to the location previously accessed.

speaker data timer - An ISA timer that can be programmed to provide the speaker
with a wide variety of audible frequencies.

SRAM - see static RAM
stack - An area of memory used as a temporary storage location for applications and

the processor. .

504

Glossary

stale data - In a cache memory system, data in cache or in main memory that has not
been updated to reflect a change in the other copy.

static RAM - Memory typically used in cache designs due to its fast speed, high cost,
and greater power consumption than DRAM.

system address bus - SA bus. The ISA address bus consisting of SA19:SAO that con
nects to 8- and 16-bit devices.

system control port A - An I/O location (92h) that contains status and control infor
mation. This port is typically known as the PS/2 compatibility port.

system control port B - An I/O location (61h) standard in all ISA machine that pro
vide status and control information.

system data bus - The ISA data bus, consisting of SD7:SDO (8- and 16-bit devices) and
SD15:SD8 (16-bit devices).

system timer - Also called Timer 0, this timer connects to the master interrupt control
ler to provide system interrupts every 54.9ms.

tag RAM - see cache directory
TC - see terminal count
temporal locality - One of the principles of locality that explain the nature of how

code typically resides in main memory. Temporal locality suggests that infor
mation recently read from memory is likely to soon be needed again by the
microprocessor.

terminal count - TC. Also known as transfer complete. A signal on the ISA bus issued
by the DMAC to notify a DMA device that the transfer has completed.

timer 0 - see system timer
timer 1 - see refresh timer
timer 2 - see speaker data timer
transfer complete - see terminal count
two-way set-associative cache - A cache organization that provides two cache mem

ory banks (ways) in which information can be stored.
virtual address - An address that never appears on any bus in the system, but instead

resides in the imagination of the system software engineer, and which is
formed by a combination of the X86 protected-mode segment descriptors and
logical addresses. Since there are up to 8K global descriptors and up to 8K lo
cal descriptors, and since each descriptor can describe 4GB of linear address
space, the 80386 and higher processors can manage (8K + 8K) x 4GB =64TB of
memory. The virtual address can be thought of as consisting of the base ad
dress from the segment descriptor plus the logical address. Alternatively, it
may be thought of as the segment selector (which is just an index), and the
logical address (but not added together).

virtual memory page - For X86 processors, a 4KB range of information starting on a
4KB boundary. The information on mass storage devices is divided into pages

505

ISA System Architecture

by the operating system, as is the array of physical memory in the system.
Used for virtual memory management using demand paging.

wait state - A delay of one bus clock period injected into a transaction because the
currently-addressed device is not yet ready to complete the data transfer.
When an X86 processor samples its READY# input deasserted at the end of
data time, it inserts one wait state in the transaction and samples READY#
again at the end of the wait state.

watchdog timer - A timer used in some ISA machines to detect ill-behaved programs
in multitasking environments.

Weitek - A type of numeric coprocessor that provides superior performance over the
standard Intel coprocessors.

write-back cache - A type of write policy in which the cache controller only updates
main system memory when necessary.

write miss - The processor initiates a memory write and the cache controller does not
have a copy of the target memory location within its cache.

write policy - The method used to maintain cache consistency on memory write op
erations.

write-through cache - A type of write policy in which the cache controller updates
main system memory immediately.

X-bus - The X-bus is located on the system board and is a buffered version of the
standard ISA expansion bus. Devices such as the keyboard controller, CMOS
RAM, and floppy controller typically reside on the X-bus.

506

Index

1
 II

1.19318MHz clock, 469, 471

14.31818MHz clock, 350, 469

16-bit read from 16-bit device, 134

16-bit read from 8-bit device, 133

16-bit write to 16-bit device, 134

16-bit ISA bus master, 345

16-bit write to 8-bit device, 132

3 II

32KHz crystal oscillator, 441

8 II

80286 and 80386 bus cycle state names, 140

80286 bus cycle definition, 140

80286 microprocessor address space, 34

80287,459

80386DX outputs while RESET is asserted,

115

80386SX microprocessor address space, 34

80387,459

8042 local I/O ports, 450

8042 microcomputer, 449

8042 sample keyboard/mouse interface

command list, 455

8042 test port, 452

8080 microprocessor, 29

8086,33

8087 numeric coprocessor, 459

8088,33

8237 DMA controller, 410

8259 programmable interrupt controller,

366

8-bit read from 16-bit device, 134

8-bit write to 16-bit device, 134

8-bit write to odd addressed location in 8

bit device, 131

8-Bit read from odd addressed location in

8-bit device, 129

A II

A2 output, 465

A20 GATE, 79,450
A20 MASK#, 79

access time, 134

address pipelining, 123

address bus, 17

address decoder, 18,39
address enable, 345

address latch, 121

address translation, 438

AEN, 345, 424

alarm output of real-time clock and con

figuration RAM chip, 386

ALE (address latch enable), 121

alternate gate A20, 400

alternate hot reset, 400

atomic access, 94

B II

BALE,342
basic input/output system (BIOS) routines,

405

BASIC language, 322

battery, 441

buffered write-through cache, 293

bus control logic, 119

bus snooping, 295

BCLK, 341

BHE#,83

big-endian byte ordering rule, 74

BIOS, 322

BIOS ROM,42

BIOS routine, 43, 404

bit cell, 244, 315, 318

BLE#,188

boot program, 322

boot ROM, 42, 116

BOUND range exceeded exception, 403

breakpoint, 403

buffered address latch enable, 342

bus clock, 341

507

ISA System Architecture

bus concurrency, 278

bus high enable (BHE#), 83

bus low enable (BLE#), 188

bus master capability, ISA, 433

BUSY#, 461, 464

c
cache coherency, 292

cache FLUSH#, 313

cache handling of non-cacheable memory,

312

cache line, 283

cache memory, 279

cache memory controller, 274

cache read hit,274

cache read miss, 275

cache ways, 305

cache, advantage of, 276

CAS# (column address strobe), 236, 242

CAS-before-RAS refresh, 248

CBR refresh, 248

cache and testing memory, 313

cache consistency, 279

cache directory, 281

cache handling of I/O information, 311

cache line size, 308

cache management logic, 281

cache performance, 278

cache size, 310

column address decoder, 237

column address latch, 236

column address strobe (CAS#), 242

channel or I/O check, 349, 400

channel ready, 342

CHCHK#,349

checksum error, 331

checksumming, 322

CHRDY, 137, 342

clear interrupt enable instruction, 368

CLI,368

CMDO,465

CMDO#,465

CMDl,465

CMOS address decoder, 442

CMOS address port, 442

508

CMOS century part of time and date func
tion,446

CMOS checksum value, 446

CMOS data port, 442

CMOS diagnostic status byte, 446

CMOS diskette drive type byte, 446

CMOS equipment installed byte, 446

CMOS fixed disk drive type byte, 446

CMOS indicator for memory above 1MB,

446

CMOS low and high base memory bytes,

446

CMOS RAM memory, 441

CMOS RAM valid, 445

CMOS reset code byte, 446, 447

CMOS system information byte, 446

CMOS, accessing, 442

code cache, 291

column address, 236, 238, 239, 242

combined cache, 290

command outputs, 145

command port, 36

configuration RAM, 460

configuration RAM usage, 446

control bus, 19

control!alternate/delete soft reset, 111,447

coprocessor chip-select, 465

coprocessor emulation, 460, 465

coprocessor error, 403

coprocessor error conditions, clearing, 463

coprocessor RESET, 463

coprocessor status register, 463

coprocessor's data register, 460

coprocessor's opcode, or instruction, regis

ter, 460

coprocessor, systems using Intel and

Weitek,468

coprocessor / processor commw1ica tion

signals, 464

copy protection scheme, 474

D II

DAKO#:DAK3#,345
DAK2#,412
DAK4#,417

DAK5#:DAK7#,345

Dallas Semiconductor real-time clock and

configuration RAM chip, 441

data bus, 19

data bus contention (address conflicts), 41

data bus transceivers, 124

data cache, 291

DATA ENABLE, 126

data port, 37

date and time, 441, 470

data bus steering logic, 126

default ready timer, 135

direct-mapped cache, 301

dynamic RAM (DRAM) memory, 235

dedicated cache, 290

descriptor, 101, 162

descriptor privilege level (DPL), 105

device ROMs, 330

divide-by-zero condition, 402

DMA acknowledge, 412

DMA acknowledge for channels 0 through

3 and 5 through 7, 345

DMA address latch, 424, 431

DMA ADSTB signal, 424

DMA AEN signal, 424

DMA block transfer mode, 416

DMA bus cycle, 420

DMA byte or word transfers, 423

DMA channels, 410

DMA clock, 420

DMA compressed timing, 421

DMA controller (DMAC), 409, 414

DMA controllers cascaded, 419

DMA demand transfer mode, 416

DMA direction of transfer with reference

to memory, 410

DMA extended write option, 422

DMA master and slave controllers, 417

DMA memory address logic, 425, 426

DMA page register, 423, 424

DMA read transfer, 414

DMA request, 412

DMA request for channels 0 through 3 and

5 through 7, 345

DMA single transfer mode, 415

DMA start memory address, 410

Index

DMA transfer count, 410

DMA transfer count exhausted, 413

DMA transfer modes, 414

DMA transfer rate, 431

DMA transfer types, 414

DMA verify transfer, 414

DMA write transfer, 414

DMA, EOP (end-of-process), 413

DMA, fly-by transfer, 409

DMA, TC (terminal count reached), 413

DMAC, 409

DMAC control register, 431

DMAC initialization during POST, 431

DMAC mode register, 431

DMAC states, 420

don't care bits, 46

double exception detected, 403

DPL,105

DRAM,235

DRAM addressing sequence, 236, 242

DRAM access time, 250

DRAM address decoder, 240

DRAM addressing logic, 238

DRAM addressing multiplexer, or MUX,

240

DRAM bank, 251

DRAM bank width, 253

DRAM memory chip block diagram, 237

DRAM parity, 256

DRAM refresh logic, 471

DRAM refresh, 244

DRAM, burst mode, 265

DRAM, cycle time, 250

DRAM, destructive read, 250

DRAM, enhanced page-mode, 264

DRAM, interleaved memory architecture,

269

DRAM, nibble mode, 265

DRAM, page-mode, 259

DRAM, pre-charge delay, 250

DRAM, static column RAM (SCRAM), 267

DRQO:DRQ3,345

DRQ2,412

DRQ4,417

DRQ5:DRQ7, 345

DT /R#, data transmit or receive, 126

509

ISA System Architecture

E II

ECC memory, 259

EEPROM,319

EM bit, 460, 466

ENABLE LOWER, 126

ENABLE UPPER, 126

EOr (end-of-interrupt) command, 379

EOI (end-of-interrupt) command, for slave,

388

EOP (end-of-process), 413

EPROM,318

ERROR# output of the numeric coproces

sor,386,463,464

error-checking-and -correcting memory,

259

exception 7 interrupt request, 466

exception 7 interrupt service routine, 466

exception interrupts, 402

extended memory block-move return, 447

F II

first level cache, 289

four-way set-associative cache, 307

fully associative cache, 299

fixed disk activity LED, 400

flag register, 374

floating gate, 318

floating-point, 459

floating-point calculations, 466

floating-point processor, 459

floppy disk controller, 387

FLUSH#,313

FORCE A20, 79, 451

G II

GDT,101

GDTR,102

general protection software exception, 403

global descriptor table (GOT), 101

global descriptor table register (GDTR), 102

H II

halt,150,230
halt or shutdown bus cycle, 150

hard disk controllers, 387

Hi/Lo byte copier, 130

hidden refresh, 248

high memory area, 79, 327

HLDA,412
HMA,79,327
HOLD, 412, 475

hold time, 149

hot reset, 450

I

I/0 address decoder, system board, 47

I/O address range assigned to system

board devices, 52

I/O bus, 335

I/O check, 349

I/O ports, 30, 36

I/O read command, 340

I/O size 16,344

I/0 write command, 340

ICW1,397

ICW2, 371, 397

ICW3,397

ICW4,397

IDT,101

IDTR,102

interleaved memory architecture, 269

IMR,397

IN instruction, 32

in-line code fetch, 14

in-service register, 371

instruction cache, 291

INT instruction, 403

INTA,369

integer math, 465

interrupt acknowledge, 369, 374

interrupt cascade bus, 387

interrupt controller, 366

interrupt controller cascading, 383

interrupt controller, slave, 387

510

102

Index

interrupt descriptor table (IDT), 101

interrupt descriptor table register (IDTR),

interrupt ID, 371

interrupt instruction, 403

interrupt mask register, 397

interrupt on overflow, 403

interrupt priority scheme, 368, 384

interrupt request, 365

interrupt request (IRQ) lines, 347, 366

interrupt request level 0, 384

interrupt request level 7, 384

interrupt request register (IRR), 371, 399

interrupt return instruction, 379

interrupt service routines, 43, 322, 366, 369

interrupt servicing flowchart, 367

interrupt servicing, clearing the interrupt

enable flag, 378

interrupt servicing, jumping to the ISR, 378

interrupt servicing, saving instruction

pointer, 374

interrupt table, 369

interrupt table entry assignments, 388

interrupt table entry number, 371

interrupt table initialization, 371

interrupt type code, 371

interrupt vector, 371

interrupts, dedicated IRQ lines, 386

interrupts, edge-triggered mode, 397

interrupts, end-of-interrupt, or EOI, com

mand, 397, 398

interrupts, exception, 402

interrupts, initialization command words,

or ICWs, 396

interrupts, initialization sequence for the

master interrupt controller, 397

interrupts, initialization sequence for the

slave interrupt controller, 398

interrupts, in-service register, 398

interrupts, master's interrupt ID, 397

interrupts, operation command words, or

oews, 396

interrupts, programming the 8259, 396

interrupts, software interrupts, 402

interrupts, special fully-nested mode, 397

interrupts, special mask mode, 399

INTR,368
invalid opcode exception, 403

invalid task state segment, 403

1016#,128
IORC#,340
IOWC#,340
IRET (interrupt return) instruction, 379, 404

IRQ lines, 347

IRQO, 386, 472

IRQO frequency, 470

IRQO interrupt service routine, 470

IRQO latch, 469, 473

IRQO through IRQ7, 386

IRQO, resetting, 470

IRQ1, 372,386,449

IRQI0, 387

IRQll,387

IRQI2, 387, 450

IRQ13,386,463,464

IRQ13 interrupt service routine, 463

IRQ14,387

IRQ15,387

IRQ2,383,386,387

IRQ2 redirect, 387, 389

IRQ3,386

IRQ4,386

IRQ5,386

IRQ6,387

IRQ7,387

,391,395

IRQ8, 386, 444

IRQ8 through IRQ15, 386

IRQ9,387

IRR,371

ISA address bus, 338

ISA bus cycle definition, 339

ISA bus cycle timing, 341

ISA bus master capability, 433

ISA command lines, 340

ISA connector, 337

ISA connector, 16-bit, 336

ISA connector, 8-bit, 336

ISA device size lines, 343

ISA DMA transfer rates, 431

ISA DMA-related Signals, 345

ISA error reporting signal, 349

511

ISA System Architecture

ISA interrupt request (IRQ) lines, 347

ISA interrupt-related signals, 347

ISA miscellaneous signals, 350

ISA reset signal, 344

ISR,366

ISRs,369

J II

jump instruction, 13

K II

key matrix, 450

keyboard,449,450
keyboard BIOS routine, 457

keyboard break scan code, 450

keyboard command port" 451

keyboard data port, 450

keyboard interrupt request, 450

keyboard interrupt request line, 386

keyboard interrupt service routine, 372, 450

keyboard make scan code, 450

keyboard scan, 450

keyboard scan code, 450

keyboard/mouse command/status port,

454

keyboard/mouse data port, 456

keyboard/mouse interface, 449

L

LA bus, 122

LA23:LAI7,338
latchable address bus, 122,338
LDT,101
LDTR,102
line, 283, 308

little-endian byte ordering rule, 74

least recently used (LRU) algorithm, 307

local data bus, 126

look-aside cache, 287

local descriptor table (LDT), 101

local descriptor table register (LDTR), 102

look-through cache, 283

512

M II

M/IO#,33

MI6#,128,344

machine status word (MSW) register, 116

maskable interrupt request line (INTR), 368

master interrupt controller, 383

MASTERI6#, 345, 435

MC146818 real-time clock and configura

tion RAM chip, 441

memory address bus, 236, 241

memory parity error, 399

memory read command, 340

memory size 16, 344

memory write command, 340

memory-based semaphore, 93

miscellaneous ISA signals, 350

MODE command, 475

Motorola MC146818 real-time clock and

configuration RAM chip, 441

mouse, 449, 450

mouse BIOS routine, 457

mouse interface, 387

mouse interrupt request, 450

MOV instruction, 33

MP bit, 460, 466

MRDC#,340

MROM,317

MS-DOS function calls, 404

MSW register, 460

multitasking operating system, 472

MUX, 240

MWTC#,340

N II

NCA#,312

NMI,349,399,442,473

no wait state, 343

non-specific EOI, 379

NOWS#, 138, 343

NPRD#,465

NPSl#,464

NPS2,465

NPWR#,465

Index

numeric coprocessor, 459

numeric coprocessor control bits in the

MSW register, 460

numeric coprocessor installed, description

of operation, 460

numeric coprocessor, Weitek, 467

numeric processor read, 465

numeric processor select 1, 464

numeric processor select 2, 465

numeric processor write, 465

o
OCW1,397
option ROM, 43

OSc, oscillator signal, 350

OUT instruction, 32

overrun condition, 369

p

page fault, 403

parallel port 1, 387

parallel port 2, 386

parity, 256

parity generator / checker, 256

PASS A20, 451

PEACK#, 461, 464

PEREQ, 461, 464

PIC, 366

POST,322
POST /BIOS ROM, 42

POWERGOOD, 113

power-on reset, 447

power-on restart address, 12, 116

power-on self-test, or POST, 116,322
page-mode DRAM, 259

principle of locality, 277

prefetcher, 54

processor extension acknowledge

(PEACK#), 461, 464

processor extension not available excep

tion, 403

processor extension request (PEREQ), 461,

processor extension segment overrun ex
ception, 403

program, 12

PROM,317
protect enable, 62

protected mode, 62, 98, 162

protected mode to real mode, 447

R II

RAM parity check, 400

II RAM refresh logic, 433

RAM, dual-ported, 312

RAS#, 236, 242

RAS/CAS delay, 236, 242

RAS/CAS generation logic, 240

RAS-only refresh, 245

read,12
read bus cycle, 141

II read-only memory, 315

ready line, 141

ready timer, 135

READY#,141
READYO#, ready output, 464

real mode, 369

real-time clock bytes, 443

real-time clock chip, 470

real-time clock function, 443

refresh,474
refresh and ISA bus masters, 439

refresh interval, 249

refresh logic, 245, 433

refresh request, 400

refresh request signal, 471

refresh row counter, 245

refresh timer, 471

refresh timer, reprogramming, 471

REFRESH#, 247, 350

requestor privilege level (RPL), 102, 105

RESDRV (reset drive) signal, 344

reset code byte, 447

reset register values, 115

RESET signal, 113

ROM address decoder, 42

ROM checksum, 322

ROM chip-enable, 321

464

513

ISA System Architecture

ROM chip-select, 321

ROM memory\: theory of operation, 315

ROM output enable, 321

ROM programmer, 316

ROM scan, 330

ROM, device ROM signature, 331

ROM, device ROMs, 330

ROM, electrically eraseable programmable

read-only memory (EEPROM), 319

ROM, eraseable programmable read-only

memory (EPROM), 318

ROM, erasing contents of EPROM, 319

ROM, flash EEPROM, 320

ROM, fusible-link PROM 317

ROM, masked ROM (MROM), 317

ROM, system board, 322

row address, 236, 238

RPL, 102, 105

read from even addressed location in 8-bit

device, 128

refresh timer, 245

row address decoder, 237

row address strobe (RAS#), 242

row latch, 236

RTC 24-hour mode, 444

RTC alarm interrupt enable, 444

RTC alarm interrupt flag, 445

RTC BIOS control, 445

RTC chip, 441

RTC chip's status registers A through D,

444

RTC date mode, 444

RTC daylight-savings enable, 444

RTC interrupt request flag, 445

RTC periodic interrupt enable, 444

RTC periodic interrupt flag, 445

RTC rate selection bits, 444

RTC set bit, 444

RTC square-wave enable, 444

RTC status register A, 444

RTC status register B, 444

RTC status register C, 445

RTC update in progress, 444

RTC update-ended interrupt enable, 444

RTC update-ended interrupt flag, 445

s II

SA19:SAO, 338

SBHE#,338

scan code, 450

SCRAM,267

SD15:SD8, 339

SD7:SDO, 339

security lock latch, 400

segment descriptor, 101

segment not present, 403

segment wrap-around, 452

segment wraparound, 79

self refresh, 248

self-modifying code, 16

semaphore, 93

serial port 1, 386

serial port 2, 386

set interrupt enable instruction, 368

setup time, 149

shadow RAM, 324

shared resource, 92

shutdown, 108, 151, 185,230

single step, or trap, interrupt, 403

slave ID, 387, 398

slave ID register, 383, 387

slave interrupt controller, 383, 387

slowdown timer, 474

SMRDC#,340

SMWTC#,340

snoop hit, 295

software interrupt instruction, 403

software interrupts, 402

software-enforced coherency, 298

speaker data timer, 471

split cache, 290

SRAM,271

second level cache, 289

snarfing, 295

snooping, 295

spatial locality, 277

static RAM (SRAM), 271

system address (SA) bus, 121

stack,374

514

Index

stack segment overrun or not present ex
ception, 403

stale data, 279

status enable, 464

status port, 37

STEN,464

STI (Set Interrupt Enable) instruction, 368

synchronous DRAM, 268

system address (SA) bus, 338

system bus high enable, 338

system configuration information, 446, 450

system control port A, 400, 473

system control port B, 400, 471, 473

system data (SD) bus, 126

system data bus, lower path, 339

system data bus, upper path, 339

system memory read command, 340

system memory write command, 340

system timer, 386, 469

system timer frequency, 469

system timer interrupt, 472

lr

Tl, 140

T2, 140

Tc, 140

TC (DMA terminal count), 345, 413

time delay device, 239

timer 0, 469

timer 0 frequency, 469

timer 1, 471

timer 2, 471

timer 2 (speaker timer) output, 400

transfer complete, 345

trap interrupt, 403

Ts,140

tag RAM, 281

temporal locality, 277

two-way set-associative cache, 304

u II

UMB,327

unified cache, 290

upper memory blocks, 327

w II

watchdog timer, 472

watchdog timer status, 400

Weitek interpretation of the memory ad

dress, 468

II Weitek numeric coprocessor, 467

Weitek-specific driver routine, 467

wraparound,79
write, 12

write bus cycle, 146

write policy, 292

write-back cache, 294

write-through cache, 293

515

	Contents
	Figures
	Tables
	About This Book
	Overview
	PART 1: THE SYSTEM KERNAL
	Chapter 1: Intro to Microprocessor Communications
	Chapter 2: Introduction to the Bus Cycle
	Chapter 3: Addressing I/Oand Memory
	Chapter 4: The Address Decode Logic
	Chapter 5: The 80286 Microprocessor
	Chapter 6: The Reset Logic
	Chapter 7: The Power-Up Sequence
	Chapter 8: The 80286 System Kernel: The Engine
	Chapter 9: Detailed View of the 80286 Bus Cycle
	Chapter 10: The 80386DX and SX Microprocessors
	Chapter 11: The 80386 System Kernel
	Chapter 12: Detailed View of the 80386 Bus Cycles

	PART 2: MEMORY SUBSYSTEMS
	Chapter 13: RAM Memory: Theory of Operation
	Chapter 14: Cache Memory Concepts
	Chapter 15: ROM Memory

	PART 3: THE INDUSTRY STANDARD ARCHITECTURE
	Chapter 16: ISA Bus Structure
	Chapter 17: Types of ISA Bus Cycles
	Chapter 18: The Interrupt Subsystem
	Chapter 19: Direct Memory Access (DMA)
	Chapter 20: ISA Bus Masters
	Chapter 21: RTC and Configuration RAM
	Chapter 22: Keyboard/Mouse Interface
	Chapter 23: Numeric Coprocessor
	Chapter 24: ISA Timers

	Appendix A - I/O Bit Assignment
	Appendix B - Glossary
	Index

