PDS

AsseMBLY LANGUAGE DEVELOPMENT SYSTEM
FOR

NORTH STAR MINIDISK

NORTH STAR HORIZON

INCLUDING?

RELOCATING MACRD ASSEMBLER
INTERACTIVE ASSEMBLER/EDITOR
STRING-ORIENTED TEXT EDITOR
TRACE DEBUG/DISASSEMBLER
LINKAGE EDITOR/LOADER
RELOCATING LOADER

FEATURING:

FuLL ZR0 cAPABILITY
OPERATIONAL ON Z8) or 8080
INTEL MNEMONICS
AUTOMATIC FILE HANDLING

READY TG RUN ON DISKETTE
COMPLETE DOCUMENTATION

FULL USER SUPPORT Copyright 1978
: A.M. Ashley
395 Sierrz Madre Yilla
&= 99 Pasadena, CA 91107

(213) 793-5748

CONTENTS

PDS OVERVIEW AND INTERFACE PROCEDMRES

Interfacing PDS. ... i ettt ettt tenenenennan 1-5
Bringing up POS .. vt i it ittt e e s rmr e aa e raas 1-6
Relocating Loaders KWIK and KWIKABS.ovu ... 1-7
Relocatable DEBUG. i vt esaasanen 1-8
EDIT Disk Files. . v iien i e eensnransenas e 1-9
ASMB Memory Files. ... ie oo iiiiitcarrannan 1-9
MAKRD Execution. . oottt imiire s e s aarnacras 1-10
Special Note to Z80 Owners......ovivininnevuenn.. 1-11
Sample ASMB Operation....... b e i a e .. 1-12
MEmOryY ST Z8. .ttt ittt et r i s et s asassansonne. 1-13
ASMB EDITOR/ASSEMBLER
D1 o T 1 o i £ 2-2
ASMB Organization. ...t vrrr it e e nnnn e cnnnn seraes2-3
Executive Commands.......vooeiununun f e 2-4
Command List
Command Format
e ' 2-7
Automatic Line Numbering
Assembler Operation. .. i it in i i i rnnans 2-8
Source Line Format
Assembler Constants
Register MRnemonics. v e in i ir i nner i annnnnan 2-9
Assembly Language. ..., ittt oaneaeinsnnnnnay 2-10
8 Bit Load
Accumuiztor Load/Store
8 Bit Immediate
16 Bit Load/Store
Exchange, Block Transfer, and Search
8 Bit Arithmetic and Logical
General Purposa Arithmetic and CPU Control
16 Bit Arithmetic Group
Rotate and Shift Group
g8it Manipulation
Input/Output Group
Jump Group
Call and Return Group
Pseudn Operations. v et ittt ietaeiinn e nas 2-18
Assembler Errors/Diadnostics. c. i rn i i nrennnas 2-20
Existing Source Files., ..t irerarnrennss 2-20

3. MAXRO ASSEMBLER

s R et R R TE ok A 1 = 1 1R 3-2

Makre Input/Output..........-..... r it e e e 3-3
Source Line Format

Assembler Oparation.ttt vnnnnnann- 3-4

Special Operands
Assembler Constants

Register MRemonics. ... - it airaaroarann 3-5

Assembly LANQUAGE. . cv s eatrtirannnnerosanasns 3-8

Pseudo Operations. .o ot i iiiiie i mcvarenn s 3-14
Relocation Pseudo Operations

Assembler Errors/Diagnostics.. v i inesss 3-18

MAKRO Conditional Assembly. ... innenriranaanns 3-20

MAKRQ Macro Capability. .ot arnnnnaransas 3-23

Introduction to Macros

Macro Processing

MAKRO Ildiosyncracies

Procedural and Syntactical Rules

HSing MAaCr0S. - o v vanrmreasrsronacanarsns bear s 3-28
Repetition Control. ... o iiiiiannnn s 3-30
MAKRO Block Structured Assembly..........coonnn- 3-32
Assembly Time Input.o nirinarnnas 3-33
RETOCAETIOM. s s s s st aan s st aartnaanmsoasantnsnn- 3-34

Assembly Time Scurce - LINK
Object Time - Relocatable Code
Loader Directives

Object File Format

Source Code Restrictions
symbal Table

PDS Ralocating Lodders... v ivenaiansraaanns 3-41
MAKRD Expression Evaluation......... . vuicunannnss 3-42
INTEL Source Compatability..... ... oo 3-44
Sample Linkage Operation.........oovivvnens, 3-4%

4. EDIT TEXT EDITOR

Introductione. s vaov. T §-7
EDIT Organization. - ourronosannnnanarerenns 4-3
EDIT EXeCULIVE. v i mrsnaaremsuaansmesransnnsss 4-4

Command Format
Hesting Commands
Special Characters
Text Pointers
ExecUtive COMMANAS. -« vrariscorusnnoascnaanansan =5
Command List
Special Character Commands
Command Strings and Block Commands...........0.- 4-11
Command String SyntaX., ..o e r i vricnitiasnnsenan 4-12

ii

4. EDIT TEXT EDITOR {Cont.}

ol MESSa0lS .. ottt i i sttt 4-13
Sampie EDIT Operation..o iiirivnencnaan 4-14
Sample Block Operations...........-c.-. e e 4-15
fonditional Command Execution........... ... 4-16
Text Rearrangement. v ntnnncnnnarinsns 4-19
Use EDIT to Save Typing....ceiceiiraaiinvannoes 4-20
Memory Organization........ - cnun. far e 4-21
D TR T 4-22
5. DEBUG PROGRAM DEYELOPMENT AID
INEroduction. o on sttt s s e s e e e s 5-2
DEBUG Organization. vt i iniannnennn. 5-3
Exgcutive COMMaNdsS. ... snnnrncnnsaarsnnssen- 5-4
Single Step Executive
Using DEBUG. . vv i v v s vt it s v i st sansamseneaannnan £-11
Suggestions
li&;- HIGHLIGHTS CERTAIM TEXTUAL ITEMS WHICH MAY CAUSE
DIFFICULTY IF QVERLOOKED.

PROGRAM DEVELCOPMENT 3YSTEM

PD5S is an exceptionally powerful assembly language develspment system foar 8080 or Z80
mirrocomputers with at least gne disgk drive, PDS includes a upnified assembler/edirtor,
a micro assembler with a relocacting linking loader, a string-oriented text aditor, and

a rrace debugger/disassemblar.

The asgemblers favor the INTEL instruction mnemonics, treating the Z80 superset as a
ipgical and syntactical extemsion. The debug medule features breakpoint or single-
step execution of programs, with brace display of all register contents, flag scatus,
a memary window, and the mnemonics of the insrruetion just axecuted and the text

instruction to be execured.

The powar of PDS derives from the Interactive environment afforded by the assembler/
editotr and the debug package. Program modules can be modified, assembled and checked

in seconds under the tight control of trace execution.

While the many features of PD§ will satisfy the demands of the most sophisticated
programmer, PDS affords an exceptional educacional enviromment for beginming assembly
lapguage programmers. The interactive combination of the ASMB editor/assembler and

the DEBUG trace program allow the user to witness operation of his program first hand.

To Eacilitate development of applications programs with PDS, soutce modules are avail-
able for fleating peint arithmetic, fleoacing peint inputfoutput, trigenometric functions,
numerical and alphaberic sorting, matrix Inversion, faat Fourier transform, aand a full
function expression evaluator,

For further information, please contaccg!

Allen Ashley
195 Sierra Madre Villa
Paspdena, CA 91107

[213) 793-53743

1-1

f

Macro

Relocating

Trace Debug

InEEractive Assembler

2-80 Assembly

8080 Operaticnal

INTEL Mnemonics

String Editaor
Linkage Edit

Disassembier

COMPARE !

NO OTHER READILY AVAILABLE
PROGRAM DEVELOPMENT SYSTEM
OFFERS AS MANY FEATURES AS

PD

$99

PRO TECH
TOL CROMEMCO _ ALS-8 CP/M INTEL
X X
X
X X
X X
X X X
X X
X A
—
X
S
e
1-2

PDS

The components of PDS are structured to provide the most complete, well~roupnded
program development system available for microcomputer use.

POS incliudes:

ASMB Assembler/Editor
MAEROQ Macrov Assembler
EDIT Text Editor
DEBUG Debug Monitor/Disassembler
LINEED Linkage Editor
FWIE Relocating Leader
MAKERQ and ASME assemble the complete instruction set of the Z-80 and feature

memenics which are a logiecal and syntactical extension of the widely familiar
8080 assembly lanuguape,.

Each of the components of PDS is written in the 8080 instrucrion subset and the
entire system 1s thus operational on either Z-80 or 8080 machines.

PDS is an ideal program development syscem for those owning a 2-80 wmachine or
thoge 8080 owners antiecipating 2 future exzpansion to the more powerful Z-80
IrBCESSoT,

APPROXIMATE MEMORY REQUIREMENTS

PROGRAM DECIMAL

ASMB BE

MAKRO 7.5K

EDIT 2K

DEBUG 3.5K (RAM at @)

Minimum operating system: 16K RAM and ane disk drive. DEEUZ, LINKED and KWIK
are furnished in releocatable form to satisfy the requirements of individual systems.

The sizes of disk files for relocatable modulaes do oot reflect the memory reguired
for execution of those modules. Such £1las, containing cvelocation and leading
informarion in addition ro prepram data, greatcly exceed the memory apace raquirad
for execution. As an example, the relocatable disk file DEBUG cccupies some 55
sectors of the disk, but less than 4K of wemeory when lcaded.

ASMB: An editer/assembler combination for the rapid development of small to medium size
assembly language programs, ASMB includes all the feacures necessary for the creation,
modification and disk storage of assembly language source fileg for Z30 or 3080 computets
ASME 15 a wvery fast assembler which, together with the co—-resident editor, is structured
for a very rapid assemble/ezecute/modify cycle. The instruction set of ASMB is designed
to be 2 logical and syntactical extension of the widely familiar INTEL instruction set
for the 8080. VUsers already familiar with 8080 assembly language will readily acquire
the extended instructicnm set of rhe ZB(processor.

MAKRO: an extraordinary assembler feacuring full macro and conditional assembly capa-
bility, MAKRO incorporates the power of a relecating assembler and a linkage editor/
loader. Program modules developed with the ASMB assembler can be collected into a
source library for the MAKRQ assembler. The comgiderably enhanced power of the MAKRO/
EDIT combination, together with the overall reducad memory requiremants of MAKRG,

make the two assemblers perfect companioms.

EDITH A very powerful text editor fearuring a full spectrum of text menipulation
cperations including string search, subgtitution, insertion, deletion, and block move
or delete. An elaborate command interpreter allows the definition of command string
macros. Segments of an input text file can be drawn Erom disk into memory, medified,
and written back to an output disk file. Large, heavily-commented socurce files which
‘axceed available memory can be developed and modified easily with the EDIT text editor.

DEBUG: an incomparable software development tool featuring single-step execution of
Z30 or 8080 programs with complete display of all register contents, flag status, and

trace display (in mnemonic form) of the instrucrion just executed and Che next instruc— “=

tiont to be executed. The single-step breakpoint can be located anywhere in the user's
program,

DERBUS, togerher wich the fast ASMB editor/assembler combination, provides an interactive
environment for the development of assembly language programs. There is no more powerful
development aystem: program modules can be assembled, checked, and medified in seconds.
Programs operating under the trace mode of DEBUG are held tightly under control —

errorse can he caught before they blow the program. The degree of program intimaey
affordad by DEBUG greatly exceeds that of BASIC.

DEBUG includes a disassembler for translating 3080 or Z80 object code into the MAKRO/
ASME instruction mnemonicsz. DEBUS also includes string search and change, memory
display in ASCII or hexadecimal, memory fill by byte or hlock, and block meve ar compare
functicns. DEBUG uses RST3 and requires RAM at low memary.

I_INKED: Linkage editor, linking loader. LINKED searches library files of previously
assembled modules to include those necessary to complete the assembly. Commonly used
routines nesd only be developed once.

KMIK: Relocating loader creates an executable memory imape for programs not requiring
a linkage edirt.

1-4

INTERFACING PDS TO NORTH STAR DOS

The components of PDS utiiize the standard entry points to the Releass 3
Disk Operating System:

DS + #0H Character out
DOS + 16H Character in

Dos + 16 Control/C

DOS + 28H Warm start entry

File names communicated to PDS are terminated by a carriage return. The
file name may be suffixed by an optional unit number. The unit number, if
present, must be separated from the file name by a2 comma. File names not
suffixed by a unit number default to drive 1.

Components of PDS which generate disk output request an output file name.

The output file must be found in the directory. PDS will examine the size of
the output file. A zero-Tength cutput file is treated as a new file and POS
will update the directory entry to reflect the completed disk operations.

If a required file is not found in the directory, PDS issues a '?' prompt
and awaits re-entry of the file name. PDS will automaticaily size the
output file if the user creates {under the D0S) an output file of length @
before entering the program. As an example:

CR OFILE 9
GO MAKRO

Respond to the output file query with OFILE. PDS will update the directory
entry.

It is generaily not possible for PDS to predict the required output file size
before disk operations commence. If the user elects to direct disk output to
an existing file, he must ensure that the file size is sufficient to contain
the output. PDS will cease disk operations with a 'NO RGOM' message when the
exfsting output file is full.

MISCELLANY

1. There is an inconsistency within PDS regarding character deletion. ASMR
interprets SHIFT-0 as deletion control, whereas £DIT and MAKRO treat
RUBGUT as character deletfon.

2. lUnder certain circumstances reguiring user input, there is no provision
inhibiting deletion beyond the first character entered. Exercise care in
entering program input, and great care in deletion. The sftuations
requiring attention are MAKRD assembly time input and keyboard-defined
file names for all programs.

1-5ns

BRINGING UP PDS

1. MWrite protect the PDS diskette before attempting fo use it.

Make a working copy of the POS diskette using the RD and WR cormands

of the D05,

Store the original PDS diskette as a master backup copy.

Read the entire PDS documentation.

5. Several components of POS zre furnished in relocatable form to be
placed at a2 convenient location in memory. The general procedure for
making a working copy of these modules is:

d.

b.

Execute the relocating loader KWIKABS {see next page).
Identify the module to be loaded and the lpad address.

At completion of relocation, create a disk file and save
the memory image of the relocated module. Set the file
type = 1.

The relocatable module may be deleted to save disk space.
The griginal version is always available on the master
back-up diskette.

6. Practice using each of the components of PDS.

7. Suggestions and comments on the PDS documentation or programs &re

welcome,

1-6ns

RELOCATING LOADERS KWIK AND KWIKABS

The KWIK Toader is furnished in relocatable form on disk fite £WIK and in
absoTute form on disk file KWIKABS. Entry to the absolute module is at
DS + ABPH. These two forms are furnished to allow the user to bootstrap
the Toader to any convenient memory location. The bootstrap procedure
utilizes KWIKABS to relocate KWIK to the desired execution address, The
procedure is as follows:

G0 KMIKABS Enter

INPUT FILE File query

KWIK

LOAD ADDRESS

KHYY Desired RAM Tocation

At completion, KWIKABS returns control to the warm start entry. The user
should then save the memory image just created:

CR UKWIK 4
TY UKWIK 1 ®xyy
SF UKMIK xxyy xxyy is the previously defined RAM location.

The KWIK Toader is subsequently accessed by GO UKWIK. (See MAKRD for discussion of
¥WIK.) The KWIK loader supports an optional offset address. Response to the load
address query may take one of two forms: hexad or hexad,offset. The offset value
is added to the execution address to determine the memory locad address. Thus, code
to be executed at EPBPH., with an offset of 3@@PH, is placed into memory at

EBAP + 3080 = 186N,
LINKAGE EDITOR

The linkage editaor is furnished in relocatable form as disk file LINKED.
Either XWIKABS or the previousiy generated UKWIK Toader can be used to
generate an executable modyle of LINKED. The procedyre is as follows:

G0 KWTKABS

INPUT File query

LIMKED

LOAD ADDRESS

EXYY Desired RAM address

At completion:

CR ULINK &
SF ULINK xxyy
TY ULINK 1 xxyy

The 1inkage editor is then accessed by
GO ULINK
Library iles must reside on drive 1 and may contain names of no more than five

characters. The North Star version of LINKED does not generate an object disk fiie.

A RAM area after LINKED must he reserved for loader tables. Gemerally, 100
bytes will suffice.

1-jn5 g

RELOCATABLE DEBU&

DEBUG is furnished in relocatable form to be positfoned at a convenient
memory Tocation. The relocation may be performed with KWIKABS or the
user-developed loadar UKWIK, Relocation of DEBUG is performed via the

following sequence:

GO UKHIK

THPUT FILE File query

DEBUG

LOAD ADDRESS

AXYY Desired RAM address

At complation:
CR UDEBUG 16
TY UDEBUG 1 xxyy
SF UDEBUG xzxyy

Subsequent access to DEBUG is made vim

G0 UDEBUG

1-8ns

EDIT DISK FILES

EDIT reiies ypon the NORTH STAR disk operating -system faor the creation
of disk space, the transfer of file contents to and from memory, and the
console character input/cutput operations,

Upon initial entry, EDIT requests the name of the input text file -- the file
to be modified. To create a new Tile, the user shouid raspond to the INPUT
query with the 8. EDIT is thus cautioned to ignore any commands to read from
disk. At any time the user may open a new input disk file {closing any
existing input file}.

Text material is transferred to wemory in blocks of one sector {256 characters).
Tha user may transfer as many sectors to memory as available space will allow.
EDIT will not alTow mempry gverflow. At termination, EDIT transfers to the
gutput file any information still residing in the input file., The user may
truncate the input file, however, by opening a new input file and responding

to the INPUT query with .

The output file is the repository for the processed textual material. Taxt
is transferred to the output file in one-sector Blogks., The name of the
output file is given to EDIT in response to the QUTPUT query. If the file
name is not found in the file directory, EDIT issues a '?' prompt.

ASMB MEMORY FILES

The ASMB editor/assembler resides in memory immediately after the DOS. In
the standard configuration, the memory region from 2@PPH up to4EBZ is
reserved for the DOS, ASMB, and assembler tabies. MWeither source nor object
files can be located within this region without damage to the programs.

1-9ns

MAKRO EXECUTION

MAKRO requests a pass opfion before the assembiy. The pass parameter
ann controls generation of the QBJECT file and assembly listing. The
three Teast significant bits independentiy control assembier ocptions.

Bit @ controls the extent of the assembly. If Bit @ = @, the
assembler skips pass 2, and nefther an object file nor
pass 2 diagnostics are available. This option is used
to make a guick check of the spurce file.

Bit 1 controls the assembly Tisting. If Bit 1 = @, only
assembly diagnostics are generated.

Bit 2 controls the generation of the object file. If Bit 2 = 9,

no object file is created.

Assembly is normally performed with one of the three pass options:
1 No object file, pass 1 and 2 diagnostics only.
5 Object file, pass 1 and 2 diagnostics only.
7 Object file, full assembhly listing.

NOTE: A dummy outpuf fiTe must be defined even for cases in which
no object code is to be written to disk.

Pressing Control-C when entering file names to MAKRO returns control to
the 003,

1-10ns

SPECTAL NOTE T0 Z-80 OWNERS

ihe entire POS package was written to ba fully operational on machines using
etther the 3080 or I-80 processor. As & result, Five bytes must be changed
Tn DEBUG to display the additional Z-80 registers.

After gemerating an executable image of DFBUG at memory location xxvy {as
discussed previously} the user must modify five program bytes to display the
g-?ﬂ index registers. The required changes are summarizad in the table
elow,

CHANGE
MEMORY LOCATION FROM 10
xxyy + 21C P65 i1
XXyy + BBF)
xxyy + 852)

CEEUG can be used to effect thesa changes, After completipg the relocation,
but before saving the ralocated file, perform the following sequence:

dP xxyy

<F

B{xxyy+ 21C) This is entered as the true address.
pe-g8 2 Carriage retyrn
DE Return to monitor
Lol

@{ xxyy+ REF)

@9-00 ¢ 21-22 2 Carriage return

0 Return to monitor
<E

3{ xxyy+ 893)

pB-fo g 21-22 2 farriage return

N, Return to monitor
0 Retyrn to DOS

SF UDEBHS xxyy Save DEBUG

2 signifies carriage return.

1-11ns

SAMPLE ASMB OPERATION

—
=G0 ASHE
AZME CEYELGFMENT ZYSTEM
F ATESTATO0R Create memory file
TEST S/h8a Sahd
AE1ELAEEL - 1< H > typed after 1ine number, but not echoed
LHD B
OFA A Aute Tine mode
EME < typed after carriage return
E Print formatted listing
Botl LHEEL IMN: H
AEdd A E
(5] By CRA H
AR ErE
H FEE Assemhle file
FoRm 232 an1a LABEL [IMNE H Assembly Tisting -~
Figd a2 AALt LD E —
FoRz g7 Hit 2 CRFE H
FoEE (5] s EMD
=YMEDL THELE
LAGEL Foad
I Write source to disk
FILE
SAYE WREITTENM Disk operation completed
B
ohs G4 1R H
MK R 14 ==z 1 ZES
ECGIT 45 11 1 ZFeHa
EMND 1] 5| .
SHYE 178 1 2 Source file
A=HME =57 = 1 ZREE
DEEG 22 55 (5
ERIRERES 127 3 1 Z\oa
Bl TR 148 15 o)
LIMNKEL 155 1% 7]
_—

1-12ns

MEMORY SIZE

MAKRO and EDIT search memory to determine the highest available contigquous
RAM address. In systems for which this is undesirable, the user may patch
these programs to set a limit on the available memory.

MAKRD
MAKRO searches for memory top in a Toop near the entry point. The code is:

249 M¥I A,BDAAH
MTLP: TNR H
MOV M, A
CMP M
ZRAE JZ MTLP
OC% H
2A52 SHLD MTOP

The 3 bytes at 2A4E should be changed to
21 xx ywy {(LXI H,MTOP)

whare xx y¥ is the byte-reversed RAM Timit.

EDIT
EDIT calls a subroutine to determine available memory. The call is:
2413 LXI H,1B1BH
SHLD THERE
ZA19 CALL MEMTOP (2BCC)

The Tloop at MEMTOP is:

7BCC LXI H,TEXT

2801 MYT A, BAAH

2B0L MTLP: INR H
MOV M,A —
CHP M -

ZB04 JZ MTLP -
DCY H

2B0C SHLD MTOP

The 3 bytes at 2804 should be changed to
21 =x yy

as done in the MAKRQ patch.

1-13ns c

Addresses for the memory size patches to MAKRO and EDIT are given for the
standard DOS at 2@0BH. DEBUG should be used to disassemble the code at the
given locations before making any changes. Minor program modifications may
alter the Toop positions slightly.

The corracted versions of MAKRO and EDIT should be saved on disk.

SCROLLING PROGRAM QUTPUT

The two PDS assemblers and the G command of EDIT &llow the output to be
scrolled. Pressing the space bar will freeze the display: any other key
will resume scroll.

This feature relies upon the non-standard Control-C detect routine in the
D0S. The programs call the Control-C routine and expect the key pressed,
if any, to return in the accumutator. If a blank is returned, the programs
call character-in to wait for another key to be pressed before resuming
operation.

1-14ns

ASME

4 disk-based assembler/editor
for the development of small to
medium size assembly language
programs .

The combination ASMB/DEBUG provides
an interactive environment for
assembly languzge program development.

Copyright 1378

Allen Ashley
395 Sierra Madre ¥illa
Fasadena, CA 31107

(213) 793-5748

INTRODUCTION

ASME is a powerful disk-based editor/assembler system for program devel-
opment on a Z80 microcomputer. Structurally and operationally similar to
the program development packages SP-1 and E€5P-1, ASMB offers mare exten-
sive editing and assembling features while extending the instruction
assembly to the entire Z80 instruction set,

ASMB includes all the features necessary for the creation, modification
and storage of assembly language programs. Departing from the cumbersome
ZILOG assembly language. ASMB features instructions mnemonics similar to
the more widely familiar INTEL set. I[ndeed, mnemonics for the 2080 subset
of the 780 instruction set are identical to the standard INTEL format.
Users familiar with INTEL assembly language will appreciate the treatment
of the 780 instruction superset as a Tegical and syntactical extension of
the INTEL instructions.

The ASMB program development system s an ideal companion to the more
powerful MAKRO assembler. Smzll program modules are more easily and rapidly
developed with the unified assembler/editor than the two-stage process of
MAKRO/EDIT. The fully tested program modules can be converted to MAKRO
source form by a single EDIT command. These source modules can then be
saved as a source library for MAKRQ,

ASMB is itself written entirely in the 8080 instruction subset, and is
therefore operational on either 2080 or Z30 machines. ASMB can thus serve
as a two-way cross assembler, assembling 8080 source programs on a 780
machine, or 80 object programs an an 8080 machine. The versatility and
power of ASMB make it an ideal program develgpment system for either those
presently owning a 780 machine or these anticipating a future expansicn of
their present B080 machine to the more powerful 780 procassor,

ASMB ORGANIZATION

The ASMB program development system consists of a combination text
aditor, assembhler, and system executive for the creation and modificatiogn of

280 assembly language programs.

Tha system executive is responsibie for handling all input/output operations,
invoking the editor or assembler, and dealing with the disposition of source

and object files in central memory.

The text editor is responsible for the creation and modification of source

pragrams within the memory file area.

The text aditor is line-priented in

that editing consists of entering or deleting source lines identified by

ascending 1ine numbers.

The editor features zutomatic line numbering, line

renumbering, moderately free-form source input, well-formatted source output,
and & unique mini-editor for the modification of source code Tinas.

The assembler performs a two-pass translation of source to object code.
assembier inciudes the pawertul feature of conditiomal assembly.

Tha
Instruction

mnemonics are togically and syntactically identical to the INTEL assembly

language.

The assembTer is file-oriented with up to six source files simui-

tanacusly residing in memory.

Optional symbol communication between files

enables a moderate block structure development,

The concept and structure of ASMB were strongly influenced by Software

Package #1. Assembly language source
files under control of the system executive.
deteted by commands to the sysiem executive.

programs are maintained in source

Source Tiltes are created and
Source code is entered into the

source files under control of the editor, and the assembler can be directed
to translate the source file to object code anywhere in memory.

(F dhAG FEg o s5F

e Hants 2ZAFD Flem fE 7o $8
2A4AC EFFso 5 To S E

ZFAZ FEem €F 7o @F

'_Z.S,;j ToyRLE DTws ™|

—_——

SRAngE 2aAL0

CHaNGES To ASAG (BACKSpace cowreod)
® 2AFC CPE PTEH
& 2AAR MVT &, 5FH
& 2EAL mvr A, 65F H
11!".?‘1
SAME L0 flnKrE
& IpBRE
2-3
F 3 pE

Ednay £ o o f
de TF
CHan & 2DRY
Fecnt g8 Te of
2E S5F

A A 230
FRoer SE5 T oF

EXECUTIVE COMMANDS

COMMAND FORMAT

Executive commands consist of a single letter identifier, together with an
optional modifier character, and one gr two hexadecimal parameters. The
command character(s) must be saparated from any numerical parameters by a
single blank. Mumerical parameters are 1ikewfse separated by a blank.

In the following, hexadecimal parameters are indicated by the sequence nnnn

or mmmm while an optional character modifier is indicated by a lower-case c.
Unless otherwise noted, the modifier ¢ is a device control character {(p-7) which
will be present in the accumulator for all subsegquent console I1/0.

A1l command T1nes are terminated by a carrfage return.

COMMAND LTST

ﬁ Fo /NAME/ File control command. The file control command enables
the user to create or destroy source files. Ezch source
- file 5 identified by a file NAME of up to five charac-
ters. The file name must be delimited by slashes. The
opening slash must be separated by a blank from the
command characters. The hexadecimal parameter nnnn and
the modifier character are optionai.

F /NAME /nnnn Opens a source fila NAME, starting at location nnmn,
making NAME the active fila. Any preyiously active files
are maintained,

F /OTHER/ Recall previously active file, OTHER, making it the currantly
active file. Note the hexadecimal parameter is absent.

F /ERASE/D Delete fiTe named ERASE, freeing memory space for & new
source file.

F Display the currently active file parameters, file name,
starting and ending memory Tocations.

FS Display the file parameters of all memory files.

W Write the currently active source file to disk. The

gxecutive will respond with the query FILE. The user
mMust then type the disk file to receive the source.

R Read source code from disk into the currently acrive
wemory file. The executive responds with the FILE query.

tn Append a disk file to the currently active memory file,
renumbering all source code lines by the increment n.

Improperly formed disk operaztions, disk read errors, or
insyfficient dizk file capacity result in the DISK ERROR
diagnostic.

2-4

1N

—

0 nnnn mmem

Pc nnnn
Fe. ‘a”r.s-neua-;/

L¢ nann
e ,/.s-rﬂn.la-’/

5 nnnn

& nnnn mmmm

- | o

AE nnnn smnm

AK

DeTete lines numbered nnnn up to and including mamm
from the source file. If mmmm s omitted only nnnn
is deleted.

(BYE) Return to disk operating system.

Initialize the system, clearing all source files. The
initialization is avtomatically performed upon initial
antry. No lines of spurce ¢ode can be entered until a
new source file has been defined.

Print a formatted listing of the current source file,
starting at line number nann.

Print an unformatted 1isting, suppressing line numbers,
of the current source file.

The optianal modifying character, ¢, can be an ASCII
digit in the range § - 7. The numerical value of this
madifier will be present in the accumulator for all sub-
sequent [/0, or until redefined by the user. The

value is initfalized to zere.

Execute at location nhnn. A user program may return to
the system executive by a simple return statement.

Execute at location DEB@. This command is reserved for
entry to the DEBUG control system,

Assemble the current source file using implied origin
(ORGY nnnn and place resulting object code into memory
starting at location mmmm. The second parameter i3
optional; if absent, the ohject cede is placed into
memory at nnnn.

Mark axisting symbol table for future glcbal reference.
[Save symbol table resulting from iast assembly.) This
command must follow an assembly: a symbol table must have
been generated. '

fssembie, as above, displaying enly source code lines
containing an assembler diagnostic.

—rm,

Release (kil11) the global symbol table. —

2-5

E nnnn Enter the mini-editor to edit the currently active
source file beginning at line nnnn.

The mini-editor enables the user to scroll through the
source file, changing source lines on the fly. o

Upon entry. the mini-editor displays source Tine nnnn or
the first source Tine if nnnn is omitted. The mini-editor
then awaits keyboard input. Depressing any key escapt
ESCAPE (1BH) advances the fila pointer to display the

next successive line. The escape key allows the user to
re-enter the source 1ine starting at character position
two. (At the label field, no line number fs required.)
The user-antered line, terminated by carriags return, then
overlays the old 1ine. The mini-editor cannot insert new
source Tines intg the file. Return to system executive
via Control C.

E /STRNG/ Enter the mini-editor to edit the currently active source
file beginning at the first occurrence of character string
STRNG. The string may be at most five characters Tong and
may contdain no blanks. The string search is operable for
the P and L commands as well.

N nnnn Renumber source lines, starting at nnnn and incrementing
by nnnn.

After generating an executabie image of DEBUG, it is advisable to modify ASME to vector
the |l command to your DEBUG. Load ASMB intc memory without entering the program. Use
DEBUG to search for the byte string 55 89 D). Change the last two byies to correspond
to the byte-reversed address of the entry point to DEBUG +3. The +3 jumps oyer the

LXI SP instruction at the start of DEBUG. Save the modified version of ASMB, DEBUG can
then be entered from ASME via the U command.

There is space in the ASMB command table for five additional user commands. Available

space starts after the 55 @@ DR byte string. New commands must be entered in the format
Comnand character,byte-reversed branch address

For each such command entered, the command count must be increased.

As above, search for the byte string @6 @E 3E Bl and increase the byte OE for sach new

command entered, A hex parameter, if present, s passed to the user routine in the DE

registers. A second hex parameter can be passed in the BD registers. The user routine
can re-enter ASMB via a RET instruction.

| T F|

2-6

EDITOR

Saurce lines are entered inte the currently active source file under control of
the file editor. The system executive recognizes a source line by a four-
digit decimal line number, which must precede every line in the scurce file.
Modifications to the source file consist of one or more whole lines. Lines

may be deleted by the [control command. Lines may be modified by retyping

the line number znd entering the new source line. The editor adjusts the
source file to accommodate line length without any wasted file space.

Source program lines consist of a four-digit line number followed by a
terminating blank. The first character of the source 1ine may contain
identifiers '*' or ';'. These identifiers prociaim the entire line to be a
comment. The label field of the source 1ine must be separated by exactly
one blank from the line number. Identifying labels canm be from one to five
characters long and may cont2ain no special characters. The operation field
must be separated from the label field by one or more blanks. The aperand
fiaeld, if present, must be separated from the operation by 2 single blank.
Two blanks following the last operand separate the comment field. Source
tines may be up fto 72 characters in length.

The user can invoke automatic line numbering for 1inas entered into the source

file. In the automatic modd, line numbers are incremented by one from the

starting vaiue. Automatic 1ine numbering is initiated by entering the starting

line number followed by > {[greater than). Subseguent entries begin in character
positign two. The automatic mode is exited by typing < {less than) following

the carriage return for the last source Tine, Failure fo proparly exit the

automatic mode can result in erroneous source lines. Lengthy insertions can ﬁE’ ',ll
be made into an existing source file by renumbering the file before entering

the automatic mode.

The mini-aeditor allows fext 1ines in the source file to be modified. When under
contral of the mini-editor, typing the Escape key switches from the scroll mode to
the madify mode. Editing of the source 1ine begins at the first c¢haracter of the
label field. Characters typed in under the modify mode are used to build the new
source 1ine. The old source Tine can be used as a model for generating the new
source line: characters can be retrieved from the old line and placed in the new
Tine. In the modify wode, the following control characters are recognized:

COMTROL-A Fetch the next character from the old line and piace it in the
new line.

CONTROL-7 Delete the next character from the old line.
COMTRAOL-Q Back up cne character in both the old and new 1ines.
CONTROL-G Transfer the remainder of the old line to the new line.

CONTROL-5 Reads a character from the console, and transfers all characters
from the old 1ine up to, but not including, the input character.

CONTROL-Y An insert toggle. Between successive tpggies, Tnput characters are
inserted into the new 1ine.

Any other characters typed in under the modify mode are entered into the new
line, ovarriding the corresponding character from the old line,

2-7

ASSEMBLER OPERATION

The assembler gperates upon the currently active source file only. The source
file consists of & sequence of source lines composed of the four fields: Tabel,
operation, operand, and comment.

The label field, if present, must start in the second character position after
the 1ine numbar. Entries present in the label field are maintained in a symbol
tabTe. These entries are assigned a value equal to the program counter at the
time of assambly, except that for the SET and EQU pseudo operations the varfable
defined by the label field is assigned the value of the operand field. The
variables defined by the Tabel field can be used in the cperand field of other
instructions either as data constants or Tocations.

The operation field, separated from the label field by one or more blanks or a
colon, cannot appear before the third character following the line number,
Entries in the operation fieid must consist of either a valid ZBO instruction
or one of the several pseudo-operations.

The operand field, separated by a biank from the coperation field, consists of

an arithmetic expression containing one or more program variables, constants,

or the special character § connected by the operators + ar -. Evaluation

of the operand field is Timited to a left to right scan of the expression, using

16 bit integer arithmetic. Operations requiring multiple operands {e.g., MOV A,B

or BIT 3,IX,4) axpect the operands tc be separated by a comma. -~

The special operand § refers to the program counter at the start of the
instruction kefng assembled.* The program variable % can be used as any otner
program variable except that its value changes censtantly throughout assembly.
The location counter $ allows the user to employ program relative computations.

Assembier constants may be either decimal or hexadacimal character strings.
Yalid hexadecimal constants must begin with a decimal digit, possibly 8, and
be terminated by the suffix H.

* MOTE: Some assembiers interprat § as the start of the next instruction.

REGISTER MNEMONECS

A1l of the 780 registers have been assigned predefined mnemonics, These
assignments agree with those given by {NTEL and ZILOG.

The predefined register set is defined as:

Register Pefinition Value

A Accumulator 7
B 8 or 16 bit i
L 8 bit 1
D 8 or l6 bit 2
E 8 bit 3
3l Bor lé bit il
L 8 bit)
M Memory Indirect (HL) B
SP Stack Pointer &

PSW Progran Status Word 8
[¥ 16 tit Index nene
Y 16 bit Index none
RF Refrash Reqister noane
Y Interrupt Yector none

These register assignments may not be redefined.

2-9

ASSEMBLY LANGUAGE

e
As a consequence of favoring the INTEL mremonic set over that of ZILOG,
the Z80 instruction superset has been invented. One consideration in the
definition of instruction mnemanics is standard assembly language convention.
In the instruction mnemonics which follow
pp gq refers to an arbitrary 16 bit datum;
Yy refers to an arbitrary & bit datum:
d refers to a 280 dispTacement except for relative jumps;
refers to an 8 bit register (A, B, C. D, E, H, L, M)
RP refers to a 16 bit register pair (B, D, H, 5P)
GP refers to a 16 bit register pair {PSW, B, D, H)
MNEMONIC ZIL0G REMARKS
2 BIT LGAD
MOY R,R LD R,R Register to register (to, from)
MoY R,IX.d LD R, (Ix+d) Register indirect ~—
MOY R,IY.d LD R, {IY+d) !
MOV IX,d,R LD {IX+d).R Memory indirect
Moy 1Y,d,R LD {I¥+d),R
MoV AL LY LD A, Fetch interrupt vector
MOV A,RF 1D AR Fetch refresh reqistar
MOY IV.A LD I,A Load interrupt vector
MOV RF,A LD R,A Load refresh register
ACCUMULATOR LOAD/STORE
LOA ppag LD A, {(nn) Accumulator direct
LDAX B LD A.{BC} AccumuTator extended -
LOAX D LD A,{DE} -
STA pp ag LD {nn},A Accumutator direct
STAX B LD {BC),A Accumuiator extended
STAX D LD (BE},A
2 BIT LOAD TMMEDIATE
MYI R,vy LD R,n Register immediate
MVI IX.d,vy LD {IX+d)},n Memory indirect immediate ad
MYI IV.d,vy LD (IY+d},n

2-10

MNEMONIC ZILOG REMARKS
16 BIT LOAD/STORE RP = B, O, H, %P)P = PSW, B, D, H
LXI RP,pp qq LD RP,nn Extended immediate
LAT I1X,pp 499 LD IX,nn
LAT IY.pp g9 10 I'y,mm
LHLD gp q9 L0 HL,{nn) Extended indirect load
LLBCD pp aqg LD BC,{nn}
LDED pp qg LD DE.{nn}
LIXD pp qg LD IX,{nn}
LIYD pp gg 1D IY,{nn)
LSPD pp 0o LD 5P,inn}
SHED pp gg LD (nn),HL Extended indirect store
SBCD pp qg LD {nn},BC
SDED pp qg LD {(nn},DE
SIXD pp qg 1D (nn),IX
SIYD pp qq LD {nn},IY
S5PD pp gg 10 (nn},SP
SPHL LD SP.HL Set stack pointer
SPIX LD §SP,IX
SPIY LD SP,IY
FUSH QP PUSH QP To stack
PUSH IX BUSH IX
PUSH IY PUSH IY
FOP QP FOP QP From stack
POP [X POP IX
PGP IY POP TY
EXCHANGE , BLOCK TRANSFER, AND SEARCH
LCHG X DE,HL Exchange
EX EX AF,AF®
EXX EXX
XTHL EX (SP},HL
XT1X EX (SP},IX
XTIY EX (sp},IY
LDI LDi Transfar
LDIR LDIR
LOG Loo
LDDR LDDR
CPD CPD Search
CPOR CPOR
CPII CPI
LPIR CRIR

2-11

MNEMONIC ZIL0G REMARKS
8 BIT ARITHMETIC AND LOGICAL hd
ADD R ADD R Add register
ADI yy ADD A, vy Add immediate
ADD 1X,d ADD {T¥+d) Add indirect
ADD IY,.d ADD (1Y+d}
ADC R ADC R Register with carry
aApC IX,d ADC {IX+d . R
ADC IY.d ane %Iv+d§ Memory indirect with carry
ACT yy ADC n Immediate with carry
SUB R SUB R Subtract Register
5UB 1X,d SUB (IX+ L
SUB IY.d SUS EIT+§§ Subtract memory indirect
SEB R SBC R Registar with carry
EBE %ﬁ:g ggg E%i:ﬁ% Memory imdirect with carry
ANA R AND ? Logical and register
ANA TX,d AND {IX+d) o s
ANA TY.d AND {T3+d) Memory indirect
ORA R OR ? Logical OR register
ORA 1X.d OR (IX+d) .
ORA 1Y.d OR {I¥+d} Memory indirect -
XEE R XOR ? } Exclusive OR register
X®a IX,d XOR {IX+d .
XRA I¥,d XOR {T¥+d) Memory indirect
cMP R CP R Registar compare
cHP 1X,d CP {IXx+d) s
IMP 1Y .d CP {I¥+d) Memory indirect
INR R INC R Register increment
INR I¥.d INC (IX+d)
INR IY.d INC {IV+d)
DCR R DEC R Register decrement
DCR IX.,d DEC {1X+d)
DCR 1Y.d DEC {IV+d) .
ANT vy AND yy Accumulator immediate -
IRI vy XOR wy —
CPI1 yy CP vy
ORI yy OR yy
SUT yy SUB yy
SBI wy SBC A,y
—

2-12

MNEMONIC

(|

1.0

G

REMARKS

GENERAL PURPOSE ARITHMETIC AND CPU CONTROL

DAA DAA Decimal adjust accumylator
CMA CPL Complement accumulator logical
MEG NER legate accumulator
£Me CCF Complement carry flag
sTC SCF Set carry flag
NOP NOP No operation
HLT HALT HALT CPY
0l oI Disable interrupts
El El Enable interrupts
M p IM P Set interrupt mode
M1 iM 1
M2 M 2
16 BIT ARITHMETI(GROUP RP = B, D, H, 3P
DAD RP ADD HL,RP 16 bit add
CAD RP ADC HL,RP 16 hit add with carry
5BC RP SBC HL,RP 16 bit subtract with carry
DAD TX.RP ADD IX,RP 16 bit add register pair to IX
DAD IY.RP ADD TY,RP 16 bit add register pair to I¥
INX RP INC RP 16 bit increment
IHX I INC [X
INX Y INC IY
Dcx RP DEC RP 16 hit decrement
Bcx IX DEC IX
ocx Iy DEC IY

2-13

MNEMONIC ZIL0G REMARKS
—
ROTATE AND SHIFT GROUP R=8,¢C, D, E, H, L, M, T¥+d, I¥4d
RLC RLCA Accumulator left circylar
RAL RLA Left circular through carry
RRC RRCA Accumuiator right circular
RAR RAA Right ¢ircular through carry
SLC R RLC R Register left circular
SLC M RLC (HL) Memory left circular
SLC IX.d RLC (IX+d) Left circular memory indirect
SLC IY.d RLL (IY+d)
HL R RL R Register Teft through carry
SRC R RRC R Register right circular
RR R RR R Register right through carry
SLA R SLA R Left Tinear bit P =2
SRA R SRA R Right Tinear bit 7 = extended ~
SRL R SAL R Right linear bit 7 =
RLD RLD Left decimal
RRD RROD Right decimal
-
—

2-14

MNEMONIC ZILOG REMARKS

BIT MANIPULATION b= bit number B s b <7
BIT b,R BIT b,R Zero flag = bit b of register R
BIT b,M BIT b, (HL)
BIT b,I1X,d BIT b,{IX+d}
BIT b,IY,d BIT b.{IY+d)
3TB b,R SET b,R Set (1) bit b of register or
STE b,M SET b, {HL} memory
STB b, IX,d SET b, {I1X+d)
STB b,1¥,d SET b, (IY+d)
RES b,R RES b.R Reset (§) bit b of register or
RES b,M RES b.(HL} memory
RES b,IX.d RES b, {IX+d)
RES b,IY.d RES b.{IY+d}

INPUT/OUTPUT GROUP F = part number R = register

NP IN A {P) Input to accumulator

CIN R IN R,(C) Register R from port (C)

INI INI Input and fncrement

INIR INIR Repeated input and increment

IND IND Tnput and decrement

INDR INDR Repeatad input and decrement

gutT P ouT {(P}.A Qutput accumulator

COUT R ouT {C)},R Register R to port {C)

OUTI QUTI Qutput and increment

QUTIR OUTIR Repsated output and increment o
OUTD ouTD Jutput and decrement -
OUTDR QUTTR Repeated output and decrement

2-15

P4

HNEMONIC 1LOG REMARKS ﬁ

S
JUMP GROUP ¥ = Jocation (16 bit} dest = destination (+178 bytes displacement)

JMP ¥ JP ¥ Jump
JNC ¥ JP NG,V No carry
JC ¥ JP C.V Carry
JNZ ¥ JP NZ,V Not zero
JZ ¥ JP Z,¥ Zero
JPO ¥ JP PG,V Parity odd
JPE V¥ JP PELY Parity even
JP ¥ JP P,¥ Positive
JM ¥ JP MY Negative
Eﬁ dest JR d Jump relative
:J_RC dest JR C,d Carry
JRNC dest JR NC,d No carry —
JRZ dest JR 2,d 1era
JRNZ dest JR NZ.d Not zero
PCHL JP {HL} Branch to location in HL
PCIX JP (1X) Branch to IX
PCIY JP {IY) Branch to IY
DJNZ dest DJNZ ,d Decrament and jump relative if

not zere

-
—

2-16

MNEMON I Z1L0G REMARKS
CALL AND RETURM GROUP ¥ = address
CALL ¥ CALL ¥ Subroutine transfer
CHC ¥ CALL NC,V¥ Ho carry
ey CALL C.,V Carry
CNZ ¥ CALL NZ,¥ Not zero
CZ ¥ CALL Z,V¥ Zaro
CPE ¥ CALL PE,Y Parity even
CPQ v CALL PO,V Parity odd
CP ¥ CALL P,V Positive
M ¥ CALL M,¥ Negative
RET RET Return
RMC RET HC Ho carry
RC RET C Carry
RNZ RET NZ Not zero
RI RET Z fero
RPE RET PE Parity even
RPO RET PD Parity odd
RP RET P Positive
R~ RET M Negative
RETI RETI Return from interrupt
RETN RETN Return from nan-maskable interrupt
R5T n RST n Restart

2-17

ASSEMBLER

ORG expr

PSEUDO GPERATIONS

PSEUDO QPERATIONS expr = arithmetic expression

Define program counter fo namn

DS expr

Reserve n bytes of storage

W expr

16 bit datum definition

DB axpr

8 bit datum or ASCII character string definition.

The pperand may be an ASCII character string

enclosed in single quotation marks. ASMB allows oniy
a single entry per line. Examples:

DB 5
DB 'ASCII STRING'

EQU

The oparand defined by the label field is set
equal to the expression defined by the operand
field. This operation is performed in pass one
of the assembler and the variable definition i3
fixed by the first such definition encountered.

SET

The operand defined by the label is set equal to

the expression defined by the operand field. This
operatian is performed in both pass ! and pass 2

and the replacement is effected upon every encounter.

[F expr

expr is evaluated. If the result 1s zerc the scanner
skips to tha next EMDIF, EMD, or end of file before
resuming assembly. If the expression evaluates to
any non-zero value, assembly proceeds. Operation is
performed in both passes.

ENDIF

[dentifias the end of a conditional assembly block.

END

Terminates assembly.

HSE operand

Allows program assembly to proceed with multiple
location counters. The operation is skipped if

the operand has not previously been defined;
however, the definition can appear after the
refarence, to be used by pass 2. The USE operation
is best explained by exampie.

| 13|

ADRG 5ET AADARH
BORG SET PEPApH
USE ADRG; SET code origin to AQRG

g code at BAPAEH }

USE BORG; SET value of AORG to PC
SET PC to BORG

E code at #BAPRH i

2-12

USE AORG: Resume code at end of previous
block which started at AZ@p.
E code a

USE BORG, Resume code at END of block
which started at BAfD.

The USE instruction can be used to insert program data
at the end of instruction code:

AFTR SET LAST: Mot known on pass 1.
ORG START; - Somewhere,

e

RESUM SET & Remember whevre we are.
USE AFTR

STRING: DB "CHARACTERS'
USE RESUM; Resume in iine coding.

E code }
USE AFTR
E mpre data i

USE RESUM; Continue.

LAST SET &
END

2-18

ASSEMBLER ERRORS/DIAGNOSTICS

Assembler error and diagnostic messages consist of single character identifiers
which flag some jrregularity discovered either during pass 1 or pass 2 of the
assembly. The single character precedes the 1ine number of the formatted
assembly Tisting.

P Phase error: the value of the label has changed between the two
assembly passes.
Label error: 1label contazins illegal or too many characters, e.g.. LB#l:
Undefined program variabie.

VYalus error: the evaluated operand is not consistent with the operation
e.g., MYI A, 18@PH (not a valid 8 bit operand},

Syntax error e.q.. MOY A+B
Opcode error, e.g. DCS B
Missing label field.
Argument error.

Register error.

Dupticate Tabal error.

O o ™ T O oW

EXISTING SOURCE FILES

ASMB is compatible with programs generated under 5P#1 or its many descendents,
SCS 1,2, ESP-1, ALS-8, etc. These related source programs can be included
in the ASMB disk system by the following procedure:

1. Load ASMB and create a memory file at a convenient memary location.

2. Exit from ASMB and Toad the existing source file into memory
starting at the memory location defined in step 1.

3. PRe-enter ASMB and examine the file with the P command.
4, Delete and re-enter the last line of the source code.
5. Save the memory file on disk via the W ctmmand.

B, EOMT will re-format the sourca file for MAKRD wia the ¥ command.

While all such files are compatibie with ASMEB, EDIT may be unable to effect
the reformat. A failure may arise if EDIT does not encounter the ASMB had
end-of-file @1 (catastrophic).

2-20

ASSEMBLER ERRORS/DIAGNOSTICS

Assembler error and diagnostic messages consist of single character fdentifiers
which flag some irregularity discovered either during pass 1 or pass 2 of the
assembly. The single charactar precedes the line number of the formatted
assembiy 1isting.

P Phase error: the value of the label has changed between the two
azsambly passes.
Label error: 1label contains illegal or too many characters, e.g., LB#1:
Undefined program variabie.

Value 2rror: the evaluated operand is not consistent with the operation
g.d., MVI A, 10dPH (not a valid 8 bit operand).

Syntax error e.g., MOY A:B
Opcode error, e.9. DCS B
Missing label field.
Argument error.

Register error.

Duplicate lakel error.

L= = R« R A

EXISTING SOURCE FILES

ASME is compatible with programs generated under SP#1 or its many descendents,
SCs 1,2, ESP-1, ALS-8, etc. These refated source programs can be included
in the ASMB disk system by the folTlowing procedure:

1. Load ASMB and create a memory file at a convenient memory location.

2. Exit from ASMB and load the existing scurce file intc memory
starting at the memory Tocation defined in step 1.

3. Re-enter ASMB and examine the file with the P command.
4. Delete and re-enter the last line of the source code.
5. Save the memory file on disk via the W command.

6. EDIT will re-format the source file for MAKRQ wia the M command.

WhiTe ail such files are compatible with ASMB, EDIT may be unable to effect
the reformat. A failure may arise if EDIT does not encounter the ASMB
end-of-file #1 {catastrophic).

2-210

ERAOR QoaurnT B 2hiF H

e S ekl PO GRS

MAKRO

An extraordinary disk-based macro assembler
for the development of large programs on
780 or 8080 machines.

Copyright 1978

Allen Ashlay
395 Sierra Madre ¥illa
Pasadena, California 91107

(213) 793-5748

3-1

[NTRODUCTION

MAKRD is a powerful disk-based macro assembler for the development of Targe
programs whose source files may exceed availabie memory. Both the source and
ohject files of MAKRO reside on disk, freeing all available memory for macro
storage and the construction of symbol tables. MAKRO is an extraordinarily
powerfyl development tool incorporating many features not commoniy availablae.
The assembler is a working tool which has evolved under the demands generated
by 1ts use.

Program development with MAKRO is a two-step process: the source file is
created, modified and saved on disk using the text editor EDIT; MAKRO
reads the source file and creates the corresponding object file,

MAKRD assembies all ZB0 and B08B0 instructions., Departing from the cumbersome
ZIL0G assembly language, MAKRO features instruction mnemonics which are
logically and syntactically similar to the more widely familfar INTEL instruc-
tion set. Mnemonics for the 8080 subset of the 780 {fnstruction set are
identical to those defined by INTEL, and users already familiar with INTEL
assembTy language will readily acquire the additional Z8) commands.

MAKRO is written entirely in the 8080 instruction set and is fuily operational
on either 8080 or 730 machines. MAKRD can thereforgs serve as a two-way Cross-
assemblay -- assembling 8080 programs on a Z80 machine or Z80 programs on an
8080 machine. The versatility and power of MAKRQ make it an ideal development
toal for those owning a 280 machine or anticipating a future expansion of their
8080 machine to the more powerful Z&80 processor.

] 0 F|

3-2

MAKRO INPUT/OUTPUT

MAKRD is & two-pass assembler., reading the source file first to construct
a symbol table, then generating the object file on the secend pass.

Source code for MAKRO consists of the four fields: Label, Operation. Operand
and Comments.

(1Y A line starting with a semi-colon is interpreted as a comment.

(2) Entries in the label figld must be terminated by a colon. The
Tabel identifier starts with the first non-blank character and
ends with the colon. The colon requirement applies to SET and
EQU operations., and macro definitions.

(3} If a label is present, the operation field begins with the first
non-blank character.

{4} If no colon {hence no Tabel)} 1s detected, the operation field
teqins with the first non-blank character.

{5) A comment field must be preceded by a semi-colon.
(6) Source lines must he terminated by carriage return/line feed.

The MAKRO user must identify the origin of the object code by an ORG operation
at the start of his source code. Failure to do 50 will result in the code
being assembled at location 9.

The list output of MAKRQ displays the program counter, object code, and i
well-formatted source dispiay. Horizontal tab sets align the Tabel. operation
and operand fieTds for all source lines. An alphabetized symbol table is
presented at the conciusfon of pass 2 of the assembly.

MAKRO utilizes all avaiiable memory after the load address. Program constants
and assembler symbol tables reside in memory immediately after MAKRD. Macro
text is stored at highest availabie memory. The region betwaen is used for
macro processing operations.

3-3

ASSEMBLER OPERATION

Entries present in the label field are maintained in a symbol table. These
entries are assigned a value equal to the-program counter at.the time of
assembly, except that for the SET and EQU pseudo-operations, the variable
defined by the label field is assigned the value of the operand field.
Entries created in the symbol table by the macro definition refer to

the storage location assigned to the text of the macro body. The variables
defined by the Tabel field can be used in the operand field of other instruc-
tions either as data constants or locations.

The operation field is separated from the label field by the colon. If no
label field is present, the operation field may beqin anywhere on the line.
Entries in the operation field must consist of either a valid Z80 instruction,
one of the several pseudo-operations, or a previously defined macro.

The operand field, separated by a blank from the operation field, consists of
an arithmetic expression containing one or more program variables, constants,
or the special characters $5 @ ori#%, connected by valid operators. Evaluation
of the operand field is performed using 16-bit integer arithmetic. Operations
requiring multiple operands (e.g., MOV A,B or BIT 3,IX.4} expect the operands
to be separated by a comma. Parameters passed in a macro call are separated
by commas and terminated by a carriage return.

The special operand § refers to the program counter at the start of the instruc-
tion beingrassembledss (NOTE: some assemblers interpret 5 as the start of the
next instruction.) The program variable $ can be used as any other program
variable except that its value changes constantly throughout assembly. The
location counter $ allows the user to employ program-relative computations.

MAKRO recognizes two other special operands. The @; when used'as an operand,
refers to the repetition counter index. The %, as an operand, refers to the
number of actual parameters in the current macro call.

Assembler constants may be decimal, hexadecimal, octal, or binary. Valid
hexadecimal constants must begin with a decimal digit, possibly P, and be
terminatad by thé suffix 'H.' Binary constants are terminated by 'B' and
may contain only the digits # and 1. Octal constants are terminated by '0'
and may contain only the digits @ - 7.

After completion of an assembly, MAKRO may not be re-entered.

ALSo B = 4 DiGiT HEX RePRESEwTATION OF VAL

(sce Aepen an)

REGISTER MNMEMONICS

A11 of the 780 registers have been assigned predefined mnemonics. These
assignments agree with those given by INTEL and ZILOG.

The predetined register set is defined as:

Register Definition Value

A Accumulator 7

B 8 or 16 bit 2

C 8 bit 1

D 8 or 16 bit 2

E 8 bit 3
H d.or 16 bit 4

L 8 bit 5
M Memory Indirect (HL) 6
SP Stack Pointer (7
PEW Program Status Word 6
IX 16 bit Index none
LY 16 bit Index none
RF Refresh Register none
IV Interrupt Vector nong

These register assignments may not be redefined.

3-5

ASSEMBLY LAMGUAGE

As a consequence of favoring the INTEL mnemonic set over that of ZILOG,
the 780 instruction superset has been invented. One consideration in the

definition of instruction mnemonics is standard

In the instruction mnemonics which follow

assembiy Tanguage convention.

pp gqq refers to an arbitrary 16 bit datum;
Y refers to an arbitrary 8 bit datum;
d refers to a I80 displacement except for relative jumps;
R refers to an 8 bit register (A, B, C, D, E, H, L, M)
op refers to a 16 bit register pair (8, D, H, SP)
QP refers to a 16 bit register pair (PSW, B, D, H)
MHEMONTC ZILDG REMARKS
g BIT LOAD /svoge
MOV R,R_ #l# LDR,R Register to register (to, from) /|54
MOV R,IX,d 0j#| LD R,(IX+d) Register indirect |58
MOV R,IY.d slx| LD R,{IY+d) A 314
MOV IX,d,R »pj*| LD (IX+d),R Memory indirect 13 /9
MOV A, IV ED|s7T 1D A,I Fetch interrupt vector 29
MOV A,RF episr LD A,R Fetch refresh register 2 A
MOV IV,A L el B 0 Load interrupt vector 2 9
MOV RF,A £bi4F LD R,A Load refresh ragister 219
ACCUMULATOR LDAD/STORE
LDA pp gg 24 LD A,(nn} Accumulator direct ééii
LDAX B oA LD A,(BC) Accumulator extended L1 |7
LDAX D | LD A, (DE) E
STA pp qq 52| LD {nn),A Accumulator direct _| 3|3
STAX B 102 LD (BC),A Accumulator extended L1 17
STAX D 12| LD (DE),A I
8 BIT LOAD IMMEDIATE
MVI R,yy # LD R,n Register immediate 2 |7]
MVYI IX,d,yy 2236 LD {IX+d),n Memary indirect immediate {417
MVT IY.,d,yy |eplz¢] LD {IV+d),n | 4,14

[

MHMEMONTC LI10G REMARKS

16 BIT LOAD/STORE | RP = B, D, H, SP QDL PR e e e
LXI RP,pp 99 1| LD RP,nn Extended immediate |?|m
LXE IX,pp 9g pgsa LD IX,nn ;4.!_?4}_
LXI IY.pp qq oot kD 1GAN i/f'l’ﬁ'

|

LHLD pp qq |24 LD HL,{nn) Extended indirect load |36
LBCD pp qq eo48 LD BC,({nn) 4120
LDED pp qq £pse LD DE,{nn)} |4 20,
LIXD pp ag pazal LO IX,{nn) |4 120
LIYD pp 2aq FDgA LD IY,(HH} |4 |20
LSPD PP 99 598 LD SP.(nn) | 4120
SHLD pp qq |22 LD {nn),HL Extended indirect store Em
SBCD pp qq £0 4 LD {nn},BC 420
SDED pp qg w53l LD {nn),DE &2 20
SIXD pp qg pnzz. LD (nn),IX | 4] 7a
SI¥D pp a9 [Fd2z LD (nn),IY 412
SSPD pp a9 | gpg9s LD (nn),SP 215,
SPHL £ - LD spHE Set stack pointer 116
SPIX byea LD SP,IX B
SPIY =t o | e i iy B R AW
PUSH QP *S PUSH QP To stack ra
PUSH IX DhES PUSH X Z2is
PUSH 1Y soes PUSH 1Y e
POF QP LI =RROPOR From stack 10
POP IX pper POP IX [
POP 1Y led el POP 1Y 14

EXCHANGE, BLOCK TRANSFER, AND SEARCH
XCHG P EX DE,HL Exchange 114
EX 0k EX AF,AF' 114
EXX b1 EXX /4
ATHL 5 | EX (SP),HL i
XTIX pplea| EX (SP),IX 223
XTTY e EX (5P).TV =
LDI |EDAS| LDI Transfer zisé_
LOIR (eass LDIR 2 2
LDD leaaz| LDD B
LDDR lec g, LDOR 2 Bl
CPD \£olag| CPD Sedrch .rf
CDDR coing| CPDR 2 Fifd
CPII [EB| 41 CPI el
CPIR :“'mi CPIR /_I;:%.;

3-7

MNEMONIC

Z1L0G

8 BIT ARITHMETIC AND LOGICAL

REMARKS

ADD R g% ADD R Add register 14
ADI yy Lé ADD A,vyy Add immediate 8
ADD IX,d |20l 8 ADD (IX+d) Add indirect 311
ADD 1Y,d ep| £6. ADD (IV+d) 219
ADC R Ex | ADC R Register with carry L4
ADC IX,d bp| &E ADC (IX+d) o SRS 3y
ADC IY.d co | BE ADC (1Y+d) Memory indirect with carry | 4|
ACI vy LE ADC n Immediate with carry %
SUB R T SUB R Subtract Register B
SUB IX.d L e SUB (IX+d) Sibtrach S 311
SUB IY.d BT SUB (TY+d) ubtract memory indirect 30
ggg ?X : 2 SBC R Register with carry 114
= 1p | FE SBC (I¥+d e : 3

SBE IY.d |ro| 42 T EIT+d% Memory indirect with carry ;'E
imi ?X : A% AND ?] Logical and register {14
! 5 bp A& AND (TX+d i | 2149
ANA TV,d #> 4¢ | AND (IX+d) Memaryfindnect e
ORA R ¥ OR ? : Logical OR register /4]
ORA IX,d |[»sp|BL OR (IX+d St 3|49
ORA I¥.d . r» ec| OR (IV+d) Hemayiligect 219
XRA R L XOR R Exclusive OR register '4
XRA IX,d D2 A€ XOR (IX+d) s 3119|
XRA IY.d £B] AL XOR (IV+d) Memory indirect o
CMP R B CP F{l] Register compare) |4
CMP IX,d [ppEE GP (1X+d S 3|7
CMP IV,d Fose | CP (IY+d) Memoryandinect B
INR R 4 INC R Register increment ! |4
INR IX,d |bDp/3%| INC {IX+d) 3123
INR TI¥.d |Foj3 INC (IY+d) 3 23
DCR R #ul EEEESY Register decrement L
DCR IX,d |opbi3¢ DEC (IX+d) 3 |23
DCR IY,d e 25 | DEC (IV+d) 323
ig% vy Eé igg yy Accumulator immediate 2171

vy EE ¥y 2|9
CPI yy FE CP yy 2|7
ORI yy Fé OR yy zi7
SUT wy | Be SUB yy 17T
SBI vy | g SBC A,yy AR

=~
—
—
[
[*p]

MNEMONIC REMARKS

GENERAL PURPOSE ARITHMETIC AND CPU CONTROL

i s

DAA 29 | DAA Decimal adjust accumulator Ix:
CMA T CPL Complement accumulator 1091‘ca‘l" |
NEG 'Ea:m} NEG Negate accumulator |
CMC tzel | CCF Complement carry flag /
STC ;3?_ Z SCF Set carry flag :
NOP o e NP No operation L
HLT) HALT HALT CPU HE
DI |3 DI Disable interrupts ¥ 4é
El ::5 EI Enable interrupts |
M B EDl 46 M P Set interrupt mode 2 9]
M1 ED| 5t M 1 2]
M 2 WElE 3

16 BIT ARITHMETIC GROUP RP = B, D, H, SP

DAD RP | ADD HL,RP 16 bit add i

CAD RP ~ |[,plyd ADC HL,RP 16 bit add with carry . k]
SBC RP .Ec-i;_z SBC HL,RP 16 bit subtract with carry

DAD IX,RP |yy,ql ADD IX,RP 16 bit add register pair to IX| .
DAD IY,RP |gblgq ADD IY,RP 16 bit add register pair to IY| , o
INX RP #3] | INC RP 16 bit increment 1€
INX TX Dbl 2y INC IX 223
NGy STl - INC IY i
DCX RP 1#B| | DEC RP 16 bit decrement RS
DCX IX [ppfss| DEC IX _ 2023
BEA W ol DEC IV

3-9

MHEMONIC ZIL0G REMAREKS
ROTATE AND SHIFT GROUP R =8B, P 1 i 0 e i |
RLC o7 RLCA Accumulator left circular Ii4‘
| |
RAL W7 RLA Left circular through carry ,'4f
RRC oF RRCA Accumulator right circular } ?4,
RAR 3 RRA Right circular through carry |/ I""f'
SLC R il ped RLC R Register left circular 2|5 |
. SLC M 8 86 RLC (HL) Memory left circular | 2]]
SLC 1X,d |polcs RLC (IX+d) Left circular memory indirect 4 23
SEGETEE |l RLC (IY+d) 4|23
S g |
'Elf E eIk E'T_ {E&HL,] Register left through carry g ”.;
) T e RRC R Register right circular 2| &
ARC M ik REC [HLY iy
fegict ight 5% |
EF& F-th1 cBl v ii %HL] Register right through carry |z e
SLA R TP SLA R Left linear bit § = @ g
SLA_ M 5 SLA (uL) o5 |
SRA R i SRA R Right linear bit 7 = extended ; % |
SR A M ik SRA (ALY |
RL R SRL R Right 1inear bit 7 = F2i2 |
?§R|T.' M il e SRL (HL) S : i w ik
RLD lebieF RLD Left decimal 2018
RRD EDLT RRD Right decimal 2| 8
¥, d D LI¥ed) T2
RET = Ebi CB EL [Tyedd: LEFT TURY cagey MEmoity TRlaELt | 4 23
" I¥ ,d bp Ty +d)
&-‘F'!nn 1_‘1‘& [l REC [-i..jl PalriT Lameublh@d vine AT D Ry T T £ 125
¥, d e [Txn+d)
BRE_Tv.4 Fix &F RR_{xv+d) BABMT THRY CARIS DOE mMmER Telb 2T 4123
Tx, 4 D EEELY :
SLh Te.d Fp LB SLh (T +d) LEFT LinmAR MAmory TMDIRELT 4|23
Taad B (1x4d)
QRH'L:"_-}_ Fo|LE SEA LTy+ \\] FifartT VimBar WMEMBAEY TubiREeT 54'- T34
3R j%f:; ;Jf: of SR T:Rwu a) RirAT LinEart (Sien SXT) MEMoey INTIRECT 4 (23

MNEMONIC ZIL0G REMARKS
BIT MANIPULATION : = bit. number s b d
IT B.,f = hit b eqister Rl .
?IT b,.R ep| ad BIT b,R Zero flag = bit b of register Ri"{ g
BIT b,M \cBlxxl BIT b, (HL) 2]12
BIT b,I¥,d |apleal BIT b,{IX+d) 4|20
BIT b,IV,d |c)f.d BIT b,(I¥+d) 4)20)
STE b,R lealxs| SET b,R Set (1) bit b of register or |2|]
STB b, M %n‘f',.ﬁé-ﬂi' SET b, {HL memory ALY
STB b,IX.d |ppes| SET b,(IX 4123
STB b,1Y,d oles| SET b, (1Y4 49|
RES b,R eEi4% RES b,R Reset (@) bit b of register or (29|
RES b,M e8|#¢| RES b,(HL) memory ALY
RES bl d bjes] RES: b (1% 4123
it 9 1Y+ ;
RES BBt 1ol RES-b,(1¥: 22|
INPUT/QUTPUT GROUP _P = port number R = register
IN P mﬂﬁ | INAL(P) Input to accumulator B
CIN R sl IN R, (C) Register R from port (C) iz
INI Leolaok I Input and increment 5 o
INIR :ls.: INIR Repeated input and increment |,
IND !FD.M: IND Input and decrement a1iL
IHDR lepen INDR Repeated input and decrement gfz;::;
ouT P s | OUT (P),A Output accumulator B
COUT R £oles] OUT (C)R Register R to port (C) 21 2]
0UT o gy Output and increment an
OUTIR cplgs OUTIR Repeated output and increment |, %/
OUTD eolpg OUTD Output and decrement
OUTDR ienled OUTDR Repeated output and decrement ‘,‘Jé

i kil

MNEMONIC ZILOG REMARKS ﬁ
JUMP GROUP V = location (16 bit) dest= destination (=128 bytes displacement)

JMP ¥ w3 JP V Jump 31
JHC ¥ pz| JP NC,V No carry 2|

JC v .DAE el pagay Carry 2|l :
JNZ ¥ g JP NZ,V Not zero 3
JZ ¥ oA JP 7,V Zero 2! 0
JPO ¥ £7 JP PO,V Parity odd 30,8
JPE ¥ £4 JP PE,V Parity even 30
JP ¥ 2 JP P,V Positive 3 s0

JM ¥ e JP M,V Negative 2|
JR dest éfﬁu JR d = Jﬁmﬁ relative <12
JRC dest .35: | JR C,d Carry u’ﬁ
JRNC dest |30 JR NC,d No carry .13
JRZ dest .3 JR Z,d Zero 2 j;
JRNZ dest s JR NZ,d Not zero 2 “é
PCHL £4 JP (HL) Branch to location in HL il4
PCIX DD ET Jp (1X) Branch to IX 2 ¢
PCIY roes 9P (IY) Branch to IY 28|
DJNZ dest Emi ; Dﬁz,d Ezirzzggt and jump relative ifzg,:?é!

3-12

| .

MNEMONTC Z1L0G REMARKS
g CALL AND RETURM GROUP V = address

CALL V e CALL V Subroutine transfer 3 !
oNe v a CALL NC,V No carry %J
F T CALL €,V Carry 317
o e CALL NZ,V Not zero ”f; |
o g iz CALL Z,V Zero BE
CPEV CALL PE,V Parity even 5|71
CPO ¥ .545 CALL PO,V Parity odd E’E},é
CP v F4 CALL P,V Positive Jﬂ
CM v :_» CALL M,V Negative 37|
e T BT S —_— B
RMC b RET NC N;_;arry L U
RC ﬂ;g RET- G Carry x‘i
RNZ e RET NZ Not zero 1
R 8 RET 2 Zero R
”P 25 RET PE Parity even 1 [
RFO s RET PO Parity odd ;|
2P B RET P Positive P
RM - RET M Negative y
RETL" ol —RET L 2]
RETH Ewr RETN Return from non-maskable interrupt
E?l_::;lm- -*; ul -------------- F;: S:T_r, e _-F';;_:_ T T

3-13

433EMBLER

ORG expr

PSEUDG OPERATIONS

ESEUDG OPERATIONS

Define program counter te nnnn,

axpr = arithmetic expression

05 expr

Raeserve n bytes of storage.

D axpr

16-bit datum definition.

0B expr

8-bit data or ASCII character string definition. The operand
may be an ASCII character string enclosed in single quotation
marks., Examples:

OB 5,8DH,'FILE'
DB 'ASCII STRING',#DH

£qQu

The operand defined by the label field is sat equal to the
axpression defined by the operand field. This operation is
performed in pass I of the assembler and the variable definition
i3 fixed by the last such definiticn encountered in pass [.

SET

The operand defined by the label fs set equal to the expression
defined by the operand field. This operation is performed in "
both pass 1 and pass 2 and the replacement is effected upon

every encounter,

IF expr

expr is evaluated. If the result is zereo the scanner skips to
the next ENDIF, END, or end-of-file befTare resuming assembly.
[f the expression evaluates to any non-zero value, assembly
proceeds. Operation is performed in both passes. Read IF as
"SKIP IF ZERO."

HIF expr

expr is avaluated, [f the resuit is not zero the scanner skips
to the next ENDIF, END, or end-of-file before resuming assembly.
EquivaTant to NOT IF. Read NIF as "SKIP IF NOT ZERD."

ENDIF

Identifies the end of a conditional assembly block.

END expr

| 1]

Terminates assembly. expr is am optional execution address to
which the hex Toader will branch after completion of the 1oad.

3-14

ASSLMBLER

USE operand

poEU00 OPERATIONS expr = arithmetic expression

Allows program assembly to procesd with multiple lToecatiaon count-
ars. The operation is skipped if the gperand has not previogusly
been defined; however, the definition can appear after the
reference, to be used by pass 2. The USE operation is best
explained by example:

AORG: SET OAQOPH
BORG: SET pB@epH

USE AORG; SET code origin to AQRG
[CODE AT PAPERH]
USE BORG; SET value of AQORG to PC

SEY PC to 80RG
[CODE AT @B@OPH 1]

USE AQRG: Resume code at end of previous
block which started at AGPD.

[CODE]

USE BORG; Rasume code &t END of block which
started at BA@P.

The USE dinstructicn can be used to insert program data at the
end of instruction code:

AFTR: SET LAST: Mot known an pass 1.
ORG Start; Somewhere, .

L CODE]

RESUM: SET &: Remember whera we are,

USE AFTR

STRING: 0B "CHARACTERS'

USE RESUM; Resume in-1ine coding.
[copE]
USE AFTR
. [MORE DATA]
USE RESUM; Continue

LAST: SET §
END

11 F]

MACRO

STgnifies macro definition.

3-15

ASSEMBLER PSEUDD DPERATIONS expr = arithmetic expression

MACND Signifies end of macro definition

LOCAL Signifies the start of an assembly block. A1l labels generated
within a Tocal block are confined to that biock.

LOCHD Signifies the end of an assembiy block, global assembly resumes.

LOCAL/LOCND assembiy blocks a2llow temporary macro definitions.

GOTO label

Directs assembler to skip forward to label before resuming
aszembly. If Tabel is reached via a GOTO branch, the symbol will
not be entered 1nto the symbal table. If Tabel is reached via

a normal assembly sequence it is treated as an ordinary statement
label. GOTD is used in conjunction with conditional assembly to
effect complex assembiy sequences. GOTO allows forward refer-
ences only. An invalid label terminates the assembly pass.

IFGEZ exprilabel

IT expr evaluyates to zero, the assembler branches forward to
Tabel; otherwise assembly continues.

IFGNZ expr;label If expr evaluates to non-zero, the assembler branches forward

to Jabel; otherwise assembly continues. Labels reached by
IFGZ and I[FGNZ branches are not entered into the symbol table.
Note that label must be separated by a semi-colon from the end
of expr,

REPT expr Repeat block. The value of expr determines the number of times
the repeat block is executed.

REPND Defines the end of a repeat block. The portion of source code
bracketed by REPT/REPND is assembled repeatedly.

USR expr Assembly-time branch to user routine. MAKRQ branches to the

address given by the value of expr. The user routine may
utitize all registers. MAKRQ may be re-entered by a return RET.
tpon entry to the user routine, the zero flag is set for pass 1
of the assembly, and the DE regfsters contain the address,
within MAKRG, at which assembly must resume. This pseudo-
operation provides the means for controlling output.

IFEQ] STR1,5TR2.LABEL Branch to LABEL if character string STR1 is identical

to STR2.

IFNE STR1,5TR2;LABEL Branch to LABEL if character string STR1 {is notf identical

to STRZ.

3-16

ASSEMBLER PSEUDD _OPERATIONS expr = arithmetic expression

IFNEG expriLABEL Branch to LABEL if expr results in a negative value.

[FDEF SYMEL:DEFND Branch to DEFND 1T SYMBL has bean entered in the symbol

table.
LIST Turns on full assembly listing, overriding any pass options,
NOLST Turns off full assembly listing, retaining diagnestic and

erragr messages.

COMPS STR1,STRZ:;LABEL Branch to LABEL if character string 2 is greater
than string 1.

LINK FILEMAME Merges disk file FILENAME into the current assembly. The
LINK pseudog-operation enables the assembly to include previously

developed program modules.

[NPUT MAKRO allows the user to define program varizbles at assembly
tima. The INPUT pseudo-operation accepts 2n expression from
the console input, evaluates that expression, and assigns the
computed value to the variable defined by the lahel field.

PuTs Vo WALVE D BB D ALIEMeL| TToemE
APUSH expr tne! P |

SirrulhAfR TC EE,T :,:-LQEF TOAT YALUE rr L&TEE - 1=

sl APaf
L b SR RenoygREL [p”,“h FRom ALSEMIL | Timé E‘Fncn
- Y
RRlcI== C_,ﬂau'EE BOAGE = TesT [_I":'.'S,._‘,E EF (tth) T F’l't‘-tm'rf;.::j'
I..'I,Ef-‘rl:: i v T E AL ¢ Sz
TTLE .“#AG‘L__ H‘EFP-D\M{,. A 1 E;u h F R VI N i gs@uEe]T
ca e e ——— - e =1 :’TDIDS I ey CFF' MF\F-.R-I:I Mg&mﬁLER Amﬂ 1
. Yyoo_ulE o= E"-'(P'"" |5 P B 1ry S g i AT
. SETH Swpw VAL GELE VAL [E =S
NoEXP SHEPLESE RAVACIKY Dwepm o Lo Tisiss
: ; - {
_Aeant FESamiE MAtEs Eavantuion LisTiNe kﬁepnu;T>
TEARLH MALRS TEFMIT . oS AR TS Ly C'r‘lﬁ&mn_" »
TRiLE . w DT T Lo ml e AT Ny R P —
MLAST CARE L NDT KE DR E o T, b Yo T
3-17

RELOCATION PSEUDQ-OPERATIONS

The relocating assembler, MAKRO versiom AMA.2, additionally recognizes
the following pseudo-ogperations ar directives to the loader [INKED

LABEL :ENTRY Loader directive which defines LABEL for raference
in another (independent) assembly.

LABEL:EXTRN Loader directive which defines LABEL as a point
created in another assembly, which must be found
by the linkage editor.

FILE:LIBRY Loader directive which defines FILE as an object
library within which one or more external references
may be found.

| LA

3-18

ASSEMBLER ERRORS/DIAGNOSTICS

Assembier error and diagnostic messages consist of single character identifiers
which flag some irregularity discovered during aither pass 1 or pass 2 of the

assembiyv.

L9

B > X O

Fhase error: the value of the Tabel has changed between the
two assembly passes.

Label errvor: missing operation fiald or invalid destination Tabel.
Undefined program variable,

Yalue error: the evaluated operand is not consistent with the
operation, e.g., MVI A, 198¢H (not a valid 8-bit cperand).

Syntax error, e.g4., MOV A+B
Opcode error, e.9., DCS B
Missing tabel field.
Argqument error.

Register error.

Duplicate label.

3-19

e

MAKRO CONDITIONAL ASSEMBLY

The conditional assembly features of MAKRO inciude =
COMPS String comparison
IFEQ Character siring equality
IFNE Character siring inequality

IFNEG Branch on negative
IFDEF Branch if definad symboi

IF Skip if zerg

NIF Skip if not zero

EMDIF Terminztion of conditional block
IFGE Branch to label if zero

IFGNZ Branch to label if not zero

GOTH Unconditional branch

These pseudo-operations enable the programmer to direct the assembly by per-
forming assembly time computations. In the simplest application, conditignal
assembiy allows a program to be written with a number of options, such as
various input/output modes, with the desired array of options selected by
program switches, A single source code module can thus be used for a
variety of applications. More powerful applicatieon of conditional opera-
tions directs the assembly according to results generated during the

assembly process. An example of this zpplication is given in the discussion
of macro processing.

The conditional assembly operations effect their branching upon the results
of evaluating an arithmetic expression. The expression begins with the first
non-blank character after the operation field and ends with a carrizge

return or semi-colon. The label directed hranches IFGZ and IFGNZ include a
destination field foilowing the expression. A semi-colon must separate

tha destination from the expression. The destination field is terminated

by a blank or carriage return. Branching is performed in a forward direction

only, the assembier skipping over source code until the destinaticn Tabel or
end-gf-file is detected.

Treatment of the destination label in label-directed branches requires
discussion. The geperal form is

Branch expr; There
glse haere

[Z0DE]
There:

L

If the branch comndition s not satisfied, assembly proceeds in seguence with
else, in which case the destipation label (There) may be reached in the
course of assembiy. In this, the fall-through case, the destination label is
treated as an ordinary statement label and is entered inte the symbol table.
However, if the branch condition is satisfied, the label is reached via a
skip, and normal assembly proceeds with the first character following the
colon at the destination. The destination label is not seen by the assembler.

The [F/ENDIF and NIF/ENDIF assembly blocks bracket porticns of code which are
conditionally assembled or disregarded. The IF block is disregarded if the
corresponding expression evaluates to zero. The KIF block is disregarded if
the expression evaluates to not-zero. Mnemonically, these conditions refer
to the skip rather than the assembly.

Nested IF/MIF blocks cannot generally be assembied correctly. Consider
blocks nested as

a IF exprl

b IF expr2

¢ ENDIF thopefully for the inner
[COBE] some code in hare

d ENDIF hopefully for the outer

Assembly proceeds as follows:

exprl 1s evaluated, the assembler skipping to the first ENDIF {c} if exprl

is zero. If exprl is not zero, expr2 is evaluated, the assembler reaching
the ENDIF {c} regardless of the results. Tt is seen that CODE is assembled
regardless of the contents of either exprassion. The second ENDIF (d) is
superfluous, and is ignored. There may be applications of such behavior, but
the operation seems more 1ikely to be a source of confusion. Complicated
conditional branching s more easiiy and clearly generated by the label-
directed operations.

A cautionary flag must be razised regarding conditional assembly. Phase
changes of assembly variables (change in value between the two assembly
passes) can result fn & totally invalid assembly. [If such phase changes
cause the course of the assembler through the scurce code to differ for

pass 1 and pass 2, the resulting assembly is almost certain to fail. You
must remember that any and all branches performed in pass I must be rapeated
in pass 2.

The character string tests, I[FNE and IFEQ, perform a character-hy-charactar
test of the first two parameter strings, conditionally effecting the branch
upon the outcome of the comparison. The forms of these operations are:

[FEQ STR1,5TRZ;LABEL
[FNE STR1,STRZ;LABEL

String 1 begins with the firgt non-blank character after the operation code
and extends to the character preceding the comma. String 2 includes the
character following the comma through that preceding the semi-colon.

poaor

Remember that the destination field must be precaded by 2 semi-colen and
that the destination label vanishes if the branch s true.

3-21

IFNEG expr;LABEL

axpr is evaluated. If the result is negative (15-bit signed arithmetic) the

assembler branches to LABEL. [FMEG, TFGZ and IFGNY can be combined to effect
any computational branch.

IFDEF SYMEOL;LABEL

The symbol table is sedarched for symbol. [f the entry is found, assembly skips
to LABEL. [IFDEF is used to provide automatic type declaration.

COMPS STRI.STRZ;LABEL

A character-by-character comparison is made between STRI and S5TR2. [If STR2
is greater than STR1, assembly branches tu LABEL. The COMPS pseudo-op is
used to test parameter type in z macrg ¢ail.

3-22

| V'

MAKRO MACRO CAPABILITY

INTRODUCTION TO MACROS

A macro can be considered an assembly language super-instruction with which
the user can invoke many elementary assembly language statements with a
single macro call. Users familiar with FORTRAN ytilize a macro in the
FORTRAN statement function. BASIC programs using the DEF FN operation
capitalize upon an economical feature similar to a wacra. The PL/1 pre-
processing pass is a macro phase.

Assembly language programming is distinguished from such high level lang-
uages on the basis of the translation from the programmer-oriented language
to the machine-oriented object code. This transiation is performed on an
approximately one-to-one basis for assembly language programs -- one
machine instruction for each assembly language instruction. Programs
written in a2 high level language enjoy greater Tevaerage in that a high
level language statement may result in the generation of many elementary
machine code instructions.

A macro assembler can be regarded as bridging the gap between rudimentary
assembly and high level language programming. Indeed., several high level
languages have been implemented upon an underlying macro structure. A
high level language impiemented by macros can furnish the efficiency of
assembly Tanguage and the ease of high level proaramming. VYia macros, the
user can design his own open-ended high level language.

MACRD PROCESSING

Interpretation of a macro involves the three steps:
¢ nmacre definition
¢ macro call
& macro expansion

The macro definition is the means by which the programmer informs the
assembler of the instruction sequence to be effected. Briefly, in the
macro definition the programmer informs the assembier that "when I say
this, T mean that." The macro definition associates a name (label} with
the sequence of instructions. Subseguent to the definition, the macro
name is used as an entry in the op-code field to invoke the entire instruc-
tion sequence. In order to provide more nower and flexihility to the
macro, beyond that which can be furnished by a text editor, the macro
definition allows certain parameters {(dummy) to be included in the defini-
tion. These dummy parameters appear in the operand field of the macro
definition. The assembler recognizes the dummy parameters when they

3-23

L

appear in the sequence of instructions comprising the body of the macro.

The macro definition thus consists of the following:

NAME: MACRO dummy parameter 1ist
[MACRO BODY]
MACND signals end of definition

The macro call consists of the macro name appearing in the operation (op-
cude) field of 2 subsequent instruction. Actual parameters, appearing in
the operand field of the macro call, replace the dummy parameters of the
macro definition.

In the macro expansion phase, the instruction seguence representing the
body of the macro is delivered to the assembler. Dumny parametars appear-
ing in tha macrg body are replaced, in sequence, by the actual parameters
included 1n the call. MWith the single macro call, the user has invoked

an entire instruction sesguence.

MAKRO deals with the macre definition during pass 1 of the assembly.
Source text, comprising the macro body, is transferred to a temporary
buffer foilowing the symbol table. The source text is scanned for occur-

rences of the dummy parameters which are replaced by the parameter sequence

nuimber. The comprassed macro text is then stored uppermost in memory.

Macro expansion must be performed for both passes of the assembly, After
recognizing a macro call, the body of the macro s axpanded into the
buffer area, with actual parameters replacing the paramster sequence
values. Assembler input is directed to the expanded text (away from the
mass storage deyice). Input from the mass storage device is resumed when
the hody of the macro s exhausted,

3-24

MAKRG TDIOSYNCRACIES

The treatment of macros by MAKRO differs somewhat from conventional tech-
nique. The differences, however, stem from caraful consideration, and
MAKRD processing is considerably more powerful than alternative methods.
The primary departure from convention arises in the treatment of macro
parameters. MAKRO delays the binding of parameter values until object

code is generated {all parameters are call by name, not value). Dummy
parameters appearing in the macrg definition are treated as character
s3trings which are recognized in the macro body regardless of their context.
Thus, in the definition

MAX1: MACRO String 1, String 2
[BODY }
MACND

any occurrence of String 1 in the macro body is ragarded as a reference to
the first dummy parameter. For example

MAX1: MACRO THIS,THAT

DB 'THIS' JTHIS or THAT
DW THAT

LXI H,THIS

MACND

is treated as reference to the dummy parameters as

o 'l ;1 or 2
OW 2
LXI H,1

in which the digits represent the parameter sequence.
Actual parameters, in the macro call, are likewise treated without regard

to context in the expansion phase. Character strings representing actual
parameters directly replace the dummy sequence values. Thus the call

MAX1 ALFA,BETA

generates
DB 'ALFA' ALFA or BETA
OW BETA
LXI H,ALFA

The revised and expanded body is then delivered to the assembler for inter-
pretation.

r N .
TE R C'LPF{'.ﬂcil\(, dov wlacko sa,j;-ﬁ_fu:"rlrlm Chﬂ.*‘ﬂ.i%ér i"Ede-Iqu"D”-

3-25

PROCEDURAL AND SYNTACTICAL RULES

Dummy parameters must be at least two characters in length. A1l characters,

including blanks, in both actual and dummy parameter strings, are considered
significant.

Dummy and actual parameter strings begin with the first non-blank character

in the operand field. Parameter strings are separated by a comma.

A1l labels generated within the macro body assume global status. The
special ﬂharactergjﬁappearing in the macro body is regarded as a reference
to a(three-digit decimal number which is unique for each macro expansion.
—1Labels generated for which global status is undesirable should be suffixed
with the # character. =g gprevbdiv For cHANGLE DuéE To

i i ’ UFEDOg T -
Thus, within the macro expansion, : = “/79.

LABEL: assumes global status
LA#: is local to the current expansion

As a consegquence of pass 1 treatment of the definition, a macro cannot be
globally redefined.

No macro definition may appear within the body of another macro expansion.

-
Ly ']

Macro expansions may be nested up to tem deep, i.e., up tﬂ,;éﬂ macro calls
can be simultaneously active. (Refer to REPEAT BLOCK discussion.)

Scanning for a macro call precedes the search through the op-code table.
Thus a macro can be used to redefine a machine operation. For example, to
trace jump operations the JMP instruction may be replaced by a macro as

JMP: MACRO ADDRESS
PUSH PSW
MVI A,"'J'
CALL CHOUT
CALL CHIN
POP PSW
DE PC3H
DW ADDRESS
MACND

which causes the program to display 'J' and await keyboard input before
effecting any JMP.

The number of actual parameters ordinarily agrees with the number of dummy para-
meters. Excess actual parameters are ignored. Insufficient actual parameters

default to the null parameter.

3-26

10.

et
12;

The macro definition must precede any referencs.

& null actual parameter, represented by two consecutive commas in the
parameter string of the macro call, results in a null replacement string
in the macro expansion. The first actual parameter is considered null if
the calling parameter string begins with a comma.

The MACND pseudo-instruction may not be preceded by a label field.

MAKRO actual parameters, or portions thereof, enclosed in square brackets [J.
are treated as literal blocks and =xpanded without regard to any delimiters
(comma, carriage return) contained therein. Each such expansion strips off

a matching pair of square brackets. The Titeral blocks enable macro parameters
to extend over several lines.

(%]

=

USING MACROS

Macro calls are typically used to alleviate tiresome sequences of instruc-
tions, such as in table generation or monitor furction references. Thus

CHOUT: MACRO
CALL OUTCH
MACND

ar

STATUS: MACRO PORT,STBIT
S#: IN PORT

ANI STBIT

JZ S#

MACND

illystrate the least imaginative exploitation of macro power. Computer
literature 1s filled with awesome examples of the heights which can he
reached by sophisticated macro use. See P.J. Brown, MACRO PROCESSORS,
in which 7t is revealed that SNOBQL 4 is implemented by macros.

The following illustration of a high level lanquage (BASIC) is presented
in order to suggest more penetrating zpplication of the macro:
TYPE DECLARATION

WORD: MACRO LABEL,VALUE
LABEL: DW VALUE
MACKD

STRING: MACRC LABEL,DATA
LABEL: DB 'DATA'

NLABEL EQU $+1-LABEL If you want string langth
MACND

LOOPYR: MACRO LOOP Loop Tndex variable
LOOPST: DS 2 Loop start

LODOPKM: DS 2 Rep counter

MACND

PROGRAM LOOPING

FOR: MACRO LOOP,REPS
LXI H,REPS

SHLD LOOPNM

LOOPST SET %

MACND

NEXT: MACRO LOOP
LHLD LOGPNM

DC¥ H

SHLD LOOPNM

MOY ALH

ORA L

JNZ LOOPST
MACKD

3-28

ARITHMETIC OPERATIONS

ADDITION: MACRO LEFTARG,RTARG,ANSWER
Lx1 B,LEFTARG

LX] D,RTARG

LXI H,ANSWER

CALL FPADD

MACND

Macre expansion in conjunction with conditional assembiy offers an especially
powerful assembly combination. To illustrate, refer to the previously defined
ADDITION macro. MNow assume that we wished to address the destination {ANSWER}
gither directly as shown, or indirectly {LHLD instead of LXI}. Further,

assume that we wish to avoid the generation of the instruction entirely {f
the destination laocation is unchanged from a previous operation. Reflect

upon the following complex:

ADDITIGN: MACRD LARG,RARG,ANS,FLAG

LXT B,LARG

LXI D,RARG

NIF HCON-ANS Check for walid H
GOTO ADDND

ENMDIF

IF 1-FLAG Flag is P for indirect
GOTY INDIR

ENDIF

LXI H,ANS Birect

GOTO ADDND

INDIR:LHLD ANS Indirect

GOTO ADDND Gobble tabel
ADDMD: CALL FPADD

HCOW: SET ANS

MACND

This macro was designad to illustrate many of the novel features of MAKRD.
Someg economy of code could have been affected by use of 1FG? and IFGNZ
nseudo-operations. Note that no labels are generated by a call to this
macro since the destinations INDIR and ADDND are invariably reached by a

G0TO branch. Quite clearly the macro could be expanded to treat the left
and rfght arguments as well. Complex macro usage greatly reduces the chance
of coding error, since without macro expansion the chance of correctiy
entering a number of such sequences is minimal. A set of such complex
macros need only be developed once and then merged into the current file.
MAKRO, in conjunction with your macro file, becomes your high level language.

3-29

] £ F

REPETITION CONTROL

MAKRO allows assembly time repetition (looping). A block of assembiy code
may be replicated up to 255 times by enclosing the block in REPT/REPND
brackets. The form of the repeat block is

REPT expr
[CODE]
REPND

in which expr is evaluated, truncated to an 8-bit value, and used as a loop
repetition factor. Repeat blocks may be nested, and may occur within a
macro expansion. MAKRO maintains a control stack of length 80 bytes. The
maximum depth of nesting is determined by the stack limit.

An active repeat block consumes 10 bytes of the control stack, and an active
macro expansion consumes 8 bytes. Repeat blocks and macro expansions may

be nested in any way so long as the total stack depth does not exceed 80
bytes.

In order to provide some flexibility to the repeat block, MAKRO recognizes
two special operands:

@is a repeat loop index, counting up from zero, marking progression —
of the repeat block.

¢%™is a count of the number of active parameters in the most recent
macro expansion.

MAKRO also allows looping over the actual parameters in a macro expansion.
Such looping is governed by three special characters appearing in the macro
body:

BN Control-N Parameter flag (Press Control and N simultaneously)
@S¥ Control-§ Start of macro loop
@@ Control-Q End of macro loop

The start and end of the macro loop must be bracketed by #5/tQ; the loop is

then repeated over all the actual parameters occurring in the macro call.

Within such a Toop, the elements of the parameter sequence are referenced by ':
two +N's in segquence. =

3-30

To i1lustrate the macro loop, assume we have a series of ASCII strings we
wish to print, and that the sequence and number of these strings to be
printed must vary within our program. Define the macro print all:

PNALL: MACRO

+5 Start loop over all actual parameters
LAI H.ENEN

CALL PRINT

Lt End the loop

MACND

Mow we use this macro as
PHALL 51,52,53
PMALL 56,51,59,52.57

The loop control automatically handles the counting and parameter refer-
ancing.

MAKRO BLOCK STRUCTURED ASSEMBLY

The LOCAL/LOCND pseudo-operations allow the user to bracket portians of the
assembly, treating such portions as isotated units. Macro definitions,
addresses, equates, and sets generated within such blocks may not ba accessed
from outside the block. Consider such blocks as FORTRAN subroutines or
procedures in PL/1 or ALGOL. The insulation of such blocks from one another
is nearly complete; the blocks may not contain references to elements
outside the bleck (exception coming),

The treatment of such blocks is effected by 1imiting the scope of the symbol
table. Ouring pass 1 of the assembly. LOCAL restricts access to the symbol
tabTe to only those entries following., LOCND, on pass 1, resets glohal
daccess to the symbol table. On pass 2, LOCND causes all entries generated
between the two bracketing LOCAL/LOCND operations to be deleted from the
symbal table,

Now the exception promised earlier: An attempt is made during pass 2 to
sgtisfy a reference to an undefined element by searching symbol table entries
after the block. Locz] symbols must remain in the symbal table until the
pracedural block completes pass 2, and these symbols may be accessed in an
attempt to resolve an undefined element, global or local.

| I

3-32

!

ASSEMBLY TIME INPUT

The INPUT pseudo-cperation allows the user to define program variables at
assembly time. Critical program variabies, such as the assembly origin
or 1/0 port numbers, may be entered as input variables, with their valye
determined by console input during pass 1 of the assembly,

As an example, assume that we have developed a program reguiring input
from & serial port; however, neither the port number or status mask can
be standardized. We may therefore write the source program with these
variables defined by input:

IPORT: INPUT
TMASK: INPUT

and the status check portion of the program would be
READY:IN IPORT
ANT IMASK
JZ READY
The [NPUT pseudo-operation is performed in pass 1 of the assembly. MAKRO

displays the source line and awaits conscle input, The user may enter any
vaiid expression which is terminated by a carriage return.

3-33

RELOCATION

MAKRO offers two different methods of achieving relocation: at assembly time
via the LINK operation, or at load time via relocatable code.

A relocating assembier monitors object code generated by the assembier, and
flags portions of that code whose values depend upon the execution address
of the program. (Object code generated by a relocating assembler is not
ready for execution, reguiring address modificaticn by another program --
the loader.

A special type of loader -- a Tinking loader -- will allow program modules
to reference previously developed modules {externals). The Tinking loader
performs a library search to find and include all the necessary program
modules., The output of the 1inking loader is an absoclute, executable
program.

Such techniques are necessary on multi-user machines in which several
programs may be executing simultanecusly and the execution address aof any
program 1s dictated by available memory space. On a micro-computer, the
nractical advantage of relocation and linkage is that Targe programs may
be developed in small discrete modules which can he created and checked
out independently. Commonly used modules, such as floating point routines,
need be developed only ance.

There are, however, drawbacks to the relocating assembly/1ink loader:

1. A linking leoader and link edit phase is required.

2. Restrictions are placed upon the structure of the scurce code
to enahle relocation, These restrictions vary from a minor
nuisance to considerable pain, and occasionally farce inefficiency
into the resulting code.

3. Certain operations (masking) and certain quantities (8-bit
values) cannot easily be handled by a relocating assembier,

MAKRO provides the features of a relocating assembler and linking loader via
the LIMEK pseydo-gperation, with no restriction placed upon the source code,
The LINK operation is performed at assembly time, producing an executable
object moduie, with no need for the linkage/edit or address modification
phase, With MAKRQ, the user need not restrict his source code to relocatable
form, since all MAKRD source is relocatable by the LINK operation.

ReTocation and 1inking are typically performed at the object code level,
after assembly has been completed. The MAKRO LINK operation is performed
at the source code level. The LINK pseudo-aperation extends the assembly
to include the named sgurce file{s).

3-34

Suppose a main pragram is being developed which will require library
maxdules FPPACK {a floating point package) and FPOUT {an input/output
package}. The main program shouid then include

LINK FPPACK
LINK FPOUT

Assembly proceeds through the main program and continues through the link
modules in the order given. The LINK pseudo-operation may appear anywhere
in the source code, and LINK modules may themselves contain the LINK oper-

ation.

The LINK command, without a file name, acts as the INPUT pseudo-operation.

The source line is displayed, prompting the definition of the Tink file at
assembly time. Macro library files may be terminated by such a LINK com-
mand to chain the assembly to the current source file. In this case the macro

library file should be specified as the input file.

The LINK file name must be terminated with a carriage return.

3-35

RELOCATION

The LINKED and KWIK Loaders

MAKRO version AMA.2 generates & relocatable object module for sgurce code
conforming to certain addressing restrictions. The relocatable object
moduie is Toaded into memory, for execution, by:

LINKED 1inkage editor/relocating loader
Kt TK relocating lcader

Either of these Toaders will perform all necessary address modification to
relacate the object module for execution anywhere in memory, provided that
address constants satisfy the restrictions given below, In addition to
relocatfon, the LINKED linkage editor will parform a 1fbrary search to
include previously assembled object modules required for execution,

Three MAKRO pseudo-operations provide loader directives for the LINKED loader:

ENTRY Defines the label field of the instruction to be
an entry point when this modules is referenced
glsewhers,

EXTRN Defines the label field to be a requisite modyle to
complete an executable load.

L IBRY Defines the label field to be a Tibrary containing

certain of the reguisite external meodules.

If none of these three directives is present in the assembly, the object
module may be Toaded by an INTEL hex loader for execution at the absolute
address given by the assembly or by the KWIK iopader for relocztion. In

the absence of the Toader directives, object code generated by MAKRD con-
forms to INTEL hex standards, except that relocation information is passed
in the two bytes following the load address. These bytes {7 and B following
tha colon} are ignored by the INTEL hex loader.

The object code produced by MAKRO consists of four types of records:

Byte Number Contents
1. DATA RECQORD

1 !
2,3 byte count
4,5 load address (high)
6,7 load address (low)
8,9 relocation information
10 to n-1 datz bytes
n checksum

3-36

Bvte Numbar Contents

2. LIBRARY DIRECTIVE

1 7AH
2-n Library file name {ASCII)

3. ENTRY DIRECTIVE

1 PBAH
2,6 entry name {ASCII}
7.8 entry point, relative to start
4, EXTERMAL DIRECTIVE
1 AFAH
2,6 external name {ASCII)
7,8 tait address of iinked Tist

ENTRY DIRECTIVE

MAKRD allows commonly used program moduies to be assemblad and stored in an
object library. Entry points to these modules are defined by the ENTRY
directive, which are output along with the object code. These object moduies
may be referenced in a later assembly by the ENTRY point name. The form of
the ENTRY directive is:

LAREL:ENTRY
which is similar to
LABEL:EQU $

except that the ENTRY pseudo-operation generates loader information during
pass 1 of the assembly.

FEXTERNAL DIREETIUE
The EXTREN directive allows the current assembly to reference an ENTRY point
defined by a previgus assembly. The form of the directive is:

LABEL :EXTRN

which defines LABEL as a routine not present in the current assembly, but
which may be found in an object library on a disk file. Having defined LABEL
as an esxternal, it may be referenced as any other program variabhle, except
that it may not be used in an expression. Thus

CALL LABEL is valid, while
CALL LABEL+3 is forbidden.

337

LIBRARY DTRECTIVE:

The 1ibrary directive, LIBRY, identifies the disk file in which LINKED may
seek to satisfy subsequent external directives, One or more axternal
directives follow the Tibrary directive. For example, a disk file FPPACK may
contain a floating point package with entry points FPADD, FPSUB, FPMUL and
FPOIV. A source program requiring these floating point routines as externals
would declare FPPACK via a LIBRY directive, and itemize the required entry
points:

FPPACK:LIBRY
FPADD:EXTRNM
FPSUB:EXTRN
FPMUL: EXTRN
FPDIV:EXTRN

Entry points, 1ibrary files, and externals must have unique names. Within
the 1ibrary files the required external references myst be defined as
entry points.

Library files are included in the order in which they are encountered; the
entire object module is included. '

The LINKED load map defines the execution address of each entry point. Unsatis-
fied externals are displayed. At completion of the load, the next available
memory address is displayed. A checksum ervor is signified by '?'. Duplicate
ENTRY and unsatisfied EXTRN modules are identified by 'D' and 'U' errors respec-
tively. Library files not found on the designated unit are displayed, and the
user may then redefine the file and unit.

3-38

I

SOURCE CODE RESTRICTIONS

1. Llabels defined by an EXTRN directive may not be used in an arithmetic
exprassion,

2. Relocatable guantities may only be used in an arithmatic expression
containing the operators + and -,

3. Relocatability is Timited to 16-bit quantities. The relocatability of
such guantities is determinad by the form of the expression defining
the quantity. Absolute gquantities are assigned a relocation value
of B, Thus

CONST:EQU 5

defines CONST as an absolute with relocation value . Program relative
values are assigned a relocation value of 1. Thus

HERE:LXT H,HERE

assigns a retocation value of 1 to the izbel HERE, and flags the LXI
instruction as requiring address modification.

4, Arithmetic expressions containing absolute and relocatable quantities
derive their relocation value from the result of the expression. The
rules of relocation arfthmetic are:

4. The sum of an absolute and relocatable quantity is relocatable.
h. The difference of two relocatable quantities is absolute.

c. Any chain expression, containing absolute and relocatable quantities
connected by + or -, must evaluate to either A or 1 in relocatability,
Mentally substitute 1 for program relative quantities, and @ for
absolutes, and evaluate the expression. MAKRQ does not check the
resulting exprassion for validity. This restriction does not mean
that masking ar other such address computations may not be used.

MAKRD will treat the results of such operations as absolute, and
it is the programmer’s responsibility to ensure that the resylting
object code is valid.

5. Secondary load modules, those containing the ENTRY directive, must be
assembled at ORIGIN P.

6. Load modules should neither bBeqin nor end with the BS pseudo operation,

L

3-39 e

SYMBOL TABLE

Tha symbol table displays the value of ail program variables together
with the relocation flag. The symbol table is printed with five antries
per Tine, each entry consisting of the variable name, variable value,
and relocation fiag. The legend for these flags is:
absolute value
1 relecatable value
3 external
83 externzl library

The value skown for an external variable refers to the Tast address
within the program at which that external was referenced.

3-40

PDS RELOCATING LOADERS

& Toader is the conduit through which the contents of a disk file are trans-
ferred to memory for execution. The most widely available loader for micro-
computer use is the INTEL hex Joader for which source code 1istings are easily
obtainable. Loaders vary widely in the extent to which they operate upon the
data {program) while effecting the transfer from dfsk to memory,

The INTEL loader, one of the simplest, maintains a checksum to ensure fidelity
of the transfer, but otherwise performs no operation on the data being trans-
ferrad. The naxt higher leveil of loader sophistication is the relocating
Toader. This utilizes relocation information to perform certain modifications
upon the data being transferred to enable the program to execute at an address
other than that for which the program was assembled, The highest level
oparation is the linkage editor which can combine one or more incomplete mod-
ules, relocating as required, into a unified, executable program. A linkage
editor may not necessarily perform the loading function, in that no executable
image may he left in memory at completion of its task.

PDS spans this spectrum of loader functions by providing two loaders, KWIK
and LINKED, which together with the ubiquitous INTEL Tgader satisfy all regquire-
ments.

The function of the PDS loaders is somewhat dependent upon the operating envir-
gnment. The KWIK Tlgader is the relocation vehicle for cbject programs created
with the MAKRO assambier version AMA.Z. The object file and load address are
identified to KWIX which proceeds to create an executable image at the load
address. The input file to KMIK must satisfy the coding restrictions defined
in the preceding section, and the file may not contain any of the loadar
diractives. Such files may zlso be loaded with the INTEL Toader for absolute
exacution (at the addrass for which the program was assembled),

The LINKED1o0ader will perform the relocation function while collecting the
independent modules defined by the Toader directives. LINKED combines the
requisite modules into an executable image in memory at the Specified load
address and simultanecusly creates an INTEL hex compatible object file.

It is anticipated that the INTEL loader, or an eguivalent binary loader, will
continue to perform the bulk of the loadar functions., The KWIK loader 1s
expected to be used for unique applications requiring an object file to
execute 2t more than one memory address. ThelIMKED linkage editor is expected
to be used in the development of large applications programs in which a number
of component elements have besn independently developed,

KWIK and LINKED are furnished in relocatable form and may thus be relocated
to zatisfy system requirements.

3-41

MAKRO EXPRESSION EVALUATION

Arithmetic expressions appearing in the operand field of MAKRO instructions
are evaluated according to standard arithmetic rules., The following table
defines the available arithmetic operations and the operator precedence.

Precedence
Operation Yalue
{ 16
* 12
/ 12
Y 12
+ 11
- 11
& 8
~ or t {5FE hex) 7
. 7
> 6
< 6

" {quota)
)

#

Begin parenthetical expression
Multiplication

Division

Modulo, integer remainder
Additicon

Subtraction

Logical AND

Logical OR

Logical EXCLUSIVE OR (XOR)
Right shift, zero fill

Left shift, zero fili

NOT, logical complement

End parenthetical expression

Expressions containing these operators are evafuated from Teft to right,
execution of any operation delayed until all preceding operations of prece-
dence value greater thanm or equal to the pending operation are performed.

The logical complement refers to the operand or parenthetical expression

immediately following.

In the expressions
A>B, A<B

the left operand (A} 75 shifted in the indicated direction by B bit positions,

with zarn bits shifted in.

The modulo operator ' returns the integer remainder after division. Thus

AB yields
A -TAMB] * B

where the integer part of the bracketed term is taken. The modulo operator

has precedence equal to *, /,

The expression

|1}

2223 % 5 yields 5 as
(22%3} * 5.
In any expression, the user may insert parentheses to force the intended

computational sequence. In the pravious expression, execution af the
modulo can be delayed by

22n(3*5) = 7

STRING HANDLING PRIMITIVE

Arithmetic operands and the first argument of the IFEQ and IFNE pseudo-
operations may be subject to string segmentation. S$tring segmentation is
invoked if the first character of the operand is a left sguare bracket '[.’
The two characters immediately following the opening bracket are taken as the
start/finish segmentation markers. The string argument is taken as the

remaining characters up to but not including the right square bracket °J.°
Thus

[53123456789] yields 678
[{JARRAY(J1}] yields JI
[E{BARRAY{IJ}] yields ARRAY

h
i
o

A DY —TH S S LT aal Eeel
duvs 78 prRbLagTE i

falrt ¥ A=

LA

3-43

INTEL SQURCE COMPATIBILITY

g

Source files created for the INTEL assembier must be modified before
assembly .by MAKRO. The following table defines the systematic editing
required, In the table '8' rafers to a biank.

CHANGE : T0:

BEQUL :EQUB

BSETE :SETH

ENDM MACND

BANDH &

1ORb -

HSHRD >

HSHLG <

BMACRO :MACRO

EMODD)

BAORE :

BHOTS " [quote)
Source 1ines containing multiple labels must be modified to contain only
a single label identifier. —
The expanded capabiTity of MAKRO generally precludes the inverse cperation
of converting MAKRD source.

-

3-44

SAMPLE LINKAGE OPERATION

The following example should illustrate the use of the linkage editor,

1. Create a source Tile CALLRS:

CALL EXT1
CALL EXT2
EXTS:LIBRY
EXTT:EXTRN
EXTH:LIBRY
EXT2:EXTRN
END

2. Use MAKRO to assemble this file, creating the object file CALLR.

3. Create a source file EXTSS:

EXTL:ENTRY
LXI H,EXTG
EXTG:ENTRY
LXT H.Z2
END

4. Assemble this scurce file, creating object file EXT3,

5. Create a squrce file EXTNS:

EXTZ :ENTRY
LXI B,EXTO
EXTQ: ENTRY
MVI B,'Q"
END

6. Assembie EXTNS, creating object fiie EXTN.

7. Exercise your linkage module ULIMK, identifying CALLR as the input file, and
any convenient Toad address.

Note that in Step 1 the code for EXT1 and EXTZ does not reside in the current
source module. The LIBRY directives identify fo the linkage editor the disk
file{s) in which the subseguent external references may be found. The module
in Step 1 defined EXT1 and EXT2 as modules which must be resolved during the
1nad.

| v F

In Step 3, the source module EXTSS creates the first external EXTL. Note
that within this module EXT1 is defined as an entry.

In operation, the Tinkage editor loads the module CALLR, then opens EATS to
find the location of EXT1. The entire module EXTS is loaded.

Finally the linkage editor opens and loads EXTN, resolving references within
CALLR to the entry point EXTZ.

3-45 c

MAKRD ABSOLUTE FILES

e
Object code written to dfsk by MAKRO is first passed through a format program
which incorporates the checksum and relocation information. The formatter calls
a direct disk write routine which buffers disk cutput.
MAKRO can be caused to generate absolute abject disk files which can be loaded
for axecution by the 005 Toader by skipping the format routine.
To create this program, load MAKRO without entering the program. Use DEBUG to
search for the byte string F5 05 E5 5F. The start of this string marks the
start of the direct disk write. Again use DEBUG to search for the string
D5 C5 E5 F5 which marks the start of the formatting routine. At this second
address, patch in a2 JMP to the first address. Save the resulting program
{2ApP-4APA) as disk file ABSMAKRO.
Certain code restrictions must be followed:
1. The code must flow straight through with 2 single QRGE statement at
the start, and no manipulation of the location counter within the
program.
2. The DS opcode must be replaced by the macro
DS:MACRD COUNT ~
REPT COUMT
OB P
REPND
MACND
3. HNorne of the loader directives nor any relocation feature can be
used.
-
—

3-46

PBOPIPERTY LY

BAROQUE ASSEMBLER EXTENSIONS

The MAKRO and LONGLABL assemblers recognize several pseudo-operations not deseribed
in Section 3:

1, APUSH expr
An aszembly time stack is mainotained. APISH piaces the value of expr on the
sizck.

2. LABEL:APOP

Operation is similar to the SET paeado-op except that the value of LABEL is recovered
from the agsembly atack. APUSH and APOP are primarily uged within nested control
mezeros, as in the FOR/NEXT macro examples in Section 3, In brief, nested FOR/NEXT
macros require that the starting addresees of FOR loops be recovered in reverse {atack)
order by the following NEXT macros,

3. PAGE

Causes a page eject {output FORM FEED),

4, TITLE 'PAGE HEADING'
Causes tha corresponding heading {o appear on schsequent pages of the assembly
liating, The assemblers count output lines and elect pages via FORM FEED,

5. SETQ axprv

The assembler maintaina a special (which see} internzi variable QVAL which is set to
the value of expr.

G, NOEXP macro

Buppreased listing of macro expansgion.

7. XPAND

Resumes listing of macro expansion. (dafault case).

The parameter saparation characier {,} in macro ¢alls can be redefined at the time of maero
definition. If the formal macro parameter list begins with comma (,} the character immediately
following is taken to be the parameter separaticn character for subsequent calls of that maero.
The tirst formal parameter of the macro 1s taken to atart with the next character. To illustrate:

EXAMPLE:MACRO 4. PAR1, PAR2, PARZ

defines the parameter separation character for the EXAMPLE macro to be 'y'. The formal
parameters are still separated by a comma, The maero invocation would appear as

EXAMPLE ARGL, ARGE. ARGS

1 " ¥

This option is provided to enable syntactically more attractive macro usage, as in

DOIF ARG1.RELATION, ARG2

Variances from the hehavior deseribed in Section 3 include:

1 The # sign expansion in macro calls is expanded as a unigue four-digit hexadecimal
character string rather than a three-digit decimal number.

2. The string primitive is de-limited by angle brackets '{) rather than square brackets [] .
This change was required to allow the string primitive to operate on the arguments of
a macro call. Recognition of string primitives is also extended to constructs appearing

in the label field:
{BGABCDEFGH) : yields
CDEF:
reflecting operation of the string primitive deseribed in Section 3.
. The internal variable QVAL, described earlier, is used to generate instruetion labels. If a "?"

sign is found in the label field, the ''2" character is removed and replaced by the four-digit
hexadecimal expansion of QVAL (defined by the SETQ operation). The sequence:

SETQ 1234H
I generates

1234: as the label.

SETQ and APUSH/APOP are used to generate labels within a maero to be used by another
(remote) macro. This need is exemplified by the DOIF macro mentioned earlier. As the
name implies, the DOIF macro generates execution time instructions to selectively execute
a block of code.

DOIF ARGL.RELATION.ARG2

translates into "Test logical RELATION between ARG and ARG2 and JUMP ahead if RELATION
is false." While a backward reference can be effected by the SET pseudo-op, forward references

cannot, (Why?)

The forward refereﬁce ig implemented within the DOIF macro as

APUSH g#H
JUMP FALSE D#

in which the # is uniquely expanded. A subsequent IFEND macro generates the required label as:

QVAL:APOP
SETQ QVAL
D?:

Teat your understanding of the above by conceptually defining an ELSE macro to be inserted
optionally between the DOIF and IFEND macros.

In addition to the above, EDIT has been modified to include search or change in the backward

{toward start of fext) direction.
ii

EDIT

& very powerful Text Editor for
the creation, modification and

disk storage of character-oriented
matarial

Copyright 1978

Allen Ashiey
395 Sierra Madre V112
Pasadena, CA 91107

{213) 793-5748

£-1

1 ¥

INTRODUCTION

EDIT i3 a very powerful text editor featuring a full spectrum of text
manipulation operations including string search, substitution, insertion,
deTetion and biaock move ar delete. An elaborate command interprater
allows the definition of command string macros. Segments of an input
text file can be drawn from disk into memory, modified, and written

back *o an output disk file. Large, heavily-commented source files

which exceed available memory can be developed and modified easily with
the EDIT text editor.

Operationally similar to the editor offered by TNTEL, EDIT offers a
broader range of functions, approximately three times the speed, and
occupies a 1ittTe more than half the memary space of the INTEL ISIS editor
or the TOL ZAPPLE aditor.

EDIT is written entirely in the B080 subset of the Z80 instruction set
and is thus fully operational on either machine.

L A

EDIT ORGANIZATION

EDIT operates under control of an executive which is responsible for
the transfer of textual material between disk and memory and for the
interpretation of user commands to create or modify that material.

Command strings, consisting of decimal repetition factors, aiphabetic
command characters, character string parameters and control punctuation,
dictate the modifications to be performed on the text stored in memory.
Portions of an input text file may be drawn Tnto memory, modified and
stored back on an output disk file,

Although tha command structure of EDIT is consonrant with conventional
text editors, users unfamiliar with convention may require some practice
to become adept at exploiting the many features. [t is suggested that
the user practice on an empty diskette, creating and modifying text of
no particular value. Each of the executive cammands should be exercised

in all its variety until the operation of EDIT has become second nature.

The majority of software development time is spent efther in the debug
mode, finding errors, or in the text-edit mode, correcting those errors.
The user i5 advised to become thoroughly familiar with these software
development tools,

T HBMOES FD EN; T Eoes meded BP0 Fond Tao ol
B e AdE CMANGE FTEMH o FEH
P 2 4 9F COH Al d FE H To JdEH
& uAAg CHANGE PPy Te EFH
& 24 CHANGE JEH To pEH
il 22a5 Ot e T H T o7 H
—— - - : 77? T
1 &
u/#; /9
& 2495 ceawse TEH 10 0B H & Gady Cuamge E vo @8
@ 2aa1 cHanee IEH g 3oy @ na42 thamE 75 o FE
® 2Aaa3 oHANGE 45 To pBH G 2493 cwani: 8o 7o 45
@ 3z79 LHANGE s T @gE @ 2332 cHEnce 7F ro 68
B 33 4B CMANGE 31 To 2FH | @ 7334 eHewbE 34 To 2F

EDIT EXECUTIVE

Commands to the system executive consist of single upper case alphabetic
characters, optionally preceded by a signhed decimal repetition factor.
{ommands can be chained together to form a block-structured command
string. Such command strings are punctuated by the escape character
(1BH, echoed as $§), while a block command is indicated by enclosing the
block in brackets <>. Every command string must be terminated by two
successive ascape characters.

Command blocks can be nested quite deep, on the grdar of fifty. A

command block is interrupted either when any portion of the biock cannot

be executed or the block repetition factor fs exhausted. The meaning

of these features will, hopefuily, be made clear fin the subsequent material.

While the escape character is always interpreted as punctuation, the
block-defining brackets are significant only in the context of an exscutive
command. In addition to these characters the B, in the proper context,

has a variety of meanings which depend upon the command being executed.

Generally the B is interprated as 'any' or 'all.' When the B s used as
the command repetition factor, preceding the control character, 1t is
interpreted as 'all,' implying that the command s t¢ be repeated as
often as possiblie. When the @ {3 used as a character {nat the first) —’
in a character string under search, it is intarpreted as ‘'any’ in that

B will match any character. In the commands defining disk input/output

files, # is interpreted as 'none.' To create a new file, rather than edit

an existing file, the regquest for an input file name should be answered

wWwith the @.

[n search strings, the special character 'ampersand' (&) represents an
arbitrary character string. Just as @ will match any character in the
text, & will match an arbitrary character string not including a line feed.

€0IT maintains five pointers to the text file:

Start of the text buffer

End of the text buffer

Start of a defined textual block
Fnd of the defined textual block
Pointer to the current activity

LA

The first of these pointers is stationary, the second moves according fo
abb and flow of the file size. The block pointers mark the start and
snd of textual blocks for deletion or relocation.

The pointer to the current activity dictates the operation of EDIT.

Executive commands enable the user to move the activity pointer through- .
out the text file. The editing commands {Search, Delete, Change} are _—
relative to the position of the curreat activity pointer. The command

structure of EDIT s composed of threae command types:

4-4

Disk Tnput and cutput operations
Commands to move the activity pointer
Text modification commands relative to the painter

Executive commands are expressed to EDIT in response to the prompt @
(the all-purpose character). EDIT examines memory to determine the
available size of contiquous RAM following the program end. Having

determined memory size, EDIT lays claim to all the available space.

Typing errors in a command string can be backspaced over with the rubout
key., EDIT echoes the deleted character. The entire command string can
be aborted by Control/C. EDIT accepts the entire command string before
proceeding to interpret that string. EDIT automatically supplies a
1line feed after an input carriage return.

The user should note that apart from the control character Escape and
the context-dependent characters (%4, <, =} no other text characters have
any special significance to EDIT. Carriage return, line feed, 3hift-0,

atc., are merely data characters to be manipulated as any other characters.

Lith new edlk HIII‘H THE

|:I.- ‘\
D b command maw RE PrEésdn By —
S o v Wkiny RAS T T el 1 HE G AT

L Thw ARE TTART 0= "E'Ei"r)

~ I -:Arim:t bl delete wp e ek A r:,.luciincl ::-]-nr-l'«-miI

EXECUTIVE COMMANDS

In the following, n represents a signed decimal repetition factor,
defining the number of times the immediately following command is to

be executed. When applicable, a negative parameter value directs EQIT
gperations toward the start of the fext file. 5paces may not separate
the repetition factor and the immediate command., The punctuation charac-
ter Escape is represented by §. By defzult, an absent repetiticn factor
is assumed to be unity.

COMMAND LIST

nA APPEND n SECTORS FROM THE INPUT FILE TQ THE MEMORY BUFFER.

EDIT will terminate the command when the input file is exhausted,
when n sectors have been transferred, or when available memory has
been filled. The current pointer position is not affected by this
operation.

8 MOVE THE CURRENT ACTIVITY POINTER TO THE START OF THE MEMORY FILE.

x nc‘E CHANGE CHARACTER STRINGS.
R

The form of the command is
nCSTRINGISSTRING2$S

which changes the next n occurrences, following the current pointer,
of String 1 to String 2. Every occcurrence, after the pointer posi-
tion, of String 1 is changed to String 2 by the command

ACSTRING1SSTRINGZSS
An example, not original, is
nCFROGEPRINCESE

which changes the next n FROG's to PRIMCE's. The current activity
potnter is moved to the position immediately following the last of
the n cperations.

The 'any' character ® can be used to ignore any character, except
the first, in 5tring 1. Thus

CTRISSTHATSS
will change THIS as well as TZIS to THAT.

A11 characters except ® are considered significant in the strings
for the Change and Search commands.

.
-n¢ chawge backwonds (dowond sont ok tart)

4-5

A character string can be deleted from the memory buffer by
nCSTRINGSS

Only occurrences of strings after the current pointer posftion
can be changed. There is no practical 1imit to the length of
parameter strings for Change or Insert functions.

tnD DELETE THE NEXT n CHARACTERS FOLLOWING THE CURRENT POINTER.

[f the parameter is negative, the n characters preceding the pointer
are deleted. The command @D will not delete the remaining charac-
ters. To clear the buffer use 8K; &0 deletes the character, if
any, preceding the pointer positign,
r'|D$‘h"{r'nl - Awlate u.nf:u..-h; PR ™ I:..'I.u.J.fn:I E-"hr"lf"uﬁ
E TERMINATE EDIT, TRANSFER MEMORY COMTENTS AND ANY REMAINING INPUT
FILE CONTENTS TQ THE OUTPUT FILE.

Control is passed to the warm-start entry point of the disk
operating system. Subseguent re-entry to EDIT allows an entirely
new edit session.

F CLOSE THE EXISTING DISK INPUT FILE AND QPEM A NEW INPUT FILE.

EBIT responds with the IMPUT query. A1l significance of the
previous input fiTe is lest. EDIT may ba used to merge disk fiies
by repeated use of the F command.

G SCROLL THE MEMORY FILE.

The scroll is terminated by Control/C or end of fiTa. The scrotli
is controlied by the space bar. Fressing the space bar will freeze
the display: any other key resumes scroll. At termination (except
for end of file) the current pointer is positioned approximately

8 lines bhafore the last 1ine of the display.

H SET BLOCK POINTERS.

EDIT allows text blocks to be moved or deleted. The start and end

of the text blocks avre defined by the two block pointers, The H

command sets the start pointer to the end pointer, and the end pointer
.ﬁ' to the current position of the activity pointer. Successful defi-

nition of the block requires that the activity pointer be moved down,

from start to end, invoking the H command twice. TOIT checks only

that the end pointer is closer to the end of text than the start

pointer. The user is cautioned to exercise care in setting the

nointers for a block delete. Make sure the pointers are properly

set before 3 block delete.

1 INSERT THE INPUT STRING INTD THE TEXT BUFFER IMMEDIATELY FOLLOWING THE
ACTIVITY POINTER.

Thus ISTUFFY would insert the characters STUFF into memory at the
position of the activity pointer. The pointer is moved to the
character following the insertion. The length of the inserted
string is Timited only by available memory. The insertion may con-
tain any characters except the Escape punctuation character.

4-7

L |

J PAUSE. ~—

Execution of the current command is interrupted to await keyboard
input. A '?' prompt 1s issued to signify that EDIT requires user
input before proceeding. Typing the ESCAPE key returns EDIT to
the input mode; any other key resumes processing. Upon escape,
EDIT saves the current command string.

The pause mode is used teo interrupt a long command string to
display the working area. The command string

BeS:SALSITRISILE >SS

will search every line contazining a colon., display the line, and
wait for user response. After detecting the escape key, the
activity pointer is positioned at the start of the Tast Tine
displayed {in this case).

*nK DELETE LINES FROM THE BUFFER.

If n i5 positive, n tines following the current pointer position
are deleted. If n is negative, n lines preceding the pointer are
deleted. Lines in EDIT are defined as the characters following a
line feed character up to and including the next 1ine feed. [f the
pointer is positioned within a 1ine, only the portion of the 1ine
on the deletad side is deiated. The command sequence

BS%
AKss -

will scratch the entire memory buffer,

+nL MOVE THE CURRENT POINTER POSITION BY n LINES.

Direction of motion is toward the start of text for negative
parameter valuas. If n is '@' the pointer is pesitioned at the
start of the current line.

* nM MOYE THE CURRENT POINTER POSITION BY n CHARACTERS.

@ moves the pointer back one character. Use 'Z' to position
at end of fext.

N REFORMAT AN ASMB SOURCE FILE INTC MAKRC FORMAT,

The sourca filas of ASMS are not suitable for text processing.
I@- The 'N' command strips the line numbers and inserts line feeds.
preparing the input file for input to the MAKRO assembler. The entire

file must be regident in memory,

nP WRITE n SECTORS, IF POSSIBLE, FROM THE MEMORY TEXT FILE TO THE
QUTPUT FILE.

The pointer position is moved to the start of the text file.
EDIT will not clear the text buffer until an end of the input file
is detected.

ﬁ RETURN COMTROL TO THE WARM-START ENTRY OF THE DISK OPERATING SYSTEM.

If the End command has not been executed, EDIT may be re-entered
without harm to the active memory file.

4-8

®

-3

£ ns

hme A5 O

CEARCH DA AR T

SEARCH FOR THE nth OCCURRENCE OF A SPECIFIED CHARACTER STRING
FOLLOWING THE CURRENT POINTER POSITION.

The pointer is positioned after the last occurrence found. The
command string

nSEDITES

posttions the pointer after the nth occurrence of EDIT. The
search proceeds from the pointer position to the end of text.

The ampersand {&) as a character, not the first, in a search or

change string will match an arbitrary character string not including

a line feed. Thus the command
S:8Z%%
will succeed for either of the following:

:7
$XKXXT

but not for

sCALL SUB
ZERG:INX H

since a line feed separates the first colon and the 7.

TYPE (DISPLAY} n LINES FROM THE CURRENT POINTER POSITION,

The sign convention for n is followed,

DS PLld CulRREMT FoloTie

INSERT THE TEXT 8LOCK DEFINED BY THE TEXT POINTERS INTO MEMORY AT THE
CURRENT POINTER POSITION.

Blocks may be moved up or down in memory, but the source and
destination must not overlap, The source block is not modified by
the insertion. EDIT monitors the (possibly new) pointer positions
to the source block in preparation for a Delete cormand.

DELETE THE BLOCK DEFINED BY THE BLOCK POINTER POSITIONS.

No modifications to the source file except Block Move, may be
made between the steps to set the block pointers and either

Block Delete or 8lock Move. Ho operation is performed if the
block end pointer is Tess than or equal to the block start pointer,

DISPLAY, IN HEXADECIMAL, STATISTICS OF THE CURRENT MEMORY FILE.

The display format is:

F hex address of activity pointer

L # of lines in file

¢ # of characters in file

S # gf disk sectors required to contain file
T end of file memory location.

i . .. - S b - . . -
P o®m od cwmars Stel it e Alaw xTle L4rie Zize s Lhrs/g'ef--l':r -

49

h]
!

@.

.]
B SAvE CoAREWT PoSrTiand P W P iave

LT
FACRANEIE CpRAENT PeiivTion PR, W T4 Psavet

o Ol

4+ RETRievE Saved FpSihiosl PTR FRom U esave !

z MOVE CURRENT ACTIVITY PQINTER TO THE END OF MEMORY FILE.

SPECIAL CHARACTER COMMANDS

EDIT recognizes the special charactar commands only when these characters
are entered as the first character of the command string.

Control/R As the first character in a ¢ommand string, Control/R

repeats the immediately preceding command string.
Control /U As the first character in a command string, Control/U
fetches and executes the command string {up to 32

characters) saved at interruption of the previous
pause command {J}.

- Cr_-rru_ H) Back ve Y Cwr E-—H]

- (eraL L_j pAvaNCE | et [™M)
¥ leree kY Bae yr) Liwe [-L7]
 feTel J) muvANCE) Liwe L L]
/ BAUL Ur 1 PALE

} 1Y LimeE $
\ ADVYAMLE 1 Pack

FlLhly CHR ~ SEARCW FoR CHR

COMMAND STRINGS AND BLOCK COMMANDS

A singte EDIT command consists of the repetition facter and the com-
mand terminated by two escape characters. As an example, to change the
next twa occurrences of THIS to THAT the command is

2CTHISETHATSS

Now, suppose it 1s desired to search for a line containing a colen,
and dalete the next following line containing the string 'KEY.' This
(far-fetched) sequence could be performed by the sequence of atomic
commands

5:5% Find a colon

SKEY$S Mow find KEY

aLss Move to start of KEY Tine
K33 Delete the KEY 1ine

The same seguence can be performed by the command chain
S:SSKEYSRLSKSS

Note that single escape characters are used to identify the end of

each element of the command string and a palr of escape characters mark
the end of the chain. Inability to execute any element of the command
chain terminates further execution of the string.

Certain of the commands, such as fnsert, do not recognize a repetition
factor. Such commands, or indeed a command chain including these ¢commands,
can be repeated an arbitrary number of times by enclosing the chain in
Brackets. For example, to insert XXX before every occurrence of ¥Y in

the text

BES Move pointer to start
BeSYYS-ZMPIXAXXSEME 5D

which is aquivalent to indefinite repetition of the command block

SYYSS$ Find YY

-2M$3 Go back over the YY

IXXXX5% Now insert the XXXX

ZMi$ Move past the YY so we don't pick it up again

Each such command block must be preceded by a repetition factor.

The unattractive appearance of the command block is alleviated by exper-

ience and the fact that 99% of the editing tasks are much simpler than this.

Blocks themselves can be nmested, but at this point serious examples are
difficuit to generate.

4-11

——

COMMAND STRING SYNTAX

The syntactical rules of EDIT were designed to avoid execution of a
command string which would produce results not intended by the user.
Execution of a command string is immediately terminated upon detection
of a syntax error. On occasien this may reguire that the input string
be completely re-antered, a burden considered less serious than the
loss of an entire source file.

SYNTACTICAL RULES

1. A1l command strings must be terminated by two successive escape
characters.,

2. Parameter strings for Search and Change commands must be terminated
by an escape character.

3. Block commands must be preceded by a repetition factor, the sign
of which is ignored.:

4. Scanning of the command string resumes at the character immediately
follawing the closing bracket of a block command. Thus
2<CESX$-3B3%
terminates after executing the block twice; whereas
2 <CESX5-BYS
execytes the B command before terminating.
5. Nested block commands must have their closing brackets in succession.
For example
2<2<CESXE>>55
is a valid command to change E to X four times¢. On the other hand,
2<2<CESXS-$>58
terminates after executing the inner block twice.

6. The opening and closing brackets in a command string must be balanced.

FOIT assumes each closing bracket refers to the immediately pre-
ceding opening bracket. Failure to properly ciose a block command
defeats the repetition factor for that block. Inserting too many
closing brackets disrupts the command stack, the most favorable
result of which is a syntax arror; at worst, it can lead to erratic
operation and destruction of the source file.

4-12

[LLEGAL

ERROR MESSAGES

Indicates an invalid command character,

DISK ERROR

Some condition has prevented access to disk.

NG ROOM

ERROR

CANROT

Bhy of
command

An overflow condition has been detected, either insufficient file
space on the output file or insufficient memory to continue the
current disk operation, Memory overflow can be remedied by dumping
ane or more sectors of the memory file to disk. Refer to Memory
Qrganization.

Same arvor condition other than those above has been detected
{generally a syntax error in the command).

FIND

The CANNOT FIND message signais that EDIT was unzble to continue
a Search or Change command. [t is preceded by the (hexadecimal)
number of times the command was successfully executed within the
current command block. This feature can be used to count the
number of gccurrences of a character string.

BSASEDITHS

will yield a count of the number of cccurrences of £DIT in the text.
The counter also indicates whether the command was ever successfully
completed, for if

BCSTRINGEHNEWSTRINGSS
results in

f090 CANNOT FIND
STRING

than STRING was never found.

| » ¥

the above error conditions terminate interpretation of the current
sequence.

4-13

SAMPLE EDIT QPERATION

& few examples are presented to iilustrate EBIT operation.

In these

examples, the up-arrow illustratas the pesition of the current acti-

vity pointer,

IThere is a tide in the affairs of mend
There is a tide in the affairs aof men

Caffairstbusinassss

CANNOT FIND
affairs

BSS

Jherz is a tide in the affairs of men
Caffairstbusinessss

There is a tide fn the busines;tﬂf men
®Codppss

CANNOT FIND
0

There is a tide in the business paf men

4-14

Command; insert text into buffer.

Buffar contents.;
after insert.

pointer positioned

Command; change strings.

Response; pointer was positioned
after ‘affairs’,

Command: move pointer to top of
buffar.

Result.
Command; now change affairs.
" Result,
Command; change all 'o' to ‘pp!

Response; command repeated unti]‘“f
‘o' could no Tonger be found.

Result: note: 'o' was found and

changed once.

There is a

BSS

Jhere is a
Sdet$
There is &

HB3

There s a

Spps

There is 4
H3S

Thera is a

%%

There s a

Wi
There is a
meq_in the
£33

There is &

SAMPLE BLOCK OPERATIONS

tide in the business

tide in the business
tid% in the business

tidg\in the business

tide in the business

tide in the business

ppf men

ppf men

ppt men

ppf men

paf man

ppf men

! blaock

tida in the business

ppf mer,

l bBlock

tide in the business
business pp

ppf

tidef men in the business pp

4-15

Buffer contents

Command: move pointer to start of
text.

Resuit.

Command; position pointer after 'de’.
Result.

S5et block pointers.

Result:; block pointar 2 positioned
at currant pointer positien; start
pointer not yet valid.

Command: position pointer after ‘pp’.
Result.

Position block pointers.

Result; block pointer 1 set at old
position, block pointer 2 set at

current position, both pointers valid.

Command; prepare to insert block at
gnd of text.

Result

Insert block at current pointer
pasition.

Result; pointer position unchanged. o

Dalete old block.

Result: block deleted, pointer
moved to start of deleted block,
block pointers no Tonger valid.

CONDITIONAL COMMAND EXECUTION

ConsiderabTe thought was expended in an effort to provida the user with some
conditicnal execution capability. As a paradigm for iliustration, consider
the command sequence:

While not at end of file
SEARCH for CALL
IF next line is RET
THEN change CALL to JMP AND delete RET
ELSE rontinue search for CALL

the potential variations of such conditional sequences and the conditions of
the test are unfathomable. Any attempt to provide the mechanics for such a
wide variety of possible situations would unnecessarily complicate operations
for ordinary tasks.

The adopted solution invoives and explains the operation of the pause command.
The pause command enables the user to execute a sequence of elementary commands
and then display the working area. The user may then interrupt the sequence
to effect the necessary repairs, and then resume the initial seguence with

the Control/U special command.

Admittedly, the user is not entirely relieved of his burden; however, he may
be spared thea conseguences of an i1l-posed command saguence.

{Jur previous model may be effected by the following:

@<SRETS-L$2T 85218148 {Search for RET, back up one line and
print two lines; pause; skip over
the RET if you wish to centinue.)

If the display reveals the CALL/RET sequence, the yser may interrupt execu-
tion, make the necessary modifications, and resume the original sequence by
the Control/U command.

EDIT maintains twc separatez command buffers for the Control/U and Control/R
commands, and the user may therefore toggle between these two to systematically
edit the entire file.

Sti11 pursuing the previous example, assume the text file consisted of
the following:

CALL SUBI

RET

DAD H

RET

CALL SUB?Z

RET

INX H

RET
with the pointer positioned at the start of the text. MNow enter the search

B<SRETH-L42TSJ52LE-48
and EDNT rasponds with

CALL 3SUB1
RET
K4

our target for change. Type the escape key to recover the input mode
and save the seek command string. Now we effect the text medification with

CCALLSIMPSLEKSS
which defines this as the previous cemmand. (Ignore excassive scrolling here.)

At this point the text buffer consists of

JMP SUB1
+0AD H

RET

CALL SUB2

RET

[HX H

RET

with the pointer positioned at the up arrow.

Mow we re-enter the search mode with
Control/U
and EDIT returns with
0AD H
RET
7
to which we respond with the space bar, yielding

CALL SUB2
RET
7

4-17

1 * "

Mow type the escape key and Control/R to yield the text contents

JMP SUB1
DAD H
RET

JMP SUBZ
+[NX H
RET

Controi/U resumes the search. The entire file is searched and patched by
I. Entering the search command with an inspection pause;
2. Entering the patch command when needed:;
3. Toggling between the Control/R and Control/U commands.

4-18

TEXT REARRANGEMENT

Rearrangement, while not of particularly pressing import, merits mention
for illustrative purposes. Assume that we wish to collect all of a
certain group of lines together into a single block. As an exampie, we
may wish to move all data statements of the form

Dg '
to the end of text. Cansider the command sequence
B3S move to start of text

B<SDB ' SPLSHELEHSBIWEXS>5S

which searches for the target string, moves to the start of that line,
sets block pointers, advances one Tine, sets block pointers, moves to
start of text, inserts the target line, and finally deletes the line
from fts initial position.

Having cellected 211 such 1ines at the start of text, the block may be
re-positioned at will. This operation is quite slow for large files,

and collects the target lines in reverse order. The reversal of sequence
can be avoided, however {an exercise for the reader),

MULTIPLE STATEMENT LABELS

Source filas created with the INTEL assembler, or any assembler permitt?ng
multiple statement Tabels, can be patched to MAKRD formati by the following
command:

Bi@<S:&:$ALSS SIEQU 5 carriage return
$-5%

in which the % in EQU § is the dollar sian; everywhere else, it is the
acho of ESCAPE.

4-19

(

USE EDIT TO SAVE TYPING

e
Suppose a certain pame, or assembly Tanguage command, must be repeated
with tiresome frequency throughout 2 body of text, We may substitute a
single, unused character for the nuisance string{s) and systematicaily
edit the entire file to replace the temporary character with the desired
string. For example, we may decide to use '#' to represent the character
string
DM
and anter the assembliy source code 2s
DATA#
LABEL#
KNTR# atc.
Then enter the command string
BERC#S:OW 3% Move to top of buffer and change all
to yield occurrences of # to the desired string.
DATA:OW B
LABEL:DW &
KNTR: O} B
N o
Similarly, systematic editing can replace a single character with several
1ines of code. Thus
BERCH#IMOY A,H Carriage return inserted in input
ORA L33 string.
will change every occurrence of '#' to the two lines of code
MOY A,H
ORA L
which test the H,L registers for zero.
'

.20

MEMORY ORGANIZATION

The following diazgram iiTustrates the organization of memory:

PGM AREA
8 BEGINMING OF TEXT BUFFER
« P ACTIVITY POINTER
E-P *{
E END OF TEXT BUFFER
T-1 END OF COMMAND STRING
[INPUT COMMAND
T TOP QF MEMORY

The command string, of length I, is stored in reverse at the top of memory.

To nsert this hlock at current position P, the text below the pointer {length
E-P) is first moved down to the end of the command string at T-1. The saved
text below the pointer extends from (T-I) up to (T-I}-(E-P}.

The inserted text is then moved up to P, extending from there to P+I. Memory
overflow occurs if

P+1 » {T-I}-(E-P)
or equivalently
2l » T-E

which implies that no single text insertion can ever exceed half the remazining
available buffer space. When working with a full memory buffer the user should
beware of memory overflow lest his efforts prove fruftless.

| L |

a-71

DISPLAY

Certain of the commands are followed by a context display showing, when
possible, eight 1ines preceding and eight lines follewing the current
pointar position. For example, the display pops up on the last of any
Change or Insart command or the Move Lines command. The context display
can be invoked at any time by the PL command. The display does not appear
for block commands.

The position of the current activity peinter is shown as the screen
reprasentation of @FFH (a white block on some monitors). This pointer
represantation character can easily be changed by the user since @FFH
may delete a character on some moniters., It should be noted that the
activity pointer is always assumed to be positioned between two charac-
ters.

The pnointer character never appears 1 the pointer is positioned at
aither end of the memory file.

To change the cursor charactar, Tead EDIT into memory without entering the

program. Use DEBUG to search for the byte combination 3E FF representing

the instruction MYI A,PFFH. Change the FF to any dasired character. It

15 suggested that the cursor character be unigue and recognizable at a

glance. Save the modified version of EDIT. —

CHIL Uign mury F&

|)
Use | (724) I 12

@ zF&3d 3IE 20 < e HE £ 7F
@& 72F&54- C

“
-.I("ff]‘ =T [P P T 2_,’."_f1 T A W o) o= FE Fllfj

@ 2o & = TE
2

30 bE = FE = O

| = ®

| f/w\ VerTion

§7e4 = £

> (> 2

e

g7 A LRRNRE FF To 7oy,

{

E }r\ '(-5 {.“nr\j{,-ﬁ_‘ F-F" To _TC.J i

4-22 5

DEBUG

An 80807720 debug, monitor and disassambler
program development system,

Copyright 1978

Allan Ashley
295 Sierra Madre ¥ilila
Pasadenz, CA 51107

(213) 793-5748

f—

INTROBUCTION

DFRUG is an incomparable software development tool featuring single-step
execution of 780 or 8080 programs with complete display of all register
contants, flag status, and trace display. in mnemonic form, of the
instruction just executed and the next instruction to be executed. The
single-step breakpoint can be located anywhere in the user's program.

DEBUG also allows the user to disassemble ZBO and 8080 programs, examine
or modify memory, move or compare hlocks of memory, and search for spe-
cific byte strings.

DEBUG combines a disassembler, & debug package, and the commonly used
menitor routines.

With two exceptions {easily modified by the user) DEBUG is writien
entiraly in the 8080 subset of the Z80 instructions. DEBUG is thus cpera-
tional on either 8080 or Z80 machines. DEBUG i5 therefore a recommended
development tool for those 808D owners anticipating a future aexpansion to
the Z80 processor.

DERLG ORGAHIZATION

DEBUG comtains an overall executive which interprats user commands and
branches to the appropriate module to execute those commands. Upon termi-
nation of any DEBUG command, control is refurned to the DEBUG executive.
Fxit from the DEBUG executive returns control to the entry of

the disk operating system.

Executive commands consist of single characters which must be entered
after the executive prompt {<,. Parameters required for any command are
entared as a sequence of hexadecimal characters, of which only the last
four characters entered are considered valid. A hexadecimal parameter is
terminated by any non-valid hexadecimal character.

Pressing Control-C when entering a hex parameter returns control to the
monitor,

A

EXECUTIVE COMMANDS

DISPLAY CONTENTS OF MEMORY IN ASCIL.

DEBUG responds with the @ prombt, requesting an address at which the
memary display is to begin. The display consists of a four-digit
hexadecimal address followed by 64 bytes displayed as ASCII characters.
Invalid ASCII (control) characters are represantad by a blank. After
each 1ine dispiayed, the display module awaits keyboard input. Any

key except 'Q' advances to the next 6d-byte bleck. The memory pointar
can be moved by pressing 'Q' and then typing a new hex address.

Deprassing 'Q' twice in succession returns control to the DEBUG executive.

5-4

B

SET BREAKPOINT AND BEGIN EXECUTION

DEBUG responds with the @ prompt twice in succession, requesting
twe hexadecimal parameters. The first parameter represents the
address at which the breakpoint is asserted:; the second repre-
sents the address at which execution is to begin. Program
execution proceeds uninterrupted up to, but not including, the
instruction at the breakpoint. NOTE: The first single step
executes the instruction at the breakpoint.

Upon reaching the breakpoint, DEBUG displays all the current
280 registers, the mnemonic of the next instruction to be exe-
cuted, the {MZ flag status., and memory locations pointed to by
each of the registers. Register contents are exhibited as
four-character hexadecimal numbers. The format s as follows.

Mnemonic of instruction
just executed

Flags - next instruction
to be executed

P AF BC DE HL SPIX 1Y
{PC) {AFY (BCY {DE) (HL} (SP} (Ix} (IY)

i —— 16 bytes at memary window ——

where (REG) reprosents the {byte reversed) memory contants
pointed to by REG, and the memory window displays any desired
16 bytes of memory.

The breakpoint is asserted as Restart 3 (call to 18H}. Prior to
execution, DEBUG transfers any existing user instruction at 18H,
nlaces & jump to DEBUG at 1BH, then replaces the user instruction
at the breakpcoint by a RST 3. Encountering the breakpoint,

DEBUG saves the 780 registers, removes the bremak, restores the
contents at 18H, displays the registers, and jumps to the single-
step executive.

The user must not attempt to impose a breakpoint in non-existent
or read-only memory. Similarly, the user must not assert a
second breakpoint without c¢learing any former break. I[f program
axecution terminates before reaching the break, the breakpoing
can be cleared by forcing execution at esither the breakpeint or
18H. The breakpoint must be the first byte of 2 multibyte
instruction.

L

B

(Cont'd)

SINGLE STEP EXECUTIWE

Whan the target program reaches the breakpoint, control s trans-
ferred to the single step executive. The single step executive
controls further execution of the target program. Commands to
the executive consist of a hexadecimal parameter {(n} followed

by a tarminating character. The terminating character defines
the command to the executive

SINGLE STEP Commands :

Space bar allows the program to execute the next instruction,
6 frees the target program to proceed with uninhibited execution.

W resats the memory window to the position defined by the
hex parameter {n).

R asserts a breakpoint at the address given by the top of the
user's stack. The target program executes uninterrupted
until the new breakpoint is reached. The user must ensure
that the top of the stack contains a valid return address.

P resets the breakpoint to the location defined by the hex b
parameter (n}.

] terminates execution of the target program and returns
control to the DEBUG executive.

K abandons singla step, but imposes a breakpeoint at the
instruction just executed. This eption is useful for
tracking program execution through a loop. The single step
executive regains control the next time the program reaches
the breakpoint.

0 displays cnly the mnemonic of the next imstruction to be
exacuted. The single step executive maintains a toggla
which is switched for each execution ¢f the '0' command.

The first execution switches the display to the mnemonics
only; the second execution of '0° resumes the full register
display, etc.

5-6

B (Cont'd)

7 sats the B bit registers. After detecting 'Z' the single
step executive awaits a seguence of commands of the form

Rrn

where R is any of the & bit reqisters A, B, C, D, E, F,

H, L or M, and nn s a hexadecimal value to be inserted
into the register. Control is retyrned to the single step
executive by typing & carriage return instead of a register
character,

¥ executes the next n instructions, withput interruption,
befora returning control to the single step executive.

« I releases the target program but asserts & break onto the top
of the user's stack. The 'R' command places a break in the
program at the return address. The 'Il' command directs the
return to the DEBUG package.

* N forces pragram execution to resume at Tocation n, maintaining
single step control.

] traces transfer instructions {JMP, CALL, etc.) only. The 'J'
cormand is a toggle, as the '0',

* T gats a program trap. The target program is released for
controlled execution. The singie step executive will regain
contral when any 16-bit register contains the value n, or a
memory reference s made to address n.

If the target program branches to read-only memory, DEBUG moves the
breakpoint to the return address, allowing ROM instructions to be
exacuted and trapping the program upon the return to RAM.

The single step feature of DEBUG will prove to be the user's single
most powerful program development tool. It is highly recommended
that every effort be made to become familiar with operation of the
single step executive.

The single step trace option will prove to be a much more potent
analytical device than a simple breakpoint because it allows the
user to monitor program evolution.

* Commands available on special DEBUG versions only.

5.7

COMPARE TWQ BLOCKS OF MEMORY.

DEBUG responds with the @ prompt thrice in succession. The required
parameters are respectively start and end of the first memory block, and
start of the second memory block. DEBUG displays the location and
contents of all bytes which differ in the two memory blocks. Controi is
returned to the DEBUG executive. Control-C returns to monitor.

DISASSEMBLE MEMORY BY SINGLE INSTRUCTIONS.

With the @ prompt, DEBUG requests a starting address. Instructions

are disassembied into the MAKRO mnemonics. ane instruction at a time,
awaiting keyboard input before proceeding. Depressing the space bar
will advance to the next sequential instruction. Depressing 'Q' raturns
control to the DEBUG executive.

Typing any valid hexadecimal address will advance the disassembly pointer
to that address and resume sequential disassembly from that point.
EXAMINE AND MODIFY MEMORY.

The @ prompt requests a starting location. DEBUG displays the current
contents and awaits the new hexadecimal value to be inserted in memory.
Only the last two hex characters are considered vaiid. Typing 'G'

raturns control to the DEBUG executive. Yalues to be stored in memory Myst

be termtinated by carriage return.
FILL A BLOCK OF MEMORY WITH A CONSTANT.

DEBUG responds with a # prompt, requesting the constant hexadecimal
value. The two @ prompts then following request the starting and
ending address of the memory block to be fillad. Control is automatically
returned to the DEBUG executive.

EXECUTE.
DEBUG responds with the @ prompt to request the address at which exe-
cution is to begin.

MOVE A BLOCK OF MEMORY.

DERUG responds with three successive @ prompts representing, respectively,
the start and end of the source block, and the start of the destination
biock. Control is returned to the DEBUG executive.

EXIT FROM THE DEBUG EXECUTIVE.
Control is transferred to the disk operating systam.

5-8)

S

SEARCH MEMORY FOR SPECIFIED BYTE STRING.

DEBUG accepts the sought-for byte string, up to five bytes in
length, immediately after receiving the 5 command. The byte string
is entered as a seguence of the group

2 hex digits followed by a space

The byte string is terminated by a carriage return. Each group of

hex digits, including the last, must be followed by 2 space. Fol-
lowing the carriage return terminating the byte string, DEBUG requests
a starting address for the search with the @ prompt.

Memory is searched from the starting address to higher address values,
wrapping around to reach the start. The search is interrupted to
display the next occcurrence of the byte string. The memory pointer

to the start of the string is displayed. Successive realizations of
the byte string are located by depressing the space har. At each
pause, control can be returned to the DEBUG executive by '0'.

An active search can be terminated by Contrgl-C.

The power of the search mode is considerably enhanced by the capa-
bility of searching for a given byte string under a specified mask
string., The mask string enables the user to include 'don't care
bytes' and modified bytes within the string. To illustrate the
search-under-mask option, a match between memory byte B and input
string byte 1 is defined as a zero resuit of the following operation.

{EXCLUSIVE OR OF B AND I) AND NOT MASK

Agreement between the input string and memary fs found i and only

if a match is found for each byte in the sequence. By default the

mask is zero, in which case a match requires identity between the
memory and input bytes. If the mask is PFFH, any memcry byte is ac-
cepted as & match. The search-under-mask option is emabled by entering
the byte string as & segquence of

4 hex digits followed by a space

The first two of these four digits represenf the mask byte; the
second two digits represent the sought-for byte.

The byte string found in memory can be changed if the user presses
'C' when the search pauses. An input byte string, &s that used to
define the sought string, can then overlay the memory bytes. The
overlay string may be longer, shorter, or equal to the search string.
The overlay string is terminated with a carriage return.

T

¥

DISASSEMBLE A SEQUENTIAL BLOCK QF MEMORY.

YIEW

DEBUG responds with the B prompt twice in succession, representing
the start and end of the memory block. The entire block is disassembied
without user intaeraction. Control is returped to the DEBUG axecutive,

MEMORY IN HEXADECIMAL.

The @ prompt requests a starting address. OFBUG displays memory in
successive 16-byte groups starting at the input address. Depressing
the space bar advances the display to the next 16-byte group. Pressing
'Q' returns control to the DEBUG executive.

5-10

USING DEBUG

Experience will prove DEBUG to be an indispensable programming aid. While
these notes cannot substitute for that experience, they may assist the user
to more rapidly acquire total facility in the operation of DEBUG. The fol-
lowing material adopts., as the measure of programming effort, the time it
takes a program to move from the conceptual stage to a fully operational
version. It is the intent of these notes to assist the user to exploit
DERUG to minimize that time.

The first peint to be made regards programming style: quality software is
born in a planning stage, A well-planned program will be up and running

long before one poorly concelved, regardless of the development aids. It

is altogether too easy to become overly reliant upon DEBUG, im that the user
may be drawn into the trap of hastily assembling & program with the assumption
that DEBUG will cure all the problems. DEBUG should be used in conjunction
with, rather than as a substitute for a planning stage.

From the standpoint of time, however, too much planning may increase the
overall development time. As a quideline, one should structure out his
concapt so that critical program functions are as nearly independent of each
other as possible. It is vanity to try to get anything but the simplest pro-
gramming task to execute properly on the first try. The user should assume
that the initial effort will contain errors and structure the program to
minimize the axtent of the damage caused by any ndividual error.

Oafine & major cycle as one trip through the circuit: text edit, assembly.
exaecute/debug. We wish to minimize the total number of such major cycles.
Overall development time is minimized not by producing am error-free initial
effort, but by 1imiting the number of development passes.

As much as possible, we want to avoid the serial discovery of errors --
picking up one fatzl error on each major cycle. The bulk of the planning
aeffort should be directed to those aspects of the program which must function
first. -

The first function of the DEBUG package is to bridle the fury of & program
arror. Let us define 2 minor cycTe as the seguence: reload the program and
debug package and try again. Each development pass can contain many such
minor cyclas, sinca a simple error can erase memory. The user should learn
to manipuiate the breakpoint and single step features of DEBUG to maximize
the number of errors identified un each minor cycle.

5-11

On the first minor cycle, DEBUS should be used to insert a breakpoint before
the first subroutine call or major logic branch of the main program. If the
program fails before the breakpoint, the minor cycle must be repeated with

the break inserted earlier. At a subroutine call, the user should initially
trip over the call with the 'R' command to eliminate wasteful single stepping.
In the early DEBUG stages, the breakpoint should he used to divide coarsely
the program inte good and bad zones.

Fatz] errors which can be patched without reassembly should be correctad on

a fresh copy {newly loaded} of the program, which should then be stored on
disk. Minor cycles are much faster than 2 development pass. All such patches
should be noted far the next assembly.

The search to localize an error should be taken in broad steps inftially, via
the 'R' and 'P' commands. increasing the fineness of the step gradually. If
a subroutine call is found to result in an error, then that subroutine should
ba entered in the single step mode, but any calls out of that routine shouid
be tripped over by the 'R’ command.

Whenever possible, the user should try to keep an errant program in execution
rather than abort, patch, and start over. Program cperations which result in
a3 misdirected branch or faulty register contents should be corrected by the
"' or 'I' commands, respectively. .

The memory window should be set to monitor a critical memory area away from
the current focus: it should be regarded as a rear-view mirror. The memory
window may be moved about freely in the single step mode without advancing
the program.

Yersions of DEBUG supplied for units with software-controlled hardware interrupt
{e.q., POLY-88, COMPAL-80) contain & trap feature which will allow the target
program to execute until any (16-bit) register contains the trap value or

any memory reference is made to the trap address. The trap feature 73 parfect
for finding that program error which resuits in overwriting memory. In these
versions of DEBUG, the 'H' command displays the Tast five instructions exscuted.
These special versions of DEBUG can single step programs through read only
memory.

The 'I' command, implemented onTy in the specfal versions of DEBUG, was set
up to replace the 'R' command when single stepping the program through RCM,
The 'R' command will not work when the return address points to RM. The
"1" command is outwardly identical to the 'R' command.

The 'K' conmand is used to keep BEBUG in the simple breakpoint mode, allowing
the user to monitor program flow past a critical paoint.

h~12

